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1. Introduction

In this paper, we consider a semilinear problem governed by the logarithmic operator
associated with a strongly damped wave equation. It is well known the notion of logarithmic
operators under different spectral conditions, see e.g. [1], [9], [10], [11], [17], [18], [20], [22]
and [23]. In particular, we already have literature on the logarithm of sectorial operators (see
e.g. [1], [12], [17] and [19]), but when it comes to matrix operators of elliptic operators with a
certain spectral behavior (associated with the sectorial operator theory), we do not have much
information available in the specialized literatures on how the notion of logarithmic operator
behaves in this situation, to the best of our knowledge. Because of this, we present an explicit
characterization of the matrix representation of logarithmic operator for strongly damped
wave operators on bounded smooth domain in n-dimensional Euclidian spaces, in terms
of properties of the logarithmic Dirichlet Laplacian operator, sometimes called ‘spectral-
theoretic logarithm of the Dirichlet Laplacian operator’ (see e.g. [19]).

Inspired by [2], [3] and [17] we consider the strongly damped wave equation

(1.1) B
2
t u´∆Du` 2p´∆Dq

1
2Btu “ fpuq, t ą 0, x P Ω,

with boundary and initial conditions given by
#

up0, xq “ u0pxq, Btup0, xq “ v0pxq, x P Ω,

upt, xq “ 0, t ě 0, x P BΩ,

where Ω is a bounded Lipschitz domain in RN , N ě 3, and f P C1pRq satisfies

(1.2) |f 1psq| ď Cp1` |s|ρ´1q, s P R,
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2 F. D. M. BEZERRA AND L. A. SANTOS

for some

1 ă ρ ă
N

N ´ 2
.

Thanks to the theory of fractional powers of sectorial operators, in the sense of [16, Chapter
I], the notion of logarithmic operators, in the sense of [1, Chapter III], and Balakrishnan’s
formula, we study the logarithmic operator defined by the strongly damped wave equation
associated with (1.1) and the semilinear problem governed by it.

To better present our results, we introduce some notations. Let X “ L2pΩq and let
A : DpAq Ă X Ñ X be the unbounded linear operator defined by

(1.3) Au “ ´∆Du for u P DpAq “ H2
pΩq XH1

0 pΩq,

then A is a positive self-adjoint sectorial operator and ´A generates a compact analytic
C0-semigroup in X.

Denote byXα the fractional power spaces associated with operator A; that is, Xα “ DpAαq
with the norm }Aα ¨ }X : Xα Ñ R`. For α ą 0 define also X´α as the completion of X with

the norm }A´α ¨}X . Observe that with this notation X
1
2 “ H1

0 pΩq and X1 “ H2pΩqXH1
0 pΩq.

It is well known that the problem (1.1) can be rewritten in Y “ X
1
2 ˆX as the abstract

parabolic Cauchy problem

(1.4)
d

dt

„

u
v



` Λ

„

u
v



“

„

0
f epuq



, t ą 0,

„

u
v



t“0

“

„

u0
v0



,

where f e is given by

f epϕqp¨q :“ fpϕp¨qq

and the unbounded linear operator Λ is defined by

Λ : DpΛq Ă X
1
2 ˆX Ñ X

1
2 ˆX,

Λ

„

ϕ
ψ



:“

„

0 ´I

A 2A
1
2

 „

ϕ
ψ



for

„

ϕ
ψ



P DpΛq :“ X1
ˆX

1
2 .

(1.5)

which is a sectorial operator in the sense of [16, Chapter I], see [3].
We can consider well-posed logarithmic counterpart, in some sense, of the form

(1.6)
d

dt

„

u`
v`



` plogΛq

„

u`
v`



“

„

0
f epuq



, t ą 0,

„

u`
v`



t“0

“

„

u0
v0



,

where logΛ “ ´p´ logΛq denotes the logarithmic operator of Λ in the sense of [1, Chapter
III, Section 4]. It is well known that we can consider Λα : DpΛαq Ă Y Ñ Y be the fractional
power associated with operator Λ with α ě 0 and the resolvent operators Λ´α “ pΛαq´1

for any α ě 0. Moreover, the operator Λ has bounded imaginary powers. Namely, ´ logΛ
denotes the infinitesimal generator of the strongly continuous semigroup tΛ´t P LpY q : t ě
0u which is analytic of angle π{2 defined on

Dp´ logΛq “
!

u P Y ; D lim
tŒ0

1

t
pΛ´t ´ Iqu

)
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LOGARITHMIC EVOLUTION EQUATIONS 3

with

´ logΛu “ lim
tŒ0

1

t
pΛ´t ´ Iqu

for any u P Dp´ logΛq.
Denote by Y α the fractional power spaces associated to operator A; that is, Y α “ DpΛαq

with the norm }Λα ¨ }Y : Y α Ñ R`. We assume that f : Y
1
2 Ñ Y is a locally Lipschitz

continuous function; that is, for every u in Y
1
2 there exists a neighborhood U of u in Y

1
2 and

a constant LU ą 0 such that for v, v1 P U ,

}fpvq ´ fpv1q}Y ď LU}v ´ v
1
}
Y

1
2
.

This condition is natural in the applications to semilinear partial differential equations.

Here, we consider the following notion of solution for (1.6). Given

„

u0
v0



P Y we say that
„

u
v



is a local mild solution of (1.6) provided that

„

u
v



P Cpr0, τu0;v0q, Y q and

„

u
v



satisfies

for t P p0, τu0;v0q the integral equation
„

u
v



ptq “ Λ´t
„

u0
v0



`

ż t

0

Λt´s
„

0
f epuq



psqds

for some τu0;v0 ą 0.
In a previous article [2], we considered the following unbounded linear operator defined

by logarithmic stationary wave operator and an evolution equation governed by it

log

„

0 ´I
A 0



defined usually on

D
´

´ log

„

0 ´I
A 0



¯

“

!

u P X
1
2 ˆX; D lim

tŒ0

1

t

´

„

0 ´I
A 0

´t

´ I
¯

u
)

in terms of properties of the logarithmic Dirichlet Laplacian operator. Now, in the context
of sectoriality of operators, we intend to go further.

The relationship between logarithmic operators and well-posed evolutionary equations
also can be found in [9], [10], [11], [13], [14] and [15] where the authors consider results on
existence, regularity and asymptotic behavior of solution for well-posed logarithmic approx-
imations of evolution equations.

In the next section, we introduce the logarithmic operator of Λ and we study the semilinear
parabolic problem (1.6).

2. A second-order evolution equation

This section contains the main results of this article.
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4 F. D. M. BEZERRA AND L. A. SANTOS

2.1. Sectorial operators. In order to better explain the results in this paper, we will
introduce some concepts and terminology. Let Z be a Banach space with norm } ¨ }, and let
B : DpBq Ă Z Ñ Z be a positive sectorial operator with bounded imaginary powers, in the
sense of [1, Chapter III, Section 4] and [16, Definition 1.3.1]. This allows us to define the
fractional power B´α, with inverse Bα, which is given by

B´α “
sinpαπq

π

ż 8

0

λ´αpλI `Bq´1dλ, α P p0, 1q,

see [16].
Denote by Zα “ DpBαq where α P r0, 1s. Recall that Zα is dense in Z for all α P p0, 1s

(see [1]). The fractional power space Zα endowed with the graphic norm } ¨ }α :“ }Bα ¨ }Z is
a Banach space.

Under our considerations on B, we can consider the logarithmic operator of B defined
by logB :“ ´p´ logBq, where ´ logB denote the infinitesimal generator of the strongly
continuous semigroup tB´t; t ě 0u on Z which is analytic of angle π{2, see [1, Chapter III,
p. 152], defined on

Dp´ logBq “
!

u P Z; D lim
tŒ0

1

t
pB´t ´ Iqu

)

with

´ logBu “ lim
tŒ0

1

t
pB´t ´ Iqu

for any u P Dp´ logBq.
From sectorial calculus, we also have

plogBqφ :“

ż 8

0

1

1` λ
pλI `Bq´1pBφ´ φqdλ “ lim

tŒ0

1

t
pBt

´ Iqφ

for any φ P DpBq X RpBq. Moreover, DpBq X RpBq is a core for the logB, see [20], [22, p.
317] and [23].

Thanks to [16] we have the next result.

Theorem 2.1. Let B : DpBq Ă Z Ñ Z be a positive sectorial operator and, for some
α P r0, 1q, f : Zα Ñ Z be Lipschitz continuous on bounded subsets of Zα. Then, for each
w0 P Z

α there exists a unique Zα´solution w “ wpt, w0q of
$

&

%

dw

dt
`Bw “ fpwq, t ą 0,

wp0q “ w0

defined on its maximal interval of existence r0, τw0q and such that

w P Cpr0, τw0q, Z
α
q X C1

pp0, τw0q, Z
β
q X Cpp0, τw0q, Z

1
q, β P r0, 1q.

Thanks to [17, Theorem 6.1] we have the next result.

Theorem 2.2. Let B : DpBq Ă Z Ñ Z be a positive sectorial operator. Then the infinites-
imal generator of the strongly continuous semigroup tB´t; t ě 0u in Z denoted by ´ logB
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LOGARITHMIC EVOLUTION EQUATIONS 5

is such that its additive inverse ´p´ logBq “ logB is a sectorial operator, not necessarily
positive, on Z.

By Theorem 2.2, we have the following result.

Corollary 2.3. Let B : DpBq Ă Z Ñ Z be a positive sectorial operator such that logB :
DplogBq Ă Z Ñ Z is a positive sectorial operator and, f : Z Ñ Z be Lipschitz continuous on
bounded subsets of Z. Then, for each w0 P Z there exists a unique Z´solution w` “ w`pt, w0q

of

(2.1)

$

&

%

dw`
dt

` plogBqw` “ fpw`q, t ą 0,

w`p0q “ u0

defined on its maximal interval of existence r0, τw0q and such that

w`ptq “ B´tw0 `

ż t

0

B´pt´sqfpw`psqqds.

and

w` P Cpr0, τw0q, Zq X C
1
pp0, τw0q, Zq X Cpp0, τw0q, DplogBqq.

Proof: Since B : DpBq Ă Z Ñ Z is a positive sectorial operator such that logB :
DplogBq Ă Z Ñ Z is a positive sectorial operator, the result follows from Theorem 2.1.

2.2. Damped wave operator. In this subsection, we begin to study the parabolic problem
(1.6). Initially, we recall that the eigenvalues of logA are given merely as log µn, where
tµn;n P Nu denotes the ordered sequence of eigenvalues of A including their multiplicity. We
also stress the fact that the eigenfunctions of logA are the same as those of the operator A,
see e.g. [12], [13] and [19].

From [3, Lemma 8.1] we have the following lemma.

Lemma 2.4. If A and Λ are as in (1.3) and in (1.5) respectively then we have all the
following.
i) 0 P ρpΛq and

Λ´1 “

„

2A´
1
2 A´1

´I 0



.

ii) The adjoint Λ˚ of Λ is given by

Λ˚ “

„

0 I

´A 2A
1
2



.

iii) Λ is sectorial operator in X
1
2 ˆ X with ReσpΛq ą 0. The semigroup te´Λt : t ě 0u is

analytic and compact in X
1
2 ˆX.

iv) Fractional powers Λα can be defined for α P p0, 1q through

Λ´α “
sinπα

π

ż 8

0

λ´αpλI ` Λq´1dλ.
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6 F. D. M. BEZERRA AND L. A. SANTOS

v) For each α P p0, 1q the operator Λα is a negative generator of an analytic C0-semigroup
te´Λ

αt : t ě 0u.
vi) Given any 0 ă α ă 1 we have that

Λ´α “

«

p1` αqA´
α
2 αA

´1´α
2

´αA
1´α
2 p1´ αqA´

α
2

ff

,

and

(2.2) Λα “

«

p1´ αqA
α
2 ´αA

´1`α
2

αA
1`α
2 p1` αqA

α
2

ff

.

vii) For each α P p0, 1s the spectrum of ´Λα is the point spectrum consisting of eigenvalues

λα,n “ ´µ
α
2
n , n P N,

where tµnunPN denotes the ordered sequence of eigenvalues of A including their multiplicity.

It follows from [1, Theorem 2.1.3, p. 289] that the semigroup generated by ´Λ, that we

denote by te´Λt : t ě 0u is analytic and compact in X
1
2 ˆX.

Remark 2.5. Consider the fractional partial differential equation
#

B
2
t uα ` p´∆Dq

αuα ` 2p´∆Dq
α
2 Btuα “ αp´∆Dq

´1`α
2 fpuαq,

uαp0, xq “ u0pxq P X
1
2 , uαtp0, xq “ u1pxq P X

1´α
2 ,

for positive time and x P Ω. This problem for variable uα comes from fractional formulation

of the initial value problem in (1.4) for variable

„

uα
vα



with

vα “ α´1p1´ αqp´∆Dq
1
2uα ` α

´1
p´∆Dq

1´α
2 Btuα,

that is, it can be rewritten in X
1
2 ˆX as the parabolic Cauchy problem

(2.3)
d

dt

„

uα
vα



`Λα
„

uα
vα



“

„

0
f epuαq



, t ą 0,

„

uα
vα



t“0

“

„

u0
α´1p1´ αqp´∆Dq

1
2u0 ` α

´1p´∆Dq
1´α
2 u1



where Λα is the operator given by (2.2), see e.g. [4].
Combining the growing conditions and sign on the f (see (1.2)); a dissipative condition

of the type lim sup|s|Ñ8
fpsq
|s|
ă µ1, with µ1 being the first eigenvalue of the negative Dirichlet

Laplacian ´∆D in L2pΩq; spectral properties of the operator Λ and its fractional powers (2.2)
(´Λ is the infinitesimal generator of compact analytic semigroup with exponential decay),
and the properties of embedding of the fractional powers spaces Xα “ DpAαq we can conclude
that the initial value problems (1.4) and (2.3) are globally well-posed and they possess a global
attractor in some space in the scale of fractional powers spaces of the operator Λ, for more
details see [3, 5, 6, 7, 8].

From now on we consider the logarithmic counterpart of the problem (1.4) continuing the
analysis in [3].
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LOGARITHMIC EVOLUTION EQUATIONS 7

2.3. Logarithmic operators. In this section, we study the spectral properties of the un-
bounded linear operator that we will understand as being the logarithmic operator of Λ.
Using properties of the logarithmic Dirichlet Laplacian operator, we have the following re-
sult.

Theorem 2.6. Let A and Λ be operators as in (1.3)-(1.5), respectively. For each

„

u
v



P

DplogΛq we have

plogΛq

„

u
v



“

»

—

–

1

2
logA´ I ´A´

1
2

A
1
2

1

2
logA` I

fi

ffi

fl

„

u
v



:“

„

plogA
1
2 ´ Iqu´ A´

1
2v

A
1
2u` plogA

1
2 ` Iqv



.

(2.4)

Proof: By definition

Dp´ logΛq “
!

„

u
v



P Y ; D lim
tŒ0

1

t
pΛ´t ´ Iq

„

u
v



)

with

´ logΛ

„

u
v



“ lim
tŒ0

1

t
pΛ´t ´ Iq

„

u
v



for any

„

u
v



P Dp´ logΛq. Using the explicit formula for Λ´t given in Lemma 2.4 pviq, we

obtain

´ logΛ

„

u
v



“ lim
tŒ0

„

1
t
rp1` tqA´t{2 ´ Is A´p1`tq{2

´Ap1´tq{2 1
t
rp1` tqA´t{2 ´ Is

 „

u
v



“

„

p´ logA
1
2 ` Iqu` A´

1
2v

´A
1
2u` p´ logA

1
2 ` Iqv



.

Clearly, DplogΛq “ Dp´ logΛq and

logΛ

„

u
v



“

»

—

–

1

2
logA´ I ´A´

1
2

A
1
2

1

2
logA` I

fi

ffi

fl

„

u
v



.

�
Using properties of the logarithmic Dirichlet Laplacian operator and the characterizations

we can prove the following result.

Theorem 2.7. Let A and Λ be operators as in (1.3)-(1.5), respectively. The point spectrum
of logΛ consists of eigenvalues

λ “ log µ
1
2
n , n P N,
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8 F. D. M. BEZERRA AND L. A. SANTOS

where tµn;n P Nu denotes the ordered sequence of eigenvalues of A including their multiplic-
ity.

Proof: Let

plogΛq

„

u
v



“ λ

„

u
v



be the eingevalue problem for the logarithmic operator logΛ. Thanks to Theorem 2.6 we
obtain

(2.5)

#

plogA
1
2 ´ Iqu´ A´

1
2v “ λu,

A
1
2u` plogA

1
2 ` Iqv “ λv.

Using the first equation in (2.5) we have

v “ A
1
2 plogA

1
2 ´ Iqu´ λA

1
2u,

and using the second equation in (2.5) we obtain

u` plog2A
1
2 ´ Iqu´ λplogA

1
2 ` Iqu “ λplogA

1
2 ´ Iqu´ λ2u.

Then

λ2 ´ 2 log µ
1
2
nλ` log2 µ

1
2
n “ 0,

for n P N.
Therefore

λ “ log µ
1
2
n , n P N,

where tµn;n P Nu denotes the ordered sequence of eigenvalues of A including their multi-
plicity. �

2.4. Logarithmic equations. We now can write an initial-boundary value problem for u`
derived from abstract Cauchy problem (1.6) using the explicit formula for logΛ given by
(2.4) with

v` “ p´∆Dq
1
2 plogp´∆Dq

1
2 ´ Iqu` ` p´∆Dq

1
2Btu`

as follows

(2.6) B
2
t u` `

1

4
log2

p´∆Dqu` ` logp´∆DqBtu` “ p´∆Dq
´ 1

2fpu`q, t ą 0, x P Ω,

since detp´ logΛq “ 1
4

log2A, trp´ logΛq “ ´ logA and the term first row and second column

of ´ logΛ is equal to A´
1
2 , see e.g. [4, Corollary 2.5]. The boundary and initial conditions

are given by
#

up0, xq “ u0pxq, Btup0, xq “ u1pxq, x P Ω,

upt, xq “ 0, t ě 0, x P BΩ.

The following results deal with the well-posedness of the problem (1.6) in X
1
2 ˆ X, in

other words, we will prove that (2.6) is locally well-posed in H1
0 pΩq.
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LOGARITHMIC EVOLUTION EQUATIONS 9

Theorem 2.8. The linear Cauchy problem associated with (1.6) (with f identically zero)
(2.7)
d

dt

„

u`
v`



`plogΛq

„

u`
v`



“ 0, t ą 0,

„

u`
v`



t“0

“

„

u0
p´∆Dq

1
2 plogp´∆Dq

1
2 ´ Iqu0 ` p´∆Dq

1
2u1



,

is well-posed in X
1
2 ˆX; in other words, the problem associated with the logarithmic linear

wave equation
$

&

%

B
2
t u` `

1

4
log2

p´∆Dqu` ` logp´∆DqBtu` “ 0, t ą 0, x P Ω,

u`p0, xq “ u0pxq P X
1
2 , Btu`p0, xq “ u1pxq P X

1
2 , t ą 0, x P Ω,

is well-posed in H1
0 pΩq and the explicit solution is given by

(2.8) u`ptq “ p´∆Dq
´ t

2 pI ` t logp´∆Dq
1
2 qu0 ` tp´∆Dq

´ t
2u1

Proof: The well-posedness follows from the theory of fractional powers of densely defined
closed operators and geometric theory of (semi)linear equations, see e.g. [1, Chapter III,
p. 152 and 153] and [16, Chapter 1]. For the explicit solution u`, we consider the first
component of the equation

„

u`
v`



ptq “ Λ´t
„

u0
v0



, t ě 0,

since ´ logΛ is the infinitesimal generator of the strongly continuous semigroup tΛ´t : t ě
0u. Note that Λ´t was explicitly obtained in Lemma 2.4pviq. �

The next two propositions were proved in [2]; namely, see [2, Proposition 2.9] and [2,
Proposition 2.10], respectively.

Proposition 2.9. Suppose that (1.2) holds. Then, for all u1, u2 P X
1
2 ,

}fpu1q ´ fpu2q}X ď c}u1 ´ u2}X
1
2
p1` }u1}

ρ´1

X
1
2
` }u2}

ρ´1

X
1
2
q.

Consequently, given

„

u1
v1



,

„

u2
v2



P X
1
2 ˆX,

›

›

›
F
´

„

u1
v1



¯

´ F
´

„

u2
v2



¯
›

›

›

X
1
2ˆX

ď c
›

›

›

„

u1
v1



´

„

u2
v2



›

›

›

X
1
2ˆX

´

1`
›

›

›

„

u1
v1



›

›

›

ρ´1

X
1
2ˆX

`

›

›

›

„

u2
v2



›

›

›

ρ´1

X
1
2ˆX

¯

.

Proposition 2.10. Suppose that (1.2) holds. Then, for all u P X
1
2 , we get

}fpuq}X ď cp1` }u}ρ
X

1
2
q.

Consequently, given

„

u
v



P X
1
2 ˆX, we have

›

›

›
F
´

„

u
v



¯
›

›

›

X
1
2ˆX

ď c
´

1`
›

›

›

„

u
v



›

›

›

ρ

X
1
2ˆX

`

›

›

›

„

u
v



›

›

›

X
1
2ˆX

¯

.

Finally, the following result guarantees the local well-posedness of the problem (1.6) in Y .
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10 F. D. M. BEZERRA AND L. A. SANTOS

Theorem 2.11. Let Ω be a bounded Lipschitz domain in RN , N ě 3, and let µ1 denote the
first eigenvalue of A. Assume (1.2) and µ1 ą 1. Then we have

iq For any

„

u0
v0



P Y there exists a unique mild solution

„

u`
v`



P Cpr0, τu0,v0q, Y q of (1.6)

defined on a maximal interval of existence r0, τu0,v0q; namely
„

u`
v`



ptq “ Λ´t
„

u0
v0



`

ż t

0

Λ´pt´sq
„

0
f epu`q



psqds, t ě 0,

This solution depends continuously on the initial data and satisfies a blow up alternative

in Y . In particular, if
›

›

›

„

u`
v`



›

›

›

Y
´norm remains bounded as long as the solution exists then

τu0,v0 “ 8.

iiq For any

„

u0
v0



P DplogΛq, the solution in part i) above is a regular solution. Namely,

(2.9)

„

u`
v`



P Cpr0, τu0,v0q, DplogΛqq X C1
pp0, τu0,v0q, Y q

and

„

u`
v`



satisfies (1.6).

Proof: The part iq follows from Proposition 2.9 and the classical [21, Theorem 1.4, p. 185].
The part iiq follows from Proposition 2.9, Proposition 2.10 and the classical Theorem 2.1
and [21, Theorem 1.5, p. 185]. �
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