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CRITERIA FOR DETERMINING NON-θ -CONGRUENT NUMBERS

VICTOR MANUEL ARICHETA, JERICO BACANI, AND RENZ JIMWEL MINA

ABSTRACT. This paper deals with the θ -congruent number problem and θ -congruent number elliptic
curves, generalizations of the classical congruent number problem and congruent number elliptic curves.
In particular, we identify sufficient conditions for a non-special angle θ and a prime p so that the
corresponding θ -congruent number elliptic curve Ep,θ has rank zero. Consequently, we show that for
infinitely many angles θ , there are infinitely many primes which are not θ -congruent.

1. Introduction

The congruent number problem is considered as one of the oldest problems in number theory. It
asks which positive integers represent the area of a right triangle with rational sides. This problem
remains open. Some notable progress towards its resolution include the works of Tunnell [8], Heegner
[3], and Monsky [6]. A generalization of this problem was proposed by Fujiwara [1] and is called
the θ -congruent number problem. For θ ∈ (0,π) such that cosθ = s

r , where s,r ∈ Z, r > |s| and
gcd(s,r) = 1, the θ -congruent number problem asks which positive integers n satisfy the condition that
n
√

r2− s2 is the area of a triangle having an angle θ and rational sides. Positive integers satisfying this
condition are called θ -congruent. A positive integer that is not θ -congruent is called non-θ -congruent.
The case when θ = π/2 is the classical congruent number problem.

Similar to the case of the classical congruent number problem, determining whether a positive
integer is θ -congruent or not can be achieved by computing the (Mordell-Weil) rank of a certain elliptic
curve. The θ -congruent number elliptic curve, or simply θ -CN elliptic curve, is the elliptic curve

En,θ : y2 = x3 +2snx2− (r2− s2)n2x.

Fujiwara [1] showed that a positive integer n 6= 1,2,3,6 is θ -congruent if and only if En,θ has positive
rank. Thus, n 6= 1,2,3,6 is non-θ -congruent if and only if En,θ has rank zero.

Most of the results on the θ -congruent number problem involve the special angles θ = π/3 and
2π/3. These include the works of Fujiwara [1], Kan [5], Hibino and Kan [4], Yoshida [9, 10], and
Goto [2]. The goal of this paper is to explore the case when θ is not a special angle, that is, when
θ is not a rational multiple of π , with the added condition that cosθ is also rational. This implies
(s,r) 6= (±1,2). In particular, we prove the following theorems, which give sufficient conditions for a
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non-special angle θ and a prime p so that p is not θ -congruent. The Legendre symbol is denoted by(·
·
)
.

Theorem 1.1. Let θ ∈ (0,π) be such that cosθ = 2k−1
2k , where k is an odd number and 4k−1 = qt for

some prime q and positive integer t. Let p - 2kq be prime. If any one of the following holds,
i. p≡ 3 (mod 4),

(p
q

)
= 1, and

( p
k′
)
=−1 for all prime factors k′ of k,

ii. t = 1, k ≡ 3 (mod 4), and p satisfies both
a. p≡ 3,5,or 7 (mod 8), and

(p
q

)
=−1,

b.
( p

k′
)
=−1 for all prime factors k′ of k except for exactly one k′ ≡ 3 (mod 4),

iii. t = 1, k ≡ 1 (mod 4), k has a prime factor k′ ≡ 3 (mod 4), and p satisfies both
a. p≡ 1,3,or 7 (mod 8), and

(p
q

)
=−1,

b.
( p

k′
)
=−1 for all prime factors k′ of k except for exactly one k′ ≡ 3 (mod 4),

then Ep,θ has rank zero and p is not θ -congruent.

Theorem 1.2. Let θ ∈ (0,π) be such that cosθ = r−1
r , where r is an odd number and 2r−1 = qt for

some prime q and positive integer t. Let p - 2rq be prime. If any one of the following holds,
i. t is odd, r ≡ 1 (mod 4), and p satisfies the following,

a. p≡ 3 (mod8) and
(q

p

)
=−1,

b.
(p

r′
)
=−1 for all prime factors r′ of r,

ii. t is even, q≡ 3 (mod 4), and p satisfies the following,
a. p≡ 3 (mod 8) and

(q
p

)
=−1,

b.
(p

r′
)
=−1 for all prime factors r′ of r,

iii. t = 1, r ≡ 3 (mod 4), and p satisfies the following,
a. p≡ 5 or 7 (mod 8) and

(−q
p

)
=−1,

b.
(p

r′
)
=−1 for all prime factors r′ of r except for exactly one r′ ≡ 3 (mod 4),

then Ep,θ has rank zero and p is not θ -congruent.

To prove Theorems 1.1 and 1.2, we use the method of descent via 2-isogeny. (See Section 2 for
more details.) In particular, we show that the conditions given in Theorems 1.1 and 1.2 guarantee that
the θ -CN elliptic curve Ep,θ has Selmer rank zero. The Selmer rank — which can be determined from
an analysis of the solvability of certain homogenous spaces — gives an upper bound for the rank of an
elliptic curve, so the rank of the θ -CN elliptic curve Ep,θ is also zero. By Fujiwara’s result, the prime
p is not θ -congruent.

Example 1.3. As an illustration, suppose cosθ = 5
6 , corresponding to the non-special angle θ ≈

33.557◦. Then k = 3, and 4k−1 = 11 is prime. By Theorem 1.1 parts (i) and (ii), a prime p 6= 2,3,11
is not θ -congruent if one of the following holds:

a. p≡ 3 (mod 4),
( p

11

)
= 1, and

(p
3

)
=−1,

b. p≡ 3,5,or 7 (mod 8),
( p

11

)
=−1, and

(p
3

)
= 1.

These conditions are equivalent to the following conditions, respectively:
a. p≡ 11 (mod 12) and p≡ 1,3,4,5,or 9 (mod 11),
b. p≡ 7,13,or 19 (mod 24) and p≡ 2,6,7,8,or 10 (mod 11).
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Note that these are sufficient conditions for a prime p to be non-θ -congruent, but they are not necessary.
For example, the prime 17 is not θ -congruent since the rank of the corresponding θ -CN elliptic curve
is zero.

Remark 1.4. To apply the method of descent via 2-isogeny, we need a list of the prime divisors of
the discriminant 43r2n6(r2− s2) of En,θ . We will assume in this paper that n is a prime number and
r2− s2 = (r+ s)(r− s) is an odd prime power to simplify this step. If s > 0, then r− s = 1, and if
s < 0, then r+ s = 1. In both cases, we get that r2− s2 = 2r−1 = qt for some prime q and positive
integer t. Additionally, we assume that r is an odd number or twice an odd number but not having n
and q as its primes factors.

Let q = 8m+3 be a prime number. Note that there are infinitely many such primes. For each such
prime, consider the odd number k = (q+ 1)/4 = 2m+ 1 and the corresponding non-special angle
θ = cos−1 2k−1

2k . Then any prime p that satisfies the conditions in Theorem 1.1 part (i) — for which
there are infinitely many — is not θ -congruent. This yields the following corollary.

Corollary 1.5. For infinitely many θ ∈ (0,π), there are infinitely many primes that are not θ -congruent.

2. Preliminaries

We discuss briefly the method of descent via 2-isogeny. We refer the reader to Chapter X of [7] for
more details about this method.

An isogeny from one elliptic curve to another is a homomorphism that is given by rational functions.
If such a mapping exists, then we say that the two elliptic curves are isogenous. Note that there
is an isogeny of degree two attached to the elliptic curve En,θ and it is given by φ : En,θ → E ′n,θ ,
(x,y) 7→ (y2/x2,−y((r2− s2)n2 + x2)/x2), where E ′n,θ : y2 = x3−4snx2 +4r2n2x. Also, there exists a
map φ̂ : E ′n,θ → En,θ called the dual isogeny to φ given by (x,y) 7→ (y2/4x2,y(4r2n2− x2)/8x2). Let

S := {primes p such that p | ∆En,θ = 43r2n6(r2− s2)}∪{∞}

and
Q(S,2) := {d ∈Q∗/(Q∗)2 : ordp(d)≡ 0 (mod2) for all primes p 6∈ S},

where ordp is the p-adic valuation on Q. For each d ∈Q(S,2), define the homogeneous spaces

Cd/Q : dw2 = d2−4sndz2 +4r2n2z4

and
C′d/Q : dw2 = d2 +8sndz2−16(r2− s2)n2z4.

For simplicity, we may replace z by z/2 in the second homogeneous space to obtain

C′d/Q : dw2 = d2 +2sndz2− (r2− s2)n2z4.

The φ -Selmer group and φ̂ -Selmer group are defined as

S(φ)(En,θ/Q) := {d ∈Q(S,2) : Cd(Qp) 6= /0 ∀ p ∈ S},

S(φ̂)(E ′n,θ/Q) := {d ∈Q(S,2) : C′d(Qp) 6= /0 ∀ p ∈ S},
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respectively. Define the map δ : E ′(Q)−→Q∗/(Q∗)2 by

δ (O) = 1 (mod(Q∗)2),

δ (0,0) = 4r2n2 ≡ 1 (mod(Q∗)2),

δ (x,y) = x (mod(Q∗)2), (x,y) 6= (0,0),O,

where O is the point at infinity. Similarly, define δ ′ : E(Q)−→Q∗/(Q∗)2 by

δ
′(O) = 1 (mod(Q∗)2),

δ
′(0,0) =−(r2− s2) (mod(Q∗)2),

δ
′(x,y) = x (mod(Q∗)2), (x,y) 6= (0,0),O.

The images of the maps δ and δ ′ are values d ∈Q(S,2) that are elements of the corresponding Selmer
groups. An upper bound for the rank of En,θ is given by

rank(En,θ (Q))≤ dimF2 S(φ)(En,θ/Q)+dimF2 S(φ̂)(E ′n,θ/Q)−2.

This bound is also called the Selmer rank. Thus, we only need to determine when the Selmer rank
becomes zero.

3. Proof of main results

We have the following proofs of the two theorems.

Proof of Theorem 1.1. First, consider part (i). The θ -CN elliptic curve is given by

Ep,θ : y2 = x3 +2(2k−1)px2− (4k−1)p2x.

Write k = km1
1 km2

2 · · ·kmn
n , where ki’s are distinct odd primes and mi’s are positive integers. We obtain

the sets S = {∞,2,k1,k2, . . . ,kn,q, p} and

Q(S,2) =


±1,±2,±p,±q,±2p,±2q,±pq,±2pq,±ki1 · · ·ki j ,

±2ki1 · · ·ki j ,±pki1 · · ·ki j ,±qki1 · · ·ki j ,±2pki1 · · ·ki j ,

±2qki1 · · ·ki j ,±pqki1 · · ·ki j ,±2pqki1 · · ·ki j ,

where i j, j ∈ {1,2, . . . ,n} and i j 6= i j′ for j 6= j′

 .

Note that Q(S,2) contains 2n+4 distinct elements. The curve is 2-isogenous to E ′p,θ given by

E ′p,θ : y2 = x3−4(2k−1)px2 +16k2 p2x,

and for d ∈Q(S,2), the corresponding homogeneous spaces are given by

(1) Cd : dw2 = d2−4(2k−1)pdz2 +16k2 p2z4

and

(2) C′d : dw2 = d2 +2(2k−1)pdz2− (4k−1)p2z4.

Note that the image of (0,0) and O under δ is 1 ∈ S(φ)(Ep,θ/Q). The other values of d ∈ Q(S,2)
are considered below. For the following cases, we denote by f (w) and g(z) the left-hand side and
right-hand side of Equation (1), respectively.
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1.1 d < 0. Note that Cd(R) = /0 since f (w)≤ 0, while g(z)> 0.
1.2 d = 2d′ for some d′. Let (z,w) ∈Cd(Q2). Note that ord2( f (w)) is odd. On the other hand, let

ord2(z)= v. Then ord2(d2)= 2, ord2(−4(2k−1)pdz2)= 3+2v, and ord2(16k2 p2z4)= 4+4v,
all of which are distinct. Hence, ord2(g(z)) = min{2,3+2v,4+4v}= 2 or 4+4v, which in
any case is even, so a contradiction. Thus, Cd(Q2) = /0.

1.3 d = qd′ for some d′. Let (z,w) ∈Cd(Qq). Note that ordq( f (w)) is odd. On the other hand, let
ordq(z) = v. Then ordq(g(z)) = 2 or 4v, which in any case is even, so a contradiction. Thus,
Cd(Qq) = /0.

1.4 d = kid′ for some d′. Let (z,w) ∈Cd(Qki).
1.4.1 Suppose ordki(z)> 0. Note that ordki( f (w)) is odd. On the other hand, ordki(g(z)) = 2,

which is even, so a contradiction. Thus, Cd(Qki) = /0.
1.4.2 Suppose ordki(z) = 0. Note that ordki(g(z)) ≥ 1. This implies that ordki( f (w)) ≥ 1, so

ordki(w)≥ 0. Hence, z,w ∈ Zki . Dividing both sides of Equation (1) by ki and reducing
modulo ki, we get d′w2 ≡ 4pd′z2 (mod ki). This implies that

( p
ki

)
= 1.

1.4.3 Suppose ordki(z) =:−v < 0. Let z = Z/kv
i , so that ordki(Z) = 0. By simplifying, we get

(3) k4v+1
i d′w2 = k4v+2

i d′2−4(2k−1)pk2v+1
i d′Z2 +16k2 p2Z4.

We abuse notation and denote by f (w) and g(Z) the left-hand side and right-hand side of
Equation (3), respectively.

1.4.3.1 Suppose 2v+1> 2mi. Note that ordki( f (w)) is odd. On the other hand, ordki(g(Z))=
2mi, which is even, so a contradiction. Thus, Cd(Qki) = /0.

1.4.3.2 Suppose 2v+1< 2mi. Note that ordki(g(Z))= 2v+1. This implies that ordki( f (w))=
2v+1, so ordki(w) = −v. Let w = W/kv

i , so that ordki(W ) = 0. Then Z,W ∈ Zki .
Dividing both sides of Equation (3) by k2v+1

i and reducing modulo ki, we get
d′W 2 ≡ 4pd′Z2 (mod ki). This implies that

( p
ki

)
= 1.

Thus, if
( p

ki

)
=−1 then Cd(Qki) = /0.

1.5 d = p. Let (z,w) ∈Cd(Q2).
1.5.1 Suppose ord2(z) ≥ 0. Note that ord2(g(z)) = 0. This implies that ord2( f (w)) = 0, so

ord2(w) = 0. Hence, z,w ∈ Z2. Reducing Equation (1) modulo 4, we get pw2 ≡ 1
(mod 4). Thus, p≡ 1 (mod 4).

1.5.2 Suppose ord2(z) =:−v < 0. Let z = Z/2v, so that ord2(Z) = 0. By simplifying, we get

(4) 24v−4w2 = 24v−4 p−22v−2(2k−1)pZ2 + k2 pZ4.

We abuse notation and denote by f (w) and g(Z) the left-hand side and right-hand side of
Equation (4), respectively.

1.5.2.1 Suppose v = 1. Note that ord2(g(Z)) ≥ 0. Then ord2( f (w)) ≥ 0, so ord2(w) ≥ 0.
Hence, Z,w ∈ Z2. Reducing Equation (4) modulo 4, we get w2 ≡ p (mod 4). Thus,
p≡ 1 (mod 4).

1.5.2.2 Suppose v > 1. Note that ord2(g(Z)) = 0. This implies ord2( f (w)) = 0, so
ord2(w) = −(2v− 2). Let w = W/22v−2, so that ord2(W ) = 0. Then Z,W ∈ Z2.
Reducing Equation (4) modulo 4, we get W 2 ≡ p (mod 4). Thus, p≡ 1 (mod 4).

Thus, if p≡ 3 (mod 4) then Cd(Q2) = /0.
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We have shown that if
( p

ki

)
=−1 for all i = 1, . . . ,n, and p≡ 3 (mod 4), then S(φ)(Ep,θ/Q) = {1}.

The group S(φ̂)(E ′p,θ/Q) is considered next. Note that 2r−1 = 4k−1 = qt implies q≡ 3 (mod 4)
and t is odd. Thus, −(4k−1) =−qt ≡−q (mod (Q∗)2). Note that the images of O and (0,0) under
δ ′ are 1,−q ∈ S(φ̂)(E ′p,θ/Q), respectively. The other values of d ∈Q(S,2) are considered below. For
the following cases, we denote by f (w) and g(z) the left-hand side and right-hand side of Equation (2),
respectively.

2.1 d = p,−qp. The homogeneous space (2) has a global solution (z,w) = (1,0). Thus, p ∈
S(φ̂)(E ′p,θ/Q). By closure property, since−q, p∈ S(φ̂)(E ′p,θ/Q), we have−qp∈ S(φ̂)(E ′p,θ/Q).

2.2 d = kid′ for some d′. Let (z,w) ∈C′d(Qki). Note that ordki( f (w)) is odd. On the other hand, let
ordki(z) = v. Then ordki(g(z)) = 2 or 4v, which in any case is even, so a contradiction. Thus,
C′d(Qki) = /0.

2.3 d = 2d′ for some d′. Let (z,w) ∈C′d(Q2). Note that ord2( f (w)) is odd. On the other hand, let
ord2(z) = v.

2.3.1 Suppose v 6= 0,1. Then ord2(g(z)) = 2 or 4v, which in any case is even, so a contradiction.
2.3.2 Suppose v = 0. Then ord2(g(z)) = 0, which is even, so a contradiction.
2.3.3 Suppose v = 1. Then ord2(g(z)) = 2, which is even, so a contradiction.

Therefore, C′d(Q2) = /0.
2.4 d = q. Let (z,w) ∈C′d(Qp). Note that ordp(2k−1)≥ 0.

2.4.1 Suppose ordp(z) ≥ 0. Note that ordp(g(z)) ≥ 0. This implies that ordp( f (w)) ≥ 0, so
ordp(w)≥ 0. Hence, z,w∈Zp. Reducing Equation (2) modulo p, we get w2≡ q (mod p).
Thus,

(q
p

)
= 1.

2.4.2 Suppose ordp(z)=:−v< 0. Note that ordp(g(z))= 2−4v. This implies that ordp( f (w))=
2− 4v, so ordp(w) = −(2v− 1). Letting (z,w) = (Z/pv,W/p2v−1) and by simplifying,
we get

(5) W 2 = p4v−2q+2(2k−1)p2v−1Z2−qt−1Z4,

and ordp(Z) = ordp(W ) = 0. Then Z,W ∈ Zp. Reducing Equation (5) modulo p, we get
W 2 ≡−qt−1Z4 (mod p). Thus,

(−1
p

)
= 1, i.e., p≡ 1 (mod 4).

Thus, if
(q

p

)
=−1 and p≡ 3 (mod 4) then C′d(Qp) = /0.

2.5 d =−1,qp,−p. By closure property, if
(q

p

)
=−1 and p≡ 3 (mod 4) then q 6∈ S(φ̂)(E ′p,θ/Q),

and −q, p,−qp ∈ S(φ̂)(E ′p,θ/Q) implies that −1,qp,−p 6∈ S(φ̂)(E ′p,θ/Q).

By reciprocity law, we have shown that if p≡ 3 (mod 4) and
(p

q

)
= 1, then we obtain S(φ̂)(E ′p,θ/Q) =

{1,−q, p,−qp}. Therefore, if part (i) holds then

S(φ)(Ep,θ/Q) = {1} and S(φ̂)(E ′p,θ/Q) = {1,−q, p,−qp} ∼= (Z/2Z)2.

Thus, rank(Ep,θ (Q))≤ 0+2−2 = 0.
Next, we prove part (ii). We use the same set-up as above. For the group S(φ)(Ep,θ/Q), cases 1.1,

1.2 and 1.3 of part (i) still hold, and 1 ∈ S(φ)(Ep,θ/Q). We consider the remaining cases.

1.4 d = pd′ for some d′. Let (z,w) ∈Cd(Qp).
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1.4.1 Suppose ordp(z) > 0. Note that ordp( f (w)) is odd. On the other hand, ordp(g(z)) = 2,
which is even, so a contradiction. Thus, Cd(Qp) = /0.

1.4.2 Suppose ordp(z) = 0. Note that ordp(g(z)) ≥ 2. This implies that ordp( f (w)) ≥ 2,
so ordp(w) ≥ 1. Letting w = pW , we get pd′W 2 = d′2− 4(2k− 1)d′z2 + 16k2z4 and
ordp(W )≥ 0. Hence, z,W ∈ Zp. Reducing this equation modulo p, we get d′2−4(2k−
1)d′z2 +16k2z4 ≡ 0 (mod p). Multiplying both sides by 4k2 and adding both sides by
−d′2(4k−1), we get (8k2z2− (2k−1)d′)2 ≡ −d′2(4k−1) (mod p). This implies that(−(4k−1)

p

)
=
(−q

p

)
= 1.

1.4.3 Suppose ordp(z) =:−v< 0. Note that ordp( f (w)) is odd. On the other hand, ordp(g(z)) =
2−4v, which is even, so a contradiction. Thus, Cd(Qp) = /0.

Thus, if
(−q

p

)
=−1 then Cd(Qp) = /0.

1.5 d = kid′ for some d′. Here, ki could be any prime factor of k but we exclude exactly one ki that
is congruent to 3 modulo 4 and we treat this case in item 1.6. The existence of such prime
factor is valid since k ≡ 3 (mod 4) by assumption. In this case, if

( p
ki

)
=−1 then Cd(Qki) = /0.

The proof is identical to case 1.4 of part (i).
1.6 d = ki where ki ≡ 3 (mod 4) is the prime factor of k excluded in case 1.5. Replacing z by z/2,

we get

(6) kiw2 = k2
i − (2k−1)pkiz2 + k2 p2z4.

Denote by g(z) the right-hand side of Equation (6). Let (z,w) ∈Cd(Q2).
1.6.1 Suppose ord2(z) ≥ 0. Note that ord2(g(z)) ≥ 0. This implies that ord2( f (w)) ≥ 0, so

ord2(w)≥ 0. Hence, z,w∈Z2. Reducing Equation (6) modulo 8, we get kiw2 ≡ 1−(2k−
1)pkiz2 + z4 (mod 8). By assumption, ki ≡ 3 (mod 4) and k ≡ 3 (mod 4).

1.6.1.1 Suppose ord2(z) = 0. Then kiw2 ≡ 1+3pki +1≡ 2+3pki (mod 8). This implies
that w2 ≡ 2ki +3p≡ 6+3p (mod 8), so p≡ 1 (mod 8).

1.6.1.2 Suppose ord2(z) = 1. Then kiw2 ≡ 1+3pki(4)+0≡ 5 (mod 8), a contradiction.
1.6.1.3 Suppose ord2(z)> 1. Then kiw2 ≡ 1 (mod 8), a contradiction.

1.6.2 Suppose ord2(z) =:−v < 0. Note that ord2(g(z)) =−4v. This implies that ord2( f (w)) =
−4v, so ord2(w) =−2v. Letting (z,w) = (Z/2v,W/22v) and by simplifying, we get

(7) kiW 2 = 24vk2
i −22v(2k−1)pkiZ2 + k2 p2Z4,

and ord2(Z) = ord2(W ) = 0. Then Z,W ∈ Z2. Reducing Equation (7) modulo 4, we get
kiW 2 ≡ 1 (mod 4), a contradiction since ki ≡ 3 (mod 4). Thus, Cd(Q2) = /0.

Thus, if p≡ 3,5,or 7 (mod 8) then Cd(Q2) = /0.

By reciprocity law, we have shown that if
(p

q

)
=−1,

( p
ki

)
=−1 for all ki except one ki ≡ 3 (mod 4),

and p≡ 3,5, or 7 (mod 8), then S(φ)(Ep,θ/Q) = {1}.
Next, we consider S(φ̂)(E ′p,θ/Q). Note that cases 2.1, 2.2, and 2.3 of part (i) still hold and 1,−q ∈

S(φ̂)(E ′p,θ/Q). We consider the remaining cases.

2.4 d = q. Let (z,w) ∈C′d(Qki), where ki ≡ 3 (mod 4) is the prime factor of k excluded in case
1.5.
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2.4.1 Suppose ordki(z) ≥ 0. Note that ordki(g(z)) ≥ 0. This implies that ordki( f (w)) ≥ 0, so
ordki(w)≥ 0. Hence, z,w ∈ Zki . Note that t = 1 by assumption, so 4k−1 = q. Dividing
both sides of Equation (2) by q and reducing modulo ki, we get w2 ≡−1−2pz2− p2z4

(mod ki), that is, w2 ≡ −(pz2 + 1)2 (mod ki). If ordki(pz2 + 1) = 0, then
(−1

ki

)
= 1, a

contradiction since ki ≡ 3 (mod 4). Thus, pz2 +1≡ 0 (mod ki), that is,
(−p

ki

)
= 1. Since(−1

ki

)
=−1, we obtain

( p
ki

)
=−1.

2.4.2 Suppose ordki(z) =:−v< 0. Note that ordki(g(z)) =−4v. This implies that ordki( f (w)) =
−4v, so ordki(w) =−2v. Letting (z,w) = (Z/kv

i ,W/k2v
i ) and by simplifying, we get

(8) W 2 = k4v
i q+2(2k−1)pk2v

i Z2− p2Z4,

and ordki(Z) = ordki(W ) = 0. Then Z,W ∈ Zki . Reducing Equation (8) modulo ki, we
get W 2 ≡−p2Z4 (mod ki), that is,

(−1
ki

)
= 1, a contradiction since ki ≡ 3 (mod 4). Thus,

C′d(Qki) = /0.
Thus, if

( p
ki

)
= 1 then C′d(Qki) = /0.

2.5 d = −1,qp,−p. By closure property, if
( p

ki

)
= 1 then q 6∈ S(φ̂)(E ′p,θ/Q), and −q, p,−qp ∈

S(φ̂)(E ′p,θ/Q) implies that −1,qp,−p 6∈ S(φ̂)(E ′p,θ/Q).

We have shown that if
( p

ki

)
= 1 for exactly one ki ≡ 3 (mod 4), then S(φ̂)(E ′p,θ/Q) = {1,−q, p,−qp}.

Therefore, if part (ii) holds then

S(φ)(Ep,θ/Q) = {1} and S(φ̂)(E ′p,θ/Q) = {1,−q, p,−qp} ∼= (Z/2Z)2.

Thus, rank(Ep,θ (Q))≤ 0+2−2 = 0.
Lastly, we prove part (iii). For S(φ)(Ep,θ/Q), all of the cases of part (ii) hold except case 1.6.
1.6 d = ki, where ki≡ 3 (mod 4) is the prime factor of k excluded in case 1.5 of part (ii). Replacing

z by z/2, we get

(9) kiw2 = k2
i − (2k−1)pkiz2 + k2 p2z4.

Denote by g(z) the right-hand side of Equation (9). Let (z,w) ∈Cd(Q2).
1.6.1 Suppose ord2(z) ≥ 0. Note that ord2(g(z)) ≥ 0. This implies that ord2( f (w)) ≥ 0, so

ord2(w)≥ 0. Hence, z,w∈Z2. Reducing Equation (9) modulo 8, we get kiw2 ≡ 1−(2k−
1)pkiz2 + z4 (mod 8). By assumption, ki ≡ 3 (mod 4) and k ≡ 1 (mod 4).

1.6.1.1 Suppose ord2(z) = 0. Then kiw2 ≡ 1− pki + 1 ≡ 2− pki (mod 8). This implies
that w2 ≡ 2ki− p≡ 6− p (mod 8), so p≡ 5 (mod 8).

1.6.1.2 Suppose ord2(z) = 1. Then kiw2 ≡ 1−4pki +0≡ 5 (mod 8), so a contradiction.
1.6.1.3 Suppose ord2(z)> 1. Then kiw2 ≡ 1 (mod 8), so a contradiction.

1.6.2 Suppose ord2(z) =:−v < 0. Note that ord2(g(z)) =−4v. This implies that ord2( f (w)) =
−4v, so ord2(w) =−2v. Letting (z,w) = (Z/2v,W/22v) and by simplifying, we get

(10) kiW 2 = 24vk2
i −22v(2k−1)pkiZ2 + k2 p2Z4,

and ord2(Z) = ord2(W ) = 0. Then Z,W ∈ Z2. Reducing Equation (10) modulo 4, we get
kiW 2 ≡ 1 (mod 4), a contradiction since ki ≡ 3 (mod 4). Thus, Cd(Q2) = /0.

Thus, if p≡ 1,3,or 7 (mod 8) then Cd(Q2) = /0.
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We have shown that if
(p

q

)
= −1,

( p
ki

)
= −1 for all ki except one ki ≡ 3 (mod 4), and p ≡ 1,3, or 7

(mod 8), then S(φ)(Ep,θ/Q) = {1}.
For S(φ̂)(E ′p,θ/Q), all of the cases in part (ii) hold. Thus, if

( p
ki

)
= 1 for exactly one ki ≡ 3 (mod 4),

then S(φ̂)(E ′p,θ/Q) = {1,−q, p,−qp}. Therefore, if part (iii) holds then

S(φ)(Ep,θ/Q) = {1} and S(φ̂)(E ′p,θ/Q) = {1,−q, p,−qp} ∼= (Z/2Z)2.

Thus, rank(Ep,θ (Q))≤ 0+2−2 = 0. �

We prove the second theorem.

Proof of Theorem 1.2. First, consider part (i). The θ -CN elliptic curve is given by

Ep,θ : y2 = x3 +2(r−1)px2− (2r−1)p2x.

Write r = rm1
1 rm2

2 · · ·rmn
n , where ri’s are distinct odd primes and mi’s are positive integers. We obtain

the sets S = {∞,2,r1,r2, . . . ,rn,q, p} and

Q(S,2) =


±1,±2,±p,±q,±2p,±2q,±pq,±2pq,±ri1 · · ·ri j ,

±2ri1 · · ·ri j ,±pri1 · · ·ri j ,±qri1 · · ·ri j ,±2pri1 · · ·ri j ,

±2qri1 · · ·ri j ,±pqri1 · · ·ri j ,±2pqri1 · · ·ri j ,

where i j, j ∈ {1,2, . . . ,n} and i j 6= i j′ for j 6= j′.

 .

Note that Q(S,2) contains 2n+4 distinct elements. The curve is 2-isogenous to E ′p,θ given by

E ′p,θ : y2 = x3−4(r−1)px2 +4r2 p2x,

and for d ∈Q(S,2), the corresponding homogeneous spaces are given by

(11) Cd : dw2 = d2−4(r−1)pdz2 +4r2 p2z4

and

(12) C′d : dw2 = d2 +2(r−1)pdz2− (2r−1)p2z4.

Note that the image of O and (0,0) under δ is 1 ∈ S(φ)(Ep,θ/Q). The other values of d ∈Q(S,2) are
considered below. For the following cases, denote by f (w) and g(z) the left-hand side and right-hand
side of Equation (11), respectively.

1.1 d < 0. Note that Cd(R) = /0 since f (w)≤ 0, while g(z)> 0.
1.2 d = qd′ for some d′. Note that ordq( f (w)) is odd. On the other hand, let ordq(z) = v. Then

ordq(g(z)) = 2 or 4v, which in any case is even, so a contradiction. Thus, Cd(Qq) = /0.
1.3 d = rid′ for some d′. Let (z,w) ∈Cd(Qri).

1.3.1 Suppose ordri(z)> 0. Note that ordri( f (w)) is odd. On the other hand, ordri(g(z)) = 2,
which is even, so a contradiction. Thus, Cd(Qri) = /0.

1.3.2 Suppose ordri(z) = 0. Note that ordri(g(z)) ≥ 1. This implies that ordri( f (w)) ≥ 1, so
ordri(w)≥ 0. Hence, z,w ∈ Zri . Dividing both sides of Equation (11) by ri and reducing
modulo ri, we get d′w2 ≡ 4pd′z2 (mod ri). This implies that

(p
ri

)
= 1.
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1.3.3 Suppose ordri(z) =:−v < 0. Let z = Z/rv
i , so that ordri(Z) = 0. By simplifying, we get

(13) r4v+1
i d′w2 = r4v+2

i d′2−4(r−1)pr2v+1
i d′Z2 +4r2 p2Z4.

We abuse notation and denote by f (w) and g(Z) the left-hand side and right-hand side of
Equation (13), respectively.

1.3.3.1 Suppose 2v+1> 2mi. Note that ordri( f (w)) is odd. On the other hand, ordri(g(Z))=
2mi, which is even, so a contradiction. Thus, Cd(Qri) = /0.

1.3.3.2 Suppose 2v+1< 2mi. Note that ordri(g(Z))= 2v+1. This implies that ordri( f (w))=
2v+ 1, so ordri(w) = −v. Let w = W/rv

i , so that ordri(W ) = 0. Then Z,W ∈ Zri .
Dividing both sides of Equation (13) by r2v+1

i and reducing modulo ri, we get
d′W 2 ≡ 4pd′Z2 (mod ri). This implies that

(p
ri

)
= 1.

Thus, if
(p

ri

)
=−1, then Cd(Qri) = /0.

1.4 d = 2. Let (z,w) ∈Cd(Qp). Note that ordp(r−1)≥ 0.
1.4.1 Suppose ordp(z) ≥ 0. Note that ordp(g(z)) ≥ 0. This implies that ordp( f (w)) ≥ 0, so

ordp(w) ≥ 0. Hence, z,w ∈ Zp. Reducing Equation (11) modulo p, we get w2 ≡ 2
(mod p), i.e.,

(2
p

)
= 1. Thus, p≡ 1 or 7 (mod 8).

1.4.2 Suppose ordp(z)=:−v< 0. Note that ordp(g(z))= 2−4v. This implies that ordp( f (w))=
2− 4v, so ordp(w) = −(2v− 1). Letting (z,w) = (Z/pv,W/p2v−1) and by simplifying,
we get

(14) W 2 = 2p4v−2−4(r−1)p2v−1Z2 +2r2Z4,

and ordp(Z) = ordp(W ) = 0. Then Z,W ∈ Zp. Reducing Equation (14) modulo p, we get
W 2 ≡ 2r2Z4 (mod p), i.e.,

(2
p

)
= 1. Thus, p≡ 1 or 7 (mod 8).

Thus, if p≡ 3 or 5 (mod 8) then Cd(Qp) = /0.
1.5 d = p. Let (z,w) ∈Cd(Q2). Note that ord2(r−1)≥ 2 since r ≡ 1 (mod 4) by assumption.

1.5.1 Suppose ord2(z) ≥ 0. Note that ord2(g(z)) ≥ 0. This implies that ord2( f (w)) ≥ 0, so
ord2(w) ≥ 0. Hence, z,w ∈ Z2. Reducing Equation (11) modulo 4, we get pw2 ≡ 1
(mod 4). Thus, p≡ 1 (mod 4).

1.5.2 Suppose ord2(z)=:−v< 0. Note that ord2(g(z))= 2−4v. This implies that ord2( f (w))=
2− 4v, so ord2(w) = −(2v− 1). Letting (z,w) = (Z/2v,W/22v−1) and by simplifying,
we get

(15) W 2 = 24v−2 p−22v(r−1)pZ2 + r2 pZ4,

and ord2(Z) = ord2(W ) = 0. Then Z,W ∈ Z2. Reducing Equation (15) modulo 4, we get
W 2 ≡ r2 pZ4 (mod 4). Thus, p≡ 1 (mod 4).

Thus, if p≡ 3 (mod 4) then Cd(Q2) = /0.
1.6 d = 2p. Let (z,w) ∈Cd(Q2).

1.6.1 Suppose ord2(z) > 0. Note that ord2( f (w)) is odd. On the other hand, ord2(g(z)) = 2,
which is even, so a contradiction. Thus, Cd(Q2) = /0.

1.6.2 Suppose ord2(z) = 0. Note that ord2(g(z)) ≥ 2. This implies that ord2( f (w)) ≥ 2, so
ord2(w) ≥ 1. Letting w = 2W and dividing both sides of Equation (11) by 4, we get
2W 2 = p− 2(r− 1)pz2 + r2 pz4 and ord2(W ) ≥ 0. Hence, z,W ∈ Z2. Reducing this
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equation modulo 8, we get 2W 2 ≡ 2p (mod 8). If ord2(W )> 0, then p≡ 0 (mod 4), a
contradiction. If ord2(W ) = 0, then p≡ 1 (mod 4).

1.6.3 Suppose ord2(z) =:−v < 0. Note that ord2( f (w)) is odd. On the other hand, ord2(g(z)) =
2−4v, which is even, so a contradiction. Thus, Cd(Q2) = /0.

Thus, if p≡ 3 (mod 4) then Cd(Q2) = /0.

We have shown that if p≡ 3 (mod 8) and
(p

ri

)
=−1 for all i = 1, . . . ,n, then S(φ)(Ep,θ/Q) = {1}.

The group S(φ̂)(E ′p,θ/Q) is considered next. Note that t is odd by assumption, so−(2r−1) =−qt ≡
−q (mod (Q∗)2). Thus, the images of O and (0,0) under δ ′ are 1,−q ∈ S(φ̂)(E ′p,θ/Q), respectively.
The other values of d ∈Q(S,2) are considered below. For the following cases, we denote by f (w) and
g(z) the left-hand side and right-hand side of Equation (12), respectively.

2.1 d = p,−qp. The homogeneous space (12) has a global solution (z,w) = (1,0). Thus, p ∈
S(φ̂)(E ′p,θ/Q). By closure property, since−q, p∈ S(φ̂)(E ′p,θ/Q), we have−qp∈ S(φ̂)(E ′p,θ/Q).

2.2 d = rid′ for some d′. Let (z,w) ∈C′d(Qri). Note that ordri( f (w)) is odd. On the other hand, let
ordri(z) = v. Then ordri(g(z)) = 2 or 4v, which in any case is even, so a contradiction. Thus,
C′d(Qri) = /0.

2.3 d = 2d′ for some d′. Let (z,w) ∈C′d(Q2). Note that ord2( f (w)) is odd. On the other hand, let
ord2(z) = v. Then ord2(g(z)) = 2 or 4v, which in any case is even, so a contradiction. Thus,
C′d(Q2) = /0.

2.4 d = q. Let (z,w) ∈C′d(Qp). Note that ordp(r−1)≥ 0.
2.4.1 Suppose ordp(z) ≥ 0. Note that ordp(g(z)) ≥ 0. This implies that ordp( f (w)) ≥ 0, so

ordp(w) ≥ 0. Hence, z,w ∈ Zp. Reducing Equation (12) modulo p, we get w2 ≡ q
(mod p). Thus,

(q
p

)
= 1.

2.4.2 Suppose ordp(z)=:−v< 0. Note that ordp(g(z))= 2−4v. This implies that ordp( f (w))=
2− 4v, so ordp(w) = −(2v− 1). Letting (z,w) = (Z/pv,W/p2v−1) and by simplifying,
we get

(16) W 2 = qp4v−2 +2(r−1)p2v−1Z2−qt−1Z4,

and ordp(Z) = ordp(W ) = 0. Then Z,W ∈ Zp. Reducing Equation (16) modulo p, we get
W 2 ≡−qt−1Z4 (mod p), i.e.,

(−1
p

)
= 1 since t is odd. Thus, p≡ 1 (mod 4).

Thus, if p≡ 3 (mod 4) and
(q

p

)
=−1 then C′d(Qp) = /0.

2.5 d =−1,qp,−p. By closure property, if p≡ 3 (mod 4) and
(q

p

)
=−1 then q 6∈ S(φ̂)(E ′p,θ/Q),

and −q, p,−qp ∈ S(φ̂)(E ′p,θ/Q) implies that −1,qp,−p 6∈ S(φ̂)(E ′p,θ/Q).

We have shown that if p≡ 3 (mod 4) and
(q

p

)
=−1, then we obtain S(φ̂)(E ′p,θ/Q) = {1,−q, p,−qp}.

Therefore, if part (i) holds, then

S(φ)(Ep,θ/Q) = {1} and S(φ̂)(E ′p,θ/Q) = {1,−q, p,−qp} ∼= (Z/2Z)2.

Thus, rank(Ep,θ/Q)≤ 0+2−2 = 0.
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Next, we prove part (ii). We use the same set-up as above. Since t is assumed to be even and q≡ 3
(mod 4), we get r ≡ 1 (mod 4). For S(φ)(Ep,θ/Q), all of the cases of part (i) hold. Thus, if p ≡ 3
(mod 8) and

(p
ri

)
=−1 for all i = 1, . . . ,n, then S(φ)(Ep,θ/Q) = {1}.

The group S(φ̂)(E ′p,θ/Q) is considered next. Since t is even, we have −(2r− 1) = −qt ≡ −1

(mod (Q∗)2). Thus, the images of O and (0,0) under δ ′ are 1,−1 ∈ S(φ̂)(E ′p,θ/Q), respectively. Note
also that cases 2.2 and 2.3 of part (i) still hold. The other values of d ∈Q(S,2) are considered below.

2.1 d = p,−p. The homogeneous space (12) has a global solution (z,w) = (1,0). Thus, p ∈
S(φ̂)(E ′p,θ/Q). By closure property, since −1, p ∈ S(φ̂)(E ′p,θ/Q), we have −p ∈ S(φ̂)(E ′p,θ/Q).

2.4 d = q,−q. Let (z,w) ∈C′q(Qq).
2.4.1 Suppose ordq(z) > 0. Note that ordq( f (w)) is odd. On the other hand, ordq(g(z)) = 2,

which is even, so a contradiction. Thus, C′q(Qq) = /0.
2.4.2 Suppose ordq(z) = 0. Note that ordq(g(z)) ≥ 1. This implies that ordq( f (w)) ≥ 1, so

ordq(w)≥ 0. Hence, z,w ∈ Zq. Dividing both sides of Equation (12) by q and reducing
modulo q, we get w2 ≡−pz2 (mod q). Thus,

(−p
q

)
= 1.

2.4.3 Suppose ordq(z) =:−v < 0. Let z = Z/qv, so that ordq(Z) = 0. By simplifying, we get

(17) q4vw2 = q4v+1 +2(r−1)pq2vZ2−qt−1 p2Z4.

We abuse notation and denote by f (w) and g(Z) the left-hand side and right-hand side of
Equation (17), respectively.

2.4.3.1 Suppose 2v > t−1. Note that ordq(g(Z)) = t−1. This implies that ordq( f (w)) =
t− 1, so ordq(w) = (t− 1− 4v)/2. Let w = W/q(t−1−4v)/2, so that ordq(W ) = 0.
Then Z,W ∈ Zq. Dividing both sides of Equation (17) by qt−1 and reducing modulo
q, we get W 2 ≡−p2Z2 (mod q), i.e.,

(−1
q

)
= 1. Thus, q≡ 1 (mod 4).

2.4.3.2 Suppose 2v < t−1. Note that ordq(g(Z)) = 2v. This implies that ordq( f (w)) = 2v,
so ordq(w) =−v. Let w =W/qv, so that ordq(W ) = 0. Then Z,W ∈ Zq. Dividing
both sides of Equation (17) by q2v and reducing modulo q, we get W 2 ≡ −pZ2

(mod q). Thus,
(−p

q

)
= 1.

Thus, if
(−p

q

)
=−1 and q≡ 3 (mod 4) then C′q(Qq)= /0. By closure property,−q 6∈ S(φ̂)(E ′p,θ/Q)

whenever
(−p

q

)
=−1 and q≡ 3 (mod 4).

2.5 d = qp,−qp. By closure property, since p,−p ∈ S(φ̂)(E ′p,θ/Q) and q,−q 6∈ S(φ̂)(E ′p,θ/Q)

whenever
(−p

q

)
=−1 and p≡ 3 (mod 4) then pq,−pq 6∈ S(φ̂)(E ′p,θ/Q) whenever

(−p
q

)
=−1

and p≡ 3 (mod 4).

We have shown that if
(−p

q

)
=−1 and q≡ 3 (mod 4) then S(φ̂)(E ′p,θ/Q) = {1,−1, p,−p}. Therefore,

if part (ii) holds then

S(φ)(Ep,θ/Q) = {1} and S(φ̂)(E ′p,θ/Q) = {1,−1, p,−p} ∼= (Z/2Z)2.

Thus, rank(Ep,θ (Q))≤ 0+2−2 = 0.
Lastly, we prove part (iii). We use the same set-up as above. For the group S(φ)(Ep,θ/Q), cases 1.1

and 1.2 of part (i) still hold, and 1 ∈ S(φ)(Ep,θ/Q). We investigate the remaining cases.
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1.3 d = pd′ for some d′. Let (z,w) ∈Cd(Qp). Note that ordp(r−1)≥ 0.
1.3.1 Suppose ordp(z) > 0. Note that ordp( f (w)) is odd. On the other hand, ordp(g(z)) = 2,

which is even, so a contradiction. Thus, Cd(Qp) = /0.
1.3.2 Suppose ordp(z) = 0. Note that ordp(g(z)) ≥ 2. This implies that ordp( f (w)) ≥ 2, so

ordp(w)≥ 1. Letting w = pW , we get pd′W 2 = d′2−4(r−1)d′z2+4r2z4 and ordp(W )≥
0. Then z,W ∈Zp. Reducing this equation modulo p, we get d′2−4(r−1)d′z2+4r2z4≡ 0
(mod p). Multiplying both sides by r2 and adding both sides by −d′2(2r− 1), we get
(2r2z2− (r−1)d′)2 ≡−d′2(2r−1) (mod p). This implies that

(−(2r−1)
p

)
=
(−q

p

)
= 1.

1.3.3 Suppose ordp(z) =:−v< 0. Note that ordp( f (w)) is odd. On the other hand, ordp(g(z)) =
2−4v, which is even, so a contradiction. Thus, Cd(Qp) = /0.

Thus, if
(−q

p

)
=−1 then Cd(Qp) = /0.

1.4 d = rid′ for some d′. Here, ri could be any prime factor of r but we exclude exactly one ri that
is congruent to 3 modulo 4 and we treat this case in item 1.5. The existence of such prime
factor is valid since r ≡ 3 (mod 4) by assumption. In this case, if

(p
ri

)
=−1, then Cd(Qri) = /0.

The proof is identical to case 1.3 of part (i).
1.5 d = ri where ri ≡ 3 (mod 4) is the prime factor of r excluded in case 1.4. Let (z,w) ∈Cd(Q2).

Note that ord2(r−1) = 1 since r ≡ 3 (mod 4) by assumption.
1.5.1 Suppose ord2(z) ≥ 0. Note that ord2(g(z)) = 0. This implies that ord2( f (w)) = 0, so

ord2(w) = 0. Hence, z,w ∈ Z2. Reducing Equation (11) modulo 4, we get riw2 ≡ 1
(mod 4), a contradiction since ri ≡ 3 (mod 4). Thus, Cd(Q2) = /0.

1.5.2 Suppose ord2(z)=:−v< 0. Note that ord2(g(z))= 2−4v. This implies that ord2( f (w))=
2−4v, so ord2(w) = −(2v−1). Letting (z,w) = (Z/2v,W/22v−1) and simplifying, we
get

(18) riW 2 = 24v−2r2
i −22v(r−1)priZ2 + r2 p2Z4,

and ord2(Z) = ord2(W ) = 0. Then Z,W ∈ Z2. Reducing Equation (18) modulo 4, we get
riW 2 ≡ 1 (mod 4), a contradiction since ri ≡ 3 (mod 4). Thus, Cd(Q2) = /0.

In any case, Cd(Q2) = /0.
1.6 d = 2. Let (z,w) ∈Cd(Q2). Note that ord2(r−1) = 1.

1.6.1 Suppose ord2(z) > 0. Note that ord2( f (w)) is odd. On the other hand, ord2(g(z)) = 2,
which is even, so a contradiction. Thus, Cd(Q2) = /0.

1.6.2 Suppose ord2(z) = 0. Note that ord2(g(z)) ≥ 2. This implies that ord2( f (w)) ≥ 2, so
ord2(w) ≥ 1. Letting w = 2W and simplifying, we get 2W 2 = 1−2(r−1)pz2 + r2 p2z4

and ord2(W )≥ 0. Hence, z,W ∈Z2. Assuming r≡ 3 (mod 4) and reducing this equation
modulo 8, we get 2W 2 ≡ 6 (mod 8), so a contradiction. Thus, Cd(Q2) = /0.

1.6.3 Suppose ord2(z) =:−v < 0. Note that ord2( f (w)) is odd. On the other hand, ord2(g(z)) =
2−4v, which is even, so a contradiction. Thus, Cd(Q2) = /0.

In any case, Cd(Q2) = /0.
1.7 d = 2ri where ri≡ 3 (mod 4) is the prime factor of r excluded in case 1.4. Let (z,w)∈Cd(Qp).

Note that ordp(r−1)≥ 0.

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

1 Aug 2024 06:25:26 PDT
230916-Mina Version 2 - Submitted to Rocky Mountain J. Math.



CRITERIA FOR DETERMINING NON-θ -CONGRUENT NUMBERS 14

1.7.1 Suppose ordp(z) ≥ 0. Note that ordp(g(z)) ≥ 0. This implies that ordp( f (w)) ≥ 0, so
ordp(w) ≥ 0. Hence, z,w ∈ Zp. Reducing Equation (11) modulo p, we get 2riw2 ≡ 1
(mod p). Thus,

(2ri
p

)
= 1.

1.7.2 Suppose ordp(z)=:−v< 0. Note that ordp(g(z))= 2−4v. This implies that ordp( f (w))=
2−4v, so ordp(w) =−(2v−1). Letting (z,w) = (Z/pv,W/p2v−1) and simplifying, we
get

(19) 2riW 2 = p4v−2r2
i −2(r−1)p2v−1riz2 + r2z4,

and ordp(Z) = ordp(W ) = 0. Then Z,W ∈ Zp. Reducing Equation (19) modulo p, we get
2riW 2 ≡ r2Z4 (mod p). Thus,

(2ri
p

)
= 1.

Thus, if
(2ri

p

)
=−1 then Cd(Qp) = /0.

We have shown that if
(p

ri

)
=−1 for all ri except one with ri ≡ 3 (mod 4),

(−q
p

)
=−1 and

(2ri
p

)
=−1,

where ri is the one excluded above, then S(φ)(Ep,θ/Q) = {1}. The condition that
(2ri

p

)
= −1 is

equivalent to p≡ 1 or 7 (mod 8) and
(ri

p

)
=−1, or p≡ 3 or 5 (mod 8) and

(ri
p

)
= 1.

Next, we consider S(φ̂)(E ′p,θ/Q). Note that the cases 2.1, 2.2 and 2.3 of part (i) still hold and

1,−q ∈ S(φ̂)(E ′p,θ/Q). We consider the remaining cases.

2.4 d = q. Let (z,w) ∈C′d(Qri) where ri ≡ 3 (mod 4) is the prime factor of r excluded in case 1.4.
2.4.1 Suppose ordri(z) ≥ 0. Note that ordri(g(z)) ≥ 0. This implies that ordri( f (w)) ≥ 0, so

ordri(w)≥ 0. Hence, z,w ∈ Zri . Note that t = 1 by assumption, so 2r−1 = q. Dividing
both sides of Equation (12) by q and reducing modulo ri, we get w2 ≡−1−2pz2− p2z4

(mod ri), that is, w2 ≡ −(pz2 + 1)2 (mod ri). If ordri(pz2 + 1) = 0, then
(−1

ri

)
= 1, a

contradiction since ri ≡ 3 (mod 4). Thus, pz2 +1≡ 0 (mod ri), that is,
(−p

ri

)
= 1. Since(−1

ri

)
=−1, we obtain

(p
ri

)
=−1.

2.4.2 Suppose ordri(z) =:−v< 0. Note that ordri(g(z)) =−4v. This implies that ordri( f (w)) =
−4v, so ordri(w) =−2v. Letting (z,w) = (Z/rv

i ,W/r2v
i ) and simplifying, we get

(20) W 2 = r4v
i q+2(r−1)pr2v

i Z2− p2Z4,

and ordri(Z) = ordri(W ) = 0. Then Z,W ∈ Zri . Reducing Equation (20) modulo ri, we
get W 2 ≡−p2Z4 (mod ri), that is,

(−1
ri

)
= 1, a contradiction since ri ≡ 3 (mod 4). Thus,

C′d(Qri) = /0.
Thus, if

(p
ri

)
= 1 then C′d(Qri) = /0.

2.5 d = −1,qp,−p. By closure property, if
(p

ri

)
= 1 then q 6∈ S(φ̂)(E ′p,θ/Q), and −q, p,−qp ∈

S(φ̂)(E ′p,θ/Q) implies that −1,qp,−p 6∈ S(φ̂)(E ′p,θ/Q).

We have shown that if
(p

ri

)
= 1, for exactly one ri ≡ 3 (mod 4), then S(φ̂)(E ′p,θ/Q) = {1,−q, p,−qp}.

Therefore, if part (iii) holds then

S(φ)(Ep,θ/Q) = {1} and S(φ̂)(E ′p,θ/Q) = {1,−q, p,−qp} ∼= (Z/2Z)2.

Thus, rank(Ep,θ (Q))≤ 0+2−2 = 0. �
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