[ROCKY MOUNTAIN JOURNAL OF MATHEMATICS](http://msp.org/) [Vol. , No. , YEAR](https://doi.org/rmj.YEAR.-)

<https://doi.org/rmj.YEAR..PAGE>

CRITERIA FOR DETERMINING NON-θ-CONGRUENT NUMBERS

VICTOR MANUEL ARICHETA, JERICO BACANI, AND RENZ JIMWEL MINA

ABSTRACT. This paper deals with the θ -congruent number problem and θ -congruent number elliptic curves, generalizations of the classical congruent number problem and congruent number elliptic curves. In particular, we identify sufficient conditions for a non-special angle θ and a prime *p* so that the corresponding θ -congruent number elliptic curve $E_{p,\theta}$ has rank zero. Consequently, we show that for infinitely many angles θ , there are infinitely many primes which are not θ -congruent.

1. Introduction

The congruent number problem is considered as one of the oldest problems in number theory. It asks which positive integers represent the area of a right triangle with rational sides. This problem remains open. Some notable progress towards its resolution include the works of Tunnell [\[8\]](#page-14-0), Heegner [\[3\]](#page-14-1), and Monsky [\[6\]](#page-14-2). A generalization of this problem was proposed by Fujiwara [\[1\]](#page-14-3) and is called the θ -congruent number problem. For $\theta \in (0, \pi)$ such that $\cos \theta = \frac{s}{r}$ $\frac{s}{r}$, where $s, r \in \mathbb{Z}, r > |s|$ and $gcd(s, r) = 1$, the θ -congruent number problem asks which positive integers *n* satisfy the condition that $n\sqrt{r^2 - s^2}$ is the area of a triangle having an angle θ and rational sides. Positive integers satisfying this condition are called θ*-congruent*. A positive integer that is not θ-congruent is called *non-*θ*-congruent*. The case when $\theta = \pi/2$ is the classical congruent number problem.

Similar to the case of the classical congruent number problem, determining whether a positive integer is θ -congruent or not can be achieved by computing the (Mordell-Weil) rank of a certain elliptic curve. The θ*-congruent number elliptic curve*, or simply θ*-CN elliptic curve*, is the elliptic curve

$$
E_{n,\theta}: y^2 = x^3 + 2snx^2 - (r^2 - s^2)n^2x.
$$

Fujiwara [\[1\]](#page-14-3) showed that a positive integer $n \neq 1,2,3,6$ is θ -congruent if and only if $E_{n,\theta}$ has positive rank. Thus, $n \neq 1,2,3,6$ is non- θ -congruent if and only if $E_{n,\theta}$ has rank zero.

Most of the results on the θ -congruent number problem involve the special angles $\theta = \pi/3$ and $2\pi/3$. These include the works of Fujiwara [\[1\]](#page-14-3), Kan [\[5\]](#page-14-4), Hibino and Kan [\[4\]](#page-14-5), Yoshida [\[9,](#page-14-6) [10\]](#page-14-7), and Goto [\[2\]](#page-14-8). The goal of this paper is to explore the case when θ is not a special angle, that is, when θ is not a rational multiple of π, with the added condition that $cos θ$ is also rational. This implies $(s,r) \neq (\pm 1,2)$. In particular, we prove the following theorems, which give sufficient conditions for a

... ...

^{...} $\frac{1}{39}$

 $\frac{1}{40}$

²⁰²⁰ *Mathematics Subject Classification.* 11G05, 14H52. 41

Key words and phrases. elliptic curves, Selmer groups, θ-congruent number problem. 42

¹ non-special angle $θ$ and a prime *p* so that *p* is not $θ$ -congruent. The Legendre symbol is denoted by $\left(\frac{1}{2} \right)$ $\frac{1}{2}$ $\left(\frac{1}{2}\right)$.

Theorem 1.1. Let $\theta \in (0, \pi)$ be such that $\cos \theta = \frac{2k-1}{2k}$ $\frac{k-1}{2k}$, where *k* is an odd number and 4 $k − 1 = q^t$ for *some prime q and positive integer t. Let p* $\frac{1}{2}$ *kq be prime. If any one of the following holds,* i. $p \equiv 3 \pmod{4}$, $\left(\frac{p}{q}\right)$ $\binom{p}{q} = 1$ *, and* $\binom{p}{k'}$ $\binom{p}{k'}$ = -1 *for all prime factors k' of k*, ii. $t = 1$, $k \equiv 3 \pmod{4}$ *, and p satisfies both* a. $p \equiv 3, 5, or 7 \pmod{8}$, and $\left(\frac{p}{q}\right)$ $\binom{p}{q} = -1,$ **b.** $\left(\frac{p}{k'}\right)$ $\binom{p}{k}$ = −1 *for all prime factors k['] of k except for exactly one k['] ≡ 3 (mod 4),* iii. $t = 1$, $k \equiv 1 \pmod{4}$ *, k has a prime factor* $k' \equiv 3 \pmod{4}$ *, and p satisfies both* a. $p \equiv 1, 3, or 7 \pmod{8}$, and $\binom{p}{q}$ $\binom{p}{q} = -1,$ **b.** $\left(\frac{p}{k'}\right)$ $\binom{p}{k}$ = −1 *for all prime factors k['] of k except for exactly one k'* ≡ 3 (mod 4)*, then* $E_{p,\theta}$ *has rank zero and p is not* θ *-congruent.* **Theorem 1.2.** Let $\theta \in (0, \pi)$ be such that $\cos \theta = \frac{r-1}{r}$ $\frac{q-1}{r}$, where r is an odd number and $2r - 1 = q^t$ for *some prime q and positive integer t. Let p* $2rq$ *be prime. If any one of the following holds,* i. *t is odd,* $r \equiv 1 \pmod{4}$ *, and p satisfies the following,* a. $p \equiv 3 \pmod{8}$ and $\left(\frac{q}{p}\right)$ $\binom{q}{p} = -1,$ b. $\left(\frac{p}{r}\right)$ $\binom{p}{r'} = -1$ *for all prime factors r' of r,* ii. *t is even,* $q \equiv 3 \pmod{4}$ *, and p satisfies the following,* a. $p \equiv 3 \pmod{8}$ *and* $\left(\frac{q}{p}\right)$ $\binom{q}{p} = -1,$ b. $\left(\frac{p}{r}\right)$ $\binom{p}{r'} = -1$ *for all prime factors r' of r,* iii. $t = 1$, $r \equiv 3 \pmod{4}$ *, and p satisfies the following,* a. $p \equiv 5 \text{ or } 7 \pmod{8}$ and $\left(\frac{-q}{p}\right) = -1$, b. $\left(\frac{p}{r'}\right)$ $\binom{p}{r'} = -1$ *for all prime factors r' of r except for exactly one r'* $\equiv 3 \pmod{4}$ *, then* $E_{p,\theta}$ *has rank zero and p is not* θ *-congruent.* To prove Theorems [1.1](#page-1-0) and [1.2,](#page-1-1) we use the method of descent via 2-isogeny. (See Section [2](#page-2-0) for more details.) In particular, we show that the conditions given in Theorems [1.1](#page-1-0) and [1.2](#page-1-1) guarantee that 30 the θ -CN elliptic curve $E_{p,\theta}$ has Selmer rank zero. The Selmer rank — which can be determined from 31 an analysis of the solvability of certain homogenous spaces — gives an upper bound for the rank of an elliptic curve, so the rank of the θ -CN elliptic curve $E_{p,\theta}$ is also zero. By Fujiwara's result, the prime 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 $\overline{28}$ $\overline{29}$ 32

p is not θ -congruent. 33

 $\frac{1}{39}$

Example 1.3. As an illustration, suppose $\cos \theta = \frac{5}{6}$ $\frac{5}{6}$, corresponding to the non-special angle $\theta \approx$ 33.557°. Then $k = 3$, and $4k - 1 = 11$ is prime. By Theorem [1.1](#page-1-0) parts (i) and (ii), a prime $p \neq 2,3,11$ is not θ -congruent if one of the following holds: 34 35 36 $\frac{1}{37}$

a. $p \equiv 3 \pmod{4}$, $\left(\frac{p}{11}\right) = 1$, and $\left(\frac{p}{3}\right)$ $\binom{p}{3} = -1,$ $\frac{1}{38}$

b. $p \equiv 3, 5, \text{or } 7 \pmod{8}, \left(\frac{p}{11}\right) = -1, \text{ and } \left(\frac{p}{3}\right)$ $\frac{p}{3}$) = 1.

These conditions are equivalent to the following conditions, respectively: 40

a. $p \equiv 11 \pmod{12}$ and $p \equiv 1, 3, 4, 5,$ or 9 (mod 11), 41

b. $p \equiv 7,13$, or 19 (mod 24) and $p \equiv 2,6,7,8$, or 10 (mod 11). 42

Note that these are sufficient conditions for a prime p to be non- θ -congruent, but they are not necessary. For example, the prime 17 is not θ -congruent since the rank of the corresponding θ -CN elliptic curve is zero. 2 $\overline{3}$

Remark 1.4. To apply the method of descent via 2-isogeny, we need a list of the prime divisors of the discriminant $4^3r^2n^6(r^2 - s^2)$ of $E_{n,\theta}$. We will assume in this paper that *n* is a prime number and $r^2 - s^2 = (r + s)(r - s)$ is an odd prime power to simplify this step. If $s > 0$, then $r - s = 1$, and if *s* < 0, then $r + s = 1$. In both cases, we get that $r^2 - s^2 = 2r - 1 = q^t$ for some prime *q* and positive integer *t*. Additionally, we assume that *r* is an odd number or twice an odd number but not having *n* and *q* as its primes factors. 4 5 6 7 8 9 10

Let $q = 8m+3$ be a prime number. Note that there are infinitely many such primes. For each such prime, consider the odd number $k = (q+1)/4 = 2m+1$ and the corresponding non-special angle $\theta = \cos^{-1} \frac{2k-1}{2k}$. Then any prime *p* that satisfies the conditions in Theorem [1.1](#page-1-0) part (i) — for which there are infinitely many — is not θ -congruent. This yields the following corollary. $\overline{11}$ 12 13

Corollary 1.5. *For infinitely many* $\theta \in (0, \pi)$ *, there are infinitely many primes that are not* θ -congruent. 15 16 17

2. Preliminaries

We discuss briefly the method of descent via 2-isogeny. We refer the reader to Chapter X of [\[7\]](#page-14-9) for 19 more details about this method. 20

An *isogeny* from one elliptic curve to another is a homomorphism that is given by rational functions. If such a mapping exists, then we say that the two elliptic curves are *isogenous*. Note that there is an isogeny of degree two attached to the elliptic curve $E_{n,\theta}$ and it is given by $\phi: E_{n,\theta} \to E'_{n,\theta}$, $(x,y) \mapsto (y^2/x^2, -y((r^2 - s^2)n^2 + x^2)/x^2)$, where $E'_{n,\theta}: y^2 = x^3 - 4snx^2 + 4r^2n^2x$. Also, there exists a $\lim_{\delta \to 0} \widehat{\phi}: E'_{n,\theta} \to E_{n,\theta}$ called the *dual isogeny to* ϕ given by $(x, y) \mapsto (y^2/4x^2, y(4r^2n^2 - x^2)/8x^2)$. Let 21 22 24 25 26

$$
S := \{ \text{primes } p \text{ such that } p \mid \Delta_{E_{n,\theta}} = 4^3 r^2 n^6 (r^2 - s^2) \} \cup \{ \infty \}
$$

and 28 29

27

 $\frac{1}{30}$ $rac{1}{31}$ 32

 $\frac{1}{35}$

 $\frac{1}{37}$ 38

42

18

$$
\mathbb{Q}(S,2) := \{ d \in \mathbb{Q}^*/(\mathbb{Q}^*)^2 : \text{ord}_p(d) \equiv 0 \text{ (mod 2) for all primes } p \notin S \},
$$

where ord_p is the *p*-adic valuation on $\mathbb Q$. For each $d \in \mathbb Q(S, 2)$, define the *homogeneous spaces*

$$
C_d/\mathbb{Q}: dw^2 = d^2 - 4sndz^2 + 4r^2n^2z^4
$$

and 33 $\frac{100}{34}$

$$
C'_d/\mathbb{Q}: dw^2 = d^2 + 8sndz^2 - 16(r^2 - s^2)n^2z^4.
$$

For simplicity, we may replace *z* by $z/2$ in the second homogeneous space to obtain $\frac{1}{36}$

$$
C'_d/\mathbb{Q}: dw^2 = d^2 + 2sndz^2 - (r^2 - s^2)n^2z^4.
$$

The φ-Selmer group and φ-Selmer group are defined as 39

$$
\frac{40}{41} \qquad S^{(\phi)}(E_{n,\theta}/\mathbb{Q}) := \{d \in \mathbb{Q}(S,2) : C_d(\mathbb{Q}_p) \neq \emptyset \ \forall \ p \in S\},
$$

$$
S^{(\phi)}(E'_{n,\theta}/\mathbb{Q}):=\{d\in \mathbb{Q}(S,2): C'_d(\mathbb{Q}_p)\neq \emptyset \ \forall \ p\in S\},\
$$

1 Aug 2024 06:25:26 PDT 230916-Mina Version 2 - Submitted to Rocky Mountain J. Math.

r respectively. Define the map δ : $E'(\mathbb{Q}) \longrightarrow \mathbb{Q}^*/(\mathbb{Q}^*)^2$ by $\delta(\mathcal{O}) = 1 \; (mod \; (\mathbb{Q}^*)^2),$ $\delta(0,0) = 4r^2n^2 \equiv 1 \pmod{{(\mathbb{Q}^*)}^2},$ $\delta(x, y) = x \pmod{(\mathbb{Q}^*)^2}, (x, y) \neq (0, 0), \mathcal{O},$ where $\mathscr O$ is the point at infinity. Similarly, define δ' : $E(\mathbb{Q}) \longrightarrow \mathbb{Q}^*/(\mathbb{Q}^*)^2$ by $\delta'(\mathcal{O}) = 1 \; (mod \, (\mathbb{Q}^*)^2),$ $\delta'(0,0) = -(r^2 - s^2) \pmod{(\mathbb{Q}^*)^2},$ $\delta'(x, y) = x \pmod{(\mathbb{Q}^*)^2}, (x, y) \neq (0, 0), \emptyset.$ The images of the maps δ and δ' are values $d \in \mathbb{Q}(S,2)$ that are elements of the corresponding Selmer groups. An upper bound for the rank of $E_{n,\theta}$ is given by $\mathrm{rank}(E_{n,\theta}(\mathbb{Q})) \leq \dim_{\mathbb{F}_2} S^{(\phi)}(E_{n,\theta}/\mathbb{Q}) + \dim_{\mathbb{F}_2} S^{(\phi)}(E'_{n,\theta}/\mathbb{Q}) - 2.$ This bound is also called the *Selmer rank*. Thus, we only need to determine when the Selmer rank becomes zero. 3. Proof of main results We have the following proofs of the two theorems. *Proof of Theorem [1.1.](#page-1-0)* First, consider part (i). The θ-CN elliptic curve is given by $E_{p,\theta}: y^2 = x^3 + 2(2k-1)px^2 - (4k-1)p^2x.$ Write $k = k_1^{m_1} k_2^{m_2} \cdots k_n^{m_n}$, where k_i 's are distinct odd primes and m_i 's are positive integers. We obtain the sets $S = \{ \infty, 2, k_1, k_2, ..., k_n, q, p \}$ and $\mathbb{Q}(S,2) =$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $\pm 1, \pm 2, \pm p, \pm q, \pm 2p, \pm 2q, \pm pq, \pm 2pq, \pm k_{i_1} \cdots k_{i_j}$ $\pm 2k_{i_1}\cdots k_{i_j}, \pm pk_{i_1}\cdots k_{i_j}, \pm qk_{i_1}\cdots k_{i_j}, \pm 2pk_{i_1}\cdots k_{i_j},$ $\pm 2qk_{i_1}\cdots k_{i_j}, \pm pqk_{i_1}\cdots k_{i_j}, \pm 2pqk_{i_1}\cdots k_{i_j},$ where $i_j, j \in \{1, 2, \ldots, n\}$ and $i_j \neq i_{j'}$ for $j \neq j'$ \mathcal{L} $\overline{\mathcal{L}}$ \int . 2 3 4 5 6 7 8 9 10 11 12 13 14 $\frac{1}{15}$ 16 17 $\frac{1}{18}$ $\frac{1}{19}$ 20 21 22 23 24 25 26 27 28 29 30 31

Note that $\mathbb{Q}(S,2)$ contains 2^{n+4} distinct elements. The curve is 2-isogenous to $E'_{p,\theta}$ given by 32

$$
E'_{p,\theta}: y^2 = x^3 - 4(2k - 1)px^2 + 16k^2p^2x,
$$

and for $d \in \mathbb{Q}(S, 2)$, the corresponding homogeneous spaces are given by 34 35

$$
\frac{1}{36}(1) \hspace{3.1em} C_d: dw^2 = d^2 - 4(2k - 1)pdz^2 + 16k^2p^2z^4
$$

and 37

33

$$
\frac{38}{39}(2) \hspace{1cm} C'_d: dw^2 = d^2 + 2(2k-1)pdz^2 - (4k-1)p^2z^4.
$$

Note that the image of $(0,0)$ and $\mathscr O$ under δ is $1 \in S^{(\phi)}(E_{p,\theta}/\mathbb Q)$. The other values of $d \in \mathbb Q(S,2)$ are considered below. For the following cases, we denote by $f(w)$ and $g(z)$ the left-hand side and 42 right-hand side of Equation [\(1\)](#page-3-0), respectively.

- 1.1 $d < 0$. Note that $C_d(\mathbb{R}) = \emptyset$ since $f(w) \leq 0$, while $g(z) > 0$.
	- 1.2 $d = 2d'$ for some d' . Let $(z, w) \in C_d(\mathbb{Q}_2)$. Note that ord₂ $(f(w))$ is odd. On the other hand, let ord₂(*z*) = *v*. Then ord₂(*d*²) = 2, ord₂(-4(2*k*-1)*pdz*²) = 3+2*v*, and ord₂(16*k*²*p*²*z*⁴) = 4+4*v*, all of which are distinct. Hence, $\text{ord}_2(g(z)) = \min\{2, 3 + 2v, 4 + 4v\} = 2 \text{ or } 4 + 4v$, which in any case is even, so a contradiction. Thus, $C_d(\mathbb{Q}_2) = \emptyset$.
	- 1.3 $d = qd'$ for some d' . Let $(z, w) \in C_d(\mathbb{Q}_q)$. Note that ord $q(f(w))$ is odd. On the other hand, let $\text{ord}_q(z) = v$. Then $\text{ord}_q(g(z)) = 2$ or 4*v*, which in any case is even, so a contradiction. Thus, $C_d(\mathbb{Q}_q) = \emptyset.$
	- 1.4 $d = k_i d'$ for some d' . Let $(z, w) \in C_d(\mathbb{Q}_{k_i})$.
		- 1.4.1 Suppose ord $k_i(z) > 0$. Note that ord $k_i(f(w))$ is odd. On the other hand, ord $k_i(g(z)) = 2$, which is even, so a contradiction. Thus, $C_d(\mathbb{Q}_{k_i}) = \emptyset$.
		- 1.4.2 Suppose ord $k_i(z) = 0$. Note that ord $k_i(g(z)) \ge 1$. This implies that ord $k_i(f(w)) \ge 1$, so ord_{*ki*}(*w*) ≥ 0. Hence, *z*, *w* ∈ \mathbb{Z}_{k_i} . Dividing both sides of Equation [\(1\)](#page-3-0) by *k_i* and reducing modulo k_i , we get $d'w^2 \equiv 4p d'z^2 \pmod{k_i}$. This implies that $\left(\frac{p}{k}\right)^2$ $(\frac{p}{k_i})=1.$

1.4.3 Suppose
$$
ord_{k_i}(z) =: -v < 0
$$
. Let $z = \frac{Z}{k_i}$, so that $ord_{k_i}(z) = 0$. By simplifying, we get

$$
k_i^{4\nu+1}d'w^2 = k_i^{4\nu+2}d'^2 - 4(2k-1)pk_i^{2\nu+1}d'Z^2 + 16k^2p^2Z^4.
$$

We abuse notation and denote by $f(w)$ and $g(Z)$ the left-hand side and right-hand side of Equation [\(3\)](#page-4-0), respectively.

- 1.4.3.1 Suppose $2v+1 > 2m_i$. Note that $\text{ord}_{k_i}(f(w))$ is odd. On the other hand, $\text{ord}_{k_i}(g(Z)) =$ $2m_i$, which is even, so a contradiction. Thus, $C_d(\mathbb{Q}_{k_i}) = \emptyset$.
- 1.4.3.2 Suppose $2v+1 < 2m_i$. Note that $\text{ord}_{k_i}(g(Z)) = 2v+1$. This implies that $\text{ord}_{k_i}(f(w)) =$ $2\nu + 1$, so $\text{ord}_{k_i}(w) = -\nu$. Let $w = \frac{W}{k_i}$, so that $\text{ord}_{k_i}(W) = 0$. Then $Z, W \in \mathbb{Z}_{k_i}$. Dividing both sides of Equation [\(3\)](#page-4-0) by $k_i^{2\nu+1}$ and reducing modulo k_i , we get $d^{\prime}W^2 \equiv 4pd^{\prime}Z^2$ (mod *k_i*). This implies that $\left(\frac{p}{k}\right)$ $(\frac{p}{k_i})=1.$

Thus, if
$$
\left(\frac{p}{k_i}\right) = -1
$$
 then $C_d(\mathbb{Q}_{k_i}) = \emptyset$.

1.5
$$
d = p
$$
. Let $(z, w) \in C_d(\mathbb{Q}_2)$.

1.5.1 Suppose ord₂(*z*) \geq 0. Note that ord₂(*g*(*z*)) = 0. This implies that ord₂(*f*(*w*)) = 0, so ord₂(*w*) = 0. Hence, *z*, *w* $\in \mathbb{Z}_2$. Reducing Equation [\(1\)](#page-3-0) modulo 4, we get $pw^2 \equiv 1$ (mod 4). Thus, $p \equiv 1 \pmod{4}$.

1.5.2 Suppose
$$
\text{ord}_2(z) =: -v < 0
$$
. Let $z = \frac{Z}{2^v}$, so that $\text{ord}_2(Z) = 0$. By simplifying, we get

(4)
$$
2^{4\nu-4}w^2 = 2^{4\nu-4}p - 2^{2\nu-2}(2k-1)pZ^2 + k^2pZ^4.
$$

We abuse notation and denote by $f(w)$ and $g(Z)$ the left-hand side and right-hand side of Equation [\(4\)](#page-4-1), respectively.

- 1.5.2.1 Suppose $v = 1$. Note that $\text{ord}_2(g(Z)) \ge 0$. Then $\text{ord}_2(f(w)) \ge 0$, so $\text{ord}_2(w) \ge 0$. Hence, $Z, w \in \mathbb{Z}_2$. Reducing Equation [\(4\)](#page-4-1) modulo 4, we get $w^2 \equiv p \pmod{4}$. Thus, $p \equiv 1 \pmod{4}$.
- 1.5.2.2 Suppose $v > 1$. Note that $\text{ord}_2(g(Z)) = 0$. This implies $\text{ord}_2(f(w)) = 0$, so ord₂(*w*) = -(2*v* − 2). Let *w* = $W/2^{2\nu-2}$, so that ord₂(*W*) = 0. Then *Z*, *W* ∈ \mathbb{Z}_2 . Reducing Equation [\(4\)](#page-4-1) modulo 4, we get $W^2 \equiv p \pmod{4}$. Thus, $p \equiv 1 \pmod{4}$. Thus, if $p \equiv 3 \pmod{4}$ then $C_d(\mathbb{Q}_2) = \emptyset$.

42

1

We have shown that if $\left(\frac{p}{k}\right)$ We have shown that if $\left(\frac{p}{k_i}\right) = -1$ for all $i = 1, \ldots, n$, and $p \equiv 3 \pmod{4}$, then $S^{(\phi)}(E_{p,\theta}/\mathbb{Q}) = \{1\}$. The group $S^{(\phi)}(E'_{p,\theta}/\mathbb{Q})$ is considered next. Note that $2r - 1 = 4k - 1 = q^t$ implies $q \equiv 3 \pmod{4}$ and *t* is odd. Thus, $-(4k-1) = -q^t \equiv -q \pmod{(\mathbb{Q}^*)^2}$. Note that the images of $\mathcal O$ and $(0,0)$ under $δ'$ are 1,−*q* ∈ $S^{(φ)}(E'_{p,θ}/Q)$, respectively. The other values of *d* ∈ $Q(S, 2)$ are considered below. For the following cases, we denote by $f(w)$ and $g(z)$ the left-hand side and right-hand side of Equation [\(2\)](#page-3-1), respectively. 2.1 *d* = *p*, −*qp*. The homogeneous space [\(2\)](#page-3-1) has a global solution $(z, w) = (1, 0)$. Thus, *p* ∈ $S^{(\phi)}(E'_{p,\theta}/\mathbb{Q})$. By closure property, since $-q, p \in S^{(\phi)}(E'_{p,\theta}/\mathbb{Q})$, we have $-qp \in S^{(\phi)}(E'_{p,\theta}/\mathbb{Q})$. 2.2 $d = k_i d$ for some d' . Let $(z, w) \in C_d'(\mathbb{Q}_{k_i})$. Note that ord $k_i(f(w))$ is odd. On the other hand, let $\text{ord}_{k_i}(z) = v$. Then $\text{ord}_{k_i}(g(z)) = 2$ or 4*v*, which in any case is even, so a contradiction. Thus, $C'_d(\overline{\mathbb{Q}}_{k_i}) = \emptyset.$ 2.3 $d = 2d'$ for some d' . Let $(z, w) \in C'_d(\mathbb{Q}_2)$. Note that ord₂ $(f(w))$ is odd. On the other hand, let $\text{ord}_2(z) = v$. 2.3.1 Suppose $v \neq 0, 1$. Then ord₂($g(z)$) = 2 or 4*v*, which in any case is even, so a contradiction. 2.3.2 Suppose $v = 0$. Then $\text{ord}_2(g(z)) = 0$, which is even, so a contradiction. 2.3.3 Suppose $v = 1$. Then $\text{ord}_2(g(z)) = 2$, which is even, so a contradiction. Therefore, $C'_d(\mathbb{Q}_2) = \emptyset$. 2.4 *d* = *q*. Let $(z, w) \in C'_d(\mathbb{Q}_p)$. Note that $\text{ord}_p(2k - 1) \ge 0$. 2.4.1 Suppose ord $_p(z) \ge 0$. Note that ord $_p(g(z)) \ge 0$. This implies that ord $_p(f(w)) \ge 0$, so ord_{*p*}(*w*) ≥ 0. Hence, *z*, *w* ∈ \mathbb{Z}_p . Reducing Equation [\(2\)](#page-3-1) modulo *p*, we get $w^2 \equiv q \pmod{p}$. Thus, $\left(\frac{q}{p}\right)$ $\frac{q}{p}$ = 1. 2.4.2 Suppose ord_p(z) =: −*v* < 0. Note that ord_p($g(z)$) = 2−4*v*. This implies that ord_p($f(w)$) = 2−4*v*, so ord_{*p*}(*w*) = −(2*v*−1). Letting (*z*,*w*) = (*Z*/*p^v*,*W*/*p*^{2*v*−1}) and by simplifying, we get (5) $W^2 = p^{4\nu-2}q + 2(2k-1)p^{2\nu-1}Z^2 - q^{t-1}Z^4,$ and $\text{ord}_p(Z) = \text{ord}_p(W) = 0$. Then $Z, W \in \mathbb{Z}_p$. Reducing Equation [\(5\)](#page-5-0) modulo p, we get $W^2 \equiv -q^{t-1}Z^4 \pmod{p}$. Thus, $\left(\frac{-1}{p}\right) = 1$, i.e., $p \equiv 1 \pmod{4}$. Thus, if $\left(\frac{q}{p}\right)$ $\binom{q}{p}$ = -1 and $p \equiv 3 \pmod{4}$ then $C'_d(\mathbb{Q}_p) = \emptyset$. 2.5 $d = -1, qp, -p$. By closure property, if $\left(\frac{q}{p}\right)$ p_p^q = -1 and *p* = 3 (mod 4) then $q \notin S^{(\tilde{\phi})}(E'_{p,\theta}/\mathbb{Q}),$ and $-q, p, -qp \in S^{(\phi)}(E'_{p,\theta}/\mathbb{Q})$ implies that $-1, qp, -p \notin S^{(\phi)}(E'_{p,\theta}/\mathbb{Q})$. By reciprocity law, we have shown that if $p \equiv 3 \pmod{4}$ and $\left(\frac{p}{q}\right)$ {1,−*q*, *p*,−*qp*}. Therefore, if part (i) holds then $S^{(\phi)}(E_{p,\theta}/\mathbb{Q}) = \{1\}$ and $S^{(\hat{\phi})}(E'_{p,\theta}/\mathbb{Q}) = \{1, -q, p, -qp\} \cong (\mathbb{Z}/2\mathbb{Z})^2$. Thus, rank $(E_{p,\theta}(\mathbb{Q})) \leq 0+2-2=0$. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 $rac{1}{37}$ 38

Next, we prove part (ii). We use the same set-up as above. For the group $S^{(\phi)}(E_{p,\theta}/\mathbb{Q})$, cases 1.1, 1.2 and 1.3 of part (i) still hold, and $1 \in S^{(\phi)}(E_{p,\theta}/\mathbb{Q})$. We consider the remaining cases. 1.4 $d = pd'$ for some d' . Let $(z, w) \in C_d(\mathbb{Q}_p)$. 39 $\overline{40}$ $\frac{1}{41}$ 42

 $\binom{p}{q} = 1$, then we obtain $S^{(\phi)}(E'_{p,\theta}/\mathbb{Q}) = 0$

- 1.4.1 Suppose ord $_p(z) > 0$. Note that ord $_p(f(w))$ is odd. On the other hand, ord $_p(g(z)) = 2$, which is even, so a contradiction. Thus, $C_d(\mathbb{Q}_p) = \emptyset$.
- 1.4.2 Suppose ord_{*p*}(*z*) = 0. Note that ord_{*p*}(*g*(*z*)) ≥ 2. This implies that ord_{*p*}(*f*(*w*)) ≥ 2, so $\text{ord}_p(w) \ge 1$. Letting $w = pW$, we get $pd'W^2 = d'^2 - 4(2k - 1)d'z^2 + 16k^2z^4$ and ord_{*p*}(\hat{W}) ≥ 0. Hence, *z*, $W \in \mathbb{Z}_p$. Reducing this equation modulo *p*, we get $d'^2 - 4(2k 1)d'z^2 + 16k^2z^4 \equiv 0 \pmod{p}$. Multiplying both sides by $4k^2$ and adding both sides by $-d^{2}(4k-1)$, we get $(8k^{2}z^{2} - (2k-1)d')^{2} \equiv -d^{2}(4k-1) \pmod{p}$. This implies that $\left(\frac{-(4k-1)}{p}\right) = \left(\frac{-q}{p}\right) = 1.$
- 1.4.3 Suppose ord $p(z) = -v < 0$. Note that ord $p(f(w))$ is odd. On the other hand, ord $p(g(z)) =$ 2−4*v*, which is even, so a contradiction. Thus, $C_d(\mathbb{Q}_p) = \emptyset$. Thus, if $\left(\frac{-q}{p}\right) = -1$ then $C_d(\mathbb{Q}_p) = \emptyset$.
- 1.5 $d = k_i d'$ for some d' . Here, k_i could be any prime factor of k but we exclude exactly one k_i that is congruent to 3 modulo 4 and we treat this case in item 1.6. The existence of such prime factor is valid since $k \equiv 3 \pmod{4}$ by assumption. In this case, if $\left(\frac{p}{k}\right)$ $\left(\frac{p}{k_i}\right) = -1$ then $C_d(\mathbb{Q}_{k_i}) = \emptyset$. The proof is identical to case 1.4 of part (i).
- 1.6 $d = k_i$ where $k_i \equiv 3 \pmod{4}$ is the prime factor of k excluded in case 1.5. Replacing *z* by $z/2$, we get

(6)
$$
k_i w^2 = k_i^2 - (2k-1) p k_i z^2 + k^2 p^2 z^4.
$$

Denote by $g(z)$ the right-hand side of Equation [\(6\)](#page-6-0). Let $(z, w) \in C_d(\mathbb{Q}_2)$.

- 1.6.1 Suppose ord₂(*z*) ≥ 0. Note that ord₂(*g*(*z*)) ≥ 0. This implies that ord₂(*f*(*w*)) ≥ 0, so ord₂(*w*) ≥ 0. Hence, *z*, *w* ∈ \mathbb{Z}_2 . Reducing Equation [\(6\)](#page-6-0) modulo 8, we get $k_i w^2 \equiv 1 - (2k - 1)$ 1) $pk_iz^2 + z^4 \pmod{8}$. By assumption, $k_i \equiv 3 \pmod{4}$ and $k \equiv 3 \pmod{4}$.
	- 1.6.1.1 Suppose ord₂(*z*) = 0. Then $k_i w^2 \equiv 1 + 3pk_i + 1 \equiv 2 + 3pk_i \pmod{8}$. This implies that $w^2 \equiv 2k_i + 3p \equiv 6 + 3p \pmod{8}$, so $p \equiv 1 \pmod{8}$.
	- 1.6.1.2 Suppose ord₂(*z*) = 1. Then $k_i w^2 \equiv 1 + 3pk_i(4) + 0 \equiv 5 \pmod{8}$, a contradiction. 1.6.1.3 Suppose ord₂(*z*) > 1. Then $k_i w^2 \equiv 1 \pmod{8}$, a contradiction.
- 1.6.2 Suppose ord₂(*z*) =: −*v* < 0. Note that ord₂(*g*(*z*)) = −4*v*. This implies that ord₂(*f*(*w*)) = $-4v$, so ord₂ $(w) = -2v$. Letting $(z, w) = (Z/2^v, W/2^{2v})$ and by simplifying, we get

(7) $k_iW^2 = 2^{4\nu}k_i^2 - 2^{2\nu}(2k-1)pk_iZ^2 + k^2p^2Z^4,$

and $\text{ord}_2(Z) = \text{ord}_2(W) = 0$. Then $Z, W \in \mathbb{Z}_2$. Reducing Equation [\(7\)](#page-6-1) modulo 4, we get $k_iW^2 \equiv 1 \pmod{4}$, a contradiction since $k_i \equiv 3 \pmod{4}$. Thus, $C_d(\mathbb{Q}_2) = \emptyset$.

Thus, if
$$
p \equiv 3, 5, \text{ or } 7 \pmod{8}
$$
 then $C_d(\mathbb{Q}_2) = \emptyset$.

By reciprocity law, we have shown that if $\left(\frac{p}{q}\right)$ $\binom{p}{q} = -1, \, \left(\frac{p}{k_i}\right)$ $\binom{p}{k_i} = -1$ for all k_i except one $k_i \equiv 3 \pmod{4}$, and $p \equiv 3, 5$, or 7 (mod 8), then $S^{(\phi)}(E_{p,\theta}/\mathbb{Q}) = \{1\}.$

Next, we consider $S^{(\phi)}(E'_{p,\theta}/\mathbb{Q})$. Note that cases 2.1, 2.2, and 2.3 of part (i) still hold and 1, −*q* ∈ $S^{(\hat{\phi})}(E'_{p,\theta}/\mathbb{Q})$. We consider the remaining cases.

2.4 $d = q$. Let $(z, w) \in C'_d(\mathbb{Q}_{k_i})$, where $k_i \equiv 3 \pmod{4}$ is the prime factor of *k* excluded in case 1.5. 42

- 2.4.1 Suppose ord $_{k_i}(z) \geq 0$. Note that ord $_{k_i}(g(z)) \geq 0$. This implies that ord $_{k_i}(f(w)) \geq 0$, so ord_{*ki*}(*w*) ≥ 0. Hence, *z*, *w* ∈ \mathbb{Z}_{k_i} . Note that *t* = 1 by assumption, so 4*k* − 1 = *q*. Dividing both sides of Equation [\(2\)](#page-3-1) by *q* and reducing modulo k_i , we get $w^2 \equiv -1 - 2pz^2 - p^2z^4$ $(\text{mod } k_i)$, that is, $w^2 \equiv -(pz^2+1)^2 \pmod{k_i}$. If $\text{ord}_{k_i}(pz^2+1) = 0$, then $\left(\frac{-1}{k_i}\right) = 1$, a contradiction since $k_i \equiv 3 \pmod{4}$. Thus, $pz^2 + 1 \equiv 0 \pmod{k_i}$, that is, $\left(\frac{-p}{k_i}\right) = 1$. Since $\left(\frac{-1}{k_i}\right) = -1$, we obtain $\left(\frac{p}{k_i}\right)$ $(\frac{p}{k_i}) = -1.$
	- 2.4.2 Suppose ord $k_i(z) = -v < 0$. Note that ord $k_i(g(z)) = -4v$. This implies that ord $k_i(f(w)) =$ $-4v$, so $\text{ord}_{k_i}(w) = -2v$. Letting $(z, w) = (Z/k_i^v, W/k_i^{2v})$ and by simplifying, we get

(8)
$$
W^2 = k_i^{4\nu}q + 2(2k-1)p k_i^{2\nu}Z^2 - p^2 Z^4,
$$

and $\text{ord}_{k_i}(Z) = \text{ord}_{k_i}(W) = 0$. Then $Z, W \in \mathbb{Z}_{k_i}$. Reducing Equation [\(8\)](#page-7-0) modulo k_i , we get $W^2 \equiv -p^2 Z^4 \pmod{k_i}$, that is, $\left(\frac{-1}{k_i}\right) = 1$, a contradiction since $k_i \equiv 3 \pmod{4}$. Thus, $C'_d(\mathbb{Q}_{k_i}) = \emptyset.$

Thus, if
$$
\left(\frac{p}{k_i}\right) = 1
$$
 then $C'_d(\mathbb{Q}_{k_i}) = \emptyset$.

2.5 $d = -1, qp, -p$. By closure property, if $\left(\frac{p}{k}\right)$ $\left(\frac{p}{k_i}\right) = 1$ then $q \notin S^{(\hat{\phi})}(E'_{p,\theta}/\mathbb{Q})$, and $-q, p, -qp \in$ $S^{(\hat{\phi})}(E'_{p,\theta}/\mathbb{Q})$ implies that $-1, qp, -p \notin S^{(\hat{\phi})}(E'_{p,\theta}/\mathbb{Q})$.

We have shown that if $\left(\frac{p}{k}\right)$ $\binom{p}{k_i} = 1$ for exactly one $k_i \equiv 3 \pmod{4}$, then $S^{(\phi)}(E'_{p,\theta}/\mathbb{Q}) = \{1, -q, p, -qp\}.$ Therefore, if part (ii) holds then

$$
S^{(\phi)}(E_{p,\theta}/\mathbb{Q}) = \{1\} \quad \text{and} \quad S^{(\widehat{\phi})}(E'_{p,\theta}/\mathbb{Q}) = \{1, -q, p, -qp\} \cong (\mathbb{Z}/2\mathbb{Z})^2.
$$

Thus, rank $(E_{p,\theta}(\mathbb{Q})) \leq 0+2-2=0$.

Lastly, we prove part (iii). For $S^{(\phi)}(E_{p,\theta}/\mathbb{Q})$, all of the cases of part (ii) hold except case 1.6.

1.6 $d = k_i$, where $k_i \equiv 3 \pmod{4}$ is the prime factor of *k* excluded in case 1.5 of part (ii). Replacing *z* by *z*/2, we get

(9)
$$
k_i w^2 = k_i^2 - (2k-1) p k_i z^2 + k^2 p^2 z^4.
$$

Denote by $g(z)$ the right-hand side of Equation [\(9\)](#page-7-1). Let $(z, w) \in C_d(\mathbb{Q}_2)$. 1.6.1 Suppose ord₂(*z*) ≥ 0. Note that ord₂(*g*(*z*)) ≥ 0. This implies that ord₂(*f*(*w*)) ≥ 0, so ord₂(*w*) ≥ 0. Hence, *z*, *w* ∈ \mathbb{Z}_2 . Reducing Equation [\(9\)](#page-7-1) modulo 8, we get $k_i w^2 \equiv 1 - (2k - 1)$ 1) $pk_iz^2 + z^4 \pmod{8}$. By assumption, $k_i \equiv 3 \pmod{4}$ and $k \equiv 1 \pmod{4}$.

1.6.1.1 Suppose ord₂(*z*) = 0. Then $k_i w^2 \equiv 1 - pk_i + 1 \equiv 2 - pk_i \pmod{8}$. This implies that $w^2 \equiv 2k_i - p \equiv 6 - p \pmod{8}$, so $p \equiv 5 \pmod{8}$.

1.6.1.2 Suppose ord₂(*z*) = 1. Then $k_i w^2 \equiv 1 - 4pk_i + 0 \equiv 5 \pmod{8}$, so a contradiction.

1.6.1.3 Suppose ord₂(*z*) > 1. Then $k_i w^2 \equiv 1 \pmod{8}$, so a contradiction.

1.6.2 Suppose ord₂(*z*) =: −*v* < 0. Note that ord₂(*g*(*z*)) = −4*v*. This implies that ord₂(*f*(*w*)) = $-4v$, so ord₂ $(w) = -2v$. Letting $(z, w) = (Z/2^v, W/2^{2v})$ and by simplifying, we get

(10)
$$
k_i W^2 = 2^{4\nu} k_i^2 - 2^{2\nu} (2k - 1) p k_i Z^2 + k^2 p^2 Z^4,
$$

and $\text{ord}_2(Z) = \text{ord}_2(W) = 0$. Then $Z, W \in \mathbb{Z}_2$. Reducing Equation [\(10\)](#page-7-2) modulo 4, we get $k_iW^2 \equiv 1 \pmod{4}$, a contradiction since $k_i \equiv 3 \pmod{4}$. Thus, $C_d(\mathbb{Q}_2) = \emptyset$. Thus, if $p \equiv 1, 3$, or 7 (mod 8) then $C_d(\mathbb{Q}_2) = \emptyset$.

40 41 42 $\left(\frac{p}{q}\right) = -1, \left(\frac{p}{k_i}\right)$

We have shown that if $\left(\frac{p}{q}\right)$

 $\left(\frac{p}{k_i}\right) = -1$ for all k_i except one $k_i \equiv 3 \pmod{4}$, and $p \equiv 1, 3$, or 7

 $\binom{p}{k_i} = 1$ for exactly one $k_i \equiv 3 \pmod{4}$,

 \mathcal{L} $\overline{\mathcal{L}}$

 \int

.

 $(\text{mod } 8), \text{ then } S^{(\phi)}(E_{p,\theta}/\mathbb{Q}) = \{1\}.$ For $S^{(\hat{\phi})}(E'_{p,\theta}/\mathbb{Q})$, all of the cases in part (ii) hold. Thus, if $\left(\frac{p}{k_i}\right)$ then $S^{(\phi)}(E'_{p,\theta}/\mathbb{Q}) = \{1, -q, p, -qp\}$. Therefore, if part (iii) holds then $S^{(\phi)}(E_{p,\theta}/\mathbb{Q}) = \{1\}$ and $S^{(\phi)}(E'_{p,\theta}/\mathbb{Q}) = \{1, -q, p, -qp\} \cong (\mathbb{Z}/2\mathbb{Z})^2$. Thus, rank($E_{p,\theta}(\mathbb{Q})$) ≤ 0+2−2 = 0. We prove the second theorem. *Proof of Theorem [1.2.](#page-1-1)* First, consider part (i). The θ-CN elliptic curve is given by $E_{p,\theta}: y^2 = x^3 + 2(r-1)px^2 - (2r-1)p^2x.$ Write $r = r_1^{m_1} r_2^{m_2} \cdots r_n^{m_n}$, where r_i 's are distinct odd primes and m_i 's are positive integers. We obtain the sets $S = \{ \infty, 2, r_1, r_2, \ldots, r_n, q, p \}$ and $\pm 1, \pm 2, \pm p, \pm q, \pm 2p, \pm 2q, \pm pq, \pm 2pq, \pm r_{i_1} \cdots r_{i_j}$ $\pm 2r_{i_1}\cdots r_{i_j}, \pm pr_{i_1}\cdots r_{i_j}, \pm qr_{i_1}\cdots r_{i_j}, \pm 2pr_{i_1}\cdots r_{i_j},$ $\pm 2qr_{i_1}\cdots r_{i_j}, \pm pqr_{i_1}\cdots r_{i_j}, \pm 2pqr_{i_1}\cdots r_{i_j},$ where $i_j, j \in \{1, 2, \ldots, n\}$ and $i_j \neq i_{j'}$ for $j \neq j'$. Note that $\mathbb{Q}(S,2)$ contains 2^{n+4} distinct elements. The curve is 2-isogenous to $E'_{p,\theta}$ given by

 $E'_{p,\theta}: y^2 = x^3 - 4(r-1)px^2 + 4r^2p^2x,$

and for $d \in \mathbb{Q}(S,2)$, the corresponding homogeneous spaces are given by 24 25

(11) $C_d : dw^2 = d^2 - 4(r-1)pdz^2 + 4r^2p^2z^4$ 26

and 27 28

$$
\frac{29}{30}(12) \hspace{1cm} C'_d: dw^2 = d^2 + 2(r-1)p dz^2 - (2r-1)p^2 z^4.
$$

Note that the image of $\mathscr O$ and $(0,0)$ under δ is $1 \in S^{(\phi)}(E_{p,\theta}/\mathbb Q)$. The other values of $d \in \mathbb Q(S,2)$ are considered below. For the following cases, denote by $f(w)$ and $g(z)$ the left-hand side and right-hand side of Equation [\(11\)](#page-8-0), respectively. $\frac{1}{31}$ $\frac{1}{32}$ $\frac{1}{33}$

1.1 $d < 0$. Note that $C_d(\mathbb{R}) = \emptyset$ since $f(w) \leq 0$, while $g(z) > 0$.

- 1.2 $d = qd'$ for some d' . Note that $\text{ord}_q(f(w))$ is odd. On the other hand, let $\text{ord}_q(z) = v$. Then $\text{ord}_q(g(z)) = 2$ or 4*v*, which in any case is even, so a contradiction. Thus, $C_d(\mathbb{Q}_q) = \emptyset$.
- 1.3 $d = r_i d'$ for some d' . Let $(z, w) \in C_d(\mathbb{Q}_{r_i})$.

 $\mathbb{Q}(S,2) =$

 $\sqrt{ }$ \int

 $\overline{\mathcal{L}}$

- 1.3.1 Suppose ord $r_i(z) > 0$. Note that ord $r_i(f(w))$ is odd. On the other hand, ord $r_i(g(z)) = 2$, which is even, so a contradiction. Thus, $C_d(\mathbb{Q}_{r_i}) = \emptyset$.
- 1.3.2 Suppose ord $f_i(z) = 0$. Note that ord $f_i(g(z)) \ge 1$. This implies that ord $f_i(f(w)) \ge 1$, so ord_{*ri*}(*w*) ≥ 0. Hence, *z*, *w* ∈ \mathbb{Z}_{r_i} . Dividing both sides of Equation [\(11\)](#page-8-0) by *r_i* and reducing modulo r_i , we get $d'w^2 \equiv 4p d'z^2 \pmod{r_i}$. This implies that $\left(\frac{p}{r_i}\right)^2$ $(\frac{p}{r_i})=1.$

Thus, $rank(E_{p,\theta}/\mathbb{Q}) \le 0+2-2=0$. 42

Next, we prove part (ii). We use the same set-up as above. Since *t* is assumed to be even and $q \equiv 3$ (mod 4), we get $r \equiv 1 \pmod{4}$. For $S^{(\phi)}(E_{p,\theta}/\mathbb{Q})$, all of the cases of part (i) hold. Thus, if $p \equiv 3$ (mod 8) and $\left(\frac{p}{r}\right)$ $F_{r_i}^p$ = −1 for all *i* = 1,...,*n*, then *S*^(ϕ)($E_{p,\theta}$ / \mathbb{Q}) = {1}. The group $S^{(\phi)}(E'_{p,\theta}/\mathbb{Q})$ is considered next. Since *t* is even, we have $-(2r-1) = -q^t \equiv -1$ (mod $(\mathbb{Q}^*)^2$). Thus, the images of $\mathscr O$ and $(0,0)$ under δ' are $1, -1 \in S^{(\hat{\phi})}(E'_{p,\theta}/\mathbb{Q})$, respectively. Note also that cases 2.2 and 2.3 of part (i) still hold. The other values of $d \in \mathbb{Q}(\dot{S}, 2)$ are considered below. 2.1 $d = p, -p$. The homogeneous space [\(12\)](#page-8-1) has a global solution $(z, w) = (1, 0)$. Thus, $p \in$ $S^{(\hat{\phi})}(E'_{p,\theta}/\mathbb{Q})$. By closure property, since $-1, p \in S^{(\hat{\phi})}(E'_{p,\theta}/\mathbb{Q})$, we have $-p \in S^{(\hat{\phi})}(E'_{p,\theta}/\mathbb{Q})$. 2.4 $d = q, -q$. Let $(z, w) \in C'_q(\mathbb{Q}_q)$. 2.4.1 Suppose ord_{*q*}(*z*) > 0. Note that ord_{*q*}(*f*(*w*)) is odd. On the other hand, ord_{*q*}(*g*(*z*)) = 2, which is even, so a contradiction. Thus, $C_q'(\mathbb{Q}_q) = \emptyset$. 2.4.2 Suppose ord_{*q*}(*z*) = 0. Note that ord_{*q*}(*g*(*z*)) ≥ 1. This implies that ord_{*q*}(*f*(*w*)) ≥ 1, so ord_q $(w) \ge 0$. Hence, *z*, $w \in \mathbb{Z}_q$. Dividing both sides of Equation [\(12\)](#page-8-1) by *q* and reducing modulo *q*, we get $w^2 \equiv -pz^2 \pmod{q}$. Thus, $\left(\frac{-p}{q}\right) = 1$. 2.4.3 Suppose ord $_q(z) =: -v < 0$. Let $z = \frac{Z}{q}$, so that ord $_q(Z) = 0$. By simplifying, we get (17) $4^{v}w^{2} = q^{4v+1} + 2(r-1)pq^{2v}Z^{2} - q^{t-1}p^{2}Z^{4}.$ We abuse notation and denote by $f(w)$ and $g(Z)$ the left-hand side and right-hand side of Equation [\(17\)](#page-11-0), respectively. 2.4.3.1 Suppose $2v > t - 1$. Note that $\text{ord}_q(g(Z)) = t - 1$. This implies that $\text{ord}_q(f(w)) =$ *t* − 1, so $\text{ord}_q(w) = (t - 1 - 4v)/2$. Let $w = W/q^{(t-1-4v)/2}$, so that $\text{ord}_q(W) = 0$. Then $Z, W \in \mathbb{Z}_q$. Dividing both sides of Equation [\(17\)](#page-11-0) by q^{t-1} and reducing modulo *q*, we get $W^2 \equiv -p^2 Z^2 \pmod{q}$, i.e., $\left(\frac{-1}{q}\right) = 1$. Thus, $q \equiv 1 \pmod{4}$. 2.4.3.2 Suppose $2v < t - 1$. Note that $\text{ord}_q(g(Z)) = 2v$. This implies that $\text{ord}_q(f(w)) = 2v$, so $\text{ord}_q(w) = -v$. Let $w = W/q^v$, so that $\text{ord}_q(W) = 0$. Then $Z, W \in \mathbb{Z}_q$. Dividing both sides of Equation [\(17\)](#page-11-0) by $q^{2\nu}$ and reducing modulo q, we get $W^2 \equiv -pZ^2$ (mod *q*). Thus, $\left(\frac{-p}{q}\right) = 1$. Thus, if $\left(\frac{-p}{q}\right) = -1$ and $q \equiv 3 \pmod{4}$ then $C'_q(\mathbb{Q}_q) = \emptyset$. By closure property, $-q \notin S^{(\hat{\phi})}(E'_{p,\theta}/\mathbb{Q})$ whenever $\left(\frac{-p}{q}\right) = -1$ and $q \equiv 3 \pmod{4}$. 2.5 $d = qp, -qp$. By closure property, since $p, -p \in S^{(\hat{\phi})}(E'_{p,\theta}/\mathbb{Q})$ and $q, -q \notin S^{(\hat{\phi})}(E'_{p,\theta}/\mathbb{Q})$ whenever $\left(\frac{-p}{q}\right) = -1$ and $p \equiv 3 \pmod{4}$ then $pq, -pq \notin S^{(\hat{\phi})}(E'_{p,\theta}/\mathbb{Q})$ whenever $\left(\frac{-p}{q}\right) = -1$ and $p \equiv 3 \pmod{4}$. We have shown that if $\left(\frac{-p}{q}\right) = -1$ and $q \equiv 3 \pmod{4}$ then $S^{(\hat{\phi})}(E'_{p,\theta}/\mathbb{Q}) = \{1, -1, p, -p\}$. Therefore, $\overline{37}$ if part (ii) holds then $S^{(\phi)}(E_{p,\theta}/\mathbb{Q}) = \{1\}$ and $S^{(\hat{\phi})}(E'_{p,\theta}/\mathbb{Q}) = \{1, -1, p, -p\} \cong (\mathbb{Z}/2\mathbb{Z})^2$. $\frac{1}{40}$ Thus, rank $(E_{p,\theta}(\mathbb{Q})) \leq 0+2-2=0$. Lastly, we prove part (iii). We use the same set-up as above. For the group $S^{(\phi)}(E_{p,\theta}/\mathbb{Q})$, cases 1.1 and 1.2 of part (i) still hold, and $1 \in S^{(\phi)}(E_{p,\theta}/\mathbb{Q})$. We investigate the remaining cases. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 38 39 41

- 1.3.1 Suppose ord $_p(z) > 0$. Note that ord $_p(f(w))$ is odd. On the other hand, ord $_p(g(z)) = 2$, which is even, so a contradiction. Thus, $C_d(\mathbb{Q}_p) = \emptyset$.
- 1.3.2 Suppose ord_{*p*}(*z*) = 0. Note that ord_{*p*}(*g*(*z*)) ≥ 2. This implies that ord_{*p*}(*f*(*w*)) ≥ 2, so $\text{ord}_p(w) \ge 1$. Letting $w = pW$, we get $pd'W^2 = d'^2 - 4(r - 1)d'z^2 + 4r^2z^4$ and $\text{ord}_p(W) \ge$ 0. Then $z, W \in \mathbb{Z}_p$. Reducing this equation modulo *p*, we get $d'^2 - 4(r - 1)d'z^2 + 4r^2z^4 \equiv 0$ (mod *p*). Multiplying both sides by r^2 and adding both sides by $-d'^2(2r-1)$, we get $(2r^2z^2 - (r-1)d')^2 \equiv -d'^2(2r-1) \pmod{p}$. This implies that $\frac{(-2r-1)}{p} = \frac{-q}{p} = 1$.
- 1.3.3 Suppose ord $_p(z) =: -v < 0$. Note that ord $_p(f(w))$ is odd. On the other hand, ord $_p(g(z)) =$ 2−4*v*, which is even, so a contradiction. Thus, $C_d(\mathbb{Q}_p) = \emptyset$.

Thus, if
$$
\left(\frac{-q}{p}\right) = -1
$$
 then $C_d(\mathbb{Q}_p) = \emptyset$.

- 1.4 $d = r_i d'$ for some d' . Here, r_i could be any prime factor of *r* but we exclude exactly one r_i that is congruent to 3 modulo 4 and we treat this case in item 1.5. The existence of such prime factor is valid since $r \equiv 3 \pmod{4}$ by assumption. In this case, if $\left(\frac{p}{r}\right)$ $\left(\frac{p}{r_i}\right) = -1$, then $C_d(\mathbb{Q}_{r_i}) = \emptyset$. The proof is identical to case 1.3 of part (i).
- 1.5 *d* = *r_i* where $r_i \equiv 3 \pmod{4}$ is the prime factor of *r* excluded in case 1.4. Let $(z, w) \in C_d(\mathbb{Q}_2)$. Note that ord₂ $(r-1) = 1$ since $r \equiv 3 \pmod{4}$ by assumption.
	- 1.5.1 Suppose ord₂(*z*) \geq 0. Note that ord₂(*g*(*z*)) = 0. This implies that ord₂(*f*(*w*)) = 0, so ord₂(*w*) = 0. Hence, *z*, *w* $\in \mathbb{Z}_2$. Reducing Equation [\(11\)](#page-8-0) modulo 4, we get $r_iw^2 \equiv 1$ (mod 4), a contradiction since $r_i \equiv 3 \pmod{4}$. Thus, $C_d(\mathbb{Q}_2) = \emptyset$.
	- 1.5.2 Suppose ord₂(*z*) =: −*v* < 0. Note that ord₂(*g*(*z*)) = 2−4*v*. This implies that ord₂(*f*(*w*)) = $2-4v$, so $\text{ord}_2(w) = -(2v-1)$. Letting $(z, w) = (Z/2^v, W/2^{2v-1})$ and simplifying, we get

(18)
$$
r_i W^2 = 2^{4\nu - 2} r_i^2 - 2^{2\nu} (r - 1) pr_i Z^2 + r^2 p^2 Z^4,
$$

and $\text{ord}_2(Z) = \text{ord}_2(W) = 0$. Then $Z, W \in \mathbb{Z}_2$. Reducing Equation [\(18\)](#page-12-0) modulo 4, we get $r_iW^2 \equiv 1 \pmod{4}$, a contradiction since $r_i \equiv 3 \pmod{4}$. Thus, $C_d(\mathbb{Q}_2) = \emptyset$. In any case, $C_d(\mathbb{Q}_2) = \emptyset$.

1.6 *d* = 2. Let $(z, w) \in C_d(\mathbb{Q}_2)$. Note that ord₂ $(r - 1) = 1$.

- 1.6.1 Suppose ord₂(*z*) > 0. Note that ord₂(*f*(*w*)) is odd. On the other hand, ord₂(*g*(*z*)) = 2, which is even, so a contradiction. Thus, $C_d(\mathbb{Q}_2) = \emptyset$.
- 1.6.2 Suppose ord₂(*z*) = 0. Note that ord₂(*g*(*z*)) ≥ 2. This implies that ord₂(*f*(*w*)) ≥ 2, so ord₂(*w*) ≥ 1. Letting *w* = 2*W* and simplifying, we get $2W^2 = 1 - 2(r - 1)pz^2 + r^2p^2z^4$ and ord₂(*W*) ≥ 0. Hence, *z*, *W* ∈ \mathbb{Z}_2 . Assuming *r* ≡ 3 (mod 4) and reducing this equation modulo 8, we get $2W^2 \equiv 6 \pmod{8}$, so a contradiction. Thus, $C_d(\mathbb{Q}_2) = \emptyset$.
- 1.6.3 Suppose ord₂(*z*) =: $-v < 0$. Note that ord₂(*f*(*w*)) is odd. On the other hand, ord₂(*g*(*z*)) = 2−4*v*, which is even, so a contradiction. Thus, $C_d(\mathbb{Q}_2) = \emptyset$.
- In any case, $C_d(\mathbb{Q}_2) = \emptyset$.
- 1.7 *d* = $2r_i$ where $r_i \equiv 3 \pmod{4}$ is the prime factor of *r* excluded in case 1.4. Let $(z, w) \in C_d(\mathbb{Q}_p)$. Note that ord_{*p*}($r - 1$) ≥ 0.
- 1.7.1 Suppose ord $_p(z) \geq 0$. Note that ord $_p(g(z)) \geq 0$. This implies that ord $_p(f(w)) \geq 0$, so ord_{*p*}(*w*) ≥ 0. Hence, *z*, *w* ∈ \mathbb{Z}_p . Reducing Equation [\(11\)](#page-8-0) modulo *p*, we get $2r_iw^2 \equiv 1$ (mod *p*). Thus, $\left(\frac{2r_i}{p}\right) = 1$.
	- 1.7.2 Suppose ord $_p(z) =: -v < 0$. Note that ord $_p(g(z)) = 2-4v$. This implies that ord $_p(f(w)) =$ 2−4*v*, so ord_{*p*}(*w*) = −(2*v*−1). Letting (*z*,*w*) = (*Z*/*p*^{*v*},*W*/*p*^{2*v*−1}) and simplifying, we get

(19)
$$
2r_iW^2 = p^{4\nu-2}r_i^2 - 2(r-1)p^{2\nu-1}r_iz^2 + r^2z^4,
$$

and $\text{ord}_p(Z) = \text{ord}_p(W) = 0$. Then $Z, W \in \mathbb{Z}_p$. Reducing Equation [\(19\)](#page-13-0) modulo p, we get $2r_iW^2 \equiv r^2Z^4 \pmod{p}$. Thus, $\left(\frac{2r_i}{p}\right) = 1$.

Thus, if
$$
\left(\frac{2r_i}{p}\right) = -1
$$
 then $C_d(\mathbb{Q}_p) = \emptyset$.

We have shown that if $\left(\frac{p}{p}\right)$ $\binom{p}{r_i} = -1$ for all r_i except one with $r_i \equiv 3 \pmod{4}$, $\left(\frac{-q}{p}\right) = -1$ and $\left(\frac{2r_i}{p}\right) = -1$, where r_i is the one excluded above, then $S^{(\phi)}(E_{p,\theta}/\mathbb{Q}) = \{1\}$. The condition that $\left(\frac{2r_i}{p}\right) = -1$ is equivalent to $p \equiv 1$ or 7 (mod 8) and $\left(\frac{r_i}{p}\right) = -1$, or $p \equiv 3$ or 5 (mod 8) and $\left(\frac{r_i}{p}\right) = 1$. 12 13 $\frac{14}{1}$ 15 16

Next, we consider $S^{(\hat{\phi})}(E'_{p,\theta}/\mathbb{Q})$. Note that the cases 2.1, 2.2 and 2.3 of part (i) still hold and 1,−*q* ∈ $S^{(\hat{\phi})}(E'_{p,\theta}/\mathbb{Q})$. We consider the remaining cases. 17 18

2.4 $d = q$. Let $(z, w) \in C'_d(\mathbb{Q}_{r_i})$ where $r_i \equiv 3 \pmod{4}$ is the prime factor of *r* excluded in case 1.4. 2.4.1 Suppose ord $f_i(z) \ge 0$. Note that ord $f_i(g(z)) \ge 0$. This implies that ord $f_i(f(w)) \ge 0$, so ord_{*ri*}(*w*) ≥ 0. Hence, *z*, *w* ∈ \mathbb{Z}_{r_i} . Note that *t* = 1 by assumption, so 2*r* − 1 = *q*. Dividing both sides of Equation [\(12\)](#page-8-1) by *q* and reducing modulo r_i , we get $w^2 \equiv -1 - 2pz^2 - p^2z^4$ $(\text{mod } r_i)$, that is, $w^2 \equiv -(pz^2+1)^2 \pmod{r_i}$. If $\text{ord}_{r_i}(pz^2+1) = 0$, then $\left(\frac{-1}{r_i}\right) = 1$, a contradiction since $r_i \equiv 3 \pmod{4}$. Thus, $pz^2 + 1 \equiv 0 \pmod{r_i}$, that is, $\left(\frac{-p}{r_i}\right) = 1$. Since $\left(\frac{-1}{r_i}\right) = -1$, we obtain $\left(\frac{p}{r_i}\right)$ $(\frac{p}{r_i}) = -1.$

2.4.2 Suppose ord $r_i(z) = -v < 0$. Note that ord $r_i(g(z)) = -4v$. This implies that ord $r_i(f(w)) =$ $-4v$, so $\text{ord}_{r_i}(w) = -2v$. Letting $(z, w) = (Z/r_i^v, W/r_i^{2v})$ and simplifying, we get

(20)
$$
W^2 = r_i^{4\nu}q + 2(r-1)pr_i^{2\nu}Z^2 - p^2Z^4
$$

and $\text{ord}_{r_i}(Z) = \text{ord}_{r_i}(W) = 0$. Then $Z, W \in \mathbb{Z}_{r_i}$. Reducing Equation [\(20\)](#page-13-1) modulo r_i , we get $W^2 \equiv -p^2 Z^4 \pmod{r_i}$, that is, $\left(\frac{-1}{r_i}\right) = 1$, a contradiction since $r_i \equiv 3 \pmod{4}$. Thus, $C_d'(\mathbb{Q}_{r_i}) = \emptyset.$ Thus, if $\left(\frac{p}{r}\right)$ $\frac{p}{r_i}$ = 1 then $C'_d(\mathbb{Q}_{r_i}) = \emptyset$.

,

2.5 $d = -1, qp, -p$. By closure property, if $\left(\frac{p}{r}\right)$ $\binom{p}{r_i} = 1$ then $q \notin S^{(\hat{\phi})}(E'_{p,\theta}/\mathbb{Q})$, and $-q, p, -qp \in$ $S^{(\hat{\phi})}(E'_{p,\theta}/\mathbb{Q})$ implies that $-1, qp, -p \notin S^{(\hat{\phi})}(E'_{p,\theta}/\mathbb{Q})$.

We have shown that if $\left(\frac{p}{r}\right)$ F_i ^D) = 1, for exactly one $r_i \equiv 3 \pmod{4}$, then $S^{(\phi)}(E'_{p,\theta}/\mathbb{Q}) = \{1, -q, p, -qp\}.$ Therefore, if part (iii) holds then 38 39

$$
\frac{40}{41} \qquad S^{(\phi)}(E_{p,\theta}/\mathbb{Q}) = \{1\} \quad \text{and} \quad S^{(\widehat{\phi})}(E'_{p,\theta}/\mathbb{Q}) = \{1, -q, p, -qp\} \cong (\mathbb{Z}/2\mathbb{Z})^2.
$$

Thus, rank $(E_{p,\theta}(\mathbb{Q})) \le 0 + 2 - 2 = 0$.

Acknowledgements. The authors would like to thank the following for the support given in the conduct of the study: the University of the Philippines Baguio; the Office of the Chancellor of the University of the Philippines Diliman, through the Office of the Vice Chancellor for Research and Development; and the Department of Science and Technology-Accelerated Science and Technology Human Resource Development Program. 2 3 4 5

References

- [1] M. Fujiwara, θ*-congruent numbers*, in: Number Theory (Eger, 1996), edited by K. Gyory et al., de Gruyter, Berlin, (1998), 235–241.
- [2] T. Goto, *A study on the Selmer groups of the elliptic curves with a rational* 2*-torsion*, PhD thesis, Kyushu Univ., 2002.
- [3] K. Heegner, *Diophantische analysis und modulfunktionen*, Math. Z., 56 (1952), 227–253.
- [4] T. Hibino and M. Kan, θ*-congruent numbers and Heegner points*, Arch. Math., 77 (2001), 303–308.
- [5] M. Kan, θ*-congruent numbers and elliptic curves*, Acta Arith., 94 no. 2, (2000), 153–160.
- [6] P. Monsky, *Mock Heegner points and congruent numbers*, Math. Z., 204 no. 1, (1990), 45–67.
	- [7] J. H. Silverman, *The Arithmetic of Elliptic Curves*, vol. 106, Springer, 2009.
	- [8] J. B. Tunnell, *A classical Diophantine problem and modular forms of weight* 3/2, Invent. Math., 72 (1983), 323–334.
	- [9] S. Yoshida, *Some variants of the congruent number problem I*, Kyushu J. Math., 55 (2001), 387–404.
	- [10] S. Yoshida, *Some variants of the congruent number problem II*, Kyushu J. Math., 56 (2002), 147–165.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF THE PHILIPPINES DILIMAN, 1101 QUEZON CITY, PHILIPPINES *Email address*: vmaricheta@math.upd.edu.ph

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF THE PHILIPPINES BAGUIO, 2600 BAGUIO CITY, PHILIPPINES $\frac{1}{22}$ $\frac{1}{23}$ 24

Email address: jbbacani@up.edu.ph

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF THE PHILIPPINES BAGUIO, 2600 BAGUIO CITY, PHILIPPINES

Email address: rsmina1@up.edu.ph

1 Aug 2024 06:25:26 PDT 230916-Mina Version 2 - Submitted to Rocky Mountain J. Math.