ROCKY MOUNTAIN JOURNAL OF MATHEMATICS

Vol., No., YEAR $\begin{array}{c}
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12 \\
13 \\
14
\end{array}$

https://doi.org/rmj.YEAR..PAGE

CRITERIA FOR DETERMINING NON- θ -CONGRUENT NUMBERS

VICTOR MANUEL ARICHETA, JERICO BACANI, AND RENZ JIMWEL MINA

ABSTRACT. This paper deals with the θ -congruent number problem and θ -congruent number elliptic curves, generalizations of the classical congruent number problem and congruent number elliptic curves. In particular, we identify sufficient conditions for a non-special angle θ and a prime p so that the corresponding θ -congruent number elliptic curve $E_{p,\theta}$ has rank zero. Consequently, we show that for infinitely many angles θ , there are infinitely many primes which are not θ -congruent.

1. Introduction

16 The congruent number problem is considered as one of the oldest problems in number theory. It 17 asks which positive integers represent the area of a right triangle with rational sides. This problem 18 remains open. Some notable progress towards its resolution include the works of Tunnell [8], Heegner 19 [3], and Monsky [6]. A generalization of this problem was proposed by Fujiwara [1] and is called 20 the θ -congruent number problem. For $\theta \in (0,\pi)$ such that $\cos \theta = \frac{s}{r}$, where $s, r \in \mathbb{Z}, r > |s|$ and 21 gcd(s,r) = 1, the θ -congruent number problem asks which positive integers *n* satisfy the condition that 22 $n\sqrt{r^2-s^2}$ is the area of a triangle having an angle θ and rational sides. Positive integers satisfying this 23 condition are called θ -congruent. A positive integer that is not θ -congruent is called non- θ -congruent. 24 The case when $\theta = \pi/2$ is the classical congruent number problem. 25

Similar to the case of the classical congruent number problem, determining whether a positive 26 integer is θ -congruent or not can be achieved by computing the (Mordell-Weil) rank of a certain elliptic 27 curve. The θ -congruent number elliptic curve, or simply θ -CN elliptic curve, is the elliptic curve 28

 $E_{n\,\theta}: y^2 = x^3 + 2snx^2 - (r^2 - s^2)n^2x.$

Fujiwara [1] showed that a positive integer $n \neq 1, 2, 3, 6$ is θ -congruent if and only if $E_{n,\theta}$ has positive 31 rank. Thus, $n \neq 1, 2, 3, 6$ is non- θ -congruent if and only if $E_{n,\theta}$ has rank zero. 32

Most of the results on the θ -congruent number problem involve the special angles $\theta = \pi/3$ and 33 $2\pi/3$. These include the works of Fujiwara [1], Kan [5], Hibino and Kan [4], Yoshida [9, 10], and 34 Goto [2]. The goal of this paper is to explore the case when θ is not a special angle, that is, when 35 θ is not a rational multiple of π , with the added condition that $\cos \theta$ is also rational. This implies 36 $(s,r) \neq (\pm 1,2)$. In particular, we prove the following theorems, which give sufficient conditions for a 37

29

30

15

- 39 •••
- 40

³⁸ ...

⁴¹ 2020 Mathematics Subject Classification. 11G05, 14H52.

⁴² Key words and phrases. elliptic curves, Selmer groups, θ -congruent number problem.

1 non-special angle θ and a prime p so that p is not θ -congruent. The Legendre symbol is denoted by 2 (:).

2 3 4 5 6 7 8 9 10 11 12 **Theorem 1.1.** Let $\theta \in (0,\pi)$ be such that $\cos \theta = \frac{2k-1}{2k}$, where k is an odd number and $4k - 1 = q^t$ for some prime q and positive integer t. Let $p \nmid 2kq$ be prime. If any one of the following holds, i. $p \equiv 3 \pmod{4}$, $\binom{p}{q} = 1$, and $\binom{p}{k'} = -1$ for all prime factors k' of k, ii. t = 1, $k \equiv 3 \pmod{4}$, and p satisfies both a. $p \equiv 3, 5, or 7 \pmod{8}$, and $\left(\frac{p}{q}\right) = -1$, b. $\binom{p}{k'} = -1$ for all prime factors k' of k except for exactly one $k' \equiv 3 \pmod{4}$, iii. $t = 1, k \equiv 1 \pmod{4}$, k has a prime factor $k' \equiv 3 \pmod{4}$, and p satisfies both a. $p \equiv 1, 3, or 7 \pmod{8}$, and $\binom{p}{q} = -1$, b. $\binom{p}{k'} = -1$ for all prime factors k' of k except for exactly one $k' \equiv 3 \pmod{4}$, 13 14 15 then $E_{p,\theta}$ has rank zero and p is not θ -congruent. **Theorem 1.2.** Let $\theta \in (0,\pi)$ be such that $\cos \theta = \frac{r-1}{r}$, where r is an odd number and $2r-1 = q^t$ for some prime q and positive integer t. Let $p \nmid 2rq$ be prime. If any one of the following holds, 16 17 i. *t* is odd, $r \equiv 1 \pmod{4}$, and *p* satisfies the following, 18 a. $p \equiv 3 \pmod{8}$ and $\left(\frac{q}{p}\right) = -1$, 19 b. $\left(\frac{p}{r}\right) = -1$ for all prime factors r' of r, 20 ii. *t* is even, $q \equiv 3 \pmod{4}$, and *p* satisfies the following, 21 a. $p \equiv 3 \pmod{8}$ and $\left(\frac{q}{p}\right) = -1$, 22 23 24 b. $\left(\frac{p}{r}\right) = -1$ for all prime factors r' of r, iii. t = 1, $r \equiv 3 \pmod{4}$, and p satisfies the following, a. $p \equiv 5 \text{ or } 7 \pmod{8}$ and $\left(\frac{-q}{p}\right) = -1$, 25 b. $\left(\frac{p}{r'}\right) = -1$ for all prime factors r' of r except for exactly one $r' \equiv 3 \pmod{4}$, 26 27 then $E_{p,\theta}$ has rank zero and p is not θ -congruent. 28 To prove Theorems 1.1 and 1.2, we use the method of descent via 2-isogeny. (See Section 2 for more details.) In particular, we show that the conditions given in Theorems 1.1 and 1.2 guarantee that 29 30 the θ -CN elliptic curve $E_{p,\theta}$ has Selmer rank zero. The Selmer rank — which can be determined from an analysis of the solvability of certain homogenous spaces — gives an upper bound for the rank of an 32 elliptic curve, so the rank of the θ -CN elliptic curve $E_{p,\theta}$ is also zero. By Fujiwara's result, the prime 33 p is not θ -congruent. 34 **Example 1.3.** As an illustration, suppose $\cos \theta = \frac{5}{6}$, corresponding to the non-special angle $\theta \approx$ 35 33.557°. Then k = 3, and 4k - 1 = 11 is prime. By Theorem 1.1 parts (i) and (ii), a prime $p \neq 2, 3, 11$

 $\frac{30}{37}$ is not θ -congruent if one of the following holds:

39

a. $p \equiv 3 \pmod{4}, \left(\frac{p}{11}\right) = 1, \text{ and } \left(\frac{p}{3}\right) = -1,$

b. $p \equiv 3, 5, \text{ or } 7 \pmod{8}, \left(\frac{p}{11}\right) = -1, \text{ and } \left(\frac{p}{3}\right) = 1.$

 $\frac{1}{40}$ These conditions are equivalent to the following conditions, respectively:

41 a. $p \equiv 11 \pmod{12}$ and $p \equiv 1, 3, 4, 5, \text{ or } 9 \pmod{11}$,

42 b. $p \equiv 7, 13, \text{ or } 19 \pmod{24}$ and $p \equiv 2, 6, 7, 8, \text{ or } 10 \pmod{11}$.

1 Note that these are sufficient conditions for a prime p to be non- θ -congruent, but they are not necessary. For example, the prime 17 is not θ -congruent since the rank of the corresponding θ -CN elliptic curve 3 is zero.

Remark 1.4. To apply the method of descent via 2-isogeny, we need a list of the prime divisors of the discriminant $4^{3}r^{2}n^{6}(r^{2}-s^{2})$ of $E_{n,\theta}$. We will assume in this paper that *n* is a prime number and $r^2 - s^2 = (r+s)(r-s)$ is an odd prime power to simplify this step. If s > 0, then r - s = 1, and if s < 0, then r + s = 1. In both cases, we get that $r^2 - s^2 = 2r - 1 = q^t$ for some prime q and positive integer t. Additionally, we assume that r is an odd number or twice an odd number but not having nand q as its primes factors. 10

11 Let q = 8m + 3 be a prime number. Note that there are infinitely many such primes. For each such 12 prime, consider the odd number k = (q+1)/4 = 2m+1 and the corresponding non-special angle $\theta = \cos^{-1} \frac{2k-1}{2k}$. Then any prime p that satisfies the conditions in Theorem 1.1 part (i) — for which there are infinitely many — is not θ -congruent. This yields the following corollary. 14

15 **Corollary 1.5.** For infinitely many $\theta \in (0, \pi)$, there are infinitely many primes that are not θ -congruent. 16 17

2. Preliminaries

¹⁹ We discuss briefly the method of descent via 2-isogeny. We refer the reader to Chapter X of [7] for 20 more details about this method.

21 An *isogeny* from one elliptic curve to another is a homomorphism that is given by rational functions. ²² If such a mapping exists, then we say that the two elliptic curves are *isogenous*. Note that there ²³ is an isogeny of degree two attached to the elliptic curve $E_{n,\theta}$ and it is given by $\phi: E_{n,\theta} \to E'_{n,\theta}$, $(x,y) \mapsto (y^2/x^2, -y((r^2 - s^2)n^2 + x^2)/x^2)$, where $E'_{n,\theta}: y^2 = x^3 - 4snx^2 + 4r^2n^2x$. Also, there exists a 24 25 26 map $\widehat{\phi}: E'_{n,\theta} \to E_{n,\theta}$ called the *dual isogeny to* ϕ given by $(x,y) \mapsto (y^2/4x^2, y(4r^2n^2 - x^2)/8x^2)$. Let 27 ∞}

$$S := \{ \text{primes } p \text{ such that } p \mid \Delta_{E_{n,\theta}} = 4^3 r^2 n^6 (r^2 - s^2) \} \cup \{$$

28 and 29

30

32

35

37 38

18

$$\mathbb{Q}(S,2) := \{ d \in \mathbb{Q}^* / (\mathbb{Q}^*)^2 : \operatorname{ord}_p(d) \equiv 0 \pmod{2} \text{ for all primes } p \notin S \}$$

where ord_{*p*} is the *p*-adic valuation on \mathbb{Q} . For each $d \in \mathbb{Q}(S,2)$, define the *homogeneous spaces* 31

$$C_d/\mathbb{Q}: dw^2 = d^2 - 4sndz^2 + 4r^2n^2z^4$$

33 and 34

$$C'_d/\mathbb{Q}: dw^2 = d^2 + 8sndz^2 - 16(r^2 - s^2)n^2z^4$$

36 For simplicity, we may replace z by z/2 in the second homogeneous space to obtain

$$C'_d/\mathbb{Q}: dw^2 = d^2 + 2sndz^2 - (r^2 - s^2)n^2z^4.$$

The ϕ -Selmer group and $\widehat{\phi}$ -Selmer group are defined as 39

$$\frac{40}{41} \qquad \qquad S^{(\phi)}(E_{n,\theta}/\mathbb{Q}) := \{ d \in \mathbb{Q}(S,2) : C_d(\mathbb{Q}_p) \neq \emptyset \ \forall \ p \in S \},$$

42
$$S^{(\phi)}(E'_{n,\theta}/\mathbb{Q}) := \{ d \in \mathbb{Q}(S,2) : C'_d(\mathbb{Q}_p) \neq \emptyset \ \forall \ p \in S \}$$

1 Aug 2024 06:25:26 PDT 230916-Mina Version 2 - Submitted to Rocky Mountain J. Math.

1 respectively. Define the map $\delta : E'(\mathbb{Q}) \longrightarrow \mathbb{Q}^*/(\mathbb{Q}^*)^2$ by 2 3 4 5 6 7 8 9 10 11 $\delta(\mathscr{O}) = 1 \; (\mathrm{mod} \, (\mathbb{Q}^*)^2),$ $\delta(0,0) = 4r^2n^2 \equiv 1 \pmod{(\mathbb{O}^*)^2},$ $\delta(x, y) = x \pmod{(\mathbb{Q}^*)^2}, \ (x, y) \neq (0, 0), \mathcal{O},$ where \mathscr{O} is the point at infinity. Similarly, define $\delta' : E(\mathbb{Q}) \longrightarrow \mathbb{Q}^*/(\mathbb{Q}^*)^2$ by $\delta'(\mathscr{O}) = 1 \; (\mathrm{mod} \, (\mathbb{O}^*)^2),$ $\delta'(0,0) = -(r^2 - s^2) \; (\mathrm{mod} \, (\mathbb{O}^*)^2),$ $\delta'(x, y) = x \pmod{(\mathbb{Q}^*)^2}, \ (x, y) \neq (0, 0), \mathcal{O}.$ 12 The images of the maps δ and δ' are values $d \in \mathbb{Q}(S,2)$ that are elements of the corresponding Selmer 13 groups. An upper bound for the rank of $E_{n,\theta}$ is given by 14 $\operatorname{rank}(E_{n,\theta}(\mathbb{Q})) \leq \dim_{\mathbb{F}_2} S^{(\phi)}(E_{n,\theta}/\mathbb{Q}) + \dim_{\mathbb{F}_2} S^{(\widehat{\phi})}(E'_{n,\theta}/\mathbb{Q}) - 2.$ 15 This bound is also called the *Selmer rank*. Thus, we only need to determine when the Selmer rank 16 17 becomes zero. 18 3. Proof of main results 19 20 We have the following proofs of the two theorems. 21 *Proof of Theorem 1.1.* First, consider part (i). The θ -CN elliptic curve is given by 23 $E_{p,\theta}: y^2 = x^3 + 2(2k-1)px^2 - (4k-1)p^2x.$ 24 Write $k = k_1^{m_1} k_2^{m_2} \cdots k_n^{m_n}$, where k_i 's are distinct odd primes and m_i 's are positive integers. We obtain 25 the sets $S = \{\infty, 2, k_1, k_2, ..., k_n, q, p\}$ and 26 27 $\mathbb{Q}(S,2) = \left\{ \begin{array}{l} \pm 1, \pm 2, \pm p, \pm q, \pm 2p, \pm 2q, \pm pq, \pm 2pq, \pm k_{i_1} \cdots k_{i_j}, \\ \pm 2k_{i_1} \cdots k_{i_j}, \pm pk_{i_1} \cdots k_{i_j}, \pm qk_{i_1} \cdots k_{i_j}, \pm 2pk_{i_1} \cdots k_{i_j}, \\ \pm 2qk_{i_1} \cdots k_{i_j}, \pm pqk_{i_1} \cdots k_{i_j}, \pm 2pqk_{i_1} \cdots k_{i_j}, \\ \text{where } i_j, j \in \{1, 2, \dots, n\} \text{ and } i_j \neq i_{j'} \text{ for } j \neq j' \end{array} \right\}.$ 28 29 30 31 Note that $\mathbb{Q}(S,2)$ contains 2^{n+4} distinct elements. The curve is 2-isogenous to $E'_{n,\theta}$ given by 32 33 $E'_{n,\theta}: y^2 = x^3 - 4(2k-1)px^2 + 16k^2p^2x,$ 34 and for $d \in \mathbb{Q}(S,2)$, the corresponding homogeneous spaces are given by 35 $C_d: dw^2 = d^2 - 4(2k-1)pdz^2 + 16k^2p^2z^4$ 36 (1)37 and 38 $C'_{d}: dw^{2} = d^{2} + 2(2k-1)pdz^{2} - (4k-1)p^{2}z^{4}$ (2)39 40 Note that the image of (0,0) and \mathcal{O} under δ is $1 \in S^{(\phi)}(E_{p,\theta}/\mathbb{Q})$. The other values of $d \in \mathbb{Q}(S,2)$ ⁴¹ are considered below. For the following cases, we denote by f(w) and g(z) the left-hand side and 42 right-hand side of Equation (1), respectively.

1.1 d < 0. Note that $C_d(\mathbb{R}) = \emptyset$ since $f(w) \le 0$, while g(z) > 0. $\begin{array}{c|c}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12 \\
13 \\
14 \\
15 \\
\end{array}$ 1.2 d = 2d' for some d'. Let $(z, w) \in C_d(\mathbb{Q}_2)$. Note that $\operatorname{ord}_2(f(w))$ is odd. On the other hand, let $\operatorname{ord}_2(z) = v$. Then $\operatorname{ord}_2(d^2) = 2$, $\operatorname{ord}_2(-4(2k-1)pdz^2) = 3+2v$, and $\operatorname{ord}_2(16k^2p^2z^4) = 4+4v$, all of which are distinct. Hence, $\operatorname{ord}_2(g(z)) = \min\{2, 3+2\nu, 4+4\nu\} = 2 \text{ or } 4+4\nu$, which in any case is even, so a contradiction. Thus, $C_d(\mathbb{Q}_2) = \emptyset$. 1.3 d = qd' for some d'. Let $(z, w) \in C_d(\mathbb{Q}_q)$. Note that $\operatorname{ord}_q(f(w))$ is odd. On the other hand, let $\operatorname{ord}_{q}(z) = v$. Then $\operatorname{ord}_{q}(g(z)) = 2$ or 4v, which in any case is even, so a contradiction. Thus, $C_d(\mathbb{Q}_a) = \emptyset.$ 1.4 $d = k_i d'$ for some d'. Let $(z, w) \in C_d(\mathbb{Q}_{k_i})$. 1.4.1 Suppose $\operatorname{ord}_{k_i}(z) > 0$. Note that $\operatorname{ord}_{k_i}(f(w))$ is odd. On the other hand, $\operatorname{ord}_{k_i}(g(z)) = 2$, which is even, so a contradiction. Thus, $C_d(\mathbb{Q}_{k_i}) = \emptyset$. 1.4.2 Suppose $\operatorname{ord}_{k_i}(z) = 0$. Note that $\operatorname{ord}_{k_i}(g(z)) \ge 1$. This implies that $\operatorname{ord}_{k_i}(f(w)) \ge 1$, so $\operatorname{ord}_{k_i}(w) \ge 0$. Hence, $z, w \in \mathbb{Z}_{k_i}$. Dividing both sides of Equation (1) by k_i and reducing modulo k_i , we get $d'w^2 \equiv 4pd'z^2 \pmod{k_i}$. This implies that $\left(\frac{p}{k_i}\right) = 1$. 1.4.3 Suppose $\operatorname{ord}_{k_i}(z) =: -v < 0$. Let $z = Z/k_i^v$, so that $\operatorname{ord}_{k_i}(Z) = 0$. By simplifying, we get 16 17 18 19 20 21 22 23 24 $k_i^{4\nu+1}d'w^2 = k_i^{4\nu+2}d'^2 - 4(2k-1)pk_i^{2\nu+1}d'Z^2 + 16k^2p^2Z^4.$ (3)We abuse notation and denote by f(w) and g(Z) the left-hand side and right-hand side of Equation (3), respectively. 1.4.3.1 Suppose $2v+1 > 2m_i$. Note that $\operatorname{ord}_{k_i}(f(w))$ is odd. On the other hand, $\operatorname{ord}_{k_i}(g(Z)) =$ $2m_i$, which is even, so a contradiction. Thus, $C_d(\mathbb{Q}_{k_i}) = \emptyset$. 1.4.3.2 Suppose $2v+1 < 2m_i$. Note that $\operatorname{ord}_{k_i}(g(Z)) = 2v+1$. This implies that $\operatorname{ord}_{k_i}(f(w)) =$ 2v+1, so $\operatorname{ord}_{k_i}(w) = -v$. Let $w = W/k_i^v$, so that $\operatorname{ord}_{k_i}(W) = 0$. Then $Z, W \in \mathbb{Z}_{k_i}$. Dividing both sides of Equation (3) by $k_i^{2\nu+1}$ and reducing modulo k_i , we get 25 26 $d'W^2 \equiv 4pd'Z^2 \pmod{k_i}$. This implies that $\left(\frac{p}{k_i}\right) = 1$. Thus, if $\left(\frac{p}{k_i}\right) = -1$ then $C_d(\mathbb{Q}_{k_i}) = \emptyset$. 27 1.5 d = p. Let $(z, w) \in C_d(\mathbb{Q}_2)$. 28 29 1.5.1 Suppose $\operatorname{ord}_2(z) \ge 0$. Note that $\operatorname{ord}_2(g(z)) = 0$. This implies that $\operatorname{ord}_2(f(w)) = 0$, so $\operatorname{ord}_2(w) = 0$. Hence, $z, w \in \mathbb{Z}_2$. Reducing Equation (1) modulo 4, we get $pw^2 \equiv 1$ 30 (mod 4). Thus, $p \equiv 1 \pmod{4}$. 31 1.5.2 Suppose $\operatorname{ord}_2(z) =: -v < 0$. Let $z = Z/2^{\nu}$, so that $\operatorname{ord}_2(Z) = 0$. By simplifying, we get 32 33 34 $2^{4\nu-4}w^2 = 2^{4\nu-4}p - 2^{2\nu-2}(2k-1)pZ^2 + k^2pZ^4.$ (4) We abuse notation and denote by f(w) and g(Z) the left-hand side and right-hand side of 35 Equation (4), respectively. 36 1.5.2.1 Suppose v = 1. Note that $\operatorname{ord}_2(g(Z)) \ge 0$. Then $\operatorname{ord}_2(f(w)) \ge 0$, so $\operatorname{ord}_2(w) \ge 0$. 37 Hence, $Z, w \in \mathbb{Z}_2$. Reducing Equation (4) modulo 4, we get $w^2 \equiv p \pmod{4}$. Thus, 38 $p \equiv 1 \pmod{4}$. 39 1.5.2.2 Suppose v > 1. Note that $\operatorname{ord}_2(g(Z)) = 0$. This implies $\operatorname{ord}_2(f(w)) = 0$, so $\operatorname{ord}_{2}(w) = -(2v-2)$. Let $w = W/2^{2v-2}$, so that $\operatorname{ord}_{2}(W) = 0$. Then $Z, W \in \mathbb{Z}_{2}$. 40 Reducing Equation (4) modulo 4, we get $W^2 \equiv p \pmod{4}$. Thus, $p \equiv 1 \pmod{4}$. 41 42 Thus, if $p \equiv 3 \pmod{4}$ then $C_d(\mathbb{Q}_2) = \emptyset$.

1 We have shown that if $\left(\frac{p}{k_i}\right) = -1$ for all i = 1, ..., n, and $p \equiv 3 \pmod{4}$, then $S^{(\phi)}(E_{p,\theta}/\mathbb{Q}) = \{1\}$. The group $S^{(\hat{\phi})}(E'_{n,\theta}/\mathbb{Q})$ is considered next. Note that $2r-1 = 4k-1 = q^t$ implies $q \equiv 3 \pmod{4}$ and t is odd. Thus, $-(4k-1) = -q^t \equiv -q \pmod{(\mathbb{Q}^*)^2}$. Note that the images of \mathscr{O} and (0,0) under δ' are $1, -q \in S^{(\widehat{\phi})}(E'_{p,\theta}/\mathbb{Q})$, respectively. The other values of $d \in \mathbb{Q}(S,2)$ are considered below. For the following cases, we denote by f(w) and g(z) the left-hand side and right-hand side of Equation (2), respectively. 2.1 d = p, -qp. The homogeneous space (2) has a global solution (z, w) = (1, 0). Thus, $p \in (1, 0)$. $S^{(\widehat{\phi})}(E'_{p,\theta}/\mathbb{Q})$. By closure property, since $-q, p \in S^{(\widehat{\phi})}(E'_{p,\theta}/\mathbb{Q})$, we have $-qp \in S^{(\widehat{\phi})}(E'_{p,\theta}/\mathbb{Q})$. 2.2 $d = k_i d'$ for some d'. Let $(z, w) \in C'_d(\mathbb{Q}_{k_i})$. Note that $\operatorname{ord}_{k_i}(f(w))$ is odd. On the other hand, let $\operatorname{ord}_{k_i}(z) = v$. Then $\operatorname{ord}_{k_i}(g(z)) = 2$ or 4v, which in any case is even, so a contradiction. Thus, $C'_d(\mathbb{Q}_{k_i}) = \emptyset.$ 2.3 d = 2d' for some d'. Let $(z, w) \in C'_d(\mathbb{Q}_2)$. Note that $\operatorname{ord}_2(f(w))$ is odd. On the other hand, let $\operatorname{ord}_2(z) = v.$ 2.3.1 Suppose $v \neq 0, 1$. Then $\operatorname{ord}_2(g(z)) = 2$ or 4v, which in any case is even, so a contradiction. 2.3.2 Suppose v = 0. Then $\operatorname{ord}_2(g(z)) = 0$, which is even, so a contradiction. 2.3.3 Suppose v = 1. Then $\operatorname{ord}_2(g(z)) = 2$, which is even, so a contradiction. Therefore, $C'_d(\mathbb{Q}_2) = \emptyset$. 2.4 d = q. Let $(z, w) \in C'_d(\mathbb{Q}_p)$. Note that $\operatorname{ord}_p(2k-1) \ge 0$. 2.4.1 Suppose $\operatorname{ord}_p(z) \ge 0$. Note that $\operatorname{ord}_p(g(z)) \ge 0$. This implies that $\operatorname{ord}_p(f(w)) \ge 0$, so $\operatorname{ord}_p(w) \ge 0$. Hence, $z, w \in \mathbb{Z}_p$. Reducing Equation (2) modulo p, we get $w^2 \equiv q \pmod{p}$. Thus, $\left(\frac{q}{p}\right) = 1$. 2.4.2 Suppose $\operatorname{ord}_{p}(z) =: -v < 0$. Note that $\operatorname{ord}_{p}(g(z)) = 2 - 4v$. This implies that $\operatorname{ord}_{p}(f(w)) =$ 2-4v, so $\operatorname{ord}_p(w) = -(2v-1)$. Letting $(z,w) = (Z/p^v, W/p^{2v-1})$ and by simplifying, we get $W^{2} = p^{4\nu-2}q + 2(2k-1)p^{2\nu-1}Z^{2} - q^{t-1}Z^{4}$ (5) and $\operatorname{ord}_p(Z) = \operatorname{ord}_p(W) = 0$. Then $Z, W \in \mathbb{Z}_p$. Reducing Equation (5) modulo p, we get $W^2 \equiv -q^{t-1}Z^4 \pmod{p}$. Thus, $\left(\frac{-1}{p}\right) = 1$, i.e., $p \equiv 1 \pmod{4}$. Thus, if $\left(\frac{q}{p}\right) = -1$ and $p \equiv 3 \pmod{4}$ then $C'_d(\mathbb{Q}_p) = \emptyset$. 2.5 d = -1, qp, -p. By closure property, if $\left(\frac{q}{p}\right) = -1$ and $p \equiv 3 \pmod{4}$ then $q \notin S^{(\widehat{\phi})}(E'_{p,\theta}/\mathbb{Q})$, and $-q, p, -qp \in S^{(\widehat{\phi})}(E'_{p,\theta}/\mathbb{Q})$ implies that $-1, qp, -p \notin S^{(\widehat{\phi})}(E'_{p,\theta}/\mathbb{Q})$. By reciprocity law, we have shown that if $p \equiv 3 \pmod{4}$ and $\left(\frac{p}{a}\right) = 1$, then we obtain $S^{(\hat{\phi})}(E'_{p,\theta}/\mathbb{Q}) = 0$ $\{1, -q, p, -qp\}$. Therefore, if part (i) holds then

$$S^{(\phi)}(E_{p,\theta}/\mathbb{Q}) = \{1\}$$
 and $S^{(\phi)}(E'_{p,\theta}/\mathbb{Q}) = \{1, -q, p, -qp\} \cong (\mathbb{Z}/2\mathbb{Z})^2.$

38 Thus, $rank(E_{p,\theta}(\mathbb{Q})) \le 0 + 2 - 2 = 0.$ 39

11 12

13

14

15

16 17

18

19

20

21

22 23 24

25

26 27

28

29

30

31

32

33 34

35

36 37

Next, we prove part (ii). We use the same set-up as above. For the group $S^{(\phi)}(E_{p,\theta}/\mathbb{Q})$, cases 1.1, 40 1.2 and 1.3 of part (i) still hold, and $1 \in S^{(\phi)}(E_{p,\theta}/\mathbb{Q})$. We consider the remaining cases. 41 1.4 d = pd' for some d'. Let $(z, w) \in C_d(\mathbb{Q}_p)$. 42

1.4.1 Suppose $\operatorname{ord}_p(z) > 0$. Note that $\operatorname{ord}_p(f(w))$ is odd. On the other hand, $\operatorname{ord}_p(g(z)) = 2$, which is even, so a contradiction. Thus, $C_d(\mathbb{Q}_p) = \emptyset$. 1.4.2 Suppose $\operatorname{ord}_p(z) = 0$. Note that $\operatorname{ord}_p(g(z)) \ge 2$. This implies that $\operatorname{ord}_p(f(w)) \ge 2$, so $\operatorname{ord}_p(w) \ge 1$. Letting w = pW, we get $pd'W^2 = d'^2 - 4(2k-1)d'z^2 + 16k^2z^4$ and $\operatorname{ord}_p(W) \geq 0$. Hence, $z, W \in \mathbb{Z}_p$. Reducing this equation modulo p, we get $d'^2 - 4(2k - 4)$ $1)d'z^2 + 16k^2z^4 \equiv 0 \pmod{p}$. Multiplying both sides by $4k^2$ and adding both sides by $-d'^{2}(4k-1)$, we get $(8k^{2}z^{2}-(2k-1)d')^{2} \equiv -d'^{2}(4k-1) \pmod{p}$. This implies that $\left(\frac{-(4k-1)}{p}\right) = \left(\frac{-q}{p}\right) = 1.$ 1.4.3 Suppose $\operatorname{ord}_p(z) =: -v < 0$. Note that $\operatorname{ord}_p(f(w))$ is odd. On the other hand, $\operatorname{ord}_p(g(z)) =$ 2-4v, which is even, so a contradiction. Thus, $C_d(\mathbb{Q}_p) = \emptyset$. Thus, if $\left(\frac{-q}{p}\right) = -1$ then $C_d(\mathbb{Q}_p) = \emptyset$. 1.5 $d = k_i d'$ for some d'. Here, k_i could be any prime factor of k but we exclude exactly one k_i that is congruent to 3 modulo 4 and we treat this case in item 1.6. The existence of such prime factor is valid since $k \equiv 3 \pmod{4}$ by assumption. In this case, if $\binom{p}{k_i} = -1$ then $C_d(\mathbb{Q}_{k_i}) = \emptyset$. The proof is identical to case 1.4 of part (i). 1.6 $d = k_i$ where $k_i \equiv 3 \pmod{4}$ is the prime factor of k excluded in case 1.5. Replacing z by z/2, we get $k_i w^2 = k_i^2 - (2k-1)pk_i z^2 + k^2 p^2 z^4.$ 19 20 21 22 23 24 25 26 27 28 29 (6) Denote by g(z) the right-hand side of Equation (6). Let $(z, w) \in C_d(\mathbb{Q}_2)$. 1.6.1 Suppose $\operatorname{ord}_2(z) \ge 0$. Note that $\operatorname{ord}_2(g(z)) \ge 0$. This implies that $\operatorname{ord}_2(f(w)) \ge 0$, so $\operatorname{ord}_2(w) \ge 0$. Hence, $z, w \in \mathbb{Z}_2$. Reducing Equation (6) modulo 8, we get $k_i w^2 \equiv 1 - (2k - 2k)$ 1) $pk_iz^2 + z^4 \pmod{8}$. By assumption, $k_i \equiv 3 \pmod{4}$ and $k \equiv 3 \pmod{4}$. 1.6.1.1 Suppose $\operatorname{ord}_2(z) = 0$. Then $k_i w^2 \equiv 1 + 3pk_i + 1 \equiv 2 + 3pk_i \pmod{8}$. This implies that $w^2 \equiv 2k_i + 3p \equiv 6 + 3p \pmod{8}$, so $p \equiv 1 \pmod{8}$. 1.6.1.2 Suppose $\operatorname{ord}_2(z) = 1$. Then $k_i w^2 \equiv 1 + 3pk_i(4) + 0 \equiv 5 \pmod{8}$, a contradiction. 1.6.1.3 Suppose $\operatorname{ord}_2(z) > 1$. Then $k_i w^2 \equiv 1 \pmod{8}$, a contradiction. 1.6.2 Suppose $\operatorname{ord}_2(z) =: -v < 0$. Note that $\operatorname{ord}_2(g(z)) = -4v$. This implies that $\operatorname{ord}_2(f(w)) =$ -4v, so $\operatorname{ord}_2(w) = -2v$. Letting $(z, w) = (Z/2^v, W/2^{2v})$ and by simplifying, we get 30 $k_i W^2 = 2^{4\nu} k_i^2 - 2^{2\nu} (2k-1) p k_i Z^2 + k^2 p^2 Z^4$ **31** (7) 32 and $\operatorname{ord}_2(Z) = \operatorname{ord}_2(W) = 0$. Then $Z, W \in \mathbb{Z}_2$. Reducing Equation (7) modulo 4, we get 33 $k_i W^2 \equiv 1 \pmod{4}$, a contradiction since $k_i \equiv 3 \pmod{4}$. Thus, $C_d(\mathbb{Q}_2) = \emptyset$. 34 Thus, if $p \equiv 3, 5, \text{ or } 7 \pmod{8}$ then $C_d(\mathbb{Q}_2) = \emptyset$. 35 By reciprocity law, we have shown that if $\binom{p}{a} = -1$, $\binom{p}{k_i} = -1$ for all k_i except one $k_i \equiv 3 \pmod{4}$, 36 37 and $p \equiv 3, 5$, or 7 (mod 8), then $S^{(\phi)}(E_{p,\theta}/\mathbb{Q}) = \{1\}.$ 38 Next, we consider $S^{(\hat{\phi})}(E'_{p,\theta}/\mathbb{Q})$. Note that cases 2.1, 2.2, and 2.3 of part (i) still hold and $1, -q \in$ 39 $S^{(\phi)}(E'_{p,\theta}/\mathbb{Q})$. We consider the remaining cases. 40 2.4 d = q. Let $(z, w) \in C'_d(\mathbb{Q}_{k_i})$, where $k_i \equiv 3 \pmod{4}$ is the prime factor of k excluded in case 41 42 1.5.

2.4.1 Suppose $\operatorname{ord}_{k_i}(z) \ge 0$. Note that $\operatorname{ord}_{k_i}(g(z)) \ge 0$. This implies that $\operatorname{ord}_{k_i}(f(w)) \ge 0$, so $\operatorname{ord}_{k_i}(w) \ge 0$. Hence, $z, w \in \mathbb{Z}_{k_i}$. Note that t = 1 by assumption, so 4k - 1 = q. Dividing both sides of Equation (2) by q and reducing modulo k_i , we get $w^2 \equiv -1 - 2pz^2 - p^2z^4$ (mod k_i), that is, $w^2 \equiv -(pz^2+1)^2 \pmod{k_i}$. If $\operatorname{ord}_{k_i}(pz^2+1) = 0$, then $\binom{-1}{k_i} = 1$, a contradiction since $k_i \equiv 3 \pmod{4}$. Thus, $pz^2 + 1 \equiv 0 \pmod{k_i}$, that is, $\left(\frac{-p}{k_i}\right) = 1$. Since $\left(\frac{-1}{k_i}\right) = -1$, we obtain $\left(\frac{p}{k_i}\right) = -1$. 2.4.2 Suppose $\operatorname{ord}_{k_i}(z) =: -v < 0$. Note that $\operatorname{ord}_{k_i}(g(z)) = -4v$. This implies that $\operatorname{ord}_{k_i}(f(w)) = -4v$. -4v, so $\operatorname{ord}_{k_i}(w) = -2v$. Letting $(z, w) = (Z/k_i^v, W/k_i^{2v})$ and by simplifying, we get $W^2 = k_i^{4\nu} q + 2(2k-1)pk_i^{2\nu}Z^2 - p^2Z^4.$ (8) and $\operatorname{ord}_{k_i}(Z) = \operatorname{ord}_{k_i}(W) = 0$. Then $Z, W \in \mathbb{Z}_{k_i}$. Reducing Equation (8) modulo k_i , we get $W^2 \equiv -p^2 Z^4 \pmod{k_i}$, that is, $\left(\frac{-1}{k_i}\right) = 1$, a contradiction since $k_i \equiv 3 \pmod{4}$. Thus, $C'_d(\mathbb{Q}_{k_i}) = \emptyset.$ Thus, if $\left(\frac{p}{k_i}\right) = 1$ then $C'_d(\mathbb{Q}_{k_i}) = \emptyset$. 2.5 d = -1, qp, -p. By closure property, if $\left(\frac{p}{k_i}\right) = 1$ then $q \notin S^{(\widehat{\phi})}(E'_{p,\theta}/\mathbb{Q})$, and $-q, p, -qp \in \mathbb{Q}$. $S^{(\widehat{\phi})}(E'_{p,\theta}/\mathbb{Q})$ implies that $-1, qp, -p \not\in S^{(\widehat{\phi})}(E'_{p,\theta}/\mathbb{Q}).$ 18 We have shown that if $\left(\frac{p}{k_i}\right) = 1$ for exactly one $k_i \equiv 3 \pmod{4}$, then $S^{(\widehat{\phi})}(E'_{p,\theta}/\mathbb{Q}) = \{1, -q, p, -qp\}$. 19 Therefore, if part (ii) holds then 20 $S^{(\phi)}(E_{p,\theta}/\mathbb{Q}) = \{1\} \quad \text{and} \quad S^{(\widehat{\phi})}(E_{p,\theta}'/\mathbb{Q}) = \{1, -q, p, -qp\} \cong (\mathbb{Z}/2\mathbb{Z})^2.$ 21 22 23 24 Thus, $rank(E_{p,\theta}(\mathbb{Q})) \le 0 + 2 - 2 = 0.$ Lastly, we prove part (iii). For $S^{(\phi)}(E_{p,\theta}/\mathbb{Q})$, all of the cases of part (ii) hold except case 1.6. 1.6 $d = k_i$, where $k_i \equiv 3 \pmod{4}$ is the prime factor of k excluded in case 1.5 of part (ii). Replacing 25 z by z/2, we get 26 27 $k_i w^2 = k_i^2 - (2k-1)pk_i z^2 + k^2 p^2 z^4$. (9) 28 29 Denote by g(z) the right-hand side of Equation (9). Let $(z, w) \in C_d(\mathbb{Q}_2)$. 1.6.1 Suppose $\operatorname{ord}_2(z) \ge 0$. Note that $\operatorname{ord}_2(g(z)) \ge 0$. This implies that $\operatorname{ord}_2(f(w)) \ge 0$, so 30 $\operatorname{ord}_2(w) \ge 0$. Hence, $z, w \in \mathbb{Z}_2$. Reducing Equation (9) modulo 8, we get $k_i w^2 \equiv 1 - (2k - 2k)$ 31 1) $pk_iz^2 + z^4 \pmod{8}$. By assumption, $k_i \equiv 3 \pmod{4}$ and $k \equiv 1 \pmod{4}$. 32 33 34 1.6.1.1 Suppose $\operatorname{ord}_2(z) = 0$. Then $k_i w^2 \equiv 1 - pk_i + 1 \equiv 2 - pk_i \pmod{8}$. This implies that $w^2 \equiv 2k_i - p \equiv 6 - p \pmod{8}$, so $p \equiv 5 \pmod{8}$. 1.6.1.2 Suppose $\operatorname{ord}_2(z) = 1$. Then $k_i w^2 \equiv 1 - 4pk_i + 0 \equiv 5 \pmod{8}$, so a contradiction. 35 1.6.1.3 Suppose $\operatorname{ord}_2(z) > 1$. Then $k_i w^2 \equiv 1 \pmod{8}$, so a contradiction. 36 37 1.6.2 Suppose $\operatorname{ord}_2(z) =: -v < 0$. Note that $\operatorname{ord}_2(g(z)) = -4v$. This implies that $\operatorname{ord}_2(f(w)) =$ -4v, so $\operatorname{ord}_2(w) = -2v$. Letting $(z, w) = (Z/2^v, W/2^{2v})$ and by simplifying, we get 38 39 $k_i W^2 = 2^{4\nu} k_i^2 - 2^{2\nu} (2k-1) p k_i Z^2 + k^2 p^2 Z^4,$ (10)40 and $\operatorname{ord}_2(Z) = \operatorname{ord}_2(W) = 0$. Then $Z, W \in \mathbb{Z}_2$. Reducing Equation (10) modulo 4, we get $k_i W^2 \equiv 1 \pmod{4}$, a contradiction since $k_i \equiv 3 \pmod{4}$. Thus, $C_d(\mathbb{Q}_2) = \emptyset$. 41 Thus, if $p \equiv 1, 3, \text{or } 7 \pmod{8}$ then $C_d(\mathbb{Q}_2) = \emptyset$. 42

9

We have shown that if $\binom{p}{q} = -1$, $\binom{p}{k_i} = -1$ for all k_i except one $k_i \equiv 3 \pmod{4}$, and $p \equiv 1, 3$, or 7 (mod 8), then $S^{(\phi)}(E_{p,\theta}/\mathbb{Q}) = \{1\}.$ 2 3 4 5 6 7 8 9 10 For $S^{(\hat{\phi})}(E'_{p,\theta}/\mathbb{Q})$, all of the cases in part (ii) hold. Thus, if $(\frac{p}{k_i}) = 1$ for exactly one $k_i \equiv 3 \pmod{4}$, then $S^{(\hat{\phi})}(E'_{p,\theta}/\mathbb{Q}) = \{1, -q, p, -qp\}$. Therefore, if part (iii) holds then $S^{(\phi)}(E_{p,\theta}/\mathbb{Q}) = \{1\}$ and $S^{(\widehat{\phi})}(E'_{p,\theta}/\mathbb{Q}) = \{1, -q, p, -qp\} \cong (\mathbb{Z}/2\mathbb{Z})^2.$ Thus, $rank(E_{p,\theta}(\mathbb{Q})) \le 0 + 2 - 2 = 0$. We prove the second theorem. 11 12 *Proof of Theorem 1.2.* First, consider part (i). The θ -CN elliptic curve is given by $E_{n,\theta}: v^2 = x^3 + 2(r-1)px^2 - (2r-1)p^2x.$ 13 14 Write $r = r_1^{m_1} r_2^{m_2} \cdots r_n^{m_n}$, where r_i 's are distinct odd primes and m_i 's are positive integers. We obtain 15 the sets $S = \{\infty, 2, r_1, r_2, ..., r_n, q, p\}$ and 16 17 18 $\mathbb{Q}(S,2) = \left\{ \begin{array}{l} \pm 1, \pm 2, \pm p, \pm q, \pm 2p, \pm 2q, \pm pq, \pm 2pq, \pm r_{i_1} \cdots r_{i_j}, \\ \pm 2r_{i_1} \cdots r_{i_j}, \pm pr_{i_1} \cdots r_{i_j}, \pm qr_{i_1} \cdots r_{i_j}, \pm 2pr_{i_1} \cdots r_{i_j}, \\ \pm 2qr_{i_1} \cdots r_{i_j}, \pm pqr_{i_1} \cdots r_{i_j}, \pm 2pqr_{i_1} \cdots r_{i_j}, \\ \text{where } i_j, j \in \{1, 2, \dots, n\} \text{ and } i_j \neq i_{j'} \text{ for } j \neq j'. \end{array} \right\}.$ 19 20 21 22 23 Note that $\mathbb{Q}(S,2)$ contains 2^{n+4} distinct elements. The curve is 2-isogenous to $E'_{p,\theta}$ given by $E'_{n\theta}: y^2 = x^3 - 4(r-1)px^2 + 4r^2p^2x,$ 24 and for $d \in \mathbb{Q}(S,2)$, the corresponding homogeneous spaces are given by 25 26 $C_d: dw^2 = d^2 - 4(r-1)pdz^2 + 4r^2p^2z^4$ (11)27 and 28 $C'_{d}: dw^{2} = d^{2} + 2(r-1)pdz^{2} - (2r-1)p^{2}z^{4}$ 29 (12)30 Note that the image of \mathscr{O} and (0,0) under δ is $1 \in S^{(\phi)}(E_{p,\theta}/\mathbb{Q})$. The other values of $d \in \mathbb{Q}(S,2)$ are 31 considered below. For the following cases, denote by f(w) and g(z) the left-hand side and right-hand 32 side of Equation (11), respectively. 33 1.1 d < 0. Note that $C_d(\mathbb{R}) = \emptyset$ since $f(w) \le 0$, while g(z) > 0. 34 1.2 d = qd' for some d'. Note that $\operatorname{ord}_q(f(w))$ is odd. On the other hand, let $\operatorname{ord}_q(z) = v$. Then 35 $\operatorname{ord}_q(g(z)) = 2$ or 4v, which in any case is even, so a contradiction. Thus, $C_d(\mathbb{Q}_q) = \emptyset$. 36 1.3 $d = r_i d'$ for some d'. Let $(z, w) \in C_d(\mathbb{Q}_{r_i})$. 37 1.3.1 Suppose $\operatorname{ord}_{r_i}(z) > 0$. Note that $\operatorname{ord}_{r_i}(f(w))$ is odd. On the other hand, $\operatorname{ord}_{r_i}(g(z)) = 2$, 38 39 which is even, so a contradiction. Thus, $C_d(\mathbb{Q}_{r_i}) = \emptyset$. 40 1.3.2 Suppose $\operatorname{ord}_{r_i}(z) = 0$. Note that $\operatorname{ord}_{r_i}(g(z)) \ge 1$. This implies that $\operatorname{ord}_{r_i}(f(w)) \ge 1$, so $\operatorname{ord}_{r_i}(w) \ge 0$. Hence, $z, w \in \mathbb{Z}_{r_i}$. Dividing both sides of Equation (11) by r_i and reducing 41 modulo r_i , we get $d'w^2 \equiv 4pd'z^2 \pmod{r_i}$. This implies that $\left(\frac{p}{r_i}\right) = 1$. 42

1	1.3.3 Suppose $\operatorname{ord}_{r_i}(z) =: -v < 0$. Let $z = Z/r_i^v$, so that $\operatorname{ord}_{r_i}(Z) = 0$. By simplifying, we get
2	(13) $r_i^{4\nu+1}d'w^2 = r_i^{4\nu+2}d'^2 - 4(r-1)pr_i^{2\nu+1}d'Z^2 + 4r^2p^2Z^4.$
3	We abuse notation and denote by $f(w)$ and $q(Z)$ the left-hand side and right-hand side of
4	Equation (13) respectively
5	1.3.3.1 Suppose $2v+1 > 2m_i$. Note that $\operatorname{ord}_r(f(w))$ is odd. On the other hand, $\operatorname{ord}_r(g(Z)) =$
7	$2m_i$, which is even, so a contradiction. Thus, $C_d(\mathbb{Q}_{r_i}) = \emptyset$.
8	1.3.3.2 Suppose $2v+1 < 2m_i$. Note that $\operatorname{ord}_{r_i}(g(Z)) = 2v+1$. This implies that $\operatorname{ord}_{r_i}(f(w)) =$
9	$2v+1$, so $\operatorname{ord}_{r_i}(w) = -v$. Let $w = W/r_i^v$, so that $\operatorname{ord}_{r_i}(W) = 0$. Then $Z, W \in \mathbb{Z}_{r_i}$.
10	Dividing both sides of Equation (13) by $r_i^{2\nu+1}$ and reducing modulo r_i , we get
11	$d'W^2 \equiv 4pd'Z^2 \pmod{r_i}$. This implies that $\left(\frac{p}{r_i}\right) = 1$.
12	Thus, if $\left(\frac{p}{r_i}\right) = -1$, then $C_d(\mathbb{Q}_{r_i}) = \emptyset$.
13	1.4 $d = 2$. Let $(z, w) \in C_d(\mathbb{Q}_p)$. Note that $\operatorname{ord}_p(r-1) \ge 0$.
14	1.4.1 Suppose $\operatorname{ord}_p(z) \ge 0$. Note that $\operatorname{ord}_p(g(z)) \ge 0$. This implies that $\operatorname{ord}_p(f(w)) \ge 0$, so
15	$\operatorname{ord}_p(w) \ge 0$. Hence, $z, w \in \mathbb{Z}_p$. Reducing Equation (11) modulo p , we get $w^2 \equiv 2$
16	(mod p), i.e., $\left(\frac{2}{p}\right) = 1$. Thus, $p \equiv 1 \text{ or } 7 \pmod{8}$.
17	1.4.2 Suppose $\operatorname{ord}_p(z) =: -v < 0$. Note that $\operatorname{ord}_p(g(z)) = 2 - 4v$. This implies that $\operatorname{ord}_p(f(w)) =$
18	$2-4v$, so $\operatorname{ord}_p(w) = -(2v-1)$. Letting $(z,w) = (Z/p^v, W/p^{2v-1})$ and by simplifying,
19	we get
20 21	(14) $W^{2} = 2p^{4\nu-2} - 4(r-1)p^{2\nu-1}Z^{2} + 2r^{2}Z^{4},$
22	and $\operatorname{ord}_p(Z) = \operatorname{ord}_p(W) = 0$. Then $Z, W \in \mathbb{Z}_p$. Reducing Equation (14) modulo p, we get
22 23	and $\operatorname{ord}_p(Z) = \operatorname{ord}_p(W) = 0$. Then $Z, W \in \mathbb{Z}_p$. Reducing Equation (14) modulo p , we get $W^2 \equiv 2r^2Z^4 \pmod{p}$, i.e., $\left(\frac{2}{p}\right) = 1$. Thus, $p \equiv 1$ or 7 (mod 8).
22 23 24	and $\operatorname{ord}_p(Z) = \operatorname{ord}_p(W) = 0$. Then $Z, W \in \mathbb{Z}_p$. Reducing Equation (14) modulo p , we get $W^2 \equiv 2r^2Z^4 \pmod{p}$, i.e., $\left(\frac{2}{p}\right) = 1$. Thus, $p \equiv 1 \text{ or } 7 \pmod{8}$. Thus, if $p \equiv 3 \text{ or } 5 \pmod{8}$ then $C_d(\mathbb{Q}_p) = \emptyset$.
22 23 24 25	and $\operatorname{ord}_p(Z) = \operatorname{ord}_p(W) = 0$. Then $Z, W \in \mathbb{Z}_p$. Reducing Equation (14) modulo p , we get $W^2 \equiv 2r^2Z^4 \pmod{p}$, i.e., $\binom{2}{p} = 1$. Thus, $p \equiv 1$ or 7 (mod 8). Thus, if $p \equiv 3$ or 5 (mod 8) then $C_d(\mathbb{Q}_p) = \emptyset$. 1.5 $d = p$. Let $(z, w) \in C_d(\mathbb{Q}_2)$. Note that $\operatorname{ord}_2(r-1) \ge 2$ since $r \equiv 1 \pmod{4}$ by assumption.
22 23 24 25 26	and $\operatorname{ord}_p(Z) = \operatorname{ord}_p(W) = 0$. Then $Z, W \in \mathbb{Z}_p$. Reducing Equation (14) modulo p , we get $W^2 \equiv 2r^2Z^4 \pmod{p}$, i.e., $\binom{2}{p} = 1$. Thus, $p \equiv 1$ or 7 (mod 8). Thus, if $p \equiv 3$ or 5 (mod 8) then $C_d(\mathbb{Q}_p) = \emptyset$. 1.5 $d = p$. Let $(z, w) \in C_d(\mathbb{Q}_2)$. Note that $\operatorname{ord}_2(r-1) \ge 2$ since $r \equiv 1 \pmod{4}$ by assumption. 1.5.1 Suppose $\operatorname{ord}_2(z) \ge 0$. Note that $\operatorname{ord}_2(g(z)) \ge 0$. This implies that $\operatorname{ord}_2(f(w)) \ge 0$, so
22 23 24 25 26 27	and $\operatorname{ord}_p(Z) = \operatorname{ord}_p(W) = 0$. Then $Z, W \in \mathbb{Z}_p$. Reducing Equation (14) modulo p , we get $W^2 \equiv 2r^2Z^4 \pmod{p}$, i.e., $\binom{2}{p} = 1$. Thus, $p \equiv 1 \text{ or } 7 \pmod{8}$. Thus, if $p \equiv 3 \text{ or } 5 \pmod{8}$ then $C_d(\mathbb{Q}_p) = \emptyset$. 1.5 $d = p$. Let $(z, w) \in C_d(\mathbb{Q}_2)$. Note that $\operatorname{ord}_2(r-1) \ge 2$ since $r \equiv 1 \pmod{4}$ by assumption. 1.5.1 Suppose $\operatorname{ord}_2(z) \ge 0$. Note that $\operatorname{ord}_2(g(z)) \ge 0$. This implies that $\operatorname{ord}_2(f(w)) \ge 0$, so $\operatorname{ord}_2(w) \ge 0$. Hence, $z, w \in \mathbb{Z}_2$. Reducing Equation (11) modulo 4, we get $pw^2 \equiv 1$
22 23 24 25 26 27 28	and $\operatorname{ord}_p(Z) = \operatorname{ord}_p(W) = 0$. Then $Z, W \in \mathbb{Z}_p$. Reducing Equation (14) modulo p , we get $W^2 \equiv 2r^2Z^4 \pmod{p}$, i.e., $\binom{2}{p} = 1$. Thus, $p \equiv 1 \text{ or } 7 \pmod{8}$. Thus, if $p \equiv 3 \text{ or } 5 \pmod{8}$ then $C_d(\mathbb{Q}_p) = \emptyset$. 1.5 $d = p$. Let $(z, w) \in C_d(\mathbb{Q}_2)$. Note that $\operatorname{ord}_2(r-1) \ge 2$ since $r \equiv 1 \pmod{4}$ by assumption. 1.5.1 Suppose $\operatorname{ord}_2(z) \ge 0$. Note that $\operatorname{ord}_2(g(z)) \ge 0$. This implies that $\operatorname{ord}_2(f(w)) \ge 0$, so $\operatorname{ord}_2(w) \ge 0$. Hence, $z, w \in \mathbb{Z}_2$. Reducing Equation (11) modulo 4, we get $pw^2 \equiv 1 \pmod{4}$. (mod 4). Thus, $p \equiv 1 \pmod{4}$.
22 23 24 25 26 27 28 29 20	and $\operatorname{ord}_p(Z) = \operatorname{ord}_p(W) = 0$. Then $Z, W \in \mathbb{Z}_p$. Reducing Equation (14) modulo p , we get $W^2 \equiv 2r^2 Z^4 \pmod{p}$, i.e., $\binom{2}{p} = 1$. Thus, $p \equiv 1$ or 7 (mod 8). Thus, if $p \equiv 3$ or 5 (mod 8) then $C_d(\mathbb{Q}_p) = \emptyset$. 1.5 $d = p$. Let $(z, w) \in C_d(\mathbb{Q}_2)$. Note that $\operatorname{ord}_2(r-1) \ge 2$ since $r \equiv 1 \pmod{4}$ by assumption. 1.5.1 Suppose $\operatorname{ord}_2(z) \ge 0$. Note that $\operatorname{ord}_2(g(z)) \ge 0$. This implies that $\operatorname{ord}_2(f(w)) \ge 0$, so $\operatorname{ord}_2(w) \ge 0$. Hence, $z, w \in \mathbb{Z}_2$. Reducing Equation (11) modulo 4, we get $pw^2 \equiv 1$ (mod 4). Thus, $p \equiv 1 \pmod{4}$. 1.5.2 Suppose $\operatorname{ord}_2(z) =: -v < 0$. Note that $\operatorname{ord}_2(g(z)) = 2 - 4v$. This implies that $\operatorname{ord}_2(f(w)) =$
22 23 24 25 26 27 28 29 30 31	and $\operatorname{ord}_p(Z) = \operatorname{ord}_p(W) = 0$. Then $Z, W \in \mathbb{Z}_p$. Reducing Equation (14) modulo p , we get $W^2 \equiv 2r^2Z^4 \pmod{p}$, i.e., $\binom{2}{p} = 1$. Thus, $p \equiv 1$ or 7 (mod 8). Thus, if $p \equiv 3$ or 5 (mod 8) then $C_d(\mathbb{Q}_p) = \emptyset$. 1.5 $d = p$. Let $(z, w) \in C_d(\mathbb{Q}_2)$. Note that $\operatorname{ord}_2(r-1) \ge 2$ since $r \equiv 1 \pmod{4}$ by assumption. 1.5.1 Suppose $\operatorname{ord}_2(z) \ge 0$. Note that $\operatorname{ord}_2(g(z)) \ge 0$. This implies that $\operatorname{ord}_2(f(w)) \ge 0$, so $\operatorname{ord}_2(w) \ge 0$. Hence, $z, w \in \mathbb{Z}_2$. Reducing Equation (11) modulo 4, we get $pw^2 \equiv 1 \pmod{4}$. 1.5.2 Suppose $\operatorname{ord}_2(z) =: -v < 0$. Note that $\operatorname{ord}_2(g(z)) = 2 - 4v$. This implies that $\operatorname{ord}_2(f(w)) = 2 - 4v$, so $\operatorname{ord}_2(w) = -(2v-1)$. Letting $(z, w) = (Z/2^v, W/2^{2v-1})$ and by simplifying, we get
22 23 24 25 26 27 28 29 30 31 32	and $\operatorname{ord}_p(Z) = \operatorname{ord}_p(W) = 0$. Then $Z, W \in \mathbb{Z}_p$. Reducing Equation (14) modulo p , we get $W^2 \equiv 2r^2Z^4 \pmod{p}$, i.e., $\binom{2}{p} = 1$. Thus, $p \equiv 1$ or 7 (mod 8). Thus, if $p \equiv 3$ or 5 (mod 8) then $C_d(\mathbb{Q}_p) = \emptyset$. 1.5 $d = p$. Let $(z, w) \in C_d(\mathbb{Q}_2)$. Note that $\operatorname{ord}_2(r-1) \ge 2$ since $r \equiv 1 \pmod{4}$ by assumption. 1.5.1 Suppose $\operatorname{ord}_2(z) \ge 0$. Note that $\operatorname{ord}_2(g(z)) \ge 0$. This implies that $\operatorname{ord}_2(f(w)) \ge 0$, so $\operatorname{ord}_2(w) \ge 0$. Hence, $z, w \in \mathbb{Z}_2$. Reducing Equation (11) modulo 4, we get $pw^2 \equiv 1 \pmod{4}$. 1.5.2 Suppose $\operatorname{ord}_2(z) =: -v < 0$. Note that $\operatorname{ord}_2(g(z)) = 2 - 4v$. This implies that $\operatorname{ord}_2(f(w)) = 2 - 4v$, so $\operatorname{ord}_2(w) = -(2v-1)$. Letting $(z, w) = (Z/2^v, W/2^{2v-1})$ and by simplifying, we get
22 23 24 25 26 27 28 29 30 31 32 33	and $\operatorname{ord}_p(Z) = \operatorname{ord}_p(W) = 0$. Then $Z, W \in \mathbb{Z}_p$. Reducing Equation (14) modulo p , we get $W^2 \equiv 2r^2Z^4 \pmod{p}$, i.e., $\binom{2}{p} = 1$. Thus, $p \equiv 1$ or 7 (mod 8). Thus, if $p \equiv 3$ or 5 (mod 8) then $C_d(\mathbb{Q}_p) = \emptyset$. 1.5 $d = p$. Let $(z, w) \in C_d(\mathbb{Q}_2)$. Note that $\operatorname{ord}_2(r-1) \ge 2$ since $r \equiv 1 \pmod{4}$ by assumption. 1.5.1 Suppose $\operatorname{ord}_2(z) \ge 0$. Note that $\operatorname{ord}_2(g(z)) \ge 0$. This implies that $\operatorname{ord}_2(f(w)) \ge 0$, so $\operatorname{ord}_2(w) \ge 0$. Hence, $z, w \in \mathbb{Z}_2$. Reducing Equation (11) modulo 4, we get $pw^2 \equiv 1 \pmod{4}$. 1.5.2 Suppose $\operatorname{ord}_2(z) =: -v < 0$. Note that $\operatorname{ord}_2(g(z)) = 2 - 4v$. This implies that $\operatorname{ord}_2(f(w)) = 2 - 4v$, so $\operatorname{ord}_2(w) = -(2v-1)$. Letting $(z, w) = (Z/2^v, W/2^{2v-1})$ and by simplifying, we get (15) $W^2 = 2^{4v-2}p - 2^{2v}(r-1)pZ^2 + r^2pZ^4$,
22 23 24 25 26 27 28 29 30 31 32 33 33 34	and $\operatorname{ord}_p(Z) = \operatorname{ord}_p(W) = 0$. Then $Z, W \in \mathbb{Z}_p$. Reducing Equation (14) modulo p , we get $W^2 \equiv 2r^2Z^4 \pmod{p}$, i.e., $\binom{2}{p} = 1$. Thus, $p \equiv 1$ or 7 (mod 8). Thus, if $p \equiv 3$ or 5 (mod 8) then $C_d(\mathbb{Q}_p) = \emptyset$. 1.5 $d = p$. Let $(z, w) \in C_d(\mathbb{Q}_2)$. Note that $\operatorname{ord}_2(r-1) \ge 2$ since $r \equiv 1 \pmod{4}$ by assumption. 1.5.1 Suppose $\operatorname{ord}_2(z) \ge 0$. Note that $\operatorname{ord}_2(g(z)) \ge 0$. This implies that $\operatorname{ord}_2(f(w)) \ge 0$, so $\operatorname{ord}_2(w) \ge 0$. Hence, $z, w \in \mathbb{Z}_2$. Reducing Equation (11) modulo 4, we get $pw^2 \equiv 1 \pmod{4}$. 1.5.2 Suppose $\operatorname{ord}_2(z) =: -v < 0$. Note that $\operatorname{ord}_2(g(z)) = 2 - 4v$. This implies that $\operatorname{ord}_2(f(w)) = 2 - 4v$, so $\operatorname{ord}_2(w) = -(2v-1)$. Letting $(z, w) = (Z/2^v, W/2^{2v-1})$ and by simplifying, we get (15) $W^2 = 2^{4v-2}p - 2^{2v}(r-1)pZ^2 + r^2pZ^4$, and $\operatorname{ord}_2(Z) = \operatorname{ord}_2(W) = 0$. Then $Z, W \in \mathbb{Z}_2$. Reducing Equation (15) modulo 4, we get
22 23 24 25 26 27 28 29 30 31 32 33 34 35	and $\operatorname{ord}_p(Z) = \operatorname{ord}_p(W) = 0$. Then $Z, W \in \mathbb{Z}_p$. Reducing Equation (14) modulo p , we get $W^2 \equiv 2r^2Z^4 \pmod{p}$, i.e., $\binom{2}{p} = 1$. Thus, $p \equiv 1$ or 7 (mod 8). Thus, if $p \equiv 3$ or 5 (mod 8) then $C_d(\mathbb{Q}_p) = \emptyset$. 1.5 $d = p$. Let $(z, w) \in C_d(\mathbb{Q}_2)$. Note that $\operatorname{ord}_2(r-1) \ge 2$ since $r \equiv 1 \pmod{4}$ by assumption. 1.5.1 Suppose $\operatorname{ord}_2(z) \ge 0$. Note that $\operatorname{ord}_2(g(z)) \ge 0$. This implies that $\operatorname{ord}_2(f(w)) \ge 0$, so $\operatorname{ord}_2(w) \ge 0$. Hence, $z, w \in \mathbb{Z}_2$. Reducing Equation (11) modulo 4, we get $pw^2 \equiv 1$ (mod 4). Thus, $p \equiv 1 \pmod{4}$. 1.5.2 Suppose $\operatorname{ord}_2(z) = : -v < 0$. Note that $\operatorname{ord}_2(g(z)) = 2 - 4v$. This implies that $\operatorname{ord}_2(f(w)) =$ $2 - 4v$, so $\operatorname{ord}_2(w) = -(2v-1)$. Letting $(z, w) = (Z/2^v, W/2^{2v-1})$ and by simplifying, we get (15) $W^2 = 2^{4v-2}p - 2^{2v}(r-1)pZ^2 + r^2pZ^4$, and $\operatorname{ord}_2(Z) = \operatorname{ord}_2(W) = 0$. Then $Z, W \in \mathbb{Z}_2$. Reducing Equation (15) modulo 4, we get $W^2 \equiv r^2pZ^4 \pmod{4}$. Thus, $p \equiv 1 \pmod{4}$.
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	$\begin{aligned} & \text{and } \operatorname{ord}_p(Z) = \operatorname{ord}_p(W) = 0. \text{ Then } Z, W \in \mathbb{Z}_p. \text{ Reducing Equation (14) modulo } p, \text{ we get} \\ & W^2 \equiv 2r^2 Z^4 \pmod{p}, \text{ i.e., } \binom{2}{p} = 1. \text{ Thus, } p \equiv 1 \text{ or } 7 \pmod{8}. \end{aligned}$ $\begin{aligned} & \text{Thus, if } p \equiv 3 \text{ or } 5 \pmod{9}, \text{ i.e., } \binom{2}{p} = \emptyset. \end{aligned}$ $1.5 \ d = p. \ \text{Let} (z, w) \in C_d(\mathbb{Q}_2). \text{ Note that } \operatorname{ord}_2(r-1) \geq 2 \text{ since } r \equiv 1 \pmod{4} \text{ by assumption.} \end{aligned}$ $1.5.1 \ \text{Suppose } \operatorname{ord}_2(z) \geq 0. \text{ Note that } \operatorname{ord}_2(g(z)) \geq 0. \text{ This implies that } \operatorname{ord}_2(f(w)) \geq 0, \text{ so} \\ & \operatorname{ord}_2(w) \geq 0. \text{ Hence, } z, w \in \mathbb{Z}_2. \text{ Reducing Equation (11) modulo } 4, \text{ we get } pw^2 \equiv 1 \\ & (\text{mod } 4). \text{ Thus, } p \equiv 1 \pmod{4}. \end{aligned}$ $1.5.2 \ \text{Suppose } \operatorname{ord}_2(z) = : -v < 0. \text{ Note that } \operatorname{ord}_2(g(z)) = 2 - 4v. \text{ This implies that } \operatorname{ord}_2(f(w)) = \\ & 2 - 4v, \text{ so } \operatorname{ord}_2(w) = -(2v-1). \text{ Letting } (z, w) = (Z/2^v, W/2^{2v-1}) \text{ and by simplifying,} \\ & \text{ we get} \end{aligned}$ $(15) \qquad \qquad W^2 = 2^{4v-2}p - 2^{2v}(r-1)pZ^2 + r^2pZ^4, \\ & \text{ and } \operatorname{ord}_2(Z) = \operatorname{ord}_2(W) = 0. \text{ Then } Z, W \in \mathbb{Z}_2. \text{ Reducing Equation (15) modulo } 4, \text{ we get} \\ & W^2 \equiv r^2pZ^4 \pmod{4}. \text{ Thus, } p \equiv 1 \pmod{4}. \end{aligned}$ $\text{Thus, if } p \equiv 3 \pmod{4} \text{ then } C_d(\mathbb{Q}_2) = \emptyset.$
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	$\begin{aligned} & \text{and } \operatorname{ord}_p(Z) = \operatorname{ord}_p(W) = 0. \text{ Then } Z, W \in \mathbb{Z}_p. \text{ Reducing Equation (14) modulo } p, \text{ we get} \\ & W^2 \equiv 2r^2Z^4 \pmod{p}, \text{ i.e., } \binom{2}{p} = 1. \text{ Thus, } p \equiv 1 \text{ or } 7 \pmod{8}. \end{aligned}$ $\begin{aligned} & \text{Thus, if } p \equiv 3 \text{ or } 5 \pmod{8} \text{ then } C_d(\mathbb{Q}_p) = \emptyset. \end{aligned}$ $1.5 \ d = p. \ \text{Let}(z,w) \in C_d(\mathbb{Q}_2). \text{ Note that } \operatorname{ord}_2(r-1) \geq 2 \text{ since } r \equiv 1 \pmod{4} \text{ by assumption.} \end{aligned}$ $1.5.1 \ \text{Suppose } \operatorname{ord}_2(z) \geq 0. \text{ Note that } \operatorname{ord}_2(g(z)) \geq 0. \text{ This implies that } \operatorname{ord}_2(f(w)) \geq 0, \text{ so} \\ & \operatorname{ord}_2(w) \geq 0. \text{ Hence, } z, w \in \mathbb{Z}_2. \text{ Reducing Equation (11) modulo } 4, \text{ we get } pw^2 \equiv 1 \\ & (\text{mod } 4). \text{ Thus, } p \equiv 1 \pmod{4}. \end{aligned}$ $1.5.2 \ \text{Suppose } \operatorname{ord}_2(z) \equiv : -v < 0. \text{ Note that } \operatorname{ord}_2(g(z)) = 2 - 4v. \text{ This implies that } \operatorname{ord}_2(f(w)) = 2 - 4v, \text{ so } \operatorname{ord}_2(w) = -(2v-1). \text{ Letting } (z,w) = (Z/2^v, W/2^{2v-1}) \text{ and } \text{ by simplifying,} \\ & \text{we get} \end{aligned}$ $(15) \qquad \qquad W^2 = 2^{4v-2}p - 2^{2v}(r-1)pZ^2 + r^2pZ^4, \\ & \text{ and } \operatorname{ord}_2(Z) = \operatorname{ord}_2(W) = 0. \text{ Then } Z, W \in \mathbb{Z}_2. \text{ Reducing Equation (15) modulo } 4, \text{ we get} \\ & W^2 \equiv r^2pZ^4 \pmod{4}. \text{ Thus, } p \equiv 1 \pmod{4}. \\ & \text{ Thus, if } p \equiv 3 \pmod{4} \text{ then } C_d(\mathbb{Q}_2) = \emptyset. \end{aligned}$
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	and $\operatorname{ord}_p(Z) = \operatorname{ord}_p(W) = 0$. Then $Z, W \in \mathbb{Z}_p$. Reducing Equation (14) modulo p , we get $W^2 \equiv 2r^2Z^4 \pmod{p}$, i.e., $\binom{2}{p} = 1$. Thus, $p \equiv 1$ or 7 (mod 8). Thus, if $p \equiv 3$ or 5 (mod 8) then $C_d(\mathbb{Q}_p) = \emptyset$. 1.5 $d = p$. Let $(z, w) \in C_d(\mathbb{Q}_2)$. Note that $\operatorname{ord}_2(r-1) \ge 2$ since $r \equiv 1 \pmod{4}$ by assumption. 1.5.1 Suppose $\operatorname{ord}_2(z) \ge 0$. Note that $\operatorname{ord}_2(g(z)) \ge 0$. This implies that $\operatorname{ord}_2(f(w)) \ge 0$, so $\operatorname{ord}_2(w) \ge 0$. Hence, $z, w \in \mathbb{Z}_2$. Reducing Equation (11) modulo 4, we get $pw^2 \equiv 1 \pmod{4}$. 1.5.2 Suppose $\operatorname{ord}_2(z) = : -v < 0$. Note that $\operatorname{ord}_2(g(z)) = 2 - 4v$. This implies that $\operatorname{ord}_2(f(w)) = 2 - 4v$, so $\operatorname{ord}_2(w) = -(2v-1)$. Letting $(z,w) = (Z/2^v, W/2^{2v-1})$ and by simplifying, we get (15) $W^2 = 2^{4v-2}p - 2^{2v}(r-1)pZ^2 + r^2pZ^4$, and $\operatorname{ord}_2(Z) = \operatorname{ord}_2(W) = 0$. Then $Z, W \in \mathbb{Z}_2$. Reducing Equation (15) modulo 4, we get $W^2 \equiv r^2pZ^4 \pmod{4}$. Thus, $p \equiv 1 \pmod{4}$. Thus, if $p \equiv 3 \pmod{4}$. Thus, $p \equiv 1 \pmod{4}$. 1.6.1 Suppose $\operatorname{ord}_2(z) > 0$. Note that $\operatorname{ord}_2(f(w))$ is odd. On the other hand, $\operatorname{ord}_2(g(z)) = 2$,
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	and $\operatorname{ord}_p(Z) = \operatorname{ord}_p(W) = 0$. Then $Z, W \in \mathbb{Z}_p$. Reducing Equation (14) modulo p , we get $W^2 \equiv 2r^2Z^4 \pmod{p}$, i.e., $\binom{2}{p} = 1$. Thus, $p \equiv 1$ or 7 (mod 8). Thus, if $p \equiv 3$ or 5 (mod 8) then $C_d(\mathbb{Q}_p) = \emptyset$. 1.5 $d = p$. Let $(z, w) \in C_d(\mathbb{Q}_2)$. Note that $\operatorname{ord}_2(r-1) \ge 2$ since $r \equiv 1 \pmod{4}$ by assumption. 1.5.1 Suppose $\operatorname{ord}_2(z) \ge 0$. Note that $\operatorname{ord}_2(g(z)) \ge 0$. This implies that $\operatorname{ord}_2(f(w)) \ge 0$, so $\operatorname{ord}_2(w) \ge 0$. Hence, $z, w \in \mathbb{Z}_2$. Reducing Equation (11) modulo 4, we get $pw^2 \equiv 1 \pmod{4}$. 1.5.2 Suppose $\operatorname{ord}_2(z) = : -v < 0$. Note that $\operatorname{ord}_2(g(z)) = 2 - 4v$. This implies that $\operatorname{ord}_2(f(w)) = 2 - 4v$, so $\operatorname{ord}_2(w) = -(2v-1)$. Letting $(z, w) = (Z/2^v, W/2^{2v-1})$ and by simplifying, we get (15) $W^2 = 2^{4v-2}p - 2^{2v}(r-1)pZ^2 + r^2pZ^4$, and $\operatorname{ord}_2(Z) = \operatorname{ord}_2(W) = 0$. Then $Z, W \in \mathbb{Z}_2$. Reducing Equation (15) modulo 4, we get $W^2 \equiv r^2pZ^4 \pmod{4}$. Thus, $p \equiv 1 \pmod{4}$. Thus, if $p \equiv 3 \pmod{4}$ then $C_d(\mathbb{Q}_2) = \emptyset$. 1.6 $d = 2p$. Let $(z, w) \in C_d(\mathbb{Q}_2)$. 1.6.1 Suppose $\operatorname{ord}_2(z) > 0$. Note that $\operatorname{ord}_2(f(w))$ is odd. On the other hand, $\operatorname{ord}_2(g(z)) = 2$, which is even, so a contradiction. Thus, $C_d(\mathbb{Q}_2) = \emptyset$.
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	and $\operatorname{ord}_p(Z) = \operatorname{ord}_p(W) = 0$. Then $Z, W \in \mathbb{Z}_p$. Reducing Equation (14) modulo p , we get $W^2 \equiv 2r^2 Z^4 \pmod{p}$, i.e., $\binom{2}{p} = 1$. Thus, $p \equiv 1$ or 7 (mod 8). Thus, if $p \equiv 3$ or 5 (mod 8) then $C_d(\mathbb{Q}_p) = \emptyset$. 1.5 $d = p$. Let $(z, w) \in C_d(\mathbb{Q}_2)$. Note that $\operatorname{ord}_2(r-1) \ge 2$ since $r \equiv 1 \pmod{4}$ by assumption. 1.5.1 Suppose $\operatorname{ord}_2(z) \ge 0$. Note that $\operatorname{ord}_2(g(z)) \ge 0$. This implies that $\operatorname{ord}_2(f(w)) \ge 0$, so $\operatorname{ord}_2(w) \ge 0$. Hence, $z, w \in \mathbb{Z}_2$. Reducing Equation (11) modulo 4, we get $pw^2 \equiv 1 \pmod{4}$. 1.5.2 Suppose $\operatorname{ord}_2(z) = : -v < 0$. Note that $\operatorname{ord}_2(g(z)) = 2 - 4v$. This implies that $\operatorname{ord}_2(f(w)) = 2 - 4v$, so $\operatorname{ord}_2(w) = -(2v-1)$. Letting $(z, w) = (Z/2^v, W/2^{2v-1})$ and by simplifying, we get (15) $W^2 = 2^{4v-2}p - 2^{2v}(r-1)pZ^2 + r^2pZ^4$, and $\operatorname{ord}_2(Z) = \operatorname{ord}_2(W) = 0$. Then $Z, W \in \mathbb{Z}_2$. Reducing Equation (15) modulo 4, we get $W^2 \equiv r^2pZ^4 \pmod{4}$. Thus, $p \equiv 1 \pmod{4}$. Thus, if $p \equiv 3 \pmod{4}$. Thus, $p \equiv 1 \pmod{4}$. 1.6 $d = 2p$. Let $(z, w) \in C_d(\mathbb{Q}_2)$. 1.6.1 Suppose $\operatorname{ord}_2(z) > 0$. Note that $\operatorname{ord}_2(f(w))$ is odd. On the other hand, $\operatorname{ord}_2(g(z)) = 2$, which is even, so a contradiction. Thus, $C_d(\mathbb{Q}_2) = \emptyset$. 1.6.2 Suppose $\operatorname{ord}_2(z) = 0$. Note that $\operatorname{ord}_2(g(z)) \ge 2$. This implies that $\operatorname{ord}_2(f(w)) \ge 2$, so $\operatorname{crd}(w) \ge 1$. Letting $w \ge W$ and divide the divider of Evention (d1) ≥ 1 .
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	and $\operatorname{ord}_p(Z) = \operatorname{ord}_p(W) = 0$. Then $Z, W \in \mathbb{Z}_p$. Reducing Equation (14) modulo p , we get $W^2 \equiv 2r^2Z^4 \pmod{p}$, i.e., $\binom{2}{p} = 1$. Thus, $p \equiv 1$ or 7 (mod 8). Thus, if $p \equiv 3$ or 5 (mod 8) then $C_d(\mathbb{Q}_p) = \emptyset$. 1.5 $d = p$. Let $(z, w) \in C_d(\mathbb{Q}_2)$. Note that $\operatorname{ord}_2(r-1) \ge 2$ since $r \equiv 1 \pmod{4}$ by assumption. 1.5.1 Suppose $\operatorname{ord}_2(z) \ge 0$. Note that $\operatorname{ord}_2(g(z)) \ge 0$. This implies that $\operatorname{ord}_2(f(w)) \ge 0$, so $\operatorname{ord}_2(w) \ge 0$. Hence, $z, w \in \mathbb{Z}_2$. Reducing Equation (11) modulo 4, we get $pw^2 \equiv 1 \pmod{4}$. Thus, $p \equiv 1 \pmod{4}$. 1.5.2 Suppose $\operatorname{ord}_2(z) = : -v < 0$. Note that $\operatorname{ord}_2(g(z)) = 2 - 4v$. This implies that $\operatorname{ord}_2(f(w)) = 2 - 4v$, so $\operatorname{ord}_2(w) = -(2v-1)$. Letting $(z, w) = (Z/2^v, W/2^{2v-1})$ and by simplifying, we get (15) $W^2 = 2^{4v-2}p - 2^{2v}(r-1)pZ^2 + r^2pZ^4$, and $\operatorname{ord}_2(Z) = \operatorname{ord}_2(W) = 0$. Then $Z, W \in \mathbb{Z}_2$. Reducing Equation (15) modulo 4, we get $W^2 \equiv r^2pZ^4 \pmod{4}$. Thus, $p \equiv 1 \pmod{4}$. Thus, if $p \equiv 3 \pmod{4}$ then $C_d(\mathbb{Q}_2) = \emptyset$. 1.6.1 Suppose $\operatorname{ord}_2(z) > 0$. Note that $\operatorname{ord}_2(f(w))$ is odd. On the other hand, $\operatorname{ord}_2(g(z)) = 2$, which is even, so a contradiction. Thus, $C_d(\mathbb{Q}_2) = \emptyset$. 1.6.2 Suppose $\operatorname{ord}_2(z) = 0$. Note that $\operatorname{ord}_2(g(z)) \ge 2$. This implies that $\operatorname{ord}_2(f(w)) \ge 2$, so $\operatorname{ord}_2(w) \ge 1$. Letting $w = 2W$ and dividing both sides of Equation (11) by 4, we get $2W \in \mathbb{Z}^{2w} = n - 2(r - 1)nr^2 + r^2nr^4$ and $\operatorname{ord}_2(W) \ge 0$. Hance, $z, W \in \mathbb{Z}^{2w}$. Pachaging this

1	equation modulo 8, we get $2W^2 \equiv 2p \pmod{8}$. If $\operatorname{ord}_2(W) > 0$, then $p \equiv 0 \pmod{4}$, a			
2	contradiction. If $\operatorname{ord}_2(W) = 0$, then $p \equiv 1 \pmod{4}$.			
3	1.6.3 Suppose $\operatorname{ord}_2(z) =: -v < 0$. Note that $\operatorname{ord}_2(f(w))$ is odd. On the other hand, $\operatorname{ord}_2(g(z)) =$			
4	$2-4v$, which is even, so a contradiction. Thus, $C_d(\mathbb{Q}_2) = \emptyset$.			
5	Thus, if $p \equiv 3 \pmod{4}$ then $C_d(\mathbb{Q}_2) = \emptyset$.			
6 7	We have shown that if $p \equiv 3 \pmod{8}$ and $\left(\frac{p}{r_i}\right) = -1$ for all $i = 1,, n$, then $S^{(\phi)}(E_{p,\theta}/\mathbb{Q}) = \{1\}$.			
8	The group $S^{(\phi)}(E'_{p,\theta}/\mathbb{Q})$ is considered next. Note that <i>t</i> is odd by assumption, so $-(2r-1) = -q^t \equiv$			
9	$-q \pmod{(\mathbb{Q}^*)^2}$. Thus, the images of \mathscr{O} and $(0,0)$ under δ' are $1, -q \in S^{(\widehat{\phi})}(E'_{n,\theta}/\mathbb{Q})$, respectively.			
10	The other values of $d \in \mathbb{Q}(S,2)$ are considered below. For the following cases, we denote by $f(w)$ and			
11	g(z) the left-hand side and right-hand side of Equation (12), respectively.			
12	21 d r r The homogeneous areas (12) has a slabel solution (- r) (10) Thus r (
13	2.1 $a = p, -qp$. The homogeneous space (12) has a global solution $(z, w) = (1, 0)$. Thus, $p \in C(\hat{\phi})(E' - qp)$.			
14	$S^{(\psi)}(E'_{p,\theta}/\mathbb{Q})$. By closure property, since $-q, p \in S^{(\psi)}(E'_{p,\theta}/\mathbb{Q})$, we have $-qp \in S^{(\psi)}(E'_{p,\theta}/\mathbb{Q})$.			
15	2.2 $d = r_i d'$ for some d' . Let $(z, w) \in C'_d(\mathbb{Q}_{r_i})$. Note that $\operatorname{ord}_{r_i}(f(w))$ is odd. On the other hand, let			
16	$\operatorname{ord}_{r_i}(z) = v$. Then $\operatorname{ord}_{r_i}(g(z)) = 2$ or $4v$, which in any case is even, so a contradiction. Thus,			
17	$C_d(\mathbb{Q}_{r_i}) = \emptyset.$			
18	2.3 $d = 2d'$ for some d'. Let $(z, w) \in C_d(\mathbb{Q}_2)$. Note that $\operatorname{ord}_2(f(w))$ is odd. On the other hand, let			
19	$\operatorname{ord}_2(z) = v$. Then $\operatorname{ord}_2(g(z)) = 2$ or $4v$, which in any case is even, so a contradiction. Thus,			
20	$C_d(\mathbb{Q}_2) = \emptyset.$			
21	2.4 $d = q$. Let $(z, w) \in C_d(\mathbb{Q}_p)$. Note that $\operatorname{ord}_p(r-1) \ge 0$.			
22	2.4.1 Suppose $\operatorname{ord}_p(z) \ge 0$. Note that $\operatorname{ord}_p(g(z)) \ge 0$. This implies that $\operatorname{ord}_p(f(w)) \ge 0$, so			
23	$\operatorname{Old}_p(w) \geq 0$. Hence, $z, w \in \mathbb{Z}_p$. Reducing Equation (12) modulo p , we get $w \equiv q$			
24	(mod p). Thus, $\left(\frac{1}{p}\right) = 1$.			
25	2.4.2 Suppose $\operatorname{ord}_p(z) = -v < 0$. Note that $\operatorname{ord}_p(g(z)) = 2 - 4v$. This implies that $\operatorname{ord}_p(f(w)) = 2 - 4v$. This implies that $\operatorname{ord}_p(f(w)) = 2 - 4v$.			
26	$2-4v$, so $\operatorname{ord}_p(w) = -(2v-1)$. Letting $(z,w) = (Z/p^r, w/p^{-r-1})$ and by simplifying,			
27	we get			
28	(16) $W^{2} = a p^{4\nu-2} + 2(r-1) p^{2\nu-1} Z^{2} - a^{t-1} Z^{4}$			
29	$(10) \qquad \qquad$			
30	and $\operatorname{ord}_p(Z) = \operatorname{ord}_p(W) = 0$. Then $Z, W \in \mathbb{Z}_p$. Reducing Equation (16) modulo p, we get			
31	$W^2 \equiv -q^{t-1}Z^4 \pmod{p}$, i.e., $(\frac{-1}{r}) = 1$ since t is odd. Thus, $p \equiv 1 \pmod{4}$.			
32	Thus if $p = 3 \pmod{4}$ and $\binom{q}{2} = -1$ then $C'_{\cdot}(\mathbb{O}_{r}) = \emptyset$			
33	Finds, if $p = 0$ (mod 1) and $\binom{p}{p}$ if then $\binom{q}{d} \binom{q}{d}$ is then $d \in S^{(\widehat{\theta})}(E' - f \mathbb{Q})$			
34	2.5 $a = -1, qp, -p$. By closure property, if $p \equiv 5 \pmod{4}$ and $\binom{1}{p} = -1 \operatorname{then} q \notin S^{(\prime)}(\mathbb{E}_{p,\theta}/\mathbb{Q})$,			
30	and $-q, p, -qp \in S^{(\phi)}(E'_{p,\theta}/\mathbb{Q})$ implies that $-1, qp, -p \notin S^{(\phi)}(E'_{p,\theta}/\mathbb{Q})$.			
37	We have shown that if $n = 3 \pmod{4}$ and $\binom{q}{2} = -1$ then we obtain $S^{(\hat{\phi})}(F' \setminus 0) = \{1 - q, n - qn\}$			
38	Therefore if part (i) holds then			
39	Therefore, if part (1) holds, then			
40	$S^{(\phi)}(E_{r,0}/\mathbb{O}) = \{1\}$ and $S^{(\phi)}(E'_{r,0}/\mathbb{O}) = \{1 - a, n, -an\} \simeq (\mathbb{Z}/2\mathbb{Z})^2$			
41	$\sim (2p,\theta/\mathcal{L}) (1) \text{and} \circ (2p,\theta/\mathcal{L}) - (1, \theta, \theta, \theta) - (2\theta/\mathcal{L}) .$			
42	Thus, $\operatorname{rank}(E_{p,\theta}/\mathbb{Q}) \leq 0 + 2 - 2 = 0.$			

Next, we prove part (ii). We use the same set-up as above. Since t is assumed to be even and $q \equiv 3$ 1 2 3 4 5 6 7 8 9 10 11 12 (mod 4), we get $r \equiv 1 \pmod{4}$. For $S^{(\phi)}(E_{p,\theta}/\mathbb{Q})$, all of the cases of part (i) hold. Thus, if $p \equiv 3$ (mod 8) and $\left(\frac{p}{r_i}\right) = -1$ for all $i = 1, \dots, n$, then $S^{(\phi)}(E_{p,\theta}/\mathbb{Q}) = \{1\}$. The group $S^{(\hat{\phi})}(E'_{n,\theta}/\mathbb{Q})$ is considered next. Since t is even, we have $-(2r-1) = -q^t \equiv -1$ (mod $(\mathbb{Q}^*)^2$). Thus, the images of \mathscr{O} and (0,0) under δ' are $1, -1 \in S^{(\phi)}(E'_{p,\theta}/\mathbb{Q})$, respectively. Note also that cases 2.2 and 2.3 of part (i) still hold. The other values of $d \in \mathbb{Q}(S,2)$ are considered below. 2.1 d = p, -p. The homogeneous space (12) has a global solution (z, w) = (1, 0). Thus, $p \in$ $S^{(\widehat{\phi})}(E'_{p,\theta}/\mathbb{Q})$. By closure property, since $-1, p \in S^{(\widehat{\phi})}(E'_{p,\theta}/\mathbb{Q})$, we have $-p \in S^{(\widehat{\phi})}(E'_{p,\theta}/\mathbb{Q})$. 2.4 d = q, -q. Let $(z, w) \in C'_q(\mathbb{Q}_q)$. 2.4.1 Suppose $\operatorname{ord}_q(z) > 0$. Note that $\operatorname{ord}_q(f(w))$ is odd. On the other hand, $\operatorname{ord}_q(g(z)) = 2$, which is even, so a contradiction. Thus, $C'_q(\mathbb{Q}_q) = \emptyset$. 13 14 15 16 17 18 2.4.2 Suppose $\operatorname{ord}_q(z) = 0$. Note that $\operatorname{ord}_q(g(z)) \ge 1$. This implies that $\operatorname{ord}_q(f(w)) \ge 1$, so $\operatorname{ord}_q(w) \ge 0$. Hence, $z, w \in \mathbb{Z}_q$. Dividing both sides of Equation (12) by q and reducing modulo q, we get $w^2 \equiv -pz^2 \pmod{q}$. Thus, $\left(\frac{-p}{q}\right) = 1$. 2.4.3 Suppose $\operatorname{ord}_q(z) =: -v < 0$. Let $z = Z/q^v$, so that $\operatorname{ord}_q(Z) = 0$. By simplifying, we get $a^{4\nu}w^2 = a^{4\nu+1} + 2(r-1)pa^{2\nu}Z^2 - a^{t-1}p^2Z^4$ (17)19 20 21 22 23 24 25 26 27 28 We abuse notation and denote by f(w) and g(Z) the left-hand side and right-hand side of Equation (17), respectively. 2.4.3.1 Suppose 2v > t - 1. Note that $\operatorname{ord}_{q}(g(Z)) = t - 1$. This implies that $\operatorname{ord}_{q}(f(w)) = t - 1$. t-1, so $\operatorname{ord}_{a}(w) = (t-1-4v)/2$. Let $w = W/q^{(t-1-4v)/2}$, so that $\operatorname{ord}_{a}(W) = 0$. Then $Z, W \in \mathbb{Z}_q$. Dividing both sides of Equation (17) by q^{t-1} and reducing modulo q, we get $W^2 \equiv -p^2 Z^2 \pmod{q}$, i.e., $\left(\frac{-1}{q}\right) = 1$. Thus, $q \equiv 1 \pmod{4}$. 2.4.3.2 Suppose 2v < t - 1. Note that $\operatorname{ord}_q(g(Z)) = 2v$. This implies that $\operatorname{ord}_q(f(w)) = 2v$, so $\operatorname{ord}_q(w) = -v$. Let $w = W/q^v$, so that $\operatorname{ord}_q(W) = 0$. Then $Z, W \in \mathbb{Z}_q$. Dividing both sides of Equation (17) by $q^{2\nu}$ and reducing modulo q, we get $W^2 \equiv -pZ^2$ (mod q). Thus, $\left(\frac{-p}{q}\right) = 1$. 29 30 Thus, if $\left(\frac{-p}{q}\right) = -1$ and $q \equiv 3 \pmod{4}$ then $C'_q(\mathbb{Q}_q) = \emptyset$. By closure property, $-q \notin S^{(\widehat{\phi})}(E'_{p,\theta}/\mathbb{Q})$ whenever $\left(\frac{-p}{q}\right) = -1$ and $q \equiv 3 \pmod{4}$. 31 32 2.5 d = qp, -qp. By closure property, since $p, -p \in S^{(\widehat{\phi})}(E'_{p,\theta}/\mathbb{Q})$ and $q, -q \notin S^{(\widehat{\phi})}(E'_{p,\theta}/\mathbb{Q})$ 33 34 whenever $\left(\frac{-p}{q}\right) = -1$ and $p \equiv 3 \pmod{4}$ then $pq, -pq \notin S^{(\widehat{\phi})}(E'_{p,\theta}/\mathbb{Q})$ whenever $\left(\frac{-p}{q}\right) = -1$ and $p \equiv 3 \pmod{4}$. 35 We have shown that if $\left(\frac{-p}{q}\right) = -1$ and $q \equiv 3 \pmod{4}$ then $S^{(\hat{\phi})}(E'_{p,\theta}/\mathbb{Q}) = \{1, -1, p, -p\}$. Therefore, 36 if part (ii) holds then 37 38 $S^{(\phi)}(E_{p,\theta}/\mathbb{Q}) = \{1\}$ and $S^{(\widehat{\phi})}(E'_{p,\theta}/\mathbb{Q}) = \{1, -1, p, -p\} \cong (\mathbb{Z}/2\mathbb{Z})^2.$ 39 Thus, $rank(E_{p,\theta}(\mathbb{Q})) \le 0 + 2 - 2 = 0.$ 40 Lastly, we prove part (iii). We use the same set-up as above. For the group $S^{(\phi)}(E_{p,\theta}/\mathbb{Q})$, cases 1.1 41 and 1.2 of part (i) still hold, and $1 \in S^{(\phi)}(E_{p,\theta}/\mathbb{Q})$. We investigate the remaining cases.

1 2	1.3 $d = pd'$ for some d' . Let $(z, w) \in C_d(\mathbb{Q}_p)$. Note that $\operatorname{ord}_p(r-1) \ge 0$. 1.3.1 Suppose $\operatorname{ord}_p(z) > 0$. Note that $\operatorname{ord}_p(f(w))$ is odd. On the other hand, $\operatorname{ord}_p(g(z)) = 2$,
3	which is even, so a contradiction. Thus, $C_d(\mathbb{Q}_p) = \emptyset$.
4	1.3.2 Suppose $\operatorname{ord}_p(z) = 0$. Note that $\operatorname{ord}_p(g(z)) \ge 2$. This implies that $\operatorname{ord}_p(f(w)) \ge 2$, so
5	$\operatorname{ord}_{p}(w) \geq 1$. Letting $w = pW$, we get $pd'W^{2} = d'^{2} - 4(r-1)d'z^{2} + 4r^{2}z^{4}$ and $\operatorname{ord}_{p}(W) \geq 1$.
6	0. Then $z, W \in \mathbb{Z}_p$. Reducing this equation modulo p, we get $d'^2 - 4(r-1)d'z^2 + 4r^2z^4 \equiv 0$
7	(mod p). Multiplying both sides by r^2 and adding both sides by $-d'^2(2r-1)$, we get
8	$(2r^2z^2 - (r-1)d')^2 \equiv -d'^2(2r-1) \pmod{p}$. This implies that $(\frac{-(2r-1)}{2}) = (\frac{-q}{2}) = 1$.
9	1.3.3 Suppose $\operatorname{ord}_{\mathbf{n}}(z) =: -v < 0$. Note that $\operatorname{ord}_{\mathbf{n}}(f(w))$ is odd. On the other hand, $\operatorname{ord}_{\mathbf{n}}(g(z)) =$
10	$2-4v$, which is even, so a contradiction. Thus, $C_d(\mathbb{Q}_n) = \emptyset$.
11	Thus, if $\left(\frac{-q}{2}\right) = -1$ then $C_d(\mathbb{Q}_p) = \emptyset$.
12	$1 \neq d = r_i d'$ for some d' Here, r_i could be any prime factor of r but we exclude exactly one r_i that
13	is congruent to 3 modulo 4 and we treat this case in item 1.5. The existence of such prime
14	factor is valid since $r \equiv 3 \pmod{4}$ by assumption. In this case, if $(\underline{p}) = -1$, then $C_d(\mathbb{Q}_r) = \emptyset$.
15	The proof is identical to case 1.3 of part (i).
16	1.5 $d = r_i$ where $r_i \equiv 3 \pmod{4}$ is the prime factor of r excluded in case 1.4. Let $(z, w) \in C_d(\mathbb{O}_2)$.
17	Note that $\operatorname{ord}_2(r-1) = 1$ since $r \equiv 3 \pmod{4}$ by assumption.
18	1.5.1 Suppose $\operatorname{ord}_2(z) > 0$. Note that $\operatorname{ord}_2(g(z)) = 0$. This implies that $\operatorname{ord}_2(f(w)) = 0$, so
19	$\operatorname{ord}_2(w) = 0$. Hence, $z, w \in \mathbb{Z}_2$. Reducing Equation (11) modulo 4, we get $r_i w^2 \equiv 1$
20	(mod 4), a contradiction since $r_i \equiv 3 \pmod{4}$. Thus, $C_d(\mathbb{Q}_2) = \emptyset$.
21	1.5.2 Suppose $\operatorname{ord}_2(z) =: -v < 0$. Note that $\operatorname{ord}_2(g(z)) = 2 - 4v$. This implies that $\operatorname{ord}_2(f(w)) =$
22	$2-4v$, so ord ₂ (w) = -(2v-1). Letting $(z,w) = (Z/2^{\nu}, W/2^{2\nu-1})$ and simplifying, we
23	get
24	
25	(18) $r_{i}W^{2} = 2^{4\nu-2}r_{i}^{2} - 2^{2\nu}(r-1)nr_{i}Z^{2} + r^{2}n^{2}Z^{4}$
26	(10) (11)
27	
28	and $\operatorname{ord}_2(Z) = \operatorname{ord}_2(W) = 0$. Then $Z, W \in \mathbb{Z}_2$. Reducing Equation (18) modulo 4, we get
29	$r_i W^2 \equiv 1 \pmod{4}$, a contradiction since $r_i \equiv 3 \pmod{4}$. Thus, $C_d(\mathbb{Q}_2) = \emptyset$.
30	In any case, $C_d(\mathbb{Q}_2) = \emptyset$.
31	1.6 $a = 2$. Let $(z, w) \in C_d(\mathbb{Q}_2)$. Note that $\operatorname{ord}_2(r-1) = 1$.
32	1.6.1 Suppose $\operatorname{ord}_2(z) > 0$. Note that $\operatorname{ord}_2(f(w))$ is odd. On the other hand, $\operatorname{ord}_2(g(z)) = 2$, which is even as a contradiction. Thus $C_1(0) = 0$.
33	which is even, so a contradiction. Thus, $C_d(\mathbb{Q}_2) = \emptyset$.
34	1.0.2 Suppose $\operatorname{Old}_2(z) = 0$. Note that $\operatorname{Old}_2(g(z)) \ge 2$. This implies that $\operatorname{Old}_2(f(w)) \ge 2$, so $\operatorname{ord}_2(w) > 1$. Letting $w = 2W$ and simplifying we get $2W^2 = 1 - 2(w - 1)w^2 + w^2w^2 + 1$
20	$\operatorname{Old}_2(W) \ge 1$. Letting $W = 2W$ and simplifying, we get $2W = 1 - 2(I-1)p_{\mathcal{L}} + I p_{\mathcal{L}}$ and $\operatorname{ord}_2(W) \ge 0$. Hence, $z \in W \subseteq \mathbb{Z}_2$. Assuming $r = 3 \pmod{4}$ and reducing this equation
30	and $\operatorname{Old}_2(W) \ge 0$. Hence, $z, W \in \mathbb{Z}_2$. Assuming $T \equiv 5 \pmod{4}$ and reducing this equation modulo 8, we get $2W^2 \equiv 6 \pmod{8}$ so a contradiction. Thus, $C_2(\mathbb{O}_2) = 0$
38	1.6.3 Suppose $\operatorname{ord}_2(z) = -v < 0$. Note that $\operatorname{ord}_2(f(w))$ is odd. On the other hand, $\operatorname{ord}_2(g(z)) = -v < 0$.
39	$2 - 4v$ which is even so a contradiction. Thus $C_1(\Omega_2) - 0$
40	In any case $C_1(\mathbb{O}_2) = \emptyset$
41	$17 d = 2r$; where $r = 3 \pmod{4}$ is the prime factor of r excluded in case 1.4. Let $(z, w) \in C_2(\mathbb{O})$
42	Note that $\operatorname{ord}_{n}(r-1) \geq 0$
	p(r - r) = 0

1.7.1 Suppose $\operatorname{ord}_p(z) \ge 0$. Note that $\operatorname{ord}_p(g(z)) \ge 0$. This implies that $\operatorname{ord}_p(f(w)) \ge 0$, so $\begin{array}{c}
1\\
2\\
3\\
4\\
5\\
6\\
7\\
8\\
9\\
10\\
11\\
12
\end{array}$ $\operatorname{ord}_p(w) \ge 0$. Hence, $z, w \in \mathbb{Z}_p$. Reducing Equation (11) modulo p, we get $2r_i w^2 \equiv 1$ (mod p). Thus, $\left(\frac{2r_i}{p}\right) = 1$. 1.7.2 Suppose $\operatorname{ord}_p(z) = : -v < 0$. Note that $\operatorname{ord}_p(g(z)) = 2 - 4v$. This implies that $\operatorname{ord}_p(f(w)) =$ 2-4v, so $\operatorname{ord}_p(w) = -(2v-1)$. Letting $(z,w) = (Z/p^v, W/p^{2v-1})$ and simplifying, we get $2r_iW^2 = p^{4\nu-2}r_i^2 - 2(r-1)p^{2\nu-1}r_iz^2 + r^2z^4,$ (19)and $\operatorname{ord}_p(Z) = \operatorname{ord}_p(W) = 0$. Then $Z, W \in \mathbb{Z}_p$. Reducing Equation (19) modulo p, we get $2r_iW^2 \equiv r^2Z^4 \pmod{p}$. Thus, $\binom{2r_i}{p} = 1$. Thus, if $\left(\frac{2r_i}{p}\right) = -1$ then $C_d(\mathbb{Q}_p) = \emptyset$. We have shown that if $\binom{p}{r_i} = -1$ for all r_i except one with $r_i \equiv 3 \pmod{4}$, $\binom{-q}{p} = -1$ and $\binom{2r_i}{p} = -1$, 13 where r_i is the one excluded above, then $S^{(\phi)}(E_{p,\theta}/\mathbb{Q}) = \{1\}$. The condition that $\left(\frac{2r_i}{p}\right) = -1$ is 14 15 equivalent to $p \equiv 1$ or 7 (mod 8) and $\binom{r_i}{p} = -1$, or $p \equiv 3$ or 5 (mod 8) and $\binom{r_i}{p} = 1$. 16 Next, we consider $S^{(\phi)}(E'_{p,\theta}/\mathbb{Q})$. Note that the cases 2.1, 2.2 and 2.3 of part (i) still hold and 17 $1, -q \in S^{(\hat{\phi})}(E'_{n,\theta}/\mathbb{Q})$. We consider the remaining cases. 18 19 2.4 d = q. Let $(z, w) \in C'_d(\mathbb{Q}_{r_i})$ where $r_i \equiv 3 \pmod{4}$ is the prime factor of r excluded in case 1.4. 20 2.4.1 Suppose $\operatorname{ord}_{r_i}(z) \ge 0$. Note that $\operatorname{ord}_{r_i}(g(z)) \ge 0$. This implies that $\operatorname{ord}_{r_i}(f(w)) \ge 0$, so 21 $\operatorname{ord}_{r_i}(w) \ge 0$. Hence, $z, w \in \mathbb{Z}_{r_i}$. Note that t = 1 by assumption, so 2r - 1 = q. Dividing both sides of Equation (12) by q and reducing modulo r_i , we get $w^2 \equiv -1 - 2pz^2 - p^2 z^4$ (mod r_i), that is, $w^2 \equiv -(pz^2 + 1)^2 \pmod{r_i}$. If $\operatorname{ord}_{r_i}(pz^2 + 1) = 0$, then $\left(\frac{-1}{r_i}\right) = 1$, a 22 23 24 25 26 27 contradiction since $r_i \equiv 3 \pmod{4}$. Thus, $pz^2 + 1 \equiv 0 \pmod{r_i}$, that is, $\left(\frac{-p}{r_i}\right) = 1$. Since $\left(\frac{-1}{r_i}\right) = -1$, we obtain $\left(\frac{p}{r_i}\right) = -1$. 2.4.2 Suppose $\operatorname{ord}_{r_i}(z) =: -v < 0$. Note that $\operatorname{ord}_{r_i}(g(z)) = -4v$. This implies that $\operatorname{ord}_{r_i}(f(w)) = -4v$, so $\operatorname{ord}_{r_i}(w) = -2v$. Letting $(z, w) = (Z/r_i^v, W/r_i^{2v})$ and simplifying, we get 28 29 $W^2 = r_i^{4\nu} a + 2(r-1)pr_i^{2\nu}Z^2 - p^2Z^4$. (20)30 and $\operatorname{ord}_{r_i}(Z) = \operatorname{ord}_{r_i}(W) = 0$. Then $Z, W \in \mathbb{Z}_{r_i}$. Reducing Equation (20) modulo r_i , we 31 get $W^2 \equiv -p^2 Z^4 \pmod{r_i}$, that is, $\left(\frac{-1}{r_i}\right) = 1$, a contradiction since $r_i \equiv 3 \pmod{4}$. Thus, 32 $C'_d(\mathbb{Q}_{r_i}) = \emptyset.$ 33 Thus, if $\left(\frac{p}{r_i}\right) = 1$ then $C'_d(\mathbb{Q}_{r_i}) = \emptyset$. 34 2.5 d = -1, qp, -p. By closure property, if $\left(\frac{p}{r_i}\right) = 1$ then $q \notin S^{(\widehat{\phi})}(E'_{p,\theta}/\mathbb{Q})$, and $-q, p, -qp \in \mathbb{Q}$. 35 36 $S^{(\hat{\phi})}(E'_{p,\theta}/\mathbb{Q})$ implies that $-1, qp, -p \notin S^{(\hat{\phi})}(E'_{p,\theta}/\mathbb{Q})$. 37 We have shown that if $\binom{p}{r_i} = 1$, for exactly one $r_i \equiv 3 \pmod{4}$, then $S^{(\hat{\phi})}(E'_{p,\theta}/\mathbb{Q}) = \{1, -q, p, -qp\}$. 38 Therefore, if part (iii) holds then 39 40 $S^{(\phi)}(E_{p,\theta}/\mathbb{Q}) = \{1\}$ and $S^{(\widehat{\phi})}(E'_{p,\theta}/\mathbb{Q}) = \{1, -q, p, -qp\} \cong (\mathbb{Z}/2\mathbb{Z})^2.$ 41 42 Thus, $\operatorname{rank}(E_{p,\theta}(\mathbb{Q})) \le 0 + 2 - 2 = 0$.

15

1	Acknowled	gements. The authors would like to thank the following for the support given in the conduct				
2	of the study: the University of the Philippines Baguio; the Office of the Chancellor of the University of					
3	the Philippines Diliman, through the Office of the Vice Chancellor for Research and Development; and					
4	the Department of Science and Technology-Accelerated Science and Technology Human Resource					
5	Development Program.					
6						
7		References				
8	[1]	M Fujiwara θ -congruent numbers in: Number Theory (Eger 1996) edited by K Gyory et al. de Gruyter				
9	[*]	Berlin, (1998), 235–241.				
10	[2]	T. Goto, A study on the Selmer groups of the elliptic curves with a rational 2-torsion, PhD thesis, Kyushu				
11		Univ., 2002.				
12	[3]	K. Heegner, Diophantische analysis und modulfunktionen, Math. Z., 56 (1952), 227–253.				
13	[4]	1. Hibino and M. Kan, θ-congruent numbers and Heegner points, Arch. Math., 77 (2001), 505–508. M Kan θ-congruent numbers and elliptic curves. Acta Arith. 94 no. 2 (2000), 153–160.				
14	[6]	P. Monsky, <i>Mock Heegner points and congruent numbers</i> , Math. Z., 204 no. 1, (1990), 45–67.				
15	[7]	J. H. Silverman, The Arithmetic of Elliptic Curves, vol. 106, Springer, 2009.				
16	[8]	J. B. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math., 72 (1983),				
17	[0]	323–334.				
18	[9]	S. Toshida, Some variants of the congruent number problem II, Kyushu J. Math., 55 (2001), 387–404.				
19	[10]	5. Toshida, Some varianas of the congraent number problem 11, Rydsha 3. Madii, 50 (2002), 117-105.				
20	Institut	e of Mathematics, University of the Philippines Diliman, 1101 Quezon City, Philippines				
21	Email add	ress: vmaricheta@math.upd.edu.ph				
22	DEPARTM	ENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF THE PHILIPPINES BAGUIO, 2600				
23	BAGUIO CIT	y, Philippines				
24	Email add	ress: jbbacani@up.edu.ph				
25	Departm	ENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF THE PHILIPPINES BAGUIO, 2600				
26	BAGUIO CIT	y, Philippines				
27	Email add	ress: rsminal@up.edu.ph				
28						
29						
3U 21						
30 20						
33						
34						
35						
36						
 37						
38						
39						
40						
41						
42						