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WHEN IS R⋉M AN APPROXIMATELY COHEN-MACAULAY LOCAL RING?

PHAM HONG NAM1,2, DO VAN KIEN, AND PHAN VAN LOC

ABSTRACT. Let (R,m) be a Noetherian local ring and M a finitely generated R-module. In this paper, we
give a complete answer to the question of when the idealization R⋉M of M over R is an approximately
Cohen-Macaulay local ring.

1. Introduction

Throughout this paper, let (R,m) denote a Noetherian local ring of dimension r with the maximal
ideal m and M a finitely generated R-module of dimension d. It is well-known that R is Gorenstein if
and only if there is an element a ∈m such that R/anR is a Gorenstein ring of dimension r−1 for all
n ≥ 1 (see [19]). However, this is not true in the Cohen-Macaulay case. Since such rings are close to
Cohen-Macaulay rings, S. Goto introduced the notion of approximately Cohen-Macaulay local rings
(see [14]).

Definition 1.1. The local ring (R,m) is called approximately Cohen-Macaulay if either r = 0 or if
there is an element a ∈m such that R/anR is a Cohen-Macaulay ring of dimension r−1 for all n ≥ 1.

We consider a multiplication on the additive group R⊕M as follows:

(a,x)(b,y) = (ab,ax+by)

for all (a,x),(b,y) ∈ R⊕M. This multiplication results in R⊕M forming a Noetherian local ring with
the unique maximal ideal m×M. This special local ring is called the idealization of M over R and is
denoted by R⋉M. Notably, it is important to observe that dim(R⋉M) = dim(R). The structure of the
idealization and its applications have piqued the interest of numerous mathematicians, as evidenced in
works such as [2, 13, 15, 16, 21, 26, 30].

It is well-established that R⋉M is a Gorenstein ring if and only if there exists an isomorphism
between M and the canonical module KR of R as R-modules (see [26]). S. Goto et al. in [15] delve into
the investigation of the idealization R⋉M to ascertain the circumstances under which it qualifies as
an almost Gorenstein local ring. Specifically, they focus on scenarios where R is a Cohen-Macaulay
local ring and M denotes a maximal Cohen-Macaulay R-module. In [15, Section 6], the authors
gave a complete answer to the question in the case, where M is a faithful R-module, that is, the case
AnnR(M) = 0. However, in the case where M is not a faithful module it has been left open. Recently,
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S. Goto and S. Kumashiro answered in the special case where R is a Gorenstein local ring and M = I
is an ideal of R such that R/I is a Cohen-Macaulay ring with dim(R/I) = dimR. For the case, where
dim(R/I) = depth(R/I)+1 the question remains open (see [16, Remark 2.6]).

Inspired by the notion of approximately Cohen-Macaulay rings, we introduce the concept of
approximately Cohen-Macaulay modules, which is a generalization of the one presented by N.T.
Cuong et al. (see [8, Definition 4.4]).

Definition 1.2. An R-module M is called an approximately Cohen-Macaulay module if either dim(M)=
0 or there exists an element a ∈m such that M/anM is Cohen-Macaulay of dimension dim(M)−1, for
every integer n ≥ 1.

The aim of this paper is to explore the question of when the idealization R⋉M is an approximately
Cohen-Macaulay local ring. In more detail, the following theorem is the main result of this paper.

Theorem 1.3. Let R be a local ring of dimension r and M a finitely generated R-module of dimension
d. The following assertions are equivalent.

(i) R⋉M is approximately Cohen-Macaulay which is not Cohen-Macaulay.
(ii) One of the following conditions is satisfied.

(a) R is Cohen-Macaulay and M is approximately Cohen-Macaulay of dimension r which is
not Cohen-Macaulay.

(b) R is approximately Cohen-Macaulay which is not Cohen-Macaulay and M is maximal
Cohen-Macaulay.

(c) R and M are both approximately Cohen-Macaulay of the same dimension which are not
Cohen-Macaulay.

(d) R is Cohen-Macaulay and M is Cohen-Macaulay of dimension d = r−1.
(e) R is approximately Cohen-Macaulay which is not Cohen-Macaulay and M is Cohen-

Macaulay of dimension d = r−1.

The proof of Theorem 1.3 relies on the Theorem 3.4, which is a parametric characterization of
the idealization as an approximately Cohen-Macaulay local ring. We also describe the approximate
Cohen-Macaulayness of the idealization R⋉ I in the case where R is a Cohen-Macaulay local ring and
I is an ideal of R (Corollary 3.5 and Corollary 3.6).

In the next section, we provide some preliminary results on the good system of parameters and
the almost p-standard system of parameters of the idealization. In Section 3, we present the proof of
Theorem 1.3.

2. Preliminaries

From now on, we always assume that (R,m) is a Noetherian local ring of dimension r and M is a
finitely generated R-module with d = dimR(M). The notion of almost p-standard systems of parameters
is introduced by D.T. Cuong and the first author in [3]. We recall that a system of parameter (s.o.p for
short) x1, . . . ,xd of M is called almost p-standard if there exist non-negative integers λ0, . . . ,λd such
that

ℓ(M/(xn1
1 , . . . ,xnd

d )M) =
d

∑
i=0

λin1 . . .ni
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for all n1, . . . ,nd ≥ 1.
Following [11, Theorem 1.2], the ring R possesses an almost p-standard s.o.p if and only if it is a

quotient of a Cohen-Macaulay local ring, if and only if every finitely generated R-module admits an
almost p-standard s.o.p. This concept extends the notion of a standard s.o.p for generalized Cohen-
Macaulay modules which are not generalized Cohen-Macaulay. In general, every p-standard s.o.p in the
sense of [7] is an almost p-standard s.o.p. However, the converse statement does not hold true even for
Buchsbaum local rings (also see [22, Example 1]). Almost p-standard systems of parameters are useful
in the studies of sequentially Cohen-Macaulay and sequentially generalized Cohen-Macaulay modules.
The fact that an almost p-standard s.o.p is a (strong) d-sequence which is crucial in applications (see
[3, 4, 5, 8, 9, 10, 11, 17, 18]). Recently, in [6] D.T. Cuong et al. constructed almost p-standard systems
of parameters of idealizations and gave several applications (also see [22, 23, 24, 25]).

Note that every almost p-standard system of parameters is a good s.o.p (see [8, Corollary 2.7], [3,
Proposition 2.5]). The latter concept was introduced by N.T. Cuong et al. (see [8, Definition 2.2])
which is a useful tool for studying the sequentially Cohen-Macaulay modules. Taking ideas from [6,
Theorem 2.5], in the next part of this section, we will construct good systems of parameters for the
idealization R⋉M.

From now on, let FM : M0 ⊆ M1 ⊆ . . . ⊆ Md = M be the dimension filtration of M, i.e. Mi is the
largest submodule of M such that dim(Mi)≤ i for all i = 0,1, . . . ,d (see [27, Definition 2.1]). Such
Mi’s exist uniquely since M is Noetherian. Moreover, M0 = H0

m(M) is the 0-th local cohomology
module of M with respect to the maximal ideal m.

Definition 2.1. A s.o.p x1, . . . ,xd of M is called a good s.o.p of M if Mi ∩ (xi+1, . . . ,xd)M = 0 for all
i = 0, . . . ,d −1.

From now on, we denote by A = R⋉M the idealization of M over R. From the definition of
dimension filtration, we can describe the dimension filtration of idealizations.

Lemma 2.2. Let FM : M0 ⊆ M1 ⊆ . . .⊆ Md = M and FR : R0 ⊆ R1 ⊆ . . .⊆ Rr = R be the dimension
filtrations of M and R, respectively.

(i) If d = r, we put Ai = Ri ×Mi for i = 0, . . . ,r. Then, we have

FA : A0 ⊆ A1 ⊆ . . .⊆ Ar = A

is the dimension filtration of A.
(ii) If d < r, we put Ai = Ri ×Mi for i = 0, . . . ,d and A j = R j ×M for j = d +1, . . . ,r. Then, we

have FA : A0 ⊆ A1 ⊆ . . .⊆ Ar = A is the dimension filtration of A.

In the following proposition, we construct a good system of parameters of the idealization R⋉M
(also see [25, Proposition 2.7]).

Proposition 2.3. Let x = x1, . . . ,xr be elements in m. Set ui = (xi,0) for i = 1, . . . ,r and u = u1, . . . ,ur.
The following statements are equivalent.

(i) u is a good s.o.p of A.
(ii) x is a good s.o.p of R and x1, . . . ,xd is a good s.o.p of M. If d < r, then xd+1, . . . ,xr ∈ AnnR(M).
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Proof. (i)⇒ (ii). Since u is a s.o.p of A, it follows that x is a s.o.p of R and x is a multiplicity system
of M (i.e. ℓ(M/(x1, . . . ,xr)M)< ∞).
• If d = r, then x1, . . . ,xd is a s.o.p of M. Since u1, . . . ,ud is a good s.o.p of A, we have

0×0 = Ai ∩ (ui+1, . . . ,ud)A

= (Ri ∩ (xi+1, . . . ,xd)R)× (Mi ∩ (xi+1, . . . ,xd)M)

for all i = 0, . . . ,d −1. By Definition 2.1, x is a good s.o.p of both M and R.
• If d < r, then we have dimA(0×M) = d < r and 0×M ⊆ Ad = Rd ×M. Since u is a good s.o.p of
A, we get by Definition 2.1 that

0× (xd+1, . . . ,xr)M = (0×M)∩ (ud+1, . . . ,ur)(R⋉M)

⊆ Ad ∩ (ud+1, . . . ,ur)A = 0×0.

Hence xd+1, . . . ,xr ∈ AnnR(M). Since u1, . . . ,ur is a good s.o.p of A, we have

0×0 = Ai ∩ (ui+1, . . . ,ur)A

= (Ri ∩ (xi+1, . . . ,xr)R)× (Mi ∩ (xi+1, . . . ,xr)M)

= (Ri ∩ (xi+1, . . . ,xr)R)× (Mi ∩ (xi+1, . . . ,xd)M)

for all i = 0, . . . ,r−1. By Definition 2.1, x1, . . . ,xr is a good s.o.p of R and x1, . . . ,xd is a good s.o.p of
M.
(ii)⇒ (i). Since x1, . . . ,xd is a good s.o.p of M and x1, . . . ,xr is a good s.o.p of R and xd+1, . . . ,xr ∈
AnnR(M), we get by Definition 2.1 that

Ai ∩ (udi+1, . . . ,ur)A = (Ri ∩ (xdi+1, . . . ,xr)R)× (Mi ∩ (xdi+1, . . . ,xr)M)

= (Ri ∩ (xdi+1, . . . ,xr)R)× (Mi ∩ (xdi+1, . . . ,xd)M)

= 0×0

for all i = 0, . . . ,r−1. By Definition 2.1, u is a good s.o.p of A. □

Following Proposition 2.3 we have the following interesting corollary.

Corollary 2.4. There always exists a good s.o.p of A of the form (x1,0), . . . ,(xr,0), where x1, . . . ,xr is
a good s.o.p of R and x1, . . . ,xd is a good s.o.p of M. Moreover, if d < r then xd+1, . . . ,xr ∈ AnnR(M).

Proof. Let FM : M0 ⊆ M1 ⊆ . . .⊆ Md = M and FR : R0 ⊆ R1 ⊆ . . .⊆ Rr = R be the dimension filtrations
of M and R, respectively. We set di = dim(Ri) and d′

j = dim(M j) for i = 0,1, . . . ,r and j = 0,1, . . . ,d.
By [8, Remark 2.3(i)], we have

M j =
⋂

dim(R/p)≥d′j+1

L(p),Ri =
⋂

dim(R/p)≥di+1

N(p)

where
⋂

p∈Ass(M)L(p) = 0 and
⋂

p∈Ass(M)N(p) = 0 are the reduced primary decompositions of submod-
ules 0 of M and R, respectively. We put

L j =
⋂

dim(R/p)≤d′j

L(p),Ni =
⋂

dim(R/p)≤di

N(p).

Then dim(L j) = d′
j and dim(Ni) = di. We divide it into two cases.
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• Let d = r. By the Prime Avoidance Theorem, there exists a s.o.p x1, . . . ,xr of R such that x1, . . . ,xd
is a s.o.p of M and xdi+1, . . . ,xr ∈ AnnR(R/Ni),xd′j+1, . . . ,xd ∈ AnnR(M/L j). Therefore, we have

(xd′j+1, . . . ,xd)M∩M j ⊆ L j ∩M j = 0

and (xdi+1, . . . ,xr)R∩Ri ⊆ Ni ∩Ri = 0. Therefore, x1, . . . ,xr is a good s.o.p of R and x1, . . . ,xd is a
good s.o.p of M. By Proposition 2.3, (x1,0), . . . ,(xr,0) is a good s.o.p of A.

• Let d < r. By the Prime Avoidance Theorem, there exists a s.o.p x1, . . . ,xr of R such that
xd+1, . . . ,xr ∈ AnnR(M), x1, . . . ,xd is a s.o.p of M and xdi+1, . . . ,xr ∈ AnnR(R/Ni), xd′j+1, . . . ,xd ∈
AnnR(M/L j). Therefore, we have

(xd′j+1, . . . ,xd)M∩M j ⊆ L j ∩M j = 0

and (xdi+1, . . . ,xr)R∩Ri ⊆ Ni ∩Ri = 0. Therefore, x1, . . . ,xr is a good s.o.p of R and x1, . . . ,xd is a
good s.o.p of M and xd+1, . . . ,xr ∈ AnnR(M). By Proposition 2.3, (x1,0), . . . ,(xr,0) is a good s.o.p of
A. □

Almost p-standard systems of parameters of the form (x1,0), . . . ,(xr,0) were used to construct
Cohen-Macaulay Rees algebras for idealizations and Cohen-Macaulay Rees modules for unmixed
modules; to compute Hilbert coefficients of the idealization and partial Euler-Poincaré characteristics
(see [6, 24]); to bound for the reducibility index (see [22]); to compute the length function of saturation
of powers ideals (see [23]).

In the next section, we continuously use almost p-standard and good s.o.p of the form (x1,0), . . . ,(xr,0)
to characterize the approximate Cohen-Macaulayness of idealization.

3. Approximate Cohen-Macaulayness for idealization

Let FM : M0 ⊆ M1 ⊆ . . .⊆ Md = M be the dimension filtration of M and y = x1, . . . ,xd be a good s.o.p
of M. It is clear that x1, . . . ,xi is a multiplicity system of Mi for i = 0, . . . ,d. Therefore, the following
difference is well-defined

IFM(y) = ℓ(M/yM)−
d

∑
i=0

e(x1, . . . ,xi;Mi)

where e(x1, . . . ,xi;Mi) is the multiplicity of Mi with respect to x1, . . . ,xi, for i= 0,1, . . . ,d. The function
IFM(y) was studied by N.T. Cuong and D.T. Cuong in [8]. Note that we have e(x1, . . . ,xi;Mi) = 0 if
and only if dim(Mi)< i. Therefore, the above concept of IFM(y) is identical to the concept of IFM(y) by
N.T. Cuong et al. in [8]. However, for the convenience of calculations, we will use the above definition
of IFM(y). For any integers m = n1, . . . ,nd , we denote

IFM(y(m)) = ℓ(M/y(m)M)−
d

∑
i=0

n1 . . .nie(x1, . . . ,xi;Mi)

where y(m) = xn1
1 , . . . ,xnd

d . By [8, Lemma 2.7, Proposition 2.9], we have the following lemma.

Lemma 3.1. Let y = x1, . . . ,xd be a good s.o.p of M. Then the function IFM(y(m)) is non-decreasing
and non-negative for all integers n1, . . . ,nd ≥ 1.
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WHEN IS R⋉M AN APPROXIMATELY COHEN-MACAULAY LOCAL RING? 6

From now on, let FM : M0 ⊆ M1 ⊆ . . . ⊆ Md = M, FR : R0 ⊆ R1 ⊆ . . . ⊆ Rr = R, and FA be the
dimension filtrations of M, R and A, respectively. Then, we have the following lemma (also see [25,
Lemma 3.2]).

Lemma 3.2. Let x = x1, . . . ,xr be a good s.o.p of R. Set u = u1, . . . ,ur, where ui = (xi,0) for i = 1, . . . ,r,
and u(n) = un1

1 , . . . ,unr
r for n1, . . . ,nr ≥ 1.

(i) Let d = r. Suppose that x is a good s.o.p of M. Then, we have

IFA(u(n)) = IFR(x(n))+ IFM(x(n))

for all integers n1, . . . ,nr ≥ 1.
(ii) Let d < r. Suppose that y = x1, . . . ,xd is a good s.o.p of M and xd+1, . . . ,xr ∈ AnnR(M). Then,

we have
IFA(u(n)) = IFR(x(n))+ IFM(y(m))

for all integers n1, . . . ,nr ≥ 1.

Recall that a local ring R is called generalized Cohen-Macaulay if the i-th local cohomology
module H i

m(R) has finite length for all i = 0,1, . . . ,dim(R)− 1 (see [29]). Note that if dim(A) = 1,
then either A is Cohen-Macaulay or A is generalized Cohen-Macaulay with the dimension filtration
0 ̸= H0

m×M(A)⊊ A. Following [8, Proposition 4.5], A is an approximately Cohen-Macaulay ring. From
now on, we always assume that A is not Cohen-Macaulay and r ≥ 2. Then, we have the following
lemma.

Lemma 3.3. Suppose that r ≥ 2. The following statements are equivalent.
(i) A is approximately Cohen-Macaulay which is not Cohen-Macaulay.
(ii) ℓ(A/uA) = e(u;A)+ e(u1, . . . ,ur−1;Ar−1), where e(u1, . . . ,ur−1;Ar−1) ̸= 0 for all good s.o.p

u = u1, . . . ,ur of A.
(iii) There exists a s.o.p u = u1, . . . ,ur of A such that u is an almost p-standard s.o.p of A and

ℓ(A/uA) = e(u;A)+ e(u1, . . . ,ur−1;Ar−1)

where e(u1, . . . ,ur−1;Ar−1) ̸= 0.
(iv) There exists a good s.o.p u = u1, . . . ,ur of A such that

ℓ(A/u(n)A) = n1 . . .nre(u;A)+n1 . . .nr−1e(u1, . . . ,ur−1,Ar−1)

for all integers n1, . . . ,nr ≥ 1, where e(u1, . . . ,ur−1;Ar−1) ̸= 0.

Proof. (i)⇒ (ii). Since A is approximately Cohen-Macaulay but not Cohen-Macaulay, we get by [8,
Proposition 4.3] that A is a sequentially Cohen-Macaulay module with the dimension filtration

FA : 0 = A0 ⊆ A1 ⊆ . . .⊆ Ar−1 ⊊ A

where dim(Ar−1) = r−1 and Ai = 0 for all i = 0, . . . ,r−2. Hence u1, . . . ,ur−1 is a s.o.p of Ar−1 and

IFA(u) = ℓ(A/uA)− e(u;A)− e(u1, . . . ,ur−1;Ar−1)

for all good s.o.p u = u1, . . . ,ur of A. Therefore, e(u1, . . . ,ur−1;Ar−1) ̸= 0. Following [8, Theorem
4.2], we have

ℓ(A/uA)− e(u;A)− e(u1, . . . ,ur−1;Ar−1) = 0
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WHEN IS R⋉M AN APPROXIMATELY COHEN-MACAULAY LOCAL RING? 7

for every good s.o.p u = u1, . . . ,ur of A.
(ii)⇒ (iii). Let u = u1, . . . ,ur be a good s.o.p of A. By [8, Remark 3.11], we have u(x) = un1

1 , . . . ,unr
r

is also a good s.o.p of A for all positive integers n = n1, . . . ,nr. From the assumption (ii), we have

ℓ(A/u(n)A)−n1 . . .nre(u;A)−n1 . . .nr−1e(u1, . . . ,ur−1;Ar−1) = 0

for all n1, . . . ,nr ≥ 1, where e(u1, . . . ,ur−1;Ar−1) ̸= 0. Therefore, u is an almost p-standard s.o.p of A.
(iii)⇒ (iv). Assume that u = u1, . . . ,ur is an almost p-standard s.o.p of A and

ℓ(A/uA)− e(u;A)− e(u1, . . . ,ur−1;Ar−1) = 0

where e(u1, . . . ,ur−1;Ar−1) ̸= 0. By [8, Corollary 3.7], we have x1, . . . ,xd is a good s.o.p of M. Since
u is almost p-standard, we get by [3, Theorem 3.7] that

ℓ(A/uA) = n1 . . .nre(u;A)+
r−1

∑
i=0

n1 . . .nie(u1, . . . ,ui,U ir
A )

for all integers n1, . . . ,nr ≥ 1. Therefore, we have

e(u1, . . . ,ur−1;Ar−1) =
r−1

∑
i=0

e
(
u1, . . . ,ui,U ir

A
)
.

Following [3, Remark 3.6], U r−1,r
A = Ar−1 is the biggest submodule of M of dimension less than or

equal to r−1. Hence
e(u1, . . . ,ur−1;U r−1,r

A ) = e(x1, . . . ,xr−1;Ar−1)

and e(u1, . . . ,ui;U
i,r
A ) = 0 for all i = 0, . . . ,r−2, the result follows.

(iv)⇒ (i). Let u = u1, . . . ,ur be a good s.o.p of A such that

ℓ(A/u(n)A) = n1 . . .nre(u;A)+n1 . . .nr−1e(u1, . . . ,ur−1,Ar−1)

for all integers n1, . . . ,nr ≥ 1, where e(u1, . . . ,ur−1;Ar−1) ̸= 0. Therefore, u is an almost p-standard
s.o.p of M. Clearly,

ℓ(A/u(n)A)−n1 . . .nre(u;A)−n1 . . .nr−1e(u1, . . . ,ur−1,Ar−1)≥ IFA(u(n))≥ 0.

Therefore, by the hypothesis (iv) we have implied that IFA(u(n)) = 0. By [8, Theorem 4.2], A is
sequentially Cohen-Macaulay. Now, we will prove that Ai = 0 for all i = 0,1, . . . ,r−2. Suppose that
there exists an integer i ∈ {0,1, . . . ,r−2} such that Ai ̸= 0. Put j = dimA(Ai). Then 0 ≤ j ≤ i. Hence
dimA(A j) = j ≥ 0. Therefore, e(u1, . . . ,u j;A j)> 0. Since A is sequentially Cohen-Macaulay, we get
by [3, Proposition 2.9(2)] that A j ∼=U j,r

A . Hence

e(u1, . . . ,u j;U
j,r

A ) = e(u1, . . . ,u j;A j)> 0.

Since u is an almost p-standard s.o.p of A, we get by [3, Theorem 3.7] that

ℓ(A/u(n)A) =
r

∑
i=0

n1 . . .nie(u1, . . . ,ui;U
i,r
A )

for all integers n1, . . . ,nr ≥ 1, where e j(u1, . . . ,u j;U
j,r

A ) > 0 with 0 ≤ j ≤ r− 2 a contradiction. So
Ai = 0 for all i = 0,1, . . . ,r− 2. Thus A is an approximately Cohen-Macaulay local ring but not a
Cohen-Macaulay local ring. □
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WHEN IS R⋉M AN APPROXIMATELY COHEN-MACAULAY LOCAL RING? 8

The first main result of this section is the following theorem.

Theorem 3.4. Suppose that r ≥ 2. The following statements are equivalent.

(i) A is approximately Cohen-Macaulay which is not Cohen-Macaulay.
(ii) There exists an almost p-standard s.o.p u = (x1,0), . . . ,(xr,0) of A such that

ℓ(A/u(n)A) = n1 . . .nre(u;A)+n1 . . .nr−1e(u1, . . . ,ur−1;Ar−1)

for all integers n1, . . . ,nr ≥ 1, where e(u1, . . . ,ur−1;Ar−1)> 0.
(iii) There exists a good s.o.p u = (x1,0), . . . ,(xr,0) of A such that

ℓ(A/u(n)A) = n1 . . .nre(u;A)+n1 . . .nr−1e(u1, . . . ,ur−1;Ar−1)

for all integers n1, . . . ,nr ≥ 1, where e(u1, . . . ,ur−1;Ar−1)> 0.
(iv) One of the following conditions is satisfied.

(a) There exists a good s.o.p x = x1, . . . ,xr of both R and M such that

ℓ(R/x(n)R) = n1 . . .nre(x;R),

ℓ(M/x(n)M) = n1 . . .nre(x;M)+n1 . . .nr−1e(x1, . . . ,xr−1;Mr−1)

for all integers n1, . . . ,nr ≥ 1, where e(x1, . . . ,xr−1;Mr−1)> 0.
(b) There exists a good s.o.p x = x1, . . . ,xr of both R and M such that

ℓ(R/x(n)R) = n1 . . .nre(x;R)+n1 . . .nr−1e(x1, . . . ,xr−1;Rr−1)

ℓ(M/x(n)M) = n1 . . .nre(x;M)

for all integers n1, . . . ,nr ≥ 1, where e(x1, . . . ,xr−1;Rr−1)> 0.
(c) There exists a good s.o.p x = x1, . . . ,xr of both R and M such that

ℓ(R/x(n)R) = n1 . . .nre(x;R)+n1 . . .nr−1e(x1, . . . ,xr−1;Rr−1),

ℓ(M/x(n)M) = n1 . . .nre(x;M)+n1 . . .nr−1e(x1, . . . ,xr−1;Mr−1)

for all integers n1, . . . ,nr ≥ 1, where e(x1, . . . ,xr−1;Rr−1)> 0, e(x1, . . . ,xr−1;Mr−1)> 0.
(d) There exists a good s.o.p x = x1, . . . ,xr of R so that y = x1, . . . ,xr−1 is a good s.o.p of M
and xr ∈ AnnR(M) such that

ℓ(R/x(n)R) = n1 . . .nre(x;R)

and
ℓ(M/y(m)M) = n1 . . .nr−1e(y;M)

for all integers n1, . . . ,nr ≥ 1.
(e) There exists a good s.o.p x = x1, . . . ,xr of R so that y = x1, . . . ,xr−1 is a good s.o.p of M
and xr ∈ AnnR(M) such that

ℓ(R/x(n)R) = n1 . . .nre(x;R)+n1 . . .nr−1e(x1, . . . ,xr−1;Rr−1),

ℓ(M/y(m)M) = n1 . . .nr−1e(y;M)

for all integers n1, . . . ,nr ≥ 1, where e(x1, . . . ,xr−1;Rr−1)> 0.
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WHEN IS R⋉M AN APPROXIMATELY COHEN-MACAULAY LOCAL RING? 9

Proof. (iii)⇒ (i) is obvious by Lemma 3.3(iv).
(i)⇒ (ii). By Corollary 2.4, there is always a good s.o.p u = (x1,0), . . . ,(xr,0) of A. Following [8,
Remark 2.3], u(n) = (x1,0)n1 , . . . ,(xr,0)nr also is good s.o.p for all integers n1, . . . ,nr. Since A is
approximately Cohen-Macaulay but not Cohen-Macaulay, we get by Lemma 3.3(ii) that

ℓ(A/u(n)A) = n1 . . .nre(u;A)+n1 . . .nr−1e(u1, . . . ,ur−1;Ar−1)

for all integers n1, . . . ,nr ≥ 1, where e(u1, . . . ,ur−1;Ar−1) > 0. Therefore, u is an almost p-standard
s.o.p of A.
(iii)⇒ (i). By [8, Corollary 2.7] and [3, Proposition 2.5], the statement follows.
(iii)⇒ (iv). We divide it into two cases.
• Let d = r. Let u = (u1,0), . . . ,(ur,0) be a good s.o.p of M such that

ℓ(A/u(n)A) = n1 . . .nre(u;A)+n1 . . .nr−1e(u1, . . . ,ur−1;Ar−1)

for all positive integers n1, . . . ,nr, where e(u1, . . . ,ur−1;Ar−1) > 0. Hence (u1,0), . . . ,(ur,0) is an
almost p-standard s.o.p of M. Let

FM : M0 ⊆ M1 ⊆ . . .⊆ Mr = M

and
FR : R0 ⊆ R1 ⊆ . . .⊆ Rr = R

be the dimension filtrations of M and R, respectively. For 0 ≤ i ≤ r, we put Ai = Ri ⋉Mi. By Lemma
2.2, A0 ⊆ A1 ⊆ . . .⊆ Ar is the dimension filtration of A. Following the proof of Lemma 3.3 (iv)⇒ (i),
we have Ai = Ri ×Mi = 0 for all i = 0,1, . . . ,r−2 and dim(Ar−1) = r−1 where Ar−1 = Rr−1 ×Mr−1.
Hence

IFA(u(n) = ℓ(A/u(n)A)−n1 . . .nre(u;A)−n1 . . .nr−1e(u1, . . . ,ur−1;Ar−1),

and Ri = 0,Mi = 0 for all i = 0,1, . . . ,r−2. Therefore, one of the following assertions is true.
(a) dim(Rr−1)< r−1 and dim(Mr−1) = r−1. Hence Rr−1 = 0 because if otherwise Rr−1 ̸= 0 then
we have

ℓ(A/u(n)A) = n1 . . .nre(u1, . . . ,ur;A)+n1 . . .nr−1e(u1, . . . ,ur−1;Ar−1)

+n1 . . .ndie(u1, . . . ,udi ;Rr−1 ×0)

where dim(Rr−1) = di < r− 1, a contradiction. Therefore, the dimension filtrations of R and M is
FM : 0 ⊊ Mr−1 ⊊ M and FR : 0 ⊊ R, respectively. Hence

IFR(x(n)) = ℓ(R/x(n)R)−n1 . . .nre(x;R)

and
IFM(x(n)) = ℓ(M/x(n)M)−n1 . . .nre(x;M)−n1 . . .nr−1e(x1, . . . ,xr−1;Mr−1).

By the assumption and Lemma 3.2, we have

IFA(u(n)) = IFR(x(n))+ IFM(x(n)) = 0

for all n1, . . . ,nr ≥ 1. By Lemma 3.1, IFR(x(n)) and IFM(x(n)) are non-negative functions. Therefore,
we have IFR(x(n)) = IFM(x(n)) = 0, which means

ℓ(R/x(n)R) = n1 . . .nre(x;R)
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WHEN IS R⋉M AN APPROXIMATELY COHEN-MACAULAY LOCAL RING? 10

and
ℓ(M/x(n)M) = n1 . . .nre(x;M)+n1 . . .nr−1e(x1, . . . ,xr−1;Mr−1)

for all positive integers n1, . . . ,nr, where e(x1, . . . ,xr−1;Mr−1)> 0.
(b) dim(Rr−1) = r−1 and dim(Mr−1)< r−1. Similar to the proof in case (a), we have

ℓ(R/x(n)R) = n1 . . .nre(x;R)+n1 . . .nr−1e(x1, . . . ,xr−1;Rr−1)

where e(x1, . . . ,xr−1;Rr−1)> 0, and

ℓ(M/x(n)M) = n1 . . .nre(x;M)

for all positive integers n1, . . . ,nr.
(c) dim(Rr−1) = dim(Mr−1) = r− 1. Therefore, the dimension filtrations of R and M are FM : 0 ⊊
Mr−1 ⊊ M and FR : 0 ⊊ Rr−1 ⊊ R, respectively. Similar to the proof in case (a), the result follows.
• Let d < r. Let u = (x1,0), . . . ,(xr,0) be a good s.o.p of A such that

ℓ(A/u(n)A) = n1 . . .nre(u;A)+n1 . . .nr−1e(u1, . . . ,ur−1;Ar−1)

for all positive integers n = n1, . . . ,nr, where e(u1, . . . ,ur−1;Ar−1)> 0. Hence u is an almost p-standard
s.o.p of M. By [8, Remark 2.3], (x1,0)n1 , . . . ,(xr,0)nr also is good s.o.p for all integers n1, . . . ,nr. We
set y = x1, . . . ,xd . By Proposition 2.3, xn1

1 , . . . ,xnr
r is a good s.o.p of R, xn1

1 , . . . ,xnd
d is a good s.o.p of M

and xnd+1
d+1 , . . . ,x

nr
r ∈ AnnR(M). Let

FM : M0 ⊆ M1 ⊆ . . .⊆ Md = M

and
FR : R0 ⊆ R1 ⊆ . . .⊆ Rr = R

be the dimension filtrations of M and R, respectively. For 0 ≤ i ≤ r, we put Ai = Ri × Mi and
A j = R j ×M for j = d + 1, . . . ,r. By Lemma 2.2, A0 ⊆ A1 ⊆ . . . ⊆ Ar is the dimension filtration of
A. Following the proof of Lemma 3.3 (iv)⇒ (i), we have Ai = Ri ×Mi = 0 for all i = 0,1, . . . ,r−2
and dim(Ar−1) = r−1 where Ar−1 = Rr−1 ×M. Hence Ri = 0,Mi = 0 for all i = 0,1, . . . ,r−2, and
d = r−1. Indeed, suppose that d < r−1 then dimA(0×M) = d. Therefore, we have

0 = ℓ(A/u(n)A)−n1 . . .nre(u;A)−n1 . . .nr−1e(u1, . . . ,ur−1;Ar−1)

≥ℓ(A/u(n)A)−n1 . . .nre(u;A)

−n1 . . .nr−1e(u1, . . . ,ur−1;Ar−1)−n1 . . .nde(u1, . . . ,ud;Ad)

≥IFA(u(n))≥ 0

for all positive integers n1, . . . ,nr. Hence

ℓ(A/u(n)A) = n1 . . .nre(u;A)+n1 . . .nr−1e(u1, . . . ,ur−1;Ar−1)

+n1 . . .nde(u1, . . . ,ud;Ad)

where e(u1, . . . ,ud;Ad)> 0, a contradiction. Thus one of the following assertions is true.
(d) dim(Rr−1)< r−1. Similar to the proof in case (a), we have Rr−1 = 0. Therefore, the dimension
filtrations of R and M are FM : 0 ⊊ M and FR : 0 ⊊ R, respectively. By the assumption and Lemma 3.2,
we have

IFA(u(n)) = IFR(x(n))+ IFM(y(m)) = 0
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WHEN IS R⋉M AN APPROXIMATELY COHEN-MACAULAY LOCAL RING? 11

for all n1, . . . ,nr ≥ 1, where y(m) = xn1
1 , . . . ,xnr−1

r−1 . By Lemma 3.1, IFR(x(n)) and IFM(y(m)) are non-
negative functions. Hence IFR(x(n)) = IFM(y(m)) = 0. Therefore,

ℓ(R/x(n)R) = n1 . . .nre(x;R)

and
ℓ(M/y(m)M) = n1 . . .nr−1e(y;M)

for all positive integers n1, . . . ,nr, where y = x1, . . . ,xr−1.
(e) dim(Rr−1) = r−1. Therefore, the dimension filtrations of M and R are FM : 0 ⊊ M and FR : 0 ⊊
Rr−1 ⊊ R, respectively. Similar to the proof in case (d), the result follows.
(iv)⇒ (iii). We consider the following two cases.
• Suppose that one of the conditions (a) or (b) or (c) is satisfied. Since x1, . . . ,xr is a good s.o.p of
both R and M, we get by Proposition 2.3(i) that u = (x1,0), . . . ,(xr,0) is a good s.o.p of A. It is clear

ℓ(A/u(n)A) = ℓ(R/x(n)R)+ ℓ(M/x(n)M)

for all n1, . . . ,nr ≥ 1 where u(n) = un1
1 , . . . ,unr

r , x(n) = xn1
1 , . . . ,xnr

r and

e(u1, . . . ,ur;A) = e(x1, . . . ,xr;R)+ e(x1, . . . ,xr;M),

and

e(u1, . . . ,ur−1;Ar−1) =


e(x1, . . . ,xr−1;Mr−1), if (a) is satisfied,
e(x1, . . . ,xr−1;Rr−1), if (b) is satisfied,
e(x1, . . . ,xr−1;Rr−1 ×Mr−1), if (c) is satisfied.

According to the assumption (iv), we have

ℓ(A/u(n)A) = n1 . . .nre(u;A)+n1 . . .nr−1e(u1, . . . ,ur−1;Ar−1)

for all n1, . . . ,nr ≥ 1, where

Ar−1 =


0×Mr−1, if the condition (a) is satisfied,
Rr−1 ×0, if the condition (b) is satisfied,
Rr−1 ×Mr−1, if the condition (c) is satisfied.

• Suppose that one of the conditions (d) or (e) is satisfied. Since x1, . . . ,xr is a good s.o.p of
R, x1, . . . ,xr−1 is a good s.o.p of M and xr ∈ AnnR(M), we get by Proposition 2.3(ii) that u =
(x1,0), . . . ,(xr,0) is a good s.o.p of A. Since xr ∈ AnnR(M), we get

ℓ(A/u(n)A) = ℓ(R/x(n)R)+ ℓ(M/y(m)M)

for all n1, . . . ,nr ≥ 1, where u(n) = un1
1 , . . . ,unr

r , x(n) = xn1
1 , . . . ,xnr

r , y(m) = xn1
1 , . . . ,xnr−1

r−1 . Moreover,
we have e(u1, . . . ,ur;A) = e(x1, . . . ,xr;R) and

e(u1, . . . ,xr−1;Ar−1) =

{
e(x1, . . . ,xr−1;M), if (d) is satisfied,
e(x1, . . . ,xr−1;Rr−1 ×M), if (e) is satisfied.

Combining with the assumption (iv), we have

ℓ(A/u(n)A) = n1 . . .nre(u;A)+n1 . . .nr−1e(u1, . . . ,ur−1;Ar−1)
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WHEN IS R⋉M AN APPROXIMATELY COHEN-MACAULAY LOCAL RING? 12

where

Ar−1 =

{
0×M, if the condition (d) is satisfied,
Rr−1 ×M, if the condition (e) is satisfied.

□

Now we are ready to present the proof of Theorem 1.3.

Proof of Theorem 1.3. We divide into two cases.
• The case d = r. Following Theorem 3.4(iv), A is approximately Cohen-Macaulay which is not
Cohen-Macaulay if and only if one of the three conditions (a),(b),(c) of Theorem 3.4 is satisfied. By
[8, Proposition 4.5], the statements follow.
• The case d < r. Following Theorem 3.4(iv), A is approximately Cohen-Macaulay which is not
Cohen-Macaulay if and only if one of the two conditions (d),(e) of Theorem 3.4 is satisfied. By [8,
Proposition 4.5], the statements follow. □

Theorem 1.3 immediately gives us the following interesting corollary.

Corollary 3.5. Suppose that R is a Cohen-Macaulay local ring of dimension r ≥ 2. Let I be an ideal
of R. We put d = dimR(I). Then the following assertions are equivalent.

(i) R⋉ I is a Cohen-Macaulay local ring.
(ii) R⋉ I is an approximately Cohen-Macaulay local ring.

(iii) Either I = (0) or I is a maximal Cohen-Macaulay R-module.

Proof. (i)⇒ (ii) is trivial.
(ii)⇒ (iii). We consider the following two cases.

• R⋉ I is Cohen-Macaulay. If d = r, then by [22, Corollary 1(i)], I is a maximal Cohen-Macaulay
R-module. If d < r, then by [22, Corollary 1(ii)], we have I = (0).

• R⋉ I is approximately Cohen-Macaulay but not Cohen-Macaulay. If r = d, then following
Theorem 1.3, I is approximately Cohen-Macaulay but not Cohen-Macaulay. Since R is Cohen-
Macaulay, the largest submodule of R of dimension less than r equals (0). So, the largest submodule
of I of dimension less than r equals (0), a contradiction. If d < r, then following Theorem 1.3, I is
Cohen-Macaulay of dimension d = r−1 > 0. Since I is a submodule of R of dimension less than r
and R is Cohen-Macaulay, we get I = (0), a contradiction.
(iii)⇒ (i) is trivial by [22, Corollary 1(ii)]. □

The proof of Corollary 3.5 immediately gives us the following corollary.

Corollary 3.6. Suppose that R is a Cohen-Macaulay local ring of dimension r ≥ 2. Then there does
not exist an ideal I of R such that R⋉ I is an approximately Cohen-Macaulay local ring which is not
Cohen-Macaulay.

We end this paper with the following example.

Example 3.7. Let S = k[[X ,Y,Z,T ]] be the formal power series ring over a field k and a= (X)∩ (Y,Z).
Let R = S/a. Then dim(R) = 3. Denote by x,y,z, t are the image of X ,Y,Z,T in R, respectively.
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WHEN IS R⋉M AN APPROXIMATELY COHEN-MACAULAY LOCAL RING? 13

Then the largest submodule of R of dimension less than 3 is I = (x)S ∼= (X ,Y,Z)/(Y,Z). Hence I is
Cohen-Macaulay of dimension dimR(I) = 2. Let x1 = t + z,x2 = x+ y,x3 = t(y+ z). Then we have

ℓ
(
R/(xn1

1 ,xn2
2 ,xn3

3 )
)
= 2n1n2n3 +n1n2,

for all n1,n2,n3 ≥ 1. Hence x1,x2,x3 is an almost p-standard s.o.p of R. By [3, Theorem 4.7] we have

ℓ
(
R/(xn1

1 ,xn2
2 ,xn3

3 )
)
= 2n1n2n3 + e(x1,x2; I)n1n2,

for all integers n1,n2,n3 ≥ 1. Therefore, R is an approximately Cohen-Macaulay local ring. By
Theorem 1.3, R⋉ I is an approximately Cohen-Macaulay local ring which is not Cohen-Macaulay.
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