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ON THE CRITICAL GROUP OF HINGE GRAPHS

AREN MARTINIAN AND ANDRÉS R. VINDAS-MELÉNDEZ

ABSTRACT. Let G be a finite, connected, simple graph. The critical group K(G), also known as the sandpile
group, is the torsion subgroup of the cokernel of the graph Laplacian cok(L). We investigate a family of
graphs with relatively simple non-cyclic critical group with an end goal of understanding whether multiple
divisors, i.e., formal linear combinations of vertices of G, generate K(G). These graphs, referred to as hinge
graphs, can be intuitively understood by taking multiple base shapes and “gluing” them together by a single
shared edge and two corresponding shared vertices. In the case where all base shapes are identical, we
compute the explicit structure of the critical group. Additionally, we compute the order of three special
divisors. We prove the structure of the critical group of hinge graphs when variance in the number of vertices
of each base shape is allowed, generalizing many of the aforementioned results.

1. Introduction

In this paper we study a finite abelian group associated to a finite connected graph G, known as the
critical group of G. The critical group goes by different names (e.g., the Jacobian group, sandpile group,
component group) and is studied in various mathematical areas (e.g., algebraic geometry, statistical
physics, combinatorics) [16]. We focus on the combinatorial definition of the critical group involving
chip-firing operations and its connections to graph-theoretic trees. In particular, for a finite connected
graph, the order of the critical group equals the number of spanning trees of the graph. For the interested
reader, we recommend the survey paper by Glass and Kaplan [16] as an introduction to the study of
critical groups and chip-firing, as well as the books by Klivans [20] and Cory and Perkinson [14] for
comprehensive considerations of chip-firing.

There are many results on the group structure of the critical group and the relationship with the structure
of an associated graph, see for instance [2, 7, 9, 13]. Determining the critical group for certain families of
graphs continues to be an active area of research. There exists work where the critical group has been
partially determined for some families of graphs, for instance see [5,11,17,22,29–31]. Additionally, there
is a growing body of work where the complete critical group structure for families of graphs is determined,
see for instance [8, 10, 12, 18, 21, 23–28].

The family of graphs that we study are those which we call hinge graphs. These are graphs that can be
intuitively understood by taking multiple base shapes and “gluing” them together on a single shared edge
and two corresponding shared vertices. In [13], Cori and Rossin show that the critical group of a planar
graph G is isomorphic to the critical groups of the dual of G. It so happens that hinge graphs are dual to a
family of graphs known as thick cycle graphs, which are cycle graphs where multiple edges are allowed,
and were studied in [1, 4]. Furthermore, thick cycle graphs can be seen as specializations of outerplanar
graphs studied in [3].
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The study of hinge graphs arose independently and was motivated primarily in attempt to answer the
question proposed in [16] on how divisors generate critical groups in cases where the group is non-cyclic.
Hinge graphs, especially those containing identical copies of the same base shape, are some of the simplest
examples of graphs with non-cyclic critical groups, and whose behavior can be thoroughly studied. In
addition, the study of hinge graphs has led to observations about proving linear equivalence and the order
of divisors which provides a streamlined approach to the investigation of divisors and critical groups of
graphs more generally. As mentioned before, hinge graphs can be observed to be the dual graphs of thick
cycle graphs, thus the critical group of a hinge graph is isomorphic to the critical group of a thick cycle
graph, whose complete structure is given in Theorem 2.29 in [4] and Theorem 1 in [1]. Despite there
being literature about the structure of the critical groups of thick cycle graphs, and hence an alternate route
to the study of hinge graphs, this connection was not previously made. We provide a novel approach using
divisors that generate the critical group of hinge graphs which is not explored in the existing literature.
We emphasize that the proofs in this paper are new and rely solely on generating divisors and were written
with a deliberate choice to avoid using the theory of reduced divisors.

Our main contributions include proofs of formulas for the order and structure of the critical group of
hinge graphs with same base shapes, and using tools such as the graph Laplacian, to determine the orders
of important group elements. Using similar techniques to those used to prove these results, we generalize
some to the case where we have hinge graphs with different base cycles. For what follows Hk,n denotes
the hinge graph with k vertices on each base shape and ncopies of the base shape. For different cycles,
Hk1−1,k2−1,...,kn−1 denotes the hinge graph with ki vertices on each base shape. The critical group of a
graph G is denoted K(G).

Theorem 3.1. Given a hinge graph Hk,n, the order of the critical group K(Hk,n) is

|K(Hk,n)|= (k−1)n−2(k−1)(k+n−1).

Theorem 3.6. The critical group K(Hk,n) is isomorphic to

(Z/(k−1)Z)n−2 ⊕ (Z/(k−1)(k+n−1)Z).

Theorem 4.1. Consider a hinge graph with different base shapes Hk1−1,...,kn−1, the order of
K(Hk1−1,...,kn−1) is

|K(Hk1−1,...,kn−1)|= a+a/(k1 −1)+ · · ·+a/(kn −1),
where a := (k1 −1) · · ·(kn −1).

This paper is organized as follows. In Section 2 we provide background and preliminaries on divisors,
the critical group, and hinge graphs. In Section 3 we prove several results for hinge graphs where each
base shape is an identical cycle, including the explicit structure of the critical group and the behavior of
some noteworthy divisors (see Proposition 3.3). In Section 4 we generalize many of the aforementioned
results to hinge graphs where the number of vertices on each base shape can vary (see Theorem 4.9). We
conclude in Section 5 with some directions for future research.

2. Preliminaries

In this section we review some key definitions and theorems, as well as introduce several definitions
pertaining to our specific case study. We begin by briefly detailing divisors and critical groups on graphs.
We take our graphs to be connected, undirected, and any two vertices are connected by at most one edge.
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Note that a consequence of these conditions is that graphs cannot contain loops. These are the conditions
under which much of the existing critical group literature has focused on.

Let V (G) and E(G) refer to the set of vertices and edges of a graph G, respectively. A cycle graph
is a graph where every vertex has valence two. These are most often thought of as regular polygons (a
convention we will adopt).

Definition 2.1. A divisor (or chip configuration) on a graph G is a formal Z-linear combination of vertices
of G,

D = ∑
v∈V (G)

v ·D(v).

The degree of a divisor D is the integer deg(D) := ∑v∈V (G)D(v).

Definition 2.2. A firing of a vertex is the operation taking the divisor D to a divisor D′ where

D′(v) =

{
D(v)−val(v), if v = w,
D(v)+# edges between v and w, if v ̸= w.

This is referred to as a chip-firing move or chip-firing operation. We say that two divisors D and D′ are
chip-firing equivalent or linearly equivalent if D′ can be obtained from D via a sequence of chip-firing
moves. The order of a divisor D is the smallest positive integer z with zD linearly equivalent to the zero
divisor.

In our specific case study, the number of edges between two vertices will always be at most 1. Note
also that the chip-firing operation is commutative, and hence firings can be thought of as happening
simultaneously. By convention, if a divisor consists of a 0 associated with a vertex, that vertex is left
blank.

The graph Laplacian L is defined as A−M, where A denotes the adjacency matrix of the graph, and M
is the diagonal matrix with the valences of each vertex in V (G).

Definition 2.3. The critical group K(G) of a graph G is the torsion subgroup of the cokernel of the graph
Laplacian cok(L).

Note that elements of the critical group necessarily have degree 0, and have order consistent with the
definition of order of a divisor.

Theorem 2.4 (Corollary 3, [16]). The order of the critical group K(G) is the number of spanning trees of
G.

While it is sufficient to consider any divisor as an element of the critical group, we are mainly interested
in a particular type of divisor that can be thought of as a representative element modulo chip-firing
equivalence.

Definition 2.5. Let K(G) be the critical group of a graph G. We say a divisor D is a q-reduced divisor if
for any vertex q of D,

(1) D(v)≥ 0 for all v ̸= q and
(2) for every nonempty subset of vertices V ′ ⊆V (G)\{q}, if we take D(v) and fire every vertex in

V ′, then some vertex in V ′ has associated integer r < 0.

Note that q-reduced divisors are not used explicitly in this paper, but it is worth mentioning that all divisors
discussed will be multiples of q-reduced divisors.

Next, we introduce definitions specific to a particular family of graphs.
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Definition 2.6. A hinge graph is a graph constructed by “adjoining” or “gluing” several cycle graphs via
a shared edge and consequent pair of vertices. We call the cycles used to construct the hinge graph the
base shapes, and will sometimes refer to them as cycles of the hinge graph.

• In the case when all base shapes are identical, these hinge graphs are denoted Hk,n, where k is the
number of vertices of the base shape (including the pair of shared vertices) and n is the number of
copies of the base shape.

• For different cycles, we instead use the notation Hk1−1,k2−1,...,kn−1, where ki refers to the number
of vertices of each base shape. (Note that this notation differs from identical base shapes since we
use ki −1 instead of ki for its usefulness in the proofs of forthcoming results.)

Refer to Figure 1 for examples of hinge graphs. In the case of cycles with four vertices, which are taken
as squares, these graphs are called book graphs as their structure resembles that of several pages.

In what follows, attaching another copy of the base shape to an existing graph with the same shared
hinge will be referred to as adding a copy of the base shape. In cases where spanning trees are counted,
the deletion of an edge while retaining both vertices will be referred to as removing an edge.

FIGURE 1. Types of divisors studied: δx,y (left), εx,y (center), and ηx,y (right).

We will focus our attention on three distinct types of divisors on these graphs, which will be referred to
as δx,y, εx,y, and ηx,y, following the notation in [16]. All three divisors have degree 0, with zeroes assigned
to all vertices except two, which are assigned a 1 and −1. The difference between these divisors lies in
the location of the vertices associated with nonzero values. The divisor

• δx,y consists of a 1 and −1 on the shared pair of vertices,

• εx,y consists of a 1 and −1 on a shared vertex and an adjacent vertex on a cycle, and

• ηx,y consists of a 1 and −1 on two vertices adjacent to the same shared vertex, but on different
cycles.

When enumeration of these divisors is important, as in Lemma 3.4 when choosing a minimal generating
set of ηx,y’s or Theorem 4.4 where the order of εx,y depends on the base shape chosen, we will denote the
divisors for each base shape by εx,y,i and ηx,y,i. Examples of all three divisors can be seen in Figure 1. As
we shall see, the distinction of which vertex is assigned a positive or negative value is irrelevant.
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Some of the following propositions are well-known in the literature, but we reiterate them here as they
will be useful in the forthcoming proofs.

Proposition 2.7. The sum of two divisors (via summing integers at each vertex) corresponds identically
to the sum of two elements in the critical group.

We note that the aforementioned statement follows as a consequence of the definition of the critical
group, but its impact on our results is significant enough to warrant it as a proposition.

Theorem 2.8 (Theorem 11, [16]). For any finite connected graph G, the null space of the Laplacian
matrix of G is generated by the vector 1.

As a consequence, borrowing from a vertex is equivalent to firing every other vertex (by adding 1 to
the vector r = (0,0, . . .0,−1,0, . . .0)T , the number of times each vertex is fired), where the −1 means
borrowing from the ith vertex. Therefore, borrowing can be thought of as the inverse of firing.

Proposition 2.9. Let a and b be two vector representations of divisors for a graph G and let M be the
augmented matrix of L and a−b. If all entries in M after row reduction are integers, a and b are linearly
equivalent.

Proof. It is a widely known fact in linear algebra that augmenting any matrix with a vector is equivalent
to solving the vector equation Ax = b. When we employ this construction with the graph Laplacian and
augmenting the divisor in the final column, solving this equation is equivalent to finding the vector r,
which is the number of times each vertex must be fired to obtain the divisor. Since the graph Laplacian
has kernel of dimension 1, by Theorem 2.8, there will be a last row of zeroes in the matrix, and every
value will be expressible in terms of the last column, hence we can simply read off the values in the final
column. If all of these values are integers, we know the divisor is linearly equivalent to the zero divisor,
since that means the divisor can be formed by firing vertices an integral number of times. Combining this
with Proposition 2.7, two divisors are linearly equivalent if their difference is linearly equivalent to the
zero divisor, and hence we can use this method to check if any two divisors are linearly equivalent. □

Proposition 2.10. Let nd be the vector representation of a multiple n of a divisor δ on a graph G, and let
M be the augmented matrix of L and nd. If the non-unital entries of M after row reduction are integers
with greatest common divisor 1, and furthermore if this greatest common divisor is invariant under
addition of the vector 1, then n = |δ |.
Proof. Using the construction outlined in Proposition 2.9, if we multiply the divisor, augment the graph
Laplacian with the multiplied divisor, and take its Reduced Row Echelon Form, we will obtain the
corresponding vector r, unique up to addition of 1. Note that r will only have integer entries if the divisor
is linearly equivalent to the zero divisor. Through this process, if we obtain a set of integers whose greatest
common divisor equals 1, and furthermore adding a multiple of 1 does not change this greatest common
divisor, we have discovered the smallest multiple of the divisor for which we have linear equivalence to
the zero divisor. This is because if there is no common divisor, dividing by any integer leaves us with
fractional components of r, and adding or subtracting multiples of 1 does not change this fact. Therefore,
we can use this result to prove the order of any divisor. □

As the following lemma is useful to prove results for hinge graphs with different base shapes
Hk1−1,...kn−1, we consider ki −1 rather than ki.

Lemma 2.11. Let b = lcm(k1 −1 . . . ,kn −1). Then

gcd(b/(k1 −1), . . . ,b/(kn −1)) = 1.
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For completeness, we detail the proof below.

Proof. Let
g := gcd(b/(k1 −1), . . . ,b/(kn −1)).

Then g divides b/(k j −1) for all 1 ≤ j ≤ n. Hence, for each j there exists some d j such that

g ·d j = b/(k j −1),

so g ·d j(k j −1) = b and g divides b. Dividing through by g we see that

(k j −1)(d j) = b/g,

and therefore (k j − 1) divides b/g, but this was true for all j and hence b/g must be a multiple of all
k j −1. Since b is the least common multiple that means g = 1. □

Remark 2.12. This lemma holds if we eliminate one of the ki−1 provided that the least common multiple
does not change, which we make use of in the proof of Theorem 4.4.

We use the above lemma to determine that the number of times that vertices are fired for our specific
divisors, multiplied by their orders (e.g., (k− 1)ηx,y), are coprime. Therefore, we obtain that specific
multiple as the order of the divisor in the critical group. However, this is not sufficient, as this coprimality
between our elements may not be invariant under addition of the vector 1, the kernel of the graph Laplacian.
We will use the next result in the proofs of Proposition 4.3 and Theorem 4.4 to ensure this is not the case.

Lemma 2.13. Let {n,2n, ...mn} and {m,2m, ...nm} be two sets of positive integers with n,m coprime.
Then there exists some element of each set such that they differ by exactly 1.

3. Hinge graphs with the same base shapes

In this section, we prove several theorems on the behavior of hinge graphs when all base shapes are
identical.

Theorem 3.1. Given a hinge graph Hk,n, the order of K(Hk,n) is

|K(Hk,n)|= (k−1)n−2(k−1)(k+n−1).

Proof. We proceed by induction on n, the number of copies of the base shape. As the base case, we
consider when n = 2, that is, we have the hinge graph with two cycles. By Theorem 3.1 in [6] we garner
that the critical group of this hinge graph has order k2 −1.

Next, we consider a hinge graph with n copies of the base shape and then add an extra copy, that is, we
begin with Hk,n and consider the hinge graph Hk,n+1. In what follows, we denote the number of spanning
trees of Hk,n by S(n,k).

Whenever another copy of the base shape is added, the number of edges and vertices increases by k−1
and k−2, respectively. Recall that for a spanning tree T of a graph G we have that |E(T )|= |V (T )|−1.
Assuming the condition was previously met, we have the equality

|E(T )|+ k−1 = |V (T )|−1+ k−2.

It then follows that |E(T )|= |V (T )|−2, and therefore for the condition of a spanning tree to be met, we
must remove an additional edge.

Note that we cannot remove any two edges on the cycle unless one of them is the shared edge. This is
because subtracting two edges from the same cycle forces the graph to be disconnected for precisely the
same reason that removing two edges from a single cycle disconnects the graph (see Figure 3). On the
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FIGURE 2. Adding a copy of the base shape to H5,3 to create H5,4.

other hand, the shared edge can be removed since both vertices have valence greater than 2, so neither
vertex will be isolated upon its removal. Thus, there are two possibilities for selecting which edge to
remove: one additional edge from the (n+1)st base shape or the shared edge.

FIGURE 3. Removing edges to create spanning trees. (Left) removing edges from the new
cycle gives us (k−1)S(n,k) possibilities (example of removable edge in green). (Middle)
removing the shared edge (in green) gives us (k− 1)n extra possibilities. (Right) we
cannot subtract two edges from the same cycle, since that disconnects the graph (example
of two non-removable edges in red).

We have k−1 possible edges to remove from the new (n+1)st cycle, and with each option we have
S(n,k) spanning trees since we can remove edges in precisely the same way as with n base shapes. Hence,
we obtain (k−1)(S(n,k)) spanning trees.

The other option is to the subtract from the shared edge, leaving us to choose one edge from each of
the n original cycles. Therefore, we have an additional (k−1)n possible ways to remove the n edges.

To prove that |Hk,n+1| is obtained by the desired formula, we show algebraic equivalence. This is
sufficient as, by Theorem 2.4, the order of the critical group |Hk,n+1| is equivalent to S(n+ 1,k), the
number of spanning trees of Hk,n+1. We proceed as follows: first, we write down the formula for n copies,
apply the operations described above, and then show this is algebraically equivalent to the formula for
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n+1 copies:

(k−1)n−2(k2 −1+(n−2)(k−1)) = (k−1)n−2(k−1)(k+1+n−2)

= (k−1)n−2(k−1)(k+n−1).

Now we apply the recursive operation:

(k−1)
(
(k−1)n−2(k−1)(k+n−1)

)
+(k−1)n = (k−1)n−1((k−1)(k+n−1)+ k−1)

= (k−1)n−1(k2 −1+(n−1)(k−1)).

This is the formula one obtains by replacing n with n+1 in the original. Thus, by Theorem 2.4, we have
proved the order of the critical group. □

Remark 3.2. In Theorem 4.1 we generalize Theorem 3.1 in the setting where our hinge graph has base
shapes with different number of vertices, i.e., different cycles.

Proposition 3.3. The orders of the divisors ηx,y, δx,y, and εx,y are k−1, k+n−1, and (k−1)(k+n−1),
respectively.

We prove the orders of the divisors independently. First, we illustrate a sketch of each proof for
readability:

Sketch:
• To prove the order of ηx,y, we begin with the hinge graph H3,n and describe an iterative procedure

on k, the number of vertices of the base shape, to obtain order of ηx,y for Hk,n for arbitrary k and
n. We consider a cycle as a string of k vertices whose endpoints are the vertices on the shared
edge, which we can do because the shared endpoints are not fired. Each time we add a vertex
to increase k, we apply a firing operation on all vertices except the endpoints to achieve linear
equivalence to the zero divisor. Concatenating this procedure each time we add a vertex, we see
we have fired each non-shared vertex a consecutive number of times and hence this must be the
order since any two consecutive numbers are coprime.

• For δx,y, we apply the same procedure as ηx,y, but note we start a vertex further away from the
endpoint and also need to consider all n base shapes, rather than just a single one.

• Lastly, the proof of εx,y combines these two proofs, first showing that a scalar multiple of εx,y is
equivalent to δx,y and then using the procedure from δx,y. In this section, all three proofs rely on
the consecutive number of firings of vertices.

□

Proof of order of ηx,y. We begin with the smallest case, that is the case where all base shapes are triangles.
Then we will describe an iterative procedure to obtain all base shapes with more than three vertices. If we
assign a 1 and −1 to the non-shared vertex of two different triangles, it is straightforward to show this
divisor is a group element of order at most 2.

As shown in Figure 4, we multiply this divisor by 2 and hence have 2 and −2. Since we can fire the 2
exactly once and borrow from the −2 exactly once to obtain linear equivalence to the zero divisor, we
have shown that the divisor is a group element of at most order 2. It is possible that the divisor is linearly
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FIGURE 4. The base case, where linear equivalence can be seen by firing the vertex with
a 2 and borrowing from the vertex with -2.

equivalent to the zero divisor without any scalar multiplication, which would mean it would be of order 1.
One can verify this is not true by utilizing Proposition 2.10, which tells us that chip firing equivalence
is unique up to addition of the kernel (which in this case is simply 1). From this, if we fire each vertex
a number of times, such that the greatest common divisor of the firings is 1 irrespective of addition of
the vector 1, then we immediately obtain the order of the divisor. This is true because a smaller order,
and hence a smaller multiple of each value, would give us fractional firings which cannot be changed by
adding integer multiples. Therefore, we have that for triangles, the order of ηx,y is k−1 = 3−1 = 2.

FIGURE 5. To each vertex of one cycle, we assign a vertex on the string of vertices.

Now consider one of the base shapes of Hk,n. From this shape, we associate with it a string of vertices
obtained by removing the shared edge as depicted in Figure 5. As shown, the shared vertices correspond
with the endpoints of the string. Even though they connect via an edge on the base shape, this does not
pose a problem as we do not fire either vertex.

Note that each vertex in the string has valence 2, except for the endpoints, which have valence 1. If we
fire every vertex except the endpoints, we obtain the value 1 associated with each endpoint, the value −1
associated with the vertices adjacent to each endpoint, and 0 everywhere else, as depicted in Figure 6.
This follows because each time we fire a vertex that is not an endpoint or adjacent to an endpoint, the
integer associated with the vertex decreases by two, but firing both of its neighbors returns the two chips
lost for a net effect of zero.

The result is twofold: given an existing configuration of 1s associated with endpoints and −1s associated
with vertices adjacent to them, adding an additional vertex and repeating the process “pushes” the 1 an
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FIGURE 6. When firing all vertices in a chain except the endpoints exactly once, as
indicated by the green numbers, we have that the amount each vertex changes by is
(1,−1,0, . . . ,0,−1,1).

additional vertex farther. Alternatively, if we decide not to add an additional vertex, we must compensate
by increasing the value associated with the vertex adjacent to the endpoint by 1.

Since we are not firing the endpoints, we can apply the aforementioned concept to a cycle, with the
endpoints being the vertices of the shared edge, as illustrated in Figure 7.

FIGURE 7. The chip firing process applied iteratively to the triangle base shape. The
green numbers represent the number of times each vertex on the graph is fired. This
results in the 1 “pushed” an additional vertex further, as shown in Figure 8.

In the cycle configuration, each time we increase k by 1, we must extend the string of vertices on the
right by 1 vertex, but leave the left unchanged.1 Each time we introduce a new vertex we must fire every
vertex exactly once, except the shared vertices, and also add a +1 to the value associated with the vertex
adjacent to the left shared vertex. For example, enumerating the non-shared vertices of the cycle (from
left to right),

(1) Triangle: Fire 1 Once.

(2) Square: Fire 1 Twice, Fire 2 Once.

(3) Pentagon: Fire 1 Thrice, Fire 2 Twice, Fire 3 Once.
And so on. Refer to Figure 8.2

By Theorem 2.8, we can execute the identical process on the negative integer which will cancel out
the nonzero values on the shared vertices. Since we begin with 2 for the triangle, and add 1 for each
additional vertex added, we obtain k−1 as the value associated with the vertex adjacent to the left-shared
vertex. For a multiple of ηx,y to be linearly equivalent to the zero divisor it must be at least (k−1)ηx,y.

1Note that the choice of left and right is irrelevant, but for the sake of consistency we will refer to the nonzero values of the
divisor as being situated on the left.

2We will refer to this procedure as the “consecutive chip-firing process” in similar proofs.
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FIGURE 8. The consecutive chip-firing process applied to the triangle, square, and
pentagon base shapes. The top row illustrates the positive component of ηx,y on the base
shapes. In the middle row the green numbers represent the number of times each vertex is
fired, a result of subdividing the edge with another vertex and requiring all vertices but
those on the shared edge to be fired an additional time. The bottom row represents the
divisor resulting from each chip-firing operation.

The order must be k−1 since k−1 and k−2 are coprime invariant under 1. Using Proposition 2.10, this
completes the proof. Hence, ηx,y is an order k−1 element of the critical group. □

Proof of order of δx,y. The proof for δx,y follows an identical procedure as the proof for ηx,y. The two
major differences, however, are that we need to apply the consecutive chip-firing process n times, once for
each base shape, rather than just on a single cycle, and that instead of firing the vertex adjacent to the
shared edge, we are firing a vertex on the shared edge. This means the order of the divisor is

(k−1)+1+(n−1) = k+n−1,

where the additional +1 comes from the shift in position, and the additional n−1 comes from this process
occurring simultaneously on the n−1 extra cycles.

This also follows from the number of times that vertices adjacent to the negative shared vertex are fired.
Since we want to apply the consecutive chip-firing process to each of the n base shapes, we require each
adjacent vertex on the cycles to fire once. Following the vertices along the base shapes to the other shared
vertex, we see that it must be fired k−1 times, hence the order is k+n−1. □

Proof of order of εx,y. To prove that the order of εx,y is (k−1)(k+n−1), we cannot simply show that
(k−1) multiplied by each vertex is linearly equivalent to δx,y, because it is not true for a group G, a,b ∈ G,
and c ∈ Z that (c)|a|= |b| when cb = a. Instead, we can utilize Theorem 2.10 and [16, Theorem 1], which
tells us that chip firing equivalence is unique up to addition of the kernel (which is simply 1). As above in
the case of ηx,y, if we can find two vertices with a coprime number of firings, we have deduced the order
of εx,y.

Finding the order of εx,y when the base shapes are all the same first involves firing a multiple of εx,y to
be equivalent to δx,y. To show that (k−1)ηx,y is linearly equivalent to δx,y (as in the proof of ηx,y) we can
associate the vertices on the cycle with a string of vertices. Now, we can apply the consecutive chip-firing
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process to (k−1)ηx,y. On the left endpoint, we initially have (k−1)(−1), but we fire the adjacent vertex
k−2 times, hence the left endpoint obtains a value of −(k−1)+ k−2 =−1. By firing each successive
vertex a consecutive number of times, we ensure that all vertices except the endpoints are 0 as in the
proof of ηx,y, and we are left with a 1 on the right endpoint. But this aligns with δx,y, since the endpoints
correspond to the shared vertices. See Figure 9.

FIGURE 9. The first step of determining |εx,y|, showing (k−1)εx,y is linearly equivalent
to δx,y illustrated on the graph H5,3. Recall that the 4 becomes 3 and 1 on the shared
vertices via the chip-firing process, and consequently the only nonzero integers on vertices
are 1 and −1.

Next in order to obtain linear equivalence to a multiple of δx,y, we can use Theorem 2.7 which tells
us that given a chip firing configuration, firing a multiple m of r (where r is defined as in the proof of
Theorem 2.9) is equivalent to repeating the chip-firing process m times, and therefore directly corresponds
to multiplying the values associated with each divisor by m. Instead of utilizing the consecutive chip-firing
process as in the proof of ηx,y, we can multiply the entire process by k+ n− 1, which gives us linear
equivalence to (k+n−1)(δx,y) as opposed to simply δx,y, as shown in Figure 10.

Since our hypothesis is that the order is (k+n−1) times as large, instead of firing a consecutive number
of times along the cycle, we would fire multiples of k+n−1. This works as we are working under the
integers, and hence multiplying the number of firings consequently multiplies the effect of the firings.
But we determined that the order of δx,y is k+n−1, and hence for any cycle excluding the one initially
containing the positive integer of εx,y we see a consecutive number of firings: k−2,k−3, . . . ,1. Since any
two of these are coprime, we have obtained the order, i.e., εx,y is indeed of order (k−1)(k+n−1). □

We have established the order of a divisor in one factor of the critical group. To prove the explicit
structure of the critical group, we require both a strict lower and strict upper bound on the rank of the
group. To do this, we observe that the generators of each factor of the critical group ηx,y,i can be used to
construct a strict lower bound for the rank of the group by showing that any linear combination of these
divisors is linearly equivalent to the zero divisor if all divisors are multiplied by 0 or an integral multiple
of k−1. Recall that ηx,y,i denotes the divisor ηx,y with a 1 and −1 on adjacent cycles in a fixed orientation
of the graph. It is worth mentioning that this is not a graph invariant; it is a convention we adopt, which
will be something to account for in Section 4.

Lemma 3.4. The divisors ηx,y,i with nonzero entries on adjacent base shapes form a linearly independent
set over the group (Z/(k−1)Z)n−1.
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FIGURE 10. Top: (k−1)(k+n−1)εx,y is linearly equivalent to (k+n−1)δx,y, which
is then linearly equivalent to the zero divisor. Bottom: the green numbers represent the
number of times each vertex is fired to obtain equivalence. In the bottom left, these green
numbers are k+n−1 = 7 times the consecutive chip-firing process, as we have multiplied
the divisor by 7.

Proof. To show these divisors are linearly independent, we must show that any linear combination
a1ηx,y,1 + · · ·+an−1ηx,y,n−1, for 0 ≤ a1, . . . ,an−1 ≤ k−2 on the graph Hk,n is not linearly equivalent to
the zero divisor unless all coefficients are zero.

To do this, we necessitate a systematic way of cataloguing our ηx,y,i’s. In this case, since all the base
shapes are identical, we can take all ηx,y,i’s to be adjacent, such that the negative value of one divisor
is the positive value of the adjacent divisor. See Figure 11 for an example of what can go wrong for
arbitrary selection of ηx,y,i. By this convention, the integers associated to any vertex for some arbitrary
linear combination of these divisors is always less than k−1 or greater than −k+1, since we cannot have
linear combinations of two negative or two positive elements.

As we have seen in Proposition 3.3, k−1 is the smallest multiple of any divisor ηx,y,i where we obtain
linear equivalence to the zero divisor. In the most general setting, we can think of the linear combination
of ηx,y,i’s as one ηx,y divisor with nonzero entries on every cycle. However, the same principle holds for
each cycle; there is no firing procedure to obtain linear equivalence to a row of zeroes on each cycle, since
the smallest multiple on each cycle was k−1. Thus this linear combination is not equivalent to the zero
divisor unless all coefficients are 0, completing the proof. □

Corollary 3.5. For n ≥ 3, the critical group of hinge graphs K(Hk,n) is not cyclic.

Proof. This follows immediately from Lemma 3.4, since if there are at least 2 generating elements and
consequently 3 base shapes, K(Hk,n) must have rank at least 2. □

We have established that that any linear combination of the divisors ηx,y,i is linearly equivalent to the
zero divisor if all divisors are multiplied by 0. Additionally, since (k−1)ηx,y,i is linearly equivalent to 0
for all i, any linear combination is also linearly equivalent to 0. Because of this, we are able to exhibit a
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2

3

FIGURE 11. A linear combination of two ηx,y divisors. This is an example of what
could go wrong with linear combinations of arbitrary ηx,y divisors, since −5 is greater in
magnitude than k−1, so our proof fails and we may no longer have linear independence.
We must be careful in general, either selecting adjacent elements for the same base shape,
or a generalization for different base shapes.

bijection between ηx,y,i and all of the generating elements of order k−1 in the group:

(1,0, . . .0),(0,1, . . . ,0), . . . ,(0,0, . . . ,(k+n−1)).

This provides a lower bound for the number of copies of Z/(k−1)Z; since if we cannot get from any one
element of the minimal set to any other via linear equivalence, there must be at least n−1 factors in the
direct sum. Of course, this construction does not provide an upper bound. Hence, we cannot be sure at
this point that this is a minimal generating set.

However, the existence of εx,y, the divisor of order k2 − 1+(n− 2)(k− 1), immediately quells this
doubt since a divisor of this order would not exist if there were more copies of Z/(k−1)Z. Therefore, we
also have an explicit upper bound on the number of factors of the direct sum, and we will have proven the
group structure. In particular, we have exactly n−1 partitions of the group, which identically matches the
n−2 copies of the smaller factor and the 1 copy of the large subgroup.

Theorem 3.6. The critical group K(Hk,n) is isomorphic to

(Z/(k−1)Z)n−2 ⊕ (Z/(k−1)(k+n−1)Z).

Proof. Considering ηx,y,i as a minimal generating set, coupled with the order of εx,y, allows us to obtain the
exact structure of the critical group for hinge graphs. We have found an element of order (k−1)(k+n−1),
and a minimal generating set of n− 1 elements of order k − 1. Each of these elements are linearly
independent as viewed in the group (Z/(k−1)Z)n−1, meaning that none of these elements are multiples
of others. This tells us that the rank of the critical group, as defined in [16], is at least n−1, since k−1
divides both itself and (k−1)(k+n−1) and by the Fundamental Theorem of Finitely Generated Abelian
Groups, this uniquely defines the rank of K(Hk,n). Since we proved in Theorem 3.1 that the order of Hk,n
was (k−1)n−1(k+n−1), the rank has to be exactly n−1, where one factor is (k−1)(k+n−1). Thus,
there are n−2 small factors and the critical group is (Z/(k−1)Z)n−2 ⊕Z/((k−1)(k+n−1))Z. □
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4. Hinge graphs with different base shapes

Using similar techniques as in Section 3, we generalize our results to hinge graphs with different base
shapes. In this section, we use the notation Hk1−1,k2−1,...,kn−1 for a hinge graph with different cycles,
where again ki refers to the number of vertices of each base shape. This notation differs from the case
with identical base shapes since we use ki −1 instead of ki for its usefulness in the proofs of the results.
The proofs of our results delve into casework involving underlying number theory, for which we provide
proof outlines when necessary to guide the reader.

Theorem 4.1. Consider a hinge graph with different base shapes Hk1−1,...,kn−1, the order of
K(Hk1−1,...,kn−1) is

(1) |K(Hk1−1,...,kn−1)|= a+a/(k1 −1)+ · · ·+a/(kn −1),

where a := (k1 −1) · · ·(kn −1).

Proof. Due to Theorem 2.4, the order of the critical group |K(Hk1−1,...,kn−1)| is equal to the number
of spanning trees of the graph. Therefore, it is enough to follow a similar iterative strategy to the one
described in the proof of Theorem 3.1, to determine the number of spanning trees once a new base shape
is added. This is because the iterative strategy does not rely on the graph being composed of identical
base shapes; the only point to consider is that instead of (k−1)n, we now have (k1 −1), . . . ,(kn−1 −1).
Therefore, showing algebraic equivalence to the iterative strategy is sufficient.

We proceed by induction. The base cases for one and two base shapes are shown below. On the
left-hand side is the iterative approach, and the right is the closed form:

k1 = (k1 −1)+1,

k1k2 −1 = k1k2 − k1 − k2 +1+(k1 −1)+(k2 −1) = (k1 −1)(k2 −1)+(k1 −1)+(k2 −1).

For the inductive step (n ≥ 3), we can factor a kn −1 out of every term of the closed form except the last
as follows, denoting (k1 −1) · · ·(kn−1 −1) as an−1 for simplicity:

(kn −1)(an−1 +an−1/(k1 −1)+ · · ·+an−1/(kn−1 −1))+((k1 −1) · · ·(kn−1 −1)).

The first term corresponds to the number (kn − 1)(S(n− 1,k)) in the iterative approach, which is the
number of spanning trees where one edge is removed from the newly added base shape. The second
term corresponds to the number of spanning trees with the shared edge removed in the iterative approach.
Since these are the only two possibilities, we have found the number of spanning trees, thus completing
the proof. □

Remark 4.2. In [15] the authors study a family of graphs which they refer to as s-subdivided banana
graphs, these are equivalent to thick cycle graphs. They determine the order of the critical group of
s-subdivided banana graphs for the special case when they let s= (s1, . . . ,sm) be a tuple of positive integers

such that ∑
m
i=1

∏
m
j=1 s j

si
= pr and gcd(si, p) = 1 for fixed prime p and integer r (Proposition 13, [15]). Their

proposition follows as a corollary to Theorem 4.1 when interpreting s-subdivided banana graphs as hinge
graphs.

Proposition 4.3. The order of δx,y, as defined in Section 2, is

|δx,y|= b+b/(k1 −1)+b/(k2 −1)+ · · ·+b/(kn −1),

where b := lcm(k1 −1, . . . ,kn −1).
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Proof. As in the proof of Proposition 3.3 for the order of εx,y, firing a multiple m of r is equivalent to
repeating the chip-firing process m times, and therefore directly corresponds to multiplying the values
associated with each divisor by m. Consequently, given a specific number of vertices, firing adjacent
vertices by a multiple of a consecutive number of times still produces a zero on each vertex. This is
because each vertex is connected to two others, and hence when we subtract the same multiple repeatedly
we are eliminating that deficit. Thus, the question of determining |δx,y| first involves finding the least
common multiple of each ki −1, such that a multiple of the consecutive chip-firing process can be applied
to each cycle. Refer to Figure 12 for an example of this process applied to the graph H2,3,4. Notice that in
the figure, one of the shared vertices is never fired. This is valid as the graph Laplacian L has kernel of
dimension 1, and therefore we can choose a vertex not to fire. This also directly corresponds to the use of
ki −1, as we are excluding one vertex from each cycle when applying the consecutive process a multiple
of times.

FIGURE 12. In green are the number of times each vertex is fired, and we can count the
ones adjacent to the shared vertex to obtain |δx,y|= 25.

It remains to be shown that that this is the smallest multiple of δx,y linearly equivalent to the zero divisor.
First, by Lemma 2.11, we see that the number of times we fire the vertices on each cycle are coprime.
However, this is not sufficient as established above, since we must also check that adding and subtracting
multiples of 1 does not affect this. Hence, we can apply Lemma 2.13 by selecting two base shape whose
smallest multiples of firings, i.e., the number of firings on the vertex adjacent to the shared edge, are
coprime. This is guaranteed to occur by Lemma 2.11. From there, Lemma 2.13 tells us that there must
exist two vertices whose number of firings differ by 1, and hence we have found that the number of firings
are coprime invariant under addition of 1 and can conclude that we have found the order of δx,y.

Finally we will compute this order. By considering the number of times we fire all the vertices adjacent
to the vertex that was not fired, we can explicitly find |δx,y|. From each cycle, the number of times fired to
the unfired vertex is b/(ki −1), where b := lcm(k1 −1, . . . ,kn −1), because we are applying b/(ki −1)
multiplied by the consecutive chip-firing process on each cycle. Then, from the vertex on the shared edge,
we will simply have b, since this is required for the chip-firing process on each cycle. Note that the vertex
not fired must correspond to a multiple of the −1 in δx,y, since it receives chips from every cycle; likewise
the other vertex must correspond to the +1.

Hence, |δx,y| is b+b/(k1 −1)+ · · ·+b/(kn −1) as required. □

We now turn our attention to the divisor εx,y. For different base shapes, however, the particular base
shape we choose for εx,y matters, so we will refer to the divisor as εx,y,i, where the i denotes the base shape
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on which the vertex corresponding to 1 resides. Additionally, there are conditions associated with the
order of εx,y,i, namely that we can extract a multiple of ki −1 from the order of the critical group.

Theorem 4.4. The divisor εx,y,i on a chosen shape with ki vertices has order

(ki −1)|δx,y|,
provided there are at least two base shapes with ki vertices or there exists another base shape with
t(ki −1)+1 vertices for some t ∈ N.

Proof. The proof follows a similar approach as the proof of the order of εx,y,i in Proposition 3.3, except
we must additionally keep track of the number of vertices of each base cycle. By applying Lemma 2.11,
we have that the number of times we fire each vertex adjacent to the shared vertex not fired is coprime.

We want to show that (ki−1)εx,y,i is linearly equivalent to δx,y and that combining chip-firing operations
show the orders are multiplicative. We consider how this affects the number of times we fire each cycle.

Suppose there exists a base shape C with |V (C)| = ki such that there exists no other base shape
with number of vertices equal to t(ki − 1) + 1. In other words, there are no multiples of ki − 1 in

{(k1 −1), . . . ,(kn −1)}. By Equation (1), there will not be a common factor of ki −1 in
|H{k1−1,...,kn−1}|

|δx,y| ,
which reduces to a/b. Hence, εx,y,i will not have order (ki −1)|δx,y| in this case. Since they do not satisfy
the conclusions of the theorem, we will not consider these to be εx,y,i’s in all following proofs.

On the contrary, suppose that there does exist such a cycle. Then ki −1 divides lcm(k1 −1, . . . ,ki−1 −
1,ki+1 −1, . . . ,kn −1). Thus, we can ignore this cycle and use the consequence in Lemma 2.11 on the
n−1 other base shapes to prove that they will all be fired a coprime number of times.

To make sure this is invariant under addition of the vector 1, we once again apply Theorem 2.13. Since
we have shown each will be fired a coprime number of times, the conditions for this theorem are met and
there are two vertices for which the number of times fired differs by 1. Thus, it is coprime irrespective of
addition of the kernel, and we can be certain that we have found the order of εx,y,i. □

Remark 4.5. If there exist multiple εx,y,i for which |εx,y,i|/|δx,y| are coprime, then the order of the large
factor of the critical group will be at least lcm(|εx,y,i|/|δx,y|) · |δx,y| = lcm(|εx,y,i|). This is an important
consequence that we will invoke to prove the order of the critical group.

In the following theorem we prove the orders of the minimal generating elements of the critical groups
of the hinge graphs. Recall that for the hinge graphs with the same base shape, the number of factors in
the direct sum of K(Hk,n) and their size was determined entirely by the minimal generating set of divisors
ηx,y,i. Furthermore, all of these divisors were of order k−1. In what follows, we show that such a set of
divisors exists when the conditions for the theorem above hold.

In the case where all base shapes have identical numbers of vertices, we could take the minimal
generating set to be ηx,y,i, where each i denotes a divisor on adjacent pairs of base shapes. A consequence
of taking divisors on pairs of cycles is that we require two generating divisors to construct two factors
in the structure of K(Hk,n), and therefore we must look at adjacent subsets of size three of {ki −1} for
i = 1, . . . ,n. This result is not generalizable, since the order in which each shape appears directly affects
the calculated order of elements in the minimal generating set. For instance, by taking adjacent subsets
of size three of the hinge graph H{4,4,6,6,12,12} we obtain a different set of orders of generating elements
than that of H{4,4,12,12,6,6}, despite the graphs being isomorphic. The following theorem generalizes the
principle of treating collections of size three in cases where the adjacent construction is no longer possible.

Theorem 4.6. A linearly independent set of divisors for the critical group can be constructed as one of
the following:
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(i) For any collection s of identical base shapes, each with ki edges, such that |s| ≥ 3, there exist
|s|−2 linearly independent divisors of order ki −1 in the critical group.

(ii) For any pair of base shapes where each base shape has ti edges, with the property that the greatest
common divisor of ti −1 with all other (k j −1) ̸= (ti −1) is not 1, there exists a divisor of order
c := gcd(k j −1, ti −1)). (Note that if there are three or more identical base shapes, each with ti
edges, only one pair with order ti −1 is counted.)

(iii) For each ki −1 that appears only once in {k1 −1, . . . ,kn −1} and satisfies

gcd((k1 −1) · · ·(ki−1 −1)(ki+1 −1) · · ·(kn −1), (ki −1)) ̸= 1,

there exist divisors of the critical group of order gcd(c, ki −1), where c is the gcd of (ki −1) with
2-tuples of {(k1 −1), . . . ,(ki−1 −1),(ki+1 −1), . . . ,(kn −1)}.

Furthermore, in items (ii) and (iii), the critical group obtains a small factor group of at least Z/ lcm([c j])Z,
where [c j] denotes the collection of all such c for a particular pair with ti edges or unique base shape
with ki edges.

Before we begin the proof, we provide an example of each item of Theorem 4.6. In all following
examples, the sequences of numbers given will be {k1 −1, . . . ,kn −1}.

Example 4.7.
(i) Take the collection {2,2,2,3,5}, which corresponds to the hinge graph with three triangles, a

square, and a hexagon. By looking at the collection s of triangles, there must be a factor of Z/2Z
in the critical group, identical to the outcome of Lemma 3.4.

(ii) Take the collection {2,2,4,4,5}, which corresponds to the hinge graph with two triangles, two
pentagons, and a hexagon. Although this collection does not contain three or more identical
copies of the same base shape, we have a pair t1 = 3 of triangles and a pair t2 = 5 of pentagons.
Since gcd(t1 −1,k3 −1) = 2 and gcd(k1 −1, t2 −1) = 2, we obtain two copies of Z/2Z. More
concretely, this comes from looking at 3-tuples of the original collection {2,2,4} and {2,4,4},
both of which give us two linearly independent divisors (that are linearly independent from each
other by Lemma 3.4), one which contributes to a unique small factor group and the other which is
in the largest factor group.

(iii) Take the collection {2,2,3,3,12}, which corresponds to the hinge graph with two triangles, two
squares, and a tridecagon. By looking at the greatest common divisors of pairs of elements in
{2,2,3,3} with 12, we obtain a copy of Z/3Z from {3,3,12} and a copy of Z/2Z from {2,2,12}.
Since Z/2Z×Z/3Z∼= Z/6Z, the critical group contains a factor of Z/6Z.

Proof of Theorem 4.6. We split the proof into two parts:
(1) First, we outline an iterative procedure, starting with the conclusion of Lemma 3.4 to generate

small factors of the critical group in the case when not all base shapes are identical.

(2) Then, each item of Theorem 4.6 is shown to be a consequence of this iterative procedure. This is
split into three cases when:
(a) there is a collection of ≥ 3 identical base shapes,

(b) there is a pair of base shapes with ti edges for which the greatest common divisor of ti −1
with the other ki −1’s in the collection is not 1. This case also splits into three additional
cases (detailed in the proof below), and
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(c) there is a unique ith base shape for which the greatest common divisor of ki −1 with 2-tuples
of k j −1 for ki −1 ̸= k j −1 is not 1.

Part (1): We begin with two identical base shapes that are a subset of the larger hinge graph, and we
know ηx,y is an element of order k−1. To determine the next base shape with the smallest number of
vertices such that the order remains k−1, we add one vertex in between the nonzero vertex of ηx,y and
the shared edge. Consequently, the positive vertex of ηx,y must be fired k−2 additional times, and the
newly added vertex must be fired k−2 times. This is because with two copies of the same base shape,
applying chip-firing operations to “push” k−1 onto the shared edges always results in a k−2 and 1 on
the shared vertices, as seen in the two leftmost diagrams of Figure 13. Therefore, we fire each vertex in
that path k−2 more times to “push” the k−2 assigned to the vertex one additional vertex further. This
procedure is reminiscent of the strategy depicted in Figure 7, involving utilization of Theorem 2.7, where
the difference is that we multiply the consecutive chip-firing process by k−2, and this only applies to the
left side of the base shape.

FIGURE 13. The process of finding the next smallest shape with a divisor of the same
order. A vertex is added on the left path, and consequently k−2 vertices are added to the
right path. The firing procedure can be seen on the right.

Now that we have increased the number of times we fire the vertex of ηx,y by k−2, we must still be
able to “push” the 1 through the base shape onto the other shared vertex. We must apply the consecutive
chip-firing process, where we fire each successive vertex k−2,k−3, . . .k− k times. Firing the vertex of
ηx,y k−2 times, and then firing the vertex between ηx,y and the shared vertex k−2 times results in no net
change to the integer associated with this vertex, and this procedure still results in the same configuration.
However, k−2 additional vertices must also be added to the rest of the base shape (e.g., the right path in
the rightmost diagram of Figure 13) such that the consecutive chip-firing process can be applied and the 1
can migrate to the shared edge.

Note that we have added one vertex on one side of the base shape and consequently, added k− 2
vertices on the other side of the base shape. Thus, the total number of newly introduced vertices is k−1.
This is the least number of vertices that can be introduced, since we cannot add fractional numbers of
vertices. Repeating this process for any number of base shapes an arbitrary amount of times, we see that a
base shape with number of vertices ki is not necessary for a factor of order ki −1. (As an example, the
hinge graph consisting of two pentagons and a heptagon, H4,4,6, has a factor of order 2 by applying this
procedure to all three base shapes, despite not having any triangle base shapes.) As in the conclusion
of Lemma 3.4, we require three base shapes in order to have two linearly independent divisors, one of
which goes into the large factor of the critical group and the other creates a unique small factor; thus, it is
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sufficient to look at subsets {k1 −1, . . . ,kn −1} of size three. Then, taking the greatest common divisor of
the chosen elements provides a split factor in the critical group of that order.
Part (2): Next, we consider the possible outcomes of applying the procedure presented in Part (1).

(i) If there exists a collection s containing three or more identical base shapes with ki edges, the same
procedure applies as in Lemma 3.4 and we obtain |s|−2 copies of Z/(ki −1)Z.

(ii) For any pair of identical base shapes with number of edges ti whose gcd with some k j −1 in the
rest of the collection is equal to c ̸= 1, i.e., gcd(k j −1, ti −1) = c ̸= 1, apply the procedure from
Part (1). The procedure is applied recursively from a cycle with c+1 edges (which may not be
present in the hinge graph) to each base shape in the triple (the pair with the added shape) as
necessary, and hence we obtain two linearly independent divisors of order c. Fixing i, recall that
[c j] denotes the set of all c j obtained by taking gcd(k j −1, ti−1) = c j ̸= 1, for some k j −1 ̸= ti−1
in the collection {k1 −1, . . .kn −1}. We claim that the divisors of order c j are linearly dependent
for fixed i. Since our 3-tuple of ki −1’s includes a pair of identical base shapes, we can guarantee
(via adding our divisors together) that there exists a divisor with a 1 and −1 on the pair with
number of edges ti (see Figure 15 for an example). Thus, all of our divisors from this procedure in
this case can be thought of as having a 1 and −1 on our pair of base shapes, except at different
vertices. There are three possibilities:
(a) If a divisor of order c j is coprime to all others constructed from the procedure in Part (1),

linear dependence is irrelevant because the Chinese Remainder Theorem guarantees that the
order of the group will be at least the product.

(b) If the order of one divisor is a multiple of another, then we can use the consecutive chip-firing
process on each one (firing on one, borrowing from the other) to show they are equivalent.
This is a consequence of the construction of the divisors from Part (1). Importantly, each
time we consider the next smallest base shape with a divisor of order ki −1, we add another
vertex in between the nonzero vertex and the shared edge, while also increasing the multiple
of ki −1 by 1. Thus, taking a multiple of the divisor, we can use the consecutive chip-firing
process, much like in the proof of the order of ηx,y in Proposition 3.3, to get a 1 on the vertex
which now corresponds to the divisor of smaller order. The analogous procedure on the
opposite base shape in the pair, but borrowing instead of firing, produces a 1 and −1 on the
vertices desired, whereas the nonzero element on the shared vertex is cancelled out by this
procedure (see Figure 14 for an example). Thus, if a ci is a multiple of another c j, then they
are linearly dependent.

(c) If a subcollection of the orders [ci] of the divisors are not coprime and also not multiples of
each other, the pair of base shapes with ti edges will contain a divisor d whose order is the
gcd of the ci in this subcollection. By subcase (b), since multiples of all ci should be linearly
equivalent to d, the divisors with orders in this subcollection are linearly dependent, and
we can conclude that the small factor group must have order at least the lcm of the original
orders.

Consequently, the order of the small factor must be at minimum the least common multiple of
the orders of the divisors c j, so we obtain a copy of at least Z/ lcm([c j])Z as a small factor of the
critical group.

(iii) Lastly, if there exists a unique ki −1 whose greatest common divisors with pairs of other elements
is ci ̸= 1, then applying the procedure from Part (1) to a base shape with c+1 edges gives two
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FIGURE 14. A multiple of an order 6 divisor constructed from the procedure in Part (1)
is linearly equivalent to a divisor of order 2 on the same pair of base shapes. The black
numbers are the integers associated to the vertices, and the green numbers are the number
of times fired.

FIGURE 15. An example of the divisors constructed via the procedure outlined in Part (1)
on H2,3,6,6. Adding the green and red divisors creates a divisor of order 2 on the pair with
7 edges, and adding the blue and orange divisors creates a divisor of order 3 on the same
pair. In this case, 2 and 3 are coprime, so the critical group has a factor of at least Z/6Z.

linearly independent divisors of order c, implying the existence of an additional small factor in
the critical group.

Consider the greatest common divisors ci of ki −1 with pairs of all other elements in {k1 −
1, . . . ,kn −1}. The issue is that now, the divisors of order ci corresponding to a particular ki −1
are not linearly dependent.

Nevertheless, we still claim that any ci which are factors of other ones are not considered in the
critical group. To see this, consider the collection {ki −1, . . . ,ki−1 −1,ki+1 −1, . . . ,kn −1}, i.e.,
remove the ith base shape. If there exist two 2-tuples for which one ci was a factor of the other c j,
then a factor of the critical group Z/ciZ already exists. By the procedure of Part (1), when adding
back in the ith base shape there must exist a linearly independent divisor of order c j. Hence, if we
obtained a second copy of Z/ciZ by adding back in the ith base shape, this subcollection of size
4, which includes a 2-tuple, our original ki −1, and one other element of {ki −1, . . . ,kn −1}, will
contribute to 3 linearly independent small factor groups.
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However, in the case where all base shapes are identical and we can construct a maximal set of
ηx,y,i’s, by Theorem 3.6 there are n−2 small factors in the critical group, and this must hold for
the generalization in Part (1) of this proof. Indeed, if we consider the generalized ηx,y,i’s on these
4 base shapes, there would be 4 of them, where one contributes to the large factor group. This
collection cannot possibly be a maximally generating set, as taking linear combinations forces
two divisors to be on the same pair of base shapes, where one is a multiple of the other, and the
consequence of Part (1) used in item (ii) implies they are linearly dependent.

Thus, only the largest factors are relevant and we obtain a small factor of the critical group of
at least Z/ lcm([ci])Z. Of course, we cannot know for certain whether this is the least common
multiple, or if is a product of Z/ciZ. However, this guarantees a lower bound which we will later
show is exact.

As these are all of the possibilities outlined in the theorem statement, this completes the proof. □

With the following well-known lemma whose proof is omitted, we have all the tools to state and prove
the structure of the critical group.

Lemma 4.8. Let {a1, . . . ,an} be a set of positive integers. Then

lcm(a1, . . . ,an) = (a1 · · ·an)/(gcd((n−1)− tuples)).

Theorem 4.9. Assume the notation from Theorem 4.6. Let αp denote the ki −1 for each collection sp in
the first bullet of Theorem 4.6. Let βq be the least common multiple of the ci for every pair with tq edges in
the second item, and let γr denote the least common multiple of the ci’s for every unique kr −1 in the third
item.

Then the critical group for the hinge graph Hk1−1,...,kn−1 is isomorphic to⊕
p
Z/αpZ

⊕
q
Z/βqZ

⊕
r
Z/γrZ⊕Z/(lcm(|εx,y,i|))Z.

Proof. Using the notation as in Theorem 4.1 and Proposition 4.3, observe that the quotient

|Hk1−1,...,kn−1|/|δx,y|= a/b = (k1 −1) · · ·(kn −1)/(lcm((k1 −1), . . . ,(kn −1))).

By Lemma 4.8, this is equivalent to gcd((n−1)− tuples). Thus, it suffices to show that the contribution
from lcm(|εx,y,i|)/|δx,y| plus the three bullet points outlined in Theorem 4.6 are all possible factors in
gcd((n−1)− tuples).

First, if there exist ki − 1,k j − 1 for i ̸= j whose greatest common divisor is c ̸= 1, there exists a
divisor εx,y,i with order c|δx,y| in the critical group by Theorem 4.4. In the greatest common divisor of
n−1− tuples, there must be a factor of exactly c and no larger, since one element in gcd((n−1)− tuples)
is missing ki −1, and another is missing k j −1.

Second, for any collection s of identical base shapes with ki edges on the hinge graph, there will be
|s|−1 factors of ki −1 in gcd((n−1)− tuples) since at most one can be removed. This corresponds to
one factor in |εx,y,i| from above, and |s|−2 copies in the small factors of the critical group as established
in Theorem 4.6.

Third, if there exists a pair of identical base shapes with ti edges, there is a factor of ti −1 in gcd((n−
1)− tuples) from the first point in the proof, but this is not necessarily the only factor that increases.
If ti − 1 is not coprime to all other k j − 1 ̸= ti − 1, then there is another factor of c = lcm([ci]) =
lcm(gcd(ti−1,k j−1)), where each ci comes from the k j−1 that was removed from gcd((n−1)− tuples).
When we take the gcd((n−1)− tuples), all extra factors will be removed, except for the least common
multiple. Hence, the least common multiple is taken rather than the product.

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

22

20 Sep 2023 11:55:59 PDT
221222-Vindas Version 3 - Submitted to Rocky Mountain J. Math.



Fourth, if there exists a base shape with ki edges, where ki −1 is unique but whose greatest common
divisor with two other elements is ci ̸= 1, we get two factors of the greatest common divisor ci in
gcd((n−1)− tuples) since we only remove one of the three elements. One of these factors is in εx,y,i by
Theorem 4.4, and the other is a ci contributing to the small factor group due to Theorem 4.6 in a similar
manner to the third point of this proof.

Finally, if there exists a base shape with ki edges such that ki −1 is coprime to all other k j −1 for i ̸= j,
then this factor does not appear in the greatest common divisor of (n−1)− tuples. This corresponds to
the fact that it is included in |δx,y| by Proposition 4.3, and hence has already been quotiented out.

So we have run through every possible case outlined in Theorem 4.6 as well as Theorem 4.4. We know
that this constitutes all factors in the greatest common divisor because if any number is added to the
collection that we are taking gcd((n−1)− tuples) of, then it must satisfy one of the following:

• it is coprime to all others,
• it is unique and a multiple of other numbers,
• it exists in a pair which is coprime from all others,
• it exists in a pair which is not coprime to all others, or
• it exists in a collection of 3 or more identical numbers. (Note that the question of whether this is

coprime to others is already accounted for by looking at pairs.)

But these are exactly the cases we have run through. By combining Remark 4.5, which gives us an upper
bound for the size of the critical group, and Theorem 4.6, which gives us the number of small factors of
the critical group, we obtain

⊕
p
Z/αpZ

⊕
q
Z/βqZ

⊕
r
Z/γrZ⊕Z/(lcm(|εx,y,i|))Z.

as the critical group. This finishes the proof. □

Example 4.10. As an example, consider the collection {k1 −1, . . . ,kn −1}= {4,4,4,6,6,24,7}. In this
case,

gcd((n−1)− tuples) = 4∗4∗4∗6∗6 = 2304.

From the first part of the proof of Theorem 4.9, we obtain a factor of lcm(4,6) = 12. From the second
part, we obtain a factor of 4 due to the subcollection {4,4,4}. From the third part, we get two copies of
2 = gcd(4,4,6) = gcd(4,6,6), one from each pair (making sure not to overcount by considering 24 as it
is a unique element). From the fourth part, we obtain a factor of lcm(gcd(4,4,24),gcd(6,6,24)) = 12.
Lastly, from the fifth part, we obtain no factors, since 7 is coprime to all other elements and does not
appear in the gcd. And we see that 12∗4∗4∗12 = 2304, as expected.

By Proposition 4.3, the order of δx,y is 168 + 168
4 + 168

4 + 168
4 + 168

6 + 168
6 + 168

24 + 168
7 = 381, so

lcm(εx,y,i) = 381∗12 = 4572.
Thus, the critical group

Hk1−1,...kn−1 ∼= Z/2Z⊕Z/2Z⊕Z/4Z⊕Z/12Z⊕Z/4572Z.

An alternative route to obtain the critical group of hinge graphs with different base cycles is to invoke
Theorem 2 in [13], which states that the critical group of a planar graph is isomorphic to the critical group
of its dual. Hinge graphs are the duals of thick cycle graphs, thus the critical group of a hinge graph is
isomorphic to the critical group of a thick cycle graph, whose complete structure is given in Theorem 2.29
in [4] and Theorem 1 in [1].
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5. Further Directions

We conclude this paper by providing some questions and problems that are worth investigating and might
be of interest to others.

(1) Suppose the hinge graph is treated as an operation on graphs more generally. How is the critical
group of an arbitrary graph affected by the hinge operation?

(2) How is the critical group of a graph affected if we attach a base shape to other specified edges?

(3) Describe the critical group structure of the cone over a hinge graph.

(4) Can the number of arithmetical structures, as defined in [16], on hinge graphs be enumerated?

(5) In [19], Keyes and Reiter derive an upper bound for the number of arithmetical structures of
connected undirected graphs on n vertices with no loops, which only depends on the number of
vertices and edges. When considering arithmetical structures of hinge graphs, can we refine and
compare their upper bounds?

(6) What can be said about the critical groups of directed hinge graphs? In particular, how does the
critical group behave when all base shapes have the same orientation?
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