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ABSTRACT. This paper deals with the 8-congruent number problem and 6-congruent number elliptic
curves, generalizations of the classical congruent number problem and congruent number elliptic curves.
In particular, we identify sufficient conditions for a non-special angle 6 and a prime p so that the
corresponding 8-congruent number elliptic curve E), g has rank zero. Consequently, we show that for
infinitely many angles 6, there are infinitely many primes which are not 8-congruent.
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1. Introduction

-
(é)]

© The congruent number problem is considered as one of the oldest problems in number theory. It
5 asks which positive integers represent the area of a right triangle with rational sides. This problem
o remains open. Some notable progress towards its resolution include the works of Tunnell [8], Heegner
o [3], and Monsky [6]. A generalization of this problem was proposed by Fujiwara [1] and is called
— the 0-congruent number problem. For 6 € (0,7) such that cos @ = §, where s,r € Z, r > |s| and
> ged(s,r) = 1, the 6-congruent number problem asks which positive integers n satisfy the condition that
- nvV r? — s2 is the area of a triangle having an angle 6 and rational sides. Positive integers satisfying this
— condition are called 8-congruent. A positive integer that is not 8-congruent is called non-0-congruent.
— The case when 6 = /2 is the classical congruent number problem.

. Similar to the case of the classical congruent number problem, determining whether a positive
— integer is 6-congruent or not can be achieved by computing the (Mordell-Weil) rank of a certain elliptic

Sg Curve. The 8-congruent number elliptic curve, or simply 8-CN elliptic curve, is the elliptic curve

29 En,O :yZ :x3 +2S”x2 o <r2 _ SZ)nZX'

30
4 Fujiwara [1] showed that a positive integer n # 1,2,3,6 is 6-congruent if and only if E, ¢ has positive

5> rank. Thus, n# 1,2,3,6 is non-6-congruent if and only if £, ¢ has rank zero.

— Most of the results on the 6-congruent number problem involve the special angles 6 = /3 and
v 27 /3. These include the works of Fujiwara [1], Kan [5], Hibino and Kan [4], Yoshida [9, 10], and
45 Goto [2]. The goal of this paper is to explore the case when 6 is not a special angle, that is, when
a6 0 1s not a rational multiple of 7, with the added condition that cos 6 is also rational. This implies
57 (8,7) # (£1,2). In particular, we prove the following theorems, which give sufficient conditions for a

38

39

40
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1 non-special angle 0 and a prime p so that p is not 8-congruent. The Legendre symbol is denoted by
2 (9.

° Theorem 1.1. Let 6 € (0,7) be such that cos 6 = %, where k is an odd number and 4k — 1 = ¢' for

2 some prime q and positive integer t. Let p 1 2kq be prime. If any one of the following holds,
% i. p=3 (mod 4), (g) =1, and (§) = —1 for all prime factors k' of k,

o ii. t=1, k=3 (mod 4), and p satisfies both

o a. p=3,5,0r7 (mod 8), and (g) =—1,

9 b. (%) = —1 for all prime factors k' of k except for exactly one k' =3 (mod 4),
10 iii. t=1, k=1 (mod 4), k has a prime factor K =3 (mod 4), and p satisfies both
1 a. p=1,3,0or7 (mod 8), and (g):—l,

E b. (&) = —1 for all prime factors k' of k except for exactly one k' =3 (mod 4),

13 then E, g has rank zero and p is not -congruent.
14
;5 Theorem 1.2. Let 6 € (0,7) be such that cos 6 = % where r is an odd number and 2r — 1 = ¢' for

16 some prime q and positive integer t. Let p { 2rq be prime. If any one of the following holds,

17 i. tisodd, r=1 (mod 4), and p satisfies the following,

18 a. p=3(mod8) and () = -1,

E b. (5) = —1 for all prime factors ' of r,

20 ii. tis even, g =3 (mod 4), and p satisfies the following,

21 a. p=3 (mod 8) and (%) = —1,

22 b. (&) = —1 for all prime factors r’ of r,

28 iii. =1, r=3 (mod 4), and p satisfies the following,

24 a. p=5or7 (mod 8) and () = —1,

2 b. (5) = —1 for all prime factors r’ of r except for exactly one ¥ =3 (mod 4),

— then E, g has rank zero and p is not 0-congruent.
27 p?

28 To prove Theorems 1.1 and 1.2, we use the method of descent via 2-isogeny. (See Section 2 for
29 more details.) In particular, we show that the conditions given in Theorems 1.1 and 1.2 guarantee that
:g the 6-CN elliptic curve E), g has Selmer rank zero. The Selmer rank — which can be determined from
31 an analysis of the solvability of certain homogenous spaces — gives an upper bound for the rank of an
32 elliptic curve, so the rank of the 6-CN elliptic curve E), g is also zero. By Fujiwara’s result, the prime
SE p is not 8-congruent.

Z% Example 1.3. As an illustration, suppose cos = %, corresponding to the non-special angle 6 ~
o 33.557°. Then k = 3, and 4k — 1 = 11 is prime. By Theorem 1.1 parts (i) and (ii), a prime p # 2,3, 11
- is not 8-congruent if one of the following holds:

v a. p=3 (mod 4), () =1,and (§) = -1,
39 b. p=3,5,0r7 (mod 8), () =—1,and (§) = 1.

40 These conditions are equivalent to the following conditions, respectively:

a a. p=11 (mod 12) and p =1,3,4,5,0r9 (mod 11),
42 b. p=7,13,0r 19 (mod 24) and p =2,6,7,8,0r 10 (mod 11).
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1 Note that these are sufficient conditions for a prime p to be non-8-congruent, but they are not necessary.
> For example, the prime 17 is not 6-congruent since the rank of the corresponding 8-CN elliptic curve
‘3 is zero.

* Remark 1.4. To apply the method of descent via 2-isogeny, we need a list of the prime divisors of
°_ the discriminant 43 r*nb(r? — %) of E, o. We will assume in this paper that » is a prime number and
S22 (r+s)(r—s) is an odd prime power to simplify this step. If s > 0, then r —s = 1, and if
-~ 5 <0, then r+ s = 1. In both cases, we get that 7> — s> = 2r — 1 = ¢’ for some prime ¢ and positive
o integer ¢. Additionally, we assume that r is an odd number or twice an odd number but not having n
% and q as its primes factors.

E Let g = 8m + 3 be a prime number. Note that there are infinitely many such primes. For each such
12 prime, consider the odd number k = (¢ +1)/4 = 2m + 1 and the corresponding non-special angle

13 6 =cos™! % Then any prime p that satisfies the conditions in Theorem 1.1 part (i) — for which

E there are infinitely many — is not 6-congruent. This yields the following corollary.

% Corollary 1.5. For infinitely many 6 € (0, 1), there are infinitely many primes that are not 0-congruent.

17 o . .
. 2. Preliminaries

19 We discuss briefly the method of descent via 2-isogeny. We refer the reader to Chapter X of [7] for
20 more details about this method.

21 Anisogeny from one elliptic curve to another is a homomorphism that is given by rational functions.
22 If such a mapping exists, then we say that the two elliptic curves are isogenous. Note that there
23 is an isogeny of degree two attached to the elliptic curve E, ¢ and it is given by ¢ : E, g — E,/lﬁe,

24 (x,y) = (v /%%, —y((r? — s®)n®> 4+ x?) /x?), where Eq: y? = x> —dsnx? +4r?n’x. Also, there exists a
Z% map ¢ : E, g — Ey ¢ called the dual isogeny to ¢ given by (x,y) — (v?/4x2,y(4r’n* — x?)/8x?). Let

27 S := {primes p such that p | Ag, , = #3208 (r? — 5%)} U {oo}

— and
2% Q(S,2) :={d € Q*/(Q*)* : ord,(d) = 0 (mod?2) for all primes p & S},
3 Where ord, is the p-adic valuation on Q. For each d € Q(S,2), define the homogeneous spaces

82 Cy/Q: dw? = d* — 4sndz® + 4r*n*z*

33

I and

. C,/Q:dw? = d* 4 8sndz* — 16(r* — s*)n*z*.

36 For simplicity, we may replace z by z/2 in the second homogeneous space to obtain

87 C,/Q:dw* = d* 4 2sndz® — (r* — s*)n*z*.

Z% The ¢-Selmer group and 6 -Selmer group are defined as

o SO (E0/Q) = {d € Q(S,2) : CalQ,) £ 0 p eSS},
2 SON(EL o/Q) = {d € Q(S,2) : C4(Q,) £0Y p € S},
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respectively. Define the map & : E'(Q) — Q*/(Q*)* b
§(6) =1 (mod(Q*)?),
8(0,0) = 420> =1 (mod (Q*)?),
8(x,y) = x (mod (Q")2), () # (0,0), .
where O is the point at infinity. Similarly, define 8’ : E(Q) — Q*/(Q*)? by
§'(0) =1 (mod (Q)?),
§'(0,0) = —(r* —5%) (mod (Q*)?),
§'(x,y) = x (mod (Q*)?), (x,y) # (0,0), 6.

E The images of the maps 6 and &’ are values d € Q(S,2) that are elements of the corresponding Selmer
13 groups. An upper bound for the rank of E,, ¢ is given by

14

- rank(E, ¢(Q)) < dimg, S©)(E,, o /Q) + dimp, S©) (E] " 6/Q)—

E This bound is also called the Selmer rank. Thus, we only need to determine when the Selmer rank
17 becomes zero.

18

19 3. Proof of main results

44
*\O\@\m\ﬂ\m\m\k\w\w\*

20
o We have the following proofs of the two theorems.
22 Proof of Theorem 1.1. First, consider part (i). The 8-CN elliptic curve is given by

Z% Epg:y* =x+2(2k—1)px* — (4k— 1)p*x.
o5 Write k = k’lnl k? 2. k" where k;’s are distinct odd primes and m;’s are positive integers. We obtain

o thesets S = {e0,2,ky,k2,... ,ky,q,p} and

27 1,42, 4p, kg, +2p, £2q,+pq, £2pq, £k;, ki,
21 @(S 2): iZkil“‘kijaipkil"'kij>iqki1"'kij>i2Pki1"'kij>
2i ’ izqkil"'kijaiquil”'kip:tzquil"'kij)

30 where i;, j € {1,2,...,n} and i; # i for j # j'

31

5, Note that Q(S,2) contains 2"+ distinct elements. The curve is 2-isogenous to E 9 given by
33 Eb g1y =2 —4(2k— 1)px® + 16k pPx,

Z% and for d € Q(S,2), the corresponding homogeneous spaces are given by

3 (1) Cy: dw? = d* —4(2k — 1) pdz> + 16k*p*z*

57 and

38

w @ Cl:dw? = d*+2(2k — 1) pdz* — (4k — 1) p?2*.

40 Note that the image of (0,0) and & under § is 1 € S(%)(E, /Q). The other values of d € Q(S,2)
41 _are considered below. For the following cases, we denote by f(w) and g(z) the left-hand side and
42 right-hand side of Equation (1), respectively.
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1.1 d < 0. Note that C;(R) = 0 since f(w) < 0, while g(z) > 0.
1.2 d = 2d’ for some d'. Let (z,w) € C4(Q2). Note that ord,(f(w)) is odd. On the other hand, let

1
2

3 ordy(z) = v. Then ord, (d?) = 2, ordy (—4(2k — 1) pdz*) = 3+2v, and ordy (16k? p>z*) = 4+ 4v,
4 all of which are distinct. Hence, ordy(g(z)) = min{2,3 +2v,4+4v} =2 or 4 +4v, which in
5 any case is even, so a contradiction. Thus, C4(Q;) = 0.

6 1.3 d=gqd' forsomed'. Let (z,w) € C4(Qy). Note that ord, (f(w)) is odd. On the other hand, let
7 ord,(z) = v. Then ord,(g(z)) = 2 or 4v, which in any case is even, so a contradiction. Thus,
5 Ca(Q,) =0.

9 1.4 d=kid forsomed'. Let (z,w) € Ca(Qy,).

10 1.4.1 Suppose ordy, (z) > 0. Note that ordy, (f(w)) is odd. On the other hand, ordy, (g(z)) = 2,
1" which is even, so a contradiction. Thus, C;(Qy,) = 0.

12 1.4.2 Suppose ordy,(z) = 0. Note that ordy,(g(z)) > 1. This implies that ord,(f(w)) > 1, so
13 ord, (w) > 0. Hence, z,w € Zy,. Dividing both sides of Equation (1) by k; and reducing
14 modulo k;, we get d'w? = 4pd'z*> (mod k;). This implies that (kﬁl) =1.

15 1.4.3 Suppose ordy, (z) =: —v < 0. Let z = Z/k}, so that ordy, (Z) = 0. By simplifying, we get
g 3) k;lv—Hd/ 2 _ k;tv+2d/2 —4(2%k— l)pk?VHd’Zz +16k2p* 7%,

18 We abuse notation and denote by f(w) and g(Z) the left-hand side and right-hand side of
19 Equation (3), respectively.

20 1.4.3.1 Suppose 2v+ 1 > 2m;. Note that ordy, (f(w)) is odd. On the other hand, ordy, (¢(Z)) =
o1 2m;, which is even, so a contradiction. Thus, C4(Qy,) = 0.

2 1.4.3.2 Suppose 2v+1 < 2m;. Note that ordy, (¢(Z)) = 2v+ 1. This implies that ordy, (f(w)) =
23 2v+1, so ordy, (w) = —v. Let w = W/k}, so that ordy,(W) = 0. Then Z,W € Z.
24 Dividing both sides of Equation (3) by kizv+1 and reducing modulo k;, we get
25 d'W? =4pd'Z* (mod k;). This implies that ({) = 1.

26 Thus, if (kﬂ,) = —1 then Cd(Qki) = 0.

27 1.5 d = p. Let (Z,W) S Cd(Qz).

28 1.5.1 Suppose ordy(z) > 0. Note that ordy(g(z)) = 0. This implies that ordy(f(w)) =0, so
29 ordy(w) = 0. Hence, z,w € Z,. Reducing Equation (1) modulo 4, we get pw? =
30 (mod 4). Thus, p=1 (mod 4).

31 1.5.2 Suppose ord;(z) =: —v < 0. Let z = Z/2", so that ord,(Z) = 0. By simplifying, we get
% 4) 24T = 2Ry 0P 2 (2% — 1) pZP + kP pZ*.

34 We abuse notation and denote by f(w) and g(Z) the left-hand side and right-hand side of
35 Equation (4), respectively.

36 1.5.2.1 Suppose v = 1. Note that ord,(g(Z)) > 0. Then ord,(f(w)) > 0, so ord,(w) > 0.
37 Hence, Z,w € Z,. Reducing Equation (4) modulo 4, we get w> = p (mod 4). Thus,
38 p=1 (mod 4).

39 1.5.2.2 Suppose v > 1. Note that ordy(g(Z)) = 0. This implies ordy(f(w)) = 0, so
40 ordy(w) = —(2v—2). Let w = W /2?"72, so that ordy(W) = 0. Then Z,W € Z,.
al Reducing Equation (4) modulo 4, we get W2 = p (mod 4). Thus, p=1 (mod 4).
42 Thus, if p =3 (mod 4) then C;(Q,) = 0.
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1 We have shown that if (k%) =—1foralli=1,...,n,and p=3 (mod 4), then S¥)(E, /Q) = {1}.
2 The group S(9) (E} 6/Q) is considered next. Note that 2r — 1 = 4k — 1 = ¢’ implies ¢ =3 (mod 4)
2 andtis odd. Thus, —(4k — 1) = —¢' = —¢ (mod (Q*)2). Note that the images of & and (0,0) under
4 >

o 8 are 1,—qc SY(E ;7.6 /Q), respectively. The other values of d € Q(S,2) are considered below. For
-, the following cases, we denote by f (w) and g(z) the left-hand side and right-hand side of Equation (2),
- respectively.

s 2.1 d=p,—qp. The homogeneous space (2) has a global solution (z,w) = (1,0). Thus, p €
E S(¢)(E[’779/Q). By closure property, since —g, p € S¢ (E’ 0/Q), we have —gp € NG (E’ 0/Q)
10 2.2 d=kd forsomed'. Let (z,w) € C;;(Q,). Note that ordkl (f(w)) is odd. On the other hand let
1 ordy, (z) = v. Then ordy,(g(z)) = 2 or 4v, which in any case is even, so a contradiction. Thus,

—_
—_

12 Cy(Qy) =

13 23 dd: 2d' for some d'. Let (z,w) € C;(Q>). Note that ord,(f(w)) is odd. On the other hand, let
14 ordy(z) = v.

15 2.3.1 Suppose v # 0, 1. Then ord,(g(z)) = 2 or 4v, which in any case is even, so a contradiction.
16 2.3.2 Suppose v =0. Then ord,(g(z)) = 0, which is even, so a contradiction.

17 2.3.3 Suppose v = 1. Then ord,(g(z)) = 2, which is even, so a contradiction.

18 Therefore, C/,(Qs) =

19 24 d=gq. Let (z,w) € C;,(Q,). Note that ord,(2k — 1) > 0.

20 2.4.1 Suppose ord,(z) > 0. Note that ord,(g(z)) > 0. This implies that ord,(f(w)) > 0, so
21 ord,(w) > 0. Hence, z,w € Z,,. Reducing Equation (2) modulo p, we get w? = ¢ (mod p).
22 Thus, ( )=1.

23 242 Suppose ord,(z) =: —v < 0. Note that ord,,(g(z)) =2 —4v. This implies that ord,,(f(w)) =
24 2 —4v, so ord,(w) = —(2v—1). Letting (z,w) = (Z/p",W/p**~!) and by simplifying,
25 we get

z% 5) W2 = p"2g 422k — 1)p¥ 122 — 174,

2E and ord,(Z) = ord,(W) = 0. Then Z,W € Z,. Reducing Equation (5) modulo p, we get
29 W2 = —¢'~'Z* (mod p). Thus, ( ) =1ie, p_ 1 (mod 4).

80 Thus, if (%) =—land p=3 (mod 4) then Cl(Q,) =

Z% 2.5 d=-1,qp,—p. By closure property, if (ﬂ) =—landp=3 A(mod 4) then g & S¢ ( E, 4/Q),
33 and —q,p,—qp € S (E’ 0/Q) implies that —1,gp,—p &S O)(E! 1.0/ Q)-

3— By reciprocity law, we have shown that if p =3 (mod 4) and ( ) = 1, then we obtain NG ( 00/Q) =
— { —q,p,—qp}. Therefore, if part (i) holds then

SL SONE,0/Q) = {1} and SO(E,q/Q)={1,—q,p,—qp} = (Z/22)*.

38
5o Thus, rank(E, 4(Q)) <0+2-2=0.

20  Next, we prove part (ii). We use the same set-up as above. For the group 5@ ( 0.0/Q), cases 1.1,
41 1.2.and 1.3 of part (i) still hold, and 1 € S)(E,, 9/Q). We consider the remaining cases.

22 1.4 d=pd forsome d'. Let (z,w) € C4(Q,).
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1.4.1 Suppose ord,(z) > 0. Note that ord,(f(w)) is odd. On the other hand, ord,(g(z)) = 2,
which is even, so a contradiction. Thus, C;(Q,) = 0.

1.4.2 Suppose ord,(z) = 0. Note that ord,(g(z)) > 2. This implies that ord,(f(w)) > 2,
so ord,(w) > 1. Letting w = pW, we get pd'W? = d"* — 4(2k — 1)d'z> + 16k*z* and
ord,(W) > 0. Hence, z,W € Z,. Reducing this equation modulo p, we get d?— 42k —
1)d'z*> +16k*z* =0 (mod p). Multiplying both sides by 4k*> and adding both sides by
—d"”?(4k — 1), we get (8k*z*> — (2k — 1)d’)> = —d"*(4k — 1) (mod p). This implies that
40 = (-1,

P P
1.4.3 Suppose ord,(z) =: —v < 0. Note that ord,,(f(w)) is odd. On the other hand, ord,,(g(z)) =
2 — 4y, which is even, so a contradiction. Thus, C;(Q,) = 0.

Thus, if () = —1 then C4(Q,,) = 0

1.5 d = k;d’ for some d'. Here, k; could be any prime factor of k but we exclude exactly one k; that
is congruent to 3 modulo 4 and we treat this case in item 1.6. The existence of such prime
factor is valid since k =3 (mod 4) by assumption. In this case, if (,%) = —1 then C4(Qy,) =0
The proof is identical to case 1.4 of part (i).

1.6 d = k; where k; =3 (mod 4) is the prime factor of k excluded in case 1.5. Replacing z by z/2,
we get

jele|~]o]a]s]e]m]~

—_ = =
SRS

—_
w

—
»

-
(é)]

19 (6) kiw? = k? — (2k — 1) pk;z* 4+ k> p?z*

— Denote by g(z) the right-hand side of Equation (6). Let (z,w) € C4(Q3).

— 1.6.1 Suppose ordy(z) > 0. Note that ord,(g(z)) > 0. This implies that ord, (f ( ) >0
— ordy(w) > 0. Hence, z,w € Z,. Reducing Equation (6) modulo 8, we get k;w?> =1 —
— 1)pkiz? +z* (mod 8). By assumption, k; =3 (mod 4) and k=3 (mod 4).

— 1.6.1.1 Suppose orda(z) = 0. Then kw? = 1+ 3pk;+1 =2+ 3pk; (mod 8). This implies
. that w? = 2k; +3p = 6-+3p (mod 8),s0 p=1 (mod 8).

— 1.6.1.2 Suppose ords(z) = 1. Then k;w? = 14 3pk;(4) +0=15 (mod 8), a contradiction.
— 1.6.1.3 Suppose ordy(z) > 1. Then kw? = 1 (mod 8), a contradiction.

— 1.6.2 Suppose ordy(z) =: —v < 0. Note that ord,(g(z)) = —4v. This implies that ord, (f(w)) =
— —4v, so ordy(w) = —2v. Letting (z,w) = (Z/2",W /2%) and by simplifying, we get

(2k—

31 (7) W2 =212 — 2% (2k — 1) pkiZ* + K> p*Z*,
32

v and ordy(Z) = ord(W) = 0. Then Z,W € Z,. Reducing Equation (7) modulo 4, we get

v kW? =1 (mod 4), a contradiction since k; =3 (mod 4). Thus, C;(Q>) =

- Thus, if p =3,5,0or 7 (mod 8) then C;(Q,) =0

36 By reciprocity law, we have shown that if (1’ ) =—1, (k%) = —1 for all k; except one k; =3 (mod 4),

87 and p =3,5, 0r7(mod8) then SY)(E, 4/Q) = {1}.

% Next, we consider S(¢ (E’ /Q). Note that cases 2.1, 2.2, and 2.3 of part (i) still hold and 1, —¢ €

39
20 NG )(E;ﬂ /Q). We consider the remaining cases.

41 24 d=gq. Let (z,w) € C,;(Qy,), where k; = 3 (mod 4) is the prime factor of k excluded in case

42 1.5.
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2.4.1 Suppose ordy,(z) > 0. Note that ordy, (g(z)) > 0. This implies that ordg, (f(w)) > 0, so
ordy, (w) > 0. Hence, z,w € Zj,. Note that t = 1 by assumption, so 4k — 1 = g. Dividing
both sides of Equatlon (2) by ¢ and reducing modulo k;, we get w?> = —1 —2pz> — p?z*
(mod &;), that is, w? = —(pz*> + 1)? (mod k;). If ordy,(pz2 +1) = 0 then (;,1) =1,a
contradiction since k; =3 (mod 4). Thus, pz>+1 =0 (mod k;), that is, (—) = 1. Since
(‘k—]) —1, we obtain (k) =-1.

2.4.2 Suppose ordy,(z) =: —v < 0. Note that ordy, (g(z)) = —4v. This implies that ordy, (f(w)) =
—4v, so ordy, (w) = —2v. Letting (z,w) = (Z/k!,W /k?") and by simplifying, we get

W2 = kMg +202k—1)pk? 2> — p* 7%,

and ordy, (Z) = ordy,(W) = 0. Then Z,W € Z;,. Reducing Equation (8) modulo k;, we
get W2 = —p?Z* (mod k;), that is, (—) = 1, a contradiction since k; =3 (mod 4). Thus,
Cy(Qy) =

" Thus, if (kﬁl) = 1then C,,(Qy,) =0

— 2.5 d = —1,qp,—p. By closure property, if (kﬂ) 1 then g ¢ () (E;79/Q), and —¢q,p,—qp €

17 SON(E! ,/Q) implies that —1,qp, —p ¢ SO (E, 4 /Q).

— We have shown that if (£ ) = 1 for exactly one k; = 3 (mod 4), then S(¢ ( 20/Q) ={1,—q,p,—qp}.
— Therefore if part (ii) holds then

ofe|v[ofo]s]o]n]-

~
0
~

- = = = =
a|®|B|R[2|3

Z

g O)(E,0/Q) = {1} and S@(E! 1 0/Q) ={1,—q.p,—qp} = (Z/2Z)*.

%2 Thus, rank(Epﬁ(@)) <0+42-2=0.

s Lastly, we prove part (iii). For (%) (Ep,6/Q), all of the cases of part (ii) hold except case 1.6.

% 1.6 d =k;, where k; =3 (mod 4) is the prime factor of k excluded in case 1.5 of part (ii). Replacing
. z by z/2, we get

27 (9) kiw? = k? — (2k — 1) pki® + k> p*2*

all Denote by g(z) the right-hand side of Equation (9). Let (z,w) € C4(Q2).

29 1.6.1 Suppose ordy(z) > 0. Note that ordy(g(z)) > 0. This implies that ordy(f(w)) > 0, so
80 ordy(w) > 0. Hence, z,w € Z,. Reducing Equation (9) modulo 8, we get kiw? = 1 — (2k —
s 1)pkiz> +z* (mod 8). By assumption, k; =3 (mod 4) and k=1 (mod 4).

%2 1.6.1.1 Suppose ords(z) = 0. Then k;w?> = 1 — pk; +1 =2 — pk; (mod 8). This implies
s that w?> =2k; — p=6—p (mod 8),s0 p=5 (mod 8).

il 1.6.1.2 Suppose ords(z) = 1. Then kw? = 1 —4pk; +0 =5 (mod 8), so a contradiction.
s 1.6.1.3 Suppose ords(z) > 1. Then k;w? = 1 (mod 8), so a contradiction.

% 1.6.2 Suppose ordy(z) =: —v < 0. Note that ord,(g(z)) = —4v. This implies that ordy (f(w)) =
37 —4v, 50 ordy(w) = —2v. Letting (z,w) = (Z/2",W /2?") and by simplifying, we get

3% (10) kiW? = 2%k — 22" (2k — 1) pkiZ® + k> p* Z*,

40 and ord(Z) = ordy(W) = 0. Then Z,W € Z,. Reducing Equation (10) modulo 4, we get
4 kW? =1 (mod 4), a contradiction since k; =3 (mod 4). Thus, C;(Q,) =0

42 Thus, if p=1,3,0r 7 (mod 8) then C;(Q) =
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‘1 We have shown that if ( ) =—1, (¢) = —1 for all k; except one k; =3 (mod 4), and p=1,3, or 7

2 2 (mod 8), thenS N(Epe/Q) = {1}.
2 For S (E’ 0/Q), all of the cases in part (ii) hold. Thus, if (£ ) =1 for exactly one k; =3 (mod 4),

then S(¢ (E’ 6/Q) ={1,—q,p,—qp}. Therefore, if part (iii) holds then

O)(E,0/Q) = {1} and SO(E}4/Q) = {1,~q,p,~qp} = (2/22)*.
Thus, rank(E, 9(Q)) <0+2-2=0. O

We prove the second theorem.

-
[3fefe|~]o]o]s

"' Proof of Theorem 1.2. First, consider part (i). The 8-CN elliptic curve is given by
12

3 Epg:y* =x +2(r—1)px* — (2r—1)px.

4 Write r = r'ln' rg” ---ri where r;’s are distinct odd primes and m;’s are positive integers. We obtain

5 the sets S = {0, 2,r1,72,...,7n,q,p} and
16

; ilaizvip7iQ7i2p7iZQa:tPQ7:t2pq7:l:rl] "'rija
E Q(S 2): :l:zri]"'rij7:l:pri1"'rijaj:qril"'rijaj:zpri]"'rij7
E ’ :l:zqrh"'rijaj:pqrh"'rijaj:zpqrh"'rija

20 where ij,j € {1,2,...,n} and i; # iy for j # j’.

21 . . A .
“_ Note that Q(S,2) contains 2"** distinct elements. The curve is 2-isogenous to E;) o given by
22 ’

23 E,q Y =X —4(r—1)px* +4r° p’x

24

,; andford e Q(S,2), the corresponding homogeneous spaces are given by
2 (11) Cy:dw? =d* —4(r— 1) pd2® +4r*p*s*
27

2? and

29 (12) C,rdw? =d*> +2(r— 1) pdz* — (2r —1)p*z*.

30
-, Note that the image of & and (0,0) under & is 1 € S(%)(E, 5/Q). The other values of d € Q(S,2) are

-, considered below. For the following cases, denote by f(w) and g(z) the left-hand side and right-hand
-~ side of Equation (11), respectively.

32
33

34 1.1 d < 0. Note that C;(R) = 0 since f(w) <0, while g(z) > 0.

35 1.2 d = gd' for some d’. Note that ord,(f(w)) is odd. On the other hand, let ord,(z) = v. Then

36 ord,(g(z)) = 2 or 4v, which in any case is even, so a contradiction. Thus, Cz(Q,) = 0.

37 1.3 d=rid forsomed'. Let (z,w) € C4(Q;,).

38 1.3.1 Suppose ord,,(z) > 0. Note that ord,, (f(w)) is odd. On the other hand, ord,,(g(z)) = 2,
39 which is even, so a contradiction. Thus, C;(Q,,) = 0.

20 1.3.2 Suppose ord,,(z) = 0. Note that ord,,(g(z)) > 1. This implies that ord,,(f(w)) > 1, so
a1 ord,,(w) > 0. Hence, z,w € Z,,. Dividing both sides of Equation (11) by r; and reducing
42 modulo r;, we get d'w? = 4pd'z> (mod r;). This implies that (%) =1.
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1 1.3.3 Suppose ord,,(z) =: —v < 0. Let z = Z/r!, so that ord,,(Z) = 0. By simplifying, we get

i (13) r;h/'f‘ld/wz — ;lv+2d/2 _4(,,_ l)pri2v+ldlZ2 +4r2p224

3
4 We abuse notation and denote by f(w) and g(Z) the left-hand side and right-hand side of
5 Equation (13), respectively.

5 1.3.3.1 Suppose 2v+1 > 2m;. Note that ord,, (f(w)) is odd. On the other hand, ord,,(g(Z)) =
2 2m;, which is even, so a contradiction. Thus, C4(Q),) = 0.

ry 1.3.3.2 Suppose 2v+1 < 2m;. Note that ord,,(g(Z)) = 2v+ 1. This implies that ord,, (f(w)) =
ry 2v+1, so ord,, (w) = —v. Let w= W /r!, so that ord,,(W) = 0. Then Z,W € Z,..
10 Dividing both sides of Equation (13) by ri2v+l and reducing modulo r;, we get
" d'W? = 4pd'Z* (mod r;). This implies that () = 1.

12 Thus, if (%) = —1, then C4(Q,,) = 0.

13 14 d=2. Let(z,w) € C4(Q,). Note that ord,(r — 1) > 0.

14 1.4.1 Suppose ord,(z) > 0. Note that ord,(g(z)) > 0. This implies that ord,(f(w)) > 0, so
15 ord,(w) > 0. Hence, z,w € Z,. Reducing Equation (11) modulo p, we get wr=2

16 (mod p), i.e., (%) = 1. Thus, p=1or7 (mod 8).

7 1.4.2 Suppose ord,(z) =: —v < 0. Note that ord,,(¢(z)) = 2 —4v. This implies that ord,(f(w)) =
8 2 —4v, so ord,(w) = —(2v—1). Letting (z,w) = (Z/p",W/p?"~!) and by simplifying,
19 we get

o (14 W2 =2p" "2 —4(r—1)p> 122 +2r°7%,

22 and ord,(Z) = ord,(W) = 0. Then Z,W € Z,. Reducing Equation (14) modulo p, we get
23 W?=2/7Z* (mod p), ie. (3) = 1. Thus, p=1or7 (mod 8).

all Thus, if p =3 or 5 (mod 8) then C;(Q,) = 0.

25 1.5 d=p. Let (z,w) € C4(Qy). Note that ord,(r — 1) > 2 since r =1 (mod 4) by assumption.
26 1.5.1 Suppose ordy(z) > 0. Note that ordy(g(z)) > 0. This implies that ordy(f(w)) > 0, so
27 ordy(w) > 0. Hence, z,w € Z,. Reducing Equation (11) modulo 4, we get pw? =
28 (mod 4). Thus, p=1 (mod 4).

29 1.5.2 Suppose ord,(z) =: —v < 0. Note that orda(g(z)) =2 —4v. This implies that ord, (f(w)) =
30 2 —4v, so ordy(w) = —(2v — 1). Letting (z,w) = (Z/2",W/2?"~1) and by simplifying,
st we get

o (15) W2 =242 22 (s 1)pZ2 4 Pp2,

34 and ordy(Z) = ord,(W) = 0. Then Z,W € Z,. Reducing Equation (15) modulo 4, we get
35 W2 =r?pZ* (mod 4). Thus, p=1 (mod 4).

36 Thus, if p=3 (mod 4) then C;(Q;) = 0.

37 1.6 d =2p. Let (Z,W) S Cd(Qz).

38 1.6.1 Suppose ord(z) > 0. Note that orda(f(w)) is odd. On the other hand, ordy(g(z)) = 2,
39 which is even, so a contradiction. Thus, C;(Q,) = 0.

40 1.6.2 Suppose ord;(z) = 0. Note that ordy(g(z)) > 2. This implies that ord,(f(w)) > 2, so
4 ordy(w) > 1. Letting w = 2W and dividing both sides of Equation (11) by 4, we get
42 2W? = p —2(r — 1)pz> + r*pz* and orda(W) > 0. Hence, z,W € Z,. Reducing this
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equation modulo 8, we get 2W? =2p (mod 8). If ordy (W) > 0, then p =0 (mod 4), a
contradiction. If ord,(W) =0, then p =1 (mod 4).
1.6.3 Suppose ord;(z) =: —v < 0. Note that ord, (f(w)) is odd. On the other hand, ord»(g(z)) =
2 —4v, which is even, so a contradiction. Thus, C;(Q,) = 0.
Thus, if p =3 (mod 4) then C;(Q2) =

We have shown that if p =3 (mod 8) and (rﬁl) — —1foralli=1,...,n, then S¥)(E 0,0/Q) ={1}.
The group S ) (E} ¢/Q) is considered next. Note that # is odd by assumptloAn, so—(2r—1)=—¢ =
9 —¢q (mod (Q*)?). Thus, the images of ¢ and (0,0) under & are 1,—q € S(¢)(E1’)79/@), respectively.

E The other values of d € Q(S,2) are considered below. For the following cases, we denote by f(w) and
11 g(z) the left-hand side and right-hand side of Equation (12), respectively.

% 2.1 d = p,—qp. The homogeneous space (12) has a global solution (z,w) = (1,0). Thus, p €
— 5@ (E’ »/Q). By closure property, since —q, p € S (E’ o/Q), we have —gp € S (E/ 0/ Q).

o 22d= r,d’ for some d'. Let (z,w) € C,,(Qy,). Note that ord (f( )) is odd. On the other hand let
— ord,,(z) = v. Then ord,,(g(z)) = 2 or 4v, which in any case is even, so a contradiction. Thus,
17 CZI (Qri) =0.

= 23 d=2d forsomed'. Let (z,w) € C;;(Q2). Note that ord,(f(w)) is odd. On the other hand, let
. ordy(z) = v. Then ordy(g(z)) = 2 or 4v, which in any case is even, so a contradiction. Thus,
20 Cy(Q2) =

o 24 d=q. Let(z,w) € C;(Qp). Note that ord,,(r— 1) > 0.

o 2.4.1 Suppose ord,(z) > 0. Note that ord,(g(z)) > 0. This implies that ord,(f(w)) > 0, so
o ord,(w) > 0. Hence, z,w € Z,. Reducing Equation (12) modulo p, we get w2 =g
o (mod p). Thus, (p) 1.

b 2.4.2 Suppose ord,(z) =: —v < 0. Note that ord,(g(z)) =2 —4v. This implies that ord,(f(w)) =
o 2 —4v, so ord,(w) = —(2v—1). Letting (z,w) = (Z/p",W/p*"~!) and by simplifying,
we get

[ [~ ]ofofa]e]w]~

o9 (16) W2 — (]]74‘}724—2(}’— 1)p2v7122 _qulzzx7

— and ord ( ) =ord,(W) =0. Then Z,W € Z,. Reducing Equation (16) modulo p, we get
— W2 =—¢'~1Z* (mod p),ie., (_71) = 1 since ¢ is odd. Thus, p =1 (mod 4).

o Thus, if p = 3 (mod 4) and (%) = —1then C,(Q),) =0

34 25d=—1,qp,—p. By closure property, if p =3 (mod 4) and (A%) = —1theng ¢ S(®) (E; 6/Q),
= and —g, p, —qp € S©)(E}, 5 /Q) implies that —1,gp, —p & S©)(E}, 1/ Q).

36

?z We have shown that if p =3 (mod 4) and (%) = —1, then we obtain S(®) (E’ 0/Q) ={l,—q,p,—qp}.

38 Therefore, if part (i) holds, then
39

40 S (Epe/Q) = {1} and s (pG/Q) {1,—q,p,—ap} = (2/22)*.

41
42 Thus, rank(E, /Q) <0+2 -2 =0.
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Next, we prove part (ii). We use the same set-up as above. Since ¢ is assumed to be even and g = 3
(mod 4), we get r =1 (mod 4). For S®)(E, 9/@) all of the cases of part (i) hold. Thus, if p =3
(mod 8) and (rﬁi):—l foralli=1,...,n, then S®)(E, 4/Q) = {1}.

The group s(9) (E, ¢/Q) is considered next. Since ¢ is even, we have —(2r —1) = —¢' = -1

(mod (Q*)?). Thus, the images of & and (0,0) under §' are 1,—1 € S¥)(E} , /Q), respectively. Note
also that cases 2.2 and 2.3 of part (i) still hold. The other values of d € QQ(S,2) are considered below.
2.1 d = p,—p. The homogeneous space (12) has a global solution (z,w) = (1,0). Thus, p €
S(‘z’)(E[’LG/Q). By closure property, since —1,p € S©) (E}, 6/Q), we have —p € NG (E/ 0/ Q).
2.4 d=q,—q. Let (z,w) € C;(Qy).
2.4.1 Suppose ordy(z) > 0. Note that ord,(f(w)) is odd. On the other hand, ord,(g(z)) = 2,
which is even, so a contradiction. Thus, C(;(Qq) = 0.
2.4.2 Suppose ord,(z) = 0. Note that ord,(g(z)) > 1. This implies that ord,(f(w)) > 1, so
ord,(w) > 0. Hence LW E Z Dividing both sides of Equation (12) by ¢ and reducing
modulo ¢, we get w? = —pz? (mod q). Thus, (=2 7 L) = 1.
16 2.4.3 Suppose ord,(z) =: —v < 0. Let z=Z/q", so that ord,(Z) = 0. By simplifying, we get
% a7 G = ¢ L2 (r— ) pg? 2 — ¢\ pR2P
E We abuse notation and denote by f(w) and g(Z) the left-hand side and right-hand side of
20 Equation (17), respectively.
21 2.4.3.1 Suppose 2v >t — 1. Note that ord,(g(Z)) =t — 1. This implies that ord,(f(w)) =
22 t—1, s0 ordy(w) = (t — 1 —4v)/2. Let w=W /qU~'=%)/2 50 that ord, (W) = 0.
23 Then Z,W € Z,. Dividing both sides of Equation (17) by ¢’ ~1 and reducing modulo
24 g, we get W2 = —p?7% (mod gq), i.e., (_71) = 1. Thus, ¢ =1 (mod 4).
2 2.4.3.2 Suppose 2v <t — 1. Note that ord,(g(Z)) = 2v. This implies that ord,(f(w)) = 2v,
26 so ord,(w) = —v. Let w = W /q", so that ord,(W) = 0. Then Z,W € Z,. Dividing
both sides of Equation (17) by ¢* and reducing modulo ¢, we get W? = —pZ?
28 (mod g). Thus, ( L) =1.

— Thus, if ( L) = —1landg=3 (mod 4) then C},(Q,) = 0. By closure property, —g €S($) (E,6/Q)
. whenever ( P) = —] and ¢ =3 (mod 4).

I
[a[=[a[s][=]3]e]e|~]o]a]s|e]|r]|-~

-
(o]

2 2.5 d=gqp,—qp. By closure property, since p,—p € (¢ ( 6/Q) and ¢, —q ¢ S @) (E )( pﬁ/Q)
— whenever (=~ 4 ) = —1 and p=3 (mod 4) then pq, —pq & NG (E/ o/Q) whenever (=£) =

q
o and p=3 (mod 4).

36 We have shown that if (%p) = —land g =3 (mod 4) then S(¢ ( 0/Q) ={1,—1,p,—p}. Therefore,
37 if part (ii) holds then

38

5 SO (Ep/Q) = {1} and SO(E}o/Q)={1,~1,p,—p} = (2/22)"

40 40 Thus, rank(E, ¢(Q)) <0+2—-2=0.

41 Lastly, we prove part (iii). We use the same set-up as above. For the group S'¢ (9) (Ep0/Q), cases 1.1

g and 1.2 of part (i) still hold, and 1 € $(%)(E 1».0/Q). We investigate the remaining cases.
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1.3 d = pd’ for some d’. Let (z,w) € C4(Q)). Note that ord,,(r — 1) > 0.

1
2 1.3.1 Suppose ord,(z) > 0. Note that ord,(f(w)) is odd. On the other hand, ord,(g(z)) = 2,
3 which is even, so a contradiction. Thus, C;(Q,) = 0.

4 1.3.2 Suppose ord,(z) = 0. Note that ord,(g(z)) > 2. This implies that ord,(f(w)) > 2, so
5 ord,(w) > 1. Letting w = pW, we get pd’W2 d”? —4(r—1)d'z? +4r*z* and ord,(W) >
6 0. Then z, W € Z,. Reducing this equatlon modulo p, we getd? —4(r—1)d'z> +4r’z* =0
7 (mod p). Multlplylng both sides by 7? and adding both sides by —d"*(2r — 1), we get
8 (2r*22 — (r—1)d')* = —d?(2r—1) (mod p). This implies that (= (2; l)) (7) =1.
9 1.3.3 Suppose ord,(z) =: —v < 0. Note that ord,,(f(w)) is odd. On the other hand, ord,,(g(z)) =
10 2 — 4y, which is even, so a contradiction. Thus, C;(Q,) = 0.

" Thus, if (‘7‘1) = —1then C4(Q),) =0

2 1.4 d = rid' for some d’. Here, r; could be any prime factor of r but we exclude exactly one r; that
18 is congruent to 3 modulo 4 and we treat this case in item 1.5. The existence of such prime
. factor is valid since r =3 (mod 4) by assumption. In this case, if (£) = —1, then C4(Qy,) = 0.
s The proof is identical to case 1.3 of part (i). l

6 1.5 d=r;where r; =3 (mod 4) is the prime factor of r excluded in case 1.4. Let (z,w) € C4(Q3).
7 Note that ordy(r — 1) = 1 since r =3 (mod 4) by assumption.

18 1.5.1 Suppose ord;(z) > 0. Note that ordy(g(z)) = 0. This implies that ord,(f(w)) =0, so
9 ordy(w) = 0. Hence, z,w € Z,. Reducing Equation (11) modulo 4, we get rw? =
20 (mod 4), a contradiction since r; =3 (mod 4). Thus, C;(Q,) =0

2 1.5.2 Suppose ord,(z) =: —v < 0. Note that ord,(g(z)) =2 —4v. This implies that ord, (f(w)) =
22 2 —4v, so ordy(w) = —(2v — 1). Letting (z,w) = (Z/2",W /22"~1) and simplifying, we
23 get

24

s (18) rW? =2Y"22 0% (r — 1) priZ? + r*p*Z*,

27

2E and ordy(Z) = ordy(W) = 0. Then Z,W € Z,. Reducing Equation (18) modulo 4, we get
20 rW? =1 (mod 4), a contradiction since r; =3 (mod 4). Thus, C4(Q,) =

30 In any case, C;(Q) =

31 1.6 d=2.Let (z,w) € C4(Q2). Note that ordy(r—1) = 1.

32 1.6.1 Suppose ord;(z) > 0. Note that ordy(f(w)) is odd. On the other hand, ord,(g(z)) = 2,
33 which is even, so a contradiction. Thus, C;(Q,) = 0.

34 1.6.2 Suppose ord,(z) = 0. Note that ordy(g(z)) > 2. This implies that ord,(f(w )) > 2, 80
35 ordy(w) > 1. Letting w = 2W and simplifying, we get 2W? = 1 —2(r — 1) pz> + r*p*z*
36 and ord, (W) > 0. Hence, z, W € Z,. Assuming r =3 (mod 4) and reducing this equation
37 modulo 8, we get 2W? =6 (mod 8), so a contradiction. Thus, Cy(Q2) =

38 1.6.3 Suppose ords(z) =: —v < 0. Note that ord, (f(w)) is odd. On the other hand, ord,(g(z)) =
39 2 —4v, which is even, so a contradiction. Thus, C;(Q2) =0

40 In any case, Cy(Q,) =

41 1.7 d =2r; where r; =3 (mod 4) is the prime factor of r excluded in case 1.4. Let (z,w) € C4(Q)).
42 Note that ord,(r —1) > 0.
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1.7.1 Suppose ord,(z) > 0. Note that ord,(g(z)) > 0. This implies that ord,(f(w)) > 0, so
ord,(w) > 0. Hence, z,w € Z,. Reducing Equation (11) modulo p, we get 2rw? = 1
(mod p). Thus, (Zr,) =1.

1.7.2 Suppose ord,(z ): —v < 0. Note that ord,(g(z)) = 2 —4v. This implies that ord,(f(w)) =
2 —4v, so ord,(w) = —(2v—1). Letting (z,w) = (Z/p",W/p?~!) and simplifying, we
get

~
—
\O
N

21”,‘W2 — p4v—2ri2 —2(l"— 1)p2v_17”i22+1”224,

and ord,(Z) = ord,(W) = 0. Then Z,W € Z,. Reducing Equation (19) modulo p, we get
2r,W? =r2Z* (mod p). Thus, (%) =1

i Thus, if (%) = —1then C;(Q,) =0

12

? We have shown that if (E) = —1 for all r; except one with r; =3 (mod 4), (_p") =—1and (% =—1,

14 where 7; is the one excluded above, then S¢*)(E, 4/Q) = {1}. The condition that (2”) =—1is

5 equivalentto p=1or7 (mod 8) and (p) =—1,orp=3or5 (mod 8) and (p) =1.

16

- Next, we consider S(¢ (E/ 9/ Q). Note that the cases 2.1, 2.2 and 2.3 of part (i) still hold and

8 1,—qes® )(E,I),G/Q)- We consider the remaining cases.
19 24 d=gq.Let(z,w) € C,(Q,,) where r; =3 (mod 4) is the prime factor of r excluded in case 1.4.

-
[Bfefe|~]ofo]s]e]n]-

—_
—_

20 2.4.1 Suppose ord,,(z) > 0. Note that ord,,(g(z)) > 0. This implies that ord,,(f(w)) > 0, so
a1 ord,,(w) > 0. Hence, z,w € Z,,. Note that t = 1 by assumption, so 2r — 1 =g. Dividing
22 both sides of Equation (12) by ¢ and reducing modulo r;, we get w? = —1 —2pz> — p*z*
23 (mod r;), that is, w? = —(pz? +1)? (mod r;). If ord,,(pz> +1) = 0, then (%) = 1 a
ll contradiction since r; =3 (mod 4). Thus, pz>+1 =0 (mod r;), that is, ( L) = 1. Since
= (_r,»l) —1, we obtain (p) =—1.

26

o 2.4.2 Suppose ord,, (z) =: —v < 0. Note that ord,,(g(z)) = —4v. This implies that ord,, (f(w)) =

. —4v, so ord,,(w) = —2v. Letting (z,w) = (Z /r!,W /r?") and simplifying, we get

2 (20) W2 =rPqr2(r—)pr' 2 - pPZt,

30

o and ord,,(Z) = ord,,(W) = 0. Then Z,W € Z,,. Reducing Equation (20) modulo r;, we
. get W2 = —p?Z* (mod r;), that is, ( ) =1,a contradiction since r; =3 (mod 4). Thus,
3 Ca(Qr) =0.

> Thus, if (rﬁl) =1 then C,(Q,,) = 0.

SE 2.5 d = —1,qp,—p. By closure property, if (rﬂ) =1 then g ¢ () (E;,G/Q)’ and —¢q,p,—qp €

z% SWN(E! /Q) implies that —1,gp, —p & SO (E}, 4/Q).

38 ss We have shown that if (£ ) = 1, for exactly one r; = 3 (mod 4), then S(¢ ( 50/Q) ={1,—q,p,—qp}.
39 Therefore, if part (iii) holds then

40

e O(E,0/Q) = {1} and SO(E}4/Q) = {1,~q.p.—qp} = (Z/22)".

ﬁg Thus, rank(E, 9(Q)) <0+2-2=0. O

s
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