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WHEN IS R x M AN APPROXIMATELY COHEN-MACAULAY LOCAL RING?

PHAM HONG NAM'+2, DO VAN KIEN, AND PHAN VAN LOC

ABSTRACT. Let (R, m) be a Noetherian local ring and M a finitely generated R-module. In this paper, we
give a complete answer to the question of when the idealization R x M of M over R is an approximately
Cohen-Macaulay local ring.
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1. Introduction

.
@]

4 Throughout this paper, let (R,m) denote a Noetherian local ring of dimension r with the maximal
15 jdeal m and M a finitely generated R-module of dimension d. It is well-known that R is Gorenstein if
'6_and only if there is an element a € m such that R/a"R is a Gorenstein ring of dimension r — 1 for all
7 n>1 (see [19]). However, this is not true in the Cohen-Macaulay case. Since such rings are close to

'8 Cohen-Macaulay rings, S. Goto introduced the notion of approximately Cohen-Macaulay local rings

19 (see [14]).
20
>, Definition 1.1. The local ring (R, m) is called approximately Cohen-Macaulay if either r = 0 or if

-, there is an element a € m such that R/a"R is a Cohen-Macaulay ring of dimension r — 1 for all n > 1.

23

24

- (a,x)(b,y) = (ab,ax+by)

26 for all (a,x),(b,y) € R®M. This multiplication results in R ® M forming a Noetherian local ring with
27 the unique maximal ideal m x M. This special local ring is called the idealization of M over R and is
28 denoted by R x M. Notably, it is important to observe that dim(R x M) = dim(R). The structure of the
29 idealization and its applications have piqued the interest of numerous mathematicians, as evidenced in
30 works such as [2, 13, 15, 16, 21, 26, 30].

31 Itis well-established that R x M is a Gorenstein ring if and only if there exists an isomorphism
32 between M and the canonical module Ky of R as R-modules (see [26]). S. Goto et al. in [15] delve into
33 the investigation of the idealization R X M to ascertain the circumstances under which it qualifies as
34 an almost Gorenstein local ring. Specifically, they focus on scenarios where R is a Cohen-Macaulay
35 local ring and M denotes a maximal Cohen-Macaulay R-module. In [15, Section 6], the authors
36 gave a complete answer to the question in the case, where M is a faithful R-module, that is, the case
37 Anng (M) = 0. However, in the case where M is not a faithful module it has been left open. Recently,
38

We consider a multiplication on the additive group R @ M as follows:

3 This research is supported by International Centre of Research and Postgraduate Training in Mathematics (ICRTM),
— Institute of Mathematics, VAST under the grant number ICRTM04-2024.04.
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1 S. Goto and S. Kumashiro answered in the special case where R is a Gorenstein local ring and M =/
2 is an ideal of R such that R/I is a Cohen-Macaulay ring with dim(R/I) = dimR. For the case, where
'3 dim(R/I) = depth(R/I) + 1 the question remains open (see [16, Remark 2.6]).
4+ Inspired by the notion of approximately Cohen-Macaulay rings, we introduce the concept of
approximately Cohen-Macaulay modules, which is a generalization of the one presented by N.T.
uong et al. (see [8, Definition 4.4]).

e

finition 1.2. An R-module M is called an approximately Cohen-Macaulay module if either dim(M) =
or there exists an element a € m such that M /a"M is Cohen-Macaulay of dimension dim(M) — 1, for
every integer n > 1.

C
D
0
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;;  The aim of this paper is to explore the question of when the idealization R x M is an approximately

., Cohen-Macaulay local ring. In more detail, the following theorem is the main result of this paper.

E Theorem 1.3. Let R be a local ring of dimension r and M a finitely generated R-module of dimension
14 d. The following assertions are equivalent.

15 (i) Rx M is approximately Cohen-Macaulay which is not Cohen-Macaulay.

16 (ii) One of the following conditions is satisfied.

- (a) R is Cohen-Macaulay and M is approximately Cohen-Macaulay of dimension r which is
8 not Cohen-Macaulay.

s (b) R is approximately Cohen-Macaulay which is not Cohen-Macaulay and M is maximal
20 Cohen-Macaulay.

21 (c) R and M are both approximately Cohen-Macaulay of the same dimension which are not
22 Cohen-Macaulay.

28 (d) R is Cohen-Macaulay and M is Cohen-Macaulay of dimension d = r — 1.

24 (e) R is approximately Cohen-Macaulay which is not Cohen-Macaulay and M is Cohen-
25 Macaulay of dimensiond =r— 1.

26
—  The proof of Theorem 1.3 relies on the Theorem 3.4, which is a parametric characterization of

— the idealization as an approximately Cohen-Macaulay local ring. We also describe the approximate
2o Cohen-Macaulayness of the idealization R X [ in the case where R is a Cohen-Macaulay local ring and
0 I is an ideal of R (Corollary 3.5 and Corollary 3.6).

o In the next section, we provide some preliminary results on the good system of parameters and
— the almost p-standard system of parameters of the idealization. In Section 3, we present the proof of
- Theorem 1.3.

all 2. Preliminaries

35

36 From now on, we always assume that (R, m) is a Noetherian local ring of dimension r and M is a
37 finitely generated R-module with d = dimg(M). The notion of almost p-standard systems of parameters

3g is introduced by D.T. Cuong and the first author in [3]. We recall that a system of parameter (s.o.p for

39 short) x1,...,xg of M is called almost p-standard if there exist non-negative integers Ao, ..., A4 such
40 that
— d
41
" M/ M) =Y Aing
i=0
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for all ny,...,ng > 1.

Following [11, Theorem 1.2], the ring R possesses an almost p-standard s.o.p if and only if it is a
quotient of a Cohen-Macaulay local ring, if and only if every finitely generated R-module admits an
almost p-standard s.o.p. This concept extends the notion of a standard s.o.p for generalized Cohen-
Macaulay modules which are not generalized Cohen-Macaulay. In general, every p-standard s.o.p in the
sense of [7] is an almost p-standard s.o.p. However, the converse statement does not hold true even for
Buchsbaum local rings (also see [22, Example 1]). Almost p-standard systems of parameters are useful

g in the studies of sequentially Cohen-Macaulay and sequentially generalized Cohen-Macaulay modules.
9 The fact that an almost p-standard s.o.p is a (strong) d-sequence which is crucial in applications (see
10 [3,4,5,8,9,10, 11, 17, 18]). Recently, in [6] D.T. Cuong et al. constructed almost p-standard systems
11 of parameters of idealizations and gave several applications (also see [22, 23, 24, 25]).

12 Note that every almost p-standard system of parameters is a good s.o.p (see [8, Corollary 2.7], [3,
13 Proposition 2.5]). The latter concept was introduced by N.T. Cuong et al. (see [8, Definition 2.2])
14 which is a useful tool for studying the sequentially Cohen-Macaulay modules. Taking ideas from [6,
15 Theorem 2.5], in the next part of this section, we will construct good systems of parameters for the
16 idealization R X M.

17 From now on, let §y : Mo C M; C ... C M; = M be the dimension filtration of M, i.e. M; is the
1g largest submodule of M such that dim(M;) <iforalli=0,1,...,d (see [27, Definition 2.1]). Such
19 M;’s exist uniquely since M is Noetherian. Moreover, My = HO (M) is the 0-th local cohomology
20 module of M with respect to the maximal ideal m.

[~lo|ofa]e]r]~

21
— Definition 2.1. A s.0.p x,...,x4 of M is called a good s.o.p of M if M; N (xi11,...,x4)M = 0 for all

22
~i=0,...,d—1.
23

24 From now on, we denote by A = R x M the idealization of M over R. From the definition of
25 dimension filtration, we can describe the dimension filtration of idealizations.

26

o7 Lemma2.2. Let§y Mo CM C...CMy;=Mand Fr:Ro C R C ... CR, =R be the dimension

og filtrations of M and R, respectively.

29 (i) Ifd =r, we put Aj = R; x M for i = 0,...,r. Then, we have
30
31 Sa:AgCA C...CA =A

32 . . . .
— is the dimension filtration of A.

% (ii) Ifd <r, we put Ay =R; xM; fori=0,....dand Aj =R; x M for j=d+1,...,r. Then, we
il have §a : Ag CA1 C ... C A, = A is the dimension filtration of A.
35

3E In the following proposition, we construct a good system of parameters of the idealization R x M
37 (also see [25, Proposition 2.7]).

38
2o Proposition 2.3. Let x = xy,...,x, be elements in m. Set u; = (x;,0) fori=1,...,rand u=uy,...,u,.

10 The following statements are equivalent.
a (i) uis a good s.o.p of A.
42 (i) xisagoods.o.p of Randxy,...,xqis a goods.o.p of M. Ifd <r, then xq1,...,x, € Anng(M).
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1 Proof. (i) = (ii). Since u is a s.0.p of A, it follows that x is a s.0.p of R and x is a multiplicity system
2 of M (ie. {(M/(x1,...,x,)M) < o).
3 eIfd=r,thenxy,...,x;sis as.o.p of M. Since uy,...,uy is a good s.0.p of A, we have
0 x 0:Aiﬂ(ui+1,...,ud)A
= (RiN (Xig1,- -, Xa)R) X (Mi 0 (Xit1, - ., xa)M)

— foralli=0,...,d — 1. By Definition 2.1, x is a good s.0.p of both M and R.
e If d < r, then we have dimy (0 x M) =d < rand 0 x M C A; = R; x M. Since u is a good s.0.p of

5 A, we get by Definition 2.1 that

H OX(xd+17"'7xr)M:<0><M)m(ud+la"'7ur)(Rl><M)

11 QAdﬂ(ud+1,...,u,)A:OxO.

% Hence x4 1,...,X € Anng(M). Since uy,...,u, is a good s.o.p of A, we have

. 0x0=A;N(uit1,...,ur)A

E = (RN (Xit1,--x0)R) X (M; N (Xig14. .oy x0)M)

6 = (RiN (Xit1,-- X )R) X (MO (Xix1,. .., xq)M)

% forall i=0,...,r— 1. By Definition 2.1, x1,...,x, is a good s.o.p of R and x{,...,xy is a good s.o.p of
;% (ii-) = (i). Since x1,...,x4 is a good s.0.p of M and xi,...,x, is a good s.0.p of R and x4 1,...,X, €
21 Anng(M), we get by Definition 2.1 that

22 A0 (thg 1y tr)A = (R0 (Xg1s- - X )R) X (My 0 (Xg 415+ X0 ) M)

Z% = (RiN(Xg 41, X )R) X (Mi N (X411, - - -, Xg)M)

o =0x0

26 foralli=0,...,r— 1. By Definition 2.1, u is a good s.o.p of A. O
% Following Proposition 2.3 we have the following interesting corollary.

29 Corollary 2.4. There always exists a good s.o.p of A of the form (x1,0),...,(x,,0), where x,...,x, is
30 agood s.o.p of Rand xy,...,xq is a good s.o.p of M. Moreover, if d < r then x4 1,...,x, € Anng(M).

3 Proof. Letgy My CM; C...CMy;=MandFr:Ry CR; C... CR, =R be the dimension filtrations
2 of M and R, respectively. We set d; = dim(R;) and d} =dim(M;) fori=0,1,...,rand j=0,1,...,d.
8 By [8, Remark 2.3(i)], we have

34
B M= () L®).R= () N
. dim(R/p)>d), dim(R/p)>d;

3Z where (Ve ass(mr) L(P) = 0 and Npeage(ar) N () = 0 are the reduced primary decompositions of submod-
38 wules 0 of M and R, respectively. We put

i% Li= (] Lm.N= (] N

o dim(R/p)<d dim(R/ p)<d;

g Then dim(L;) = d’; and dim(N;) = d;. We divide it into two cases.
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1 e Let d = r. By the Prime Avoidance Theorem, there exists a s.0.p x1,...,x, of R such that x,..., x4
2 isas.opof Mand xg41,...,x € AnnR(R/M),xd;+1,. ..,Xq € Anng(M/L;). Therefore, we have

% (xd}_,_l,...,xd)MﬁMjngﬂMJ'ZO

5 and (xg.41,-..,%)RNR; € N;NR; = 0. Therefore, xi,...,x, is a good s.o.p of R and xy,...,xz is a
6 good s.0.p of M. By Proposition 2.3, (x,0),...,(x,,0) is a good s.o.p of A.

7 e Letd < r. By the Prime Avoidance Theorem, there exists a s.o.p xi,...,x, of R such that
8 Xgt1,-.-,% € Anng(M), x1,...,x4 is a s.o.p of M and x441,...,x, € Anng(R/N;), Xgl g1y 5% €
° Anng(M/L;). Therefore, we have
0

]
11 (xd;_Jrl,...,xd)MﬂMjngﬂMjZO

2 and (Xg41,---,%)RNR; € N;NR; = 0. Therefore, xi,...,x, is a good s.0.p of R and xy,...,xs is a
'8 good s.o.p of M and x4 1,...,x, € Anng(M). By Proposition 2.3, (x1,0),...,(x,,0) is a good s.0.p of
A O
15

16 Almost p-standard systems of parameters of the form (x;,0),...,(x,,0) were used to construct

17 Cohen-Macaulay Rees algebras for idealizations and Cohen-Macaulay Rees modules for unmixed
1s modules; to compute Hilbert coefficients of the idealization and partial Euler-Poincaré characteristics
19 (see [6, 24]); to bound for the reducibility index (see [22]); to compute the length function of saturation
o0 of powers ideals (see [23]).

>1  Inthe next section, we continuously use almost p-standard and good s.o.p of the form (x;,0),..., (x,,0)
oo to characterize the approximate Cohen-Macaulayness of idealization.

23

o1 3. Approximate Cohen-Macaulayness for idealization

2 LetFy: My C M, C...C My =M be the dimension filtration of M and y =Xi,...,Xg be a good s.0.p
% of M. It is clear that xi,...,x;is a multiplicity system of M; for i =0,...,d. Therefore, the following

27 difference is well-defined
28

5 ) = 01 /300) = B el i)
30

31 where e(xy,...,x;; M;) is the multiplicity of M; with respect to xi,...,x;, fori=0,1,...,d. The function
%2 I3, (y) was studied by N.T. Cuong and D.T. Cuong in [8]. Note that we have e(xy,...,x;;M;) =0 if
% and only if dim(M;) < i. Therefore, the above concept of I3, (y) is identical to the concept of I3, (y) by
34 N.T. Cuong et al. in [8]. However, for the convenience of calculations, we will use the above definition

% of I3, (y). For any integers m = ny,...,ny, we denote

36

- Ty (y(m)) = £(M /y(m an e(xi,. i My)

i% where X(m) = x'f1 b ,de. By [8, Lemma 2.7, Proposition 2.9], we have the following lemma.

E Lemma 3.1. Lety = x1,...,xq be a good s.o.p of M. Then the function Iy, (y(m)) is non-decreasing
42 and non-negative for all mtegers ni,...,ng > 1.
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1 From now on, let §yy : Moy CM; C...CM;=M,Fr:RyC R C... CR, =R, and §4 be the
> dimension filtrations of M, R and A, respectively. Then, we have the following lemma (also see [25,
3 Lemma 3.2)).

4 .
— Lemma 3.2. Let x=x,...,x, be a good s.o.p of R. Setu=uy,...,u,, where u; = (x;,0) fori=1,...,r,
~and u(n) =ui',...,u" forny,...,n, > 1.

(¢}

(i) Let d = r. Suppose that x is a good s.o.p of M. Then, we have

Iy, (u(n)) = Iz, (x(n)) + I, (x(n))
for all integers ny,...,n, > 1.
(ii) Letd <r. Suppose thaty = x1,...,xq is a good s.o.p of M and x4 1,...,x, € Anng(M). Then,
we have

e
[@[R[=]3]e]e]~]o

Iz, (u(n)) = I (x(n)) + I, (y(m))
for all integers ny,...,n, > 1.

—
»

-

5  Recall that a local ring R is called generalized Cohen-Macaulay if the i-th local cohomology
16 module H/ (R) has finite length for all i = 0,1,...,dim(R) — 1 (see [29]). Note that if dim(A) = 1,
17 then either A is Cohen-Macaulay or A is generalized Cohen-Macaulay with the dimension filtration
18 0# Hg . (A) € A. Following [8, Proposition 4.5], A is an approximately Cohen-Macaulay ring. From
19 NOw on, we always assume that A is not Cohen-Macaulay and » > 2. Then, we have the following

20 lemma.

% Lemma 3.3. Suppose that r > 2. The following statements are equivalent.

(i) A is approximately Cohen-Macaulay which is not Cohen-Macaulay.
ot (ii) L(A/ul) = e(u;A) +e(ur,...,ur—1;A,_1), where e(uy,...,ur—1;A,_1) # 0 for all good s.o.p
u=uy,...,uy of A.

25

v (iii) There exists a s.o.p u = uy,...,u, of A such that u is an almost p-standard s.o.p of A and
27 UAJuA) = e(u;A) +e(uy, ..., ur—15Ar-1)

28 where e(uy,...,u,—1;A,—1) # 0.

2 (iv) There exists a good s.0.p u = uy,...,u, of A such that

30

- UA/u(n)A) =n;...ne(w;A)+ny...np_1e(uy,...,ur—1,A—1)

32 for all integers ny,...,n, > 1, where e(uy,...,u—1;A,—1) #0.

33
o Proof. (i) = (ii). Since A is approximately Cohen-Macaulay but not Cohen-Macaulay, we get by [8,
- Proposition 4.3] that A is a sequentially Cohen-Macaulay module with the dimension filtration

36 S4:0=4CA; C...CA, 1 CA

" where dim(A,_ ;) =r—1andA;=0foralli=0,...,r —2. Hence uy,...,u, 1 isas.o.p of A,_; and
38

39 Iz, (u) = L(A/uA) —e(w;A) —e(ur, ..., ur—1;A,_1)

g for all good s.0.p u = uy,...,u, of A. Therefore, e(uy,...,u,—1;A,—1) # 0. Following [8, Theorem
41 4.2], we have
42 U(AJuA) —e(u;A) —e(uy,...,ur—1;A,-1) =0
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1 for every good s.o.pu =uy,...,u, of A.
2 (ii) = (iii). Letu = uy,...,u, be a good s.o.p of A. By [8, Remark 3.11], we have u(x) = u}',...,u'"r
'3 is also a good s.0.p of A for all positive integers n = ny,...,n,. From the assumption (i), we have
U(AJu(n)A) —ny...nre(u;A) —ny...n—ye(uy,...,ur—1;A,—1) =0

for all ny,...,n, > 1, where e(uy,...,u,—1;A,_1) # 0. Therefore, u is an almost p-standard s.o.p of A.
(iii) = (i ) Assume that u = uy,...,u, is an almost p-standard s.o.p of A and
U(AJuA) —e(u;A) —e(uy,...,ur—1;A,-1) =0

~ where e(uy,...,u—1;A,—1) # 0. By [8, Corollary 3.7], we have xi,...,x; is a good s.0.p of M. Since
" uis almost p- standard we get by [3, Theorem 3.7] that

@\m\*\m\m\k\

10

11
— r—1

2 ((A/uA) :nl...nre(g;AH—an...nie(ul,...,ul—,UX)
13 i=0

14 for all integers ny,...,n, > 1. Therefore, we have

E r—1

E e(ula"'aur—l;Ar—l):Ze(u17"'7ui7UAr)‘

17 i=0

E Following [3, Remark 3.6], U/:_Lr = A,_ is the biggest submodule of M of dimension less than or
9 equal to r— 1. Hence

20 e(ur,...,ur—1;U,y 1r)—e(xl,...,x,,l;A,,l)

2 and e(uy,...,u;;U ) Oforalli=0,...,r—2, the result follows.

. (iv) = (i). Let u=uy,...,u beagoods.o.p of A such that

o4 E(A/Q(Q)A) =ny...ne(w;A)+ny...n_re(up,...,.u—1,A_1)

QE for all integers ny,...,n, > 1, where e(uy,...,u,—1;A,—1) # 0. Therefore, u is an almost p-standard

% s.0.p of M. Clearly,

27

s U(A/u(n)A) —n;...ne(u;A) —ny...n_re(uy,...,u—1,Ar—1) > I3, (u(n)) > 0.

29 Therefore, by the hypothesis (iv) we have implied that I3, (u(n)) = 0. By [8, Theorem 4.2], A is
80 sequentially Cohen-Macaulay. Now, we will prove that A; =0 for all i = 0,1,...,r — 2. Suppose that
31 there exists an integer i € {0, 1,...,r—2} such that A; # 0. Put j = dimy (A;). Then 0 < j <i. Hence
82 dimy(Aj) = j > 0. Therefore, e(ul, ,uj;Aj) > 0. Since A is sequentially Cohen-Macaulay, we get
% by [3, Proposition 2.9(2)] that A; 2 U f{ r. Hence

4
2? e(I/l], Ltj,Uf{ r> = e(ul, uj;Aj) > 0.

36 Since u is an almost p-standard s.o.p of A, we get by [3, Theorem 3.7] that

37

38 0(A/u(n) an e(ur,...,u;Uy")

39

g for all integers ny,...,n, > 1, where ¢;(u, .. uj;Uf{’r) > 0 with 0 < j < r—2 a contradiction. So
41 Aj=0forall i = O, 1, ,¥ —2. Thus A is an approximately Cohen-Macaulay local ring but not a
g Cohen-Macaulay local ring. OJ
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The first main result of this section is the following theorem.

1
% Theorem 3.4. Suppose that r > 2. The following statements are equivalent.

W (i) A is approximately Cohen-Macaulay which is not Cohen-Macaulay.

- (ii) There exists an almost p-standard s.o.p u = (x1,0),.. ., (x,0) of A such that

6 L(AJu(n)A) =n;...ne(w;A)+ny...np_re(uy,...,.u—1;A,-1)

7

e forall integersny,...,n, > 1, where e(uy, ..., u—1;A,—1) > 0.

o (iii) There exists a good s.o.p u = (x1,0),...,(x,,0) of A such that

E L(AJu(n)A) =n...ne(w;A)+ny...np_re(uy,...,u—1;A,_1)

% for all integers ny,...,n, > 1, where e(uy,...,u,—1;A,—1) > 0.

o (iv) One of the following conditions is satisfied.

v (a) There exists a good s.0.p x = x1,...,x, of both R and M such that

E ((R/x(n)R) =ny...ne(x;R),

16

= (M/x(n)M) =ny...ne(x;M)+ny...n—_je(xy,...,xp—1;Mr—1)

18 for all integers ny,...,n, > 1, where e(x,...,x,—1;M,_1) > 0.

19 (b) There exists a good s.o.p x = x1,...,x, of both R and M such that

20 U(R/x(n)R) =ny...nre(x;R)+ny...np—1e(x1,...,.x—1;R—1)

21

20 (M/x(n)M) =n;...ne(x;M)

23 for all integers ny,...,n, > 1, where e(xy,...,x,—1;R,—1) > 0.

24 (c) There exists a good s.o.p x = x1,...,X, of both R and M such that

25

. ((R/x(n)R)=ny...nre(x;R)+ny...np—1e(x1,...,.x—1;R—1),

2Z M/x(n)M) =n;...ne(x;M)+ny...n—1e(x1,...,x—1;M,_1)

all for all integers ny,...,n, > 1, where e(x1,...,x,—1;R—1) >0, e(x1,...,x—1;M,—_1) > 0.
29 (d) There exists a good s.0.p X =x1,...,xy of R so that y = xy,...,X,—1 is a good s.o.p of M
%0 and x, € Anng(M) such that

31

32 ((R/x(n)R) =nj...ne(x;R)

3 and

34

= (M /y(m)M) =ny...n,_1e(y;M)

36 for all integers ny,...,n, > 1.

37 (e) There exists a good s.0.p x = x1,...,X, of R so that y = x,...,x,—1 is a good s.o.p of M
v and x, € Anng(M) such that

39 ((R/x(n)R) =ny...ne(x;R)+ny...np_1e(xy,...,x,—1;R—1),

40

a1 E(M/X(m)M) = nl...n,_le(X;M)

42 for all integers ny,...,n, > 1, where e(xy,...,x,—1;R—1) > 0.
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1 Proof. (iii) = (i) is obvious by Lemma 3.3(iv).

2 (i) = (ii). By Corollary 2.4, there is always a good s.0.p u = (x1,0),...,(x,,0) of A. Following [8,
3 Remark 2.3], u(n) = (x1,0)™,...,(x,,0)" also is good s.o.p for all integers ny,...,n,. Since A is
"4 approximately Cohen-Macaulay but not Cohen-Macaulay, we get by Lemma 3.3(ii) that

L(A/u(n)A) =n;...ne(w;A)+ny...np_re(uy,...,.u—1;A,-1)

for all integers ny,...,n, > 1, where e(uy,...,u,—1;A,—1) > 0. Therefore, u is an almost p-standard
s.0.p of A.

g (iii) = (i). By [8, Corollary 2.7] and [3, Proposition 2.5], the statement follows.

o (iii) = (iv). We divide it into two cases.

;; eLetd=r. Letu=(ur,0),...,(u,,0) be a good s.o.p of M such that

@|~[o]o]

2 L(A/u(n)A) =ny...ne(w;A)+ny...np_e(uy,...,ur—1;A,-1)

% for all positive integers ny,...,n,, where e(uy,...,u,_1;A,—1) > 0. Hence (u1,0),...,(u,,0) is an
v almost p-standard s.o.p of M. Let

6 Sy MyCM C...CM, =M

7 and

8 Sr:Ry)CR C...CR, =R

19
0 be the dimension filtrations of M and R, respectively. For 0 <i <r, we put A; = R; X M;. By Lemma
o 2.2,A0 CA; C ... C A, is the dimension filtration of A. Following the proof of Lemma 3.3 (iv) = (i),
o, wehave A; =R; x M; =0foralli=0,1,...,r—2and dim(A,_;) =r—1where A,_| =R,_| X M,_;.

v Hence

s Iz, (u(n) = 0(A/u(n)A) —ny...nre(u;A) —ny...np_1e(ur, ..., ur—1;A,-1),

25 and R; = 0,M; =0 forall i =0,1,...,r — 2. Therefore, one of the following assertions is true.

26 (a) dim(R,_1) < r—1 and dim(M,_;) = r— 1. Hence R,_; = 0 because if otherwise R,_; # 0 then
27 we have

28 (A u(n)A) =ny...nee(ur,...,upsA)+ny...np_re(ur, ..., ur—1;A,-1)

29

= +n1"'nd,‘e(ulaﬂ')udi;erl XO)

5, Where dim(R,_1) = d; < r— 1, a contradiction. Therefore, the dimension filtrations of R and M is
3 Om:0C M, &M and §g: 0 C R, respectively. Hence

5 Izp(x(n)) = €(R/x(n)R) —n1...ne(x;R)

— and

o Iz, (x(n)) =4(M/x(n)M) —ny ...ne(x;M) —ny ... np_1e(x1,... . x,—1;M—1).

37 By the assumption and Lemma 3.2, we have

x Iy, (u(n)) = Iz, (x(n)) + I3, (x(n)) = 0

4o forallny,...,n, > 1. By Lemma 3.1, I, (x(n)) and I5,,(x(n)) are non-negative functions. Therefore,
41 We have Ig, (x(n)) = I5,,(x(n)) = 0, which means

42 (R/x(n)R) =ny...ne(x;R)
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1 and

2 (M/x(n)M) =n;...ne(x;M)+ny...np_1e(x1,...,x—1;M,_1)

3 for all positive integers ny,...,n,, where e(xy,...,x,—1;M,_1) > 0.

4 (b) dim(R,—1) =r—1and dim(M,_;) < r— 1. Similar to the proof in case (a), we have
5

o U(R/x(n)R) =ny...nre(x;R)+ny...np—1e(x1,...,x—1;R—1)

7 where e(xy,...,x,_1;R,—1) >0, and

8 UM /x(n)M) =n; ...ne(x;M)
9

1o for all positive integers ny, ..., n,.

5 (c) dim(R,—;) = dim(M,_;) = r — 1. Therefore, the dimension filtrations of R and M are Fy : 0 C
> M, CMand Fr:0C R, C R, respectively. Similar to the proof in case (a), the result follows.
13 eLetd <r. Letu=(x1,0),...,(x,,0) be a good s.0.p of A such that

4 LA u(n)A) =n;...ne(w;A)+ny...np_re(uy,...,.u—1;A,_1)

. for all positive integers n =ny,...,n,, where e(uy,...,u,—1;A,—1) > 0. Hence u is an almost p-standard
- S.0.p of M. By [8, Remark 2.3], (x1,0)",...,(x,,0)" also is good s.o.p for all integers ny,...,n,. We
e set y =x,...,xq. By Proposition 2.3, xrl” ,...,X" is a good s.0.p of R, x'l" b ,xzd is a good s.o0.p of M
.o and Xy X € Anng(M). Let

20 Su:MyCM C...CMy=M

1 and

= Sr:ROCRIC...CR. =R

23

ot be the dimension filtrations of M and R, respectively. For 0 < i < r, we put A; = R; X M; and
2?’41' =R;jxMfor j=d+1,...,r. By Lemma 2.2, Ag CA; C ... C A, is the dimension filtration of

o A. Following the proof of Lemma 3.3 (iv) = (i), we have A; = R; x M; =0 forall i =0,1,...,r -2
5, and dim(A,_;) =r— 1 where A,_; =R,_; x M. Hence R; =0,M; =0 foralli=0,1,...,r —2, and
- d = r—1. Indeed, suppose that d < r — 1 then dimy (0 X M) = d. Therefore, we have

2E 0="L(A/u(n)A)—ny...ne(w;A) —ny...n._1e(uy,...,ur—1;Ar—_1)

30 >U(A/u(n)A) —ny...nre(u;A)

31

. —ny...np_re(ur, ..., up—1;Ar—1) —ny...nge(uy,... . ug;Aq)

% >I5, (u(n)) 20

34 for all positive integers np,...,n,. Hence

3 LA u(n)A) =n;...ne(w;A)+ny...np_re(uy,...,.u—1;A,_1)

36

— —l—nl...nde(ul,...,ud;Ad)

QE where e(uy,...,ug;A4) > 0, a contradiction. Thus one of the following assertions is true.

39 (d) dim(R,—1) <r— 1. Similar to the proof in case (a), we have R,_; = 0. Therefore, the dimension
40 filtrations of R and M are §y : 0 C M and §g : 0 C R, respectively. By the assumption and Lemma 3.2,
41 we have

42 I3, (u(n)) = Iz, (x(n)) + I3, (y(m)) = 0
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i forall ny,...,n, > 1, where y(m) =x/',...,x" . By Lemma 3.1, I, (x(n)) and I, (y(m)) are non-
‘2 negative functions. Hence Ig, (x(n)) = I5,,(y(m)) = 0. Therefore,

i U(R/x(n)R) =ny...ne(x;R)

4

~ and

o K(M/X(m)M) =n ...nr,]e(X;M)

7 for all positive integers ny,...,n,, where Y =X, Xp— 1

‘8 (e) dim(R,_1) = r — 1. Therefore, the dimension filtrations of M and R are Fy : 0 C M and Fg: 0 C
9 R,_1 C R, respectively. Similar to the proof in case (d), the result follows.

10 (iv) = (iii). We consider the following two cases.

11 @ Suppose that one of the conditions (a) or (b) or (c) is satisfied. Since xy,...,x, is a good s.0.p of
12 both R and M, we get by Proposition 2.3(i) that u = (x1,0),...,(x,,0) is a good s.0.p of A. It is clear
2 ((A/u(n)A) = £ (R/x(n)R) + £ (M /x(n)M)

14

5 forallny,....n, > 1 where u(n) =u}',...,ulr, x(n) =x}",... xr and

16 e(uy,...,.usA)=e(xy,...,x,;R) +e(xi,...,xs M),

17

— and

% e(xy,...,xp—1;Mr_1), if (a) is satisfied,

o e(ur,...;ur—1;A,-1) =< e(x1,...,x,—1;R—1), if (b) is satisfied,

o1 e(x1,...,xr—13R—1 X M,_1), if (¢) is satisfied.

22 According to the assumption (iv), we have

23
ot LA /u(n)A) =ny...ne(w;A)+ny...np_je(uy,...,ur—1;A,-1)

25 for all ny,...,n, > 1, where

26

o 0xM,_y, if the condition (a) is satisfied,

28 A1 =R x0, if the condition (b) is satisfied,

2E R,—1 X M,_y, if the condition (c) is satisfied.

%% o Suppose that one of the conditions (d) or (e) is satisfied. Since xi,...,x, is a good s.0.p of
U R, x1,...,x_ is a good s.0.p of M and x, € Anng(M), we get by Proposition 2.3(ii) that u =
% (x1,0),...,(x0) is a good s.0.p of A. Since x, € Anng(M), we get

33

34 ((A/u(n)A) = £(R/x(n)R) +£(M /y(m)M)

% forall ny,...,n, > 1, where u(n) = u}',...,ulr x(n) = x]",....x", y(m) = x’l”,...,x':’_’ll. Moreover,
% we have e(uy,...,u;;A) = e(xy,...,x;R) and

37

s e(xt,....,x,_1;M), if (d) is satisfied,

(ﬁ €(u1,...,xr_1;Ar_1): ( : ) . ( ) .

39 e(xt,...,x,—1;R—1 xM), if (e) is satisfied.

% Combining with the assumption (iv), we have
41

2 L(A/u(n)A) =n;...ne(w;A)+ny...np_re(uy,...,.u—1;A,-1)
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where
A= 0xM, if the condition (d) is satisfied,
o R,_1 x M, if the condition (e) is satisfied.

Now we are ready to present the proof of Theorem 1.3.

Proof of Theorem 1.3. We divide into two cases.

e The case d = r. Following Theorem 3.4(iv), A is approximately Cohen-Macaulay which is not
;o Cohen-Macaulay if and only if one of the three conditions (a), (), (c) of Theorem 3.4 is satisfied. By
11 [8, Proposition 4.5], the statements follow.

., ® The case d < r. Following Theorem 3.4(iv), A is approximately Cohen-Macaulay which is not
.5 Cohen-Macaulay if and only if one of the two conditions (d), (e) of Theorem 3.4 is satisfied. By [8,
" Proposition 4.5], the statements follow. O]

5 Theorem 1.3 immediately gives us the following interesting corollary.

16
17 Corollary 3.5. Suppose that R is a Cohen-Macaulay local ring of dimension r > 2. Let I be an ideal

18 of R. We put d = dimg(I). Then the following assertions are equivalent.

oo |~fofofs]e]r]-

19 (i) Rx I is a Cohen-Macaulay local ring.
20 (i) R x I is an approximately Cohen-Macaulay local ring.
21 (iii) Either I = (0) or I is a maximal Cohen-Macaulay R-module.

2 Proof. (i) = (ii) is trivial.

(i) = (iii). We consider the following two cases.

o5 e R ix I is Cohen-Macaulay. If d = r, then by [22, Corollary 1(i)], / is a maximal Cohen-Macaulay
os R-module. If d < r, then by [22, Corollary 1(ii)], we have I = (0).

>, ® R is approximately Cohen-Macaulay but not Cohen-Macaulay. If r = d, then following
s Theorem 1.3, I is approximately Cohen-Macaulay but not Cohen-Macaulay. Since R is Cohen-
2o Macaulay, the largest submodule of R of dimension less than r equals (0). So, the largest submodule
0 of I of dimension less than r equals (0), a contradiction. If d < r, then following Theorem 1.3, I is
5, Cohen-Macaulay of dimension d =r—1 > 0. Since [ is a submodule of R of dimension less than r
5> and R is Cohen-Macaulay, we get [ = (0), a contradiction.

43 (iii) = (i) is trivial by [22, Corollary 1(ii)]. O

34 The proof of Corollary 3.5 immediately gives us the following corollary.

35

36 Corollary 3.6. Suppose that R is a Cohen-Macaulay local ring of dimension r > 2. Then there does
37 not exist an ideal I of R such that R x I is an approximately Cohen-Macaulay local ring which is not

3g Cohen-Macaulay.

24

i% We end this paper with the following example.

E Example 3.7. Let S = k[[X,Y,Z, T]] be the formal power series ring over a field k and a = (X) N (Y, Z).
42 Let R = S/a. Then dim(R) = 3. Denote by x,y,z,¢ are the image of X,Y,Z,T in R, respectively.
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Then the largest submodule of R of dimension less than 3 is I = (x)S = (X,Y,Z)/(Y,Z). Hence I is
Cohen-Macaulay of dimension dimg(/) = 2. Let x; =1 +z,xp = x+y,x3 = (y+2). Then we have

1 (R/(x']“,xgz,xg”)) = 2n1nyn3 +nny,

for all ny,no,n3 > 1. Hence x1,x;,x3 is an almost p-standard s.o.p of R. By [3, Theorem 4.7] we have

[~[ofofs]e]o]~

C(R/(x]",x52,25%)) = 2ninons + e(x1,x2;1)nyna,

8 for all integers ni,n»,n3 > 1. Therefore, R is an approximately Cohen-Macaulay local ring. By

% Theorem 1.3, R x I is an approximately Cohen-Macaulay local ring which is not Cohen-Macaulay.
10
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