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ABSTRACT. In this paper, we study a semilinear Cauchy problem governed by the logarith-
mic operator defined by a strongly damped wave operator in bounded Lipschitz domain in
RY . in terms of properties of the logarithmic Dirichlet Laplacian operator.
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1. INTRODUCTION

In this paper, we consider a semilinear problem governed by the logarithmic operator
associated with a strongly damped wave equation. It is well known the notion of logarithmic
operators under different spectral conditions, see e.g. [1], [9], [10], [1T], [17], [18], [20], [22]
and [23]. In particular, we already have literature on the logarithm of sectorial operators (see
e.g. [1], [12], [I7] and [19]), but when it comes to matrix operators of elliptic operators with a
certain spectral behavior (associated with the sectorial operator theory), we do not have much
information available in the specialized literatures on how the notion of logarithmic operator
behaves in this situation, to the best of our knowledge. Because of this, we present an explicit
characterization of the matrix representation of logarithmic operator for strongly damped
wave operators on bounded smooth domain in n-dimensional Euclidian spaces, in terms
of properties of the logarithmic Dirichlet Laplacian operator, sometimes called ‘spectral-
theoretic logarithm of the Dirichlet Laplacian operator’ (see e.g. [19]).

Inspired by [2], [3] and [I7] we consider the strongly damped wave equation

(1.1) 6fu—ADu+2(—AD)%6tu=f(u), t>0, x e,
with boundary and initial conditions given by

u(0,z) = up(x), du(0,x) =vo(z), xe€l,
u(t,x) =0, t=>0, zed,

where ) is a bounded Lipschitz domain in RV, N > 3, and f € C'(R) satisfies
(1.2) [f(s) <CA+1sl™), seR,
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2 F. D. M. BEZERRA AND L. A. SANTOS

for some

l<p<

N -2

Thanks to the theory of fractional powers of sectorial operators, in the sense of [16, Chapter
I], the notion of logarithmic operators, in the sense of [1, Chapter III], and Balakrishnan’s
formula, we study the logarithmic operator defined by the strongly damped wave equation
associated with and the semilinear problem governed by it.

To better present our results, we introduce some notations. Let X = L*(Q) and let
A:D(A) € X — X be the unbounded linear operator defined by

(1.3) Au=—Apu for ue D(A) = H*(Q) n Hy (%),

then A is a positive self-adjoint sectorial operator and —A generates a compact analytic
C%-semigroup in X.

Denote by X the fractional power spaces associated with operator A; that is, X* = D(A%)
with the norm A% |x : X* — R*. For a > 0 define also X~ as the completion of X with
the norm || A= | x. Observe that with this notation X2 = H}(Q) and X! = H2(Q) n HL().

It is well known that the problem can be rewritten in Y = X2 x X as the abstract

parabolic Cauchy problem
Y 2 R R Vo) SRR I
PRI = Fo0)

where f€ is given by

and the unbounded linear operator A is defined by
A:D(A)c X2 x X — X2 x X,

(1.5) @ 0 1]y © 1 1
A [0 A1[E] e 2] piar et

which is a sectorial operator in the sense of [16, Chapter I], see [3].
We can consider well-posed logarithmic counterpart, in some sense, of the form

R 1 1 o R CEE g W 1

where log A = —(—log A) denotes the logarithmic operator of A in the sense of [1, Chapter
I1, Section 4]. Tt is well known that we can consider A% : D(A%) c Y — Y be the fractional
power associated with operator A with @ > 0 and the resolvent operators A= = (A%)~!
for any @ > 0. Moreover, the operator A has bounded imaginary powers. Namely, —log A
denotes the infinitesimal generator of the strongly continuous semigroup {A "€ L(Y): t >
0} which is analytic of angle 7/2 defined on

3 e Logt
D(—log A) = {uey,a lim (4 —I)u}
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LOGARITHMIC EVOLUTION EQUATIONS 3
with

N
—logAU—ll\r%g(/l —Du

for any u € D(—log A).

Denote by Y* the fractional power spaces associated to operator A; that is, Y* = D(A%)
with the norm ||A% - |y : Y* — R*. We assume that f : Yz — Y is a locally Lipschitz
continuous function; that is, for every u in Y2 there exists a neighborhood U of u in Yz and
a constant Ly > 0 such that for v,v" € U,

[f(0) = F(@)]ly < Lufv =o',
This condition is natural in the applications to semilinear partial differential equations.

Here, we consider the following notion of solution for (1.6). Given [ZO] e Y we say that
0

is a local mild solution of (1.6)) provided that lg] € C([0, Ty, ), Y) and lﬂ satisfies

for t € (0, 7yy,) the integral equation

ol [ s
for some 7., > 0.

In a previous article [2], we considered the following unbounded linear operator defined
by logarithmic stationary wave operator and an evolution equation governed by it

oo [0 =T
514 0

defined usually on

—t
o=ty ]) = frextoxammz([i ] 1))
in terms of properties of the logarithmic Dirichlet Laplacian operator. Now, in the context
of sectoriality of operators, we intend to go further.

The relationship between logarithmic operators and well-posed evolutionary equations
also can be found in [9], [10], [11], [13], [14] and [15] where the authors consider results on
existence, regularity and asymptotic behavior of solution for well-posed logarithmic approx-
imations of evolution equations.

In the next section, we introduce the logarithmic operator of /A and we study the semilinear
parabolic problem (|1.6]).

2. A SECOND-ORDER EVOLUTION EQUATION

This section contains the main results of this article.
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4 F. D. M. BEZERRA AND L. A. SANTOS

2.1. Sectorial operators. In order to better explain the results in this paper, we will
introduce some concepts and terminology. Let Z be a Banach space with norm | - |, and let
B : D(B) c Z — Z be a positive sectorial operator with bounded imaginary powers, in the
sense of [I, Chapter III, Section 4] and [16], Definition 1.3.1]. This allows us to define the
fractional power B~%, with inverse B, which is given by

: o0
po - Snem) f A+ B)ld\, ae(0,1),

T 0
see [16].
Denote by Z* = D(B®) where a € [0,1]. Recall that Z is dense in Z for all a € (0, 1]
(see [1]). The fractional power space Z* endowed with the graphic norm || - ||, := | B - ||z is

a Banach space.

Under our considerations on B, we can consider the logarithmic operator of B defined
by log B := —(—log B), where —log B denote the infinitesimal generator of the strongly
continuous semigroup {B~%;¢ > 0} on Z which is analytic of angle 7/2, see [, Chapter III,
p. 152], defined on

1,
D(—log B) = {u € 2:3 lim (B - I)u}
with

N
—logBU—ll\r%g(B —Du

for any u € D(—log B).
From sectorial calculus, we also have

© 1 1
(log B)6 i~ L O+ B) 7 (B - 9)dA = lim 1 (B~ 1)s

for any ¢ € D(B) n R(B). Moreover, D(B) n R(B) is a core for the log B, see [20], [22], p.
317] and [23].
Thanks to [I6] we have the next result.

Theorem 2.1. Let B : D(B) ¢ Z — Z be a positive sectorial operator and, for some
€ [0,1), f: Z* — Z be Lipschitz continuous on bounded subsets of Z“. Then, for each
wy € Z% there exists a unique Z“—solution w = w(t,wy) of
d
d—t;+Bw=f(w), t >0,
w(0) = wy
defined on its mazximal interval of existence [0, Ty,,) and such that
we C([0, 7). 2%) 0 C((0, 7). Z7) 0 C((0, 7). Z1), B [0,1).
Thanks to [I7, Theorem 6.1] we have the next result.

Theorem 2.2. Let B: D(B) c Z — Z be a positive sectorial operator. Then the infinites-
imal generator of the strongly continuous semigroup {B~*t = 0} in Z denoted by —log B
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LOGARITHMIC EVOLUTION EQUATIONS 5

is such that its additive inverse —(—log B) = log B is a sectorial operator, not necessarily
positive, on Z.

By Theorem we have the following result.

Corollary 2.3. Let B : D(B) < Z — Z be a positive sectorial operator such that log B :
D(log B) ¢ Z — Z is a positive sectorial operator and, f : Z — Z be Lipschitz continuous on
bounded subsets of Z. Then, for each wy € Z there exists a unique Z—solution w, = w(t, wy)

of

d
(2.1) % + (log B)wg = f(wy), t >0,
we(0) = wg

defined on its mazximal interval of existence [0, Ty,) and such that
¢

wy(t) = B 'wy + L B~ f(wy(s))ds.

and
wy € C([0, Twy), Z) N C’l((O,TwO), Z) n C((0, Tw,), D(log B)).

Proof: Since B : D(B) ¢ Z — Z is a positive sectorial operator such that log B :
D(log B) ¢ Z — Z is a positive sectorial operator, the result follows from Theorem .

2.2. Damped wave operator. In this subsection, we begin to study the parabolic problem
(1.6). Initially, we recall that the eigenvalues of log A are given merely as log p,, where
{itn; n € N} denotes the ordered sequence of eigenvalues of A including their multiplicity. We
also stress the fact that the eigenfunctions of log A are the same as those of the operator A,
see e.g. [12], [I3] and [19].

From [3, Lemma 8.1] we have the following lemma.

Lemma 2.4. If A and A are as in (1.3) and in (1.5) respectively then we have all the
following.
i) 0 € p(A) and

4[24 A
A —[_1 O].

. [0 T
4 _[—A 2A5]’

iii) A is sectorial operator in X2 x X with Reo(A) > 0. The semigroup {e~** : t > 0} is
analytic and compact in X3 x X.
i) Fractional powers A* can be defined for a € (0, 1) through

ii) The adjoint A* of A is given by

: 0
Ao = 2T f A + A) A,

™ 0
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v) For each o € (0,1) the operator A® is a negative generator of an analytic C°-semigroup
{e= "t t = 0}.
vi) Given any 0 < a < 1 we have that

—l—a

Ao — [(1 +a)A™2 aA

Y

—aAT (1-—a)A S

and

1—a)As —aqA 2"

2.2 A% = ( o ol -

(22) [ aA T (1+a)As

vii) For each o € (0,1] the spectrum of —A® is the point spectrum consisting of eigenvalues
)\a,n = —/L?, ne N7

where {jiy }nen denotes the ordered sequence of eigenvalues of A including their multiplicity.

It follows from [I, Theorem 2.1.3, p. 289] that the semigroup generated by —A, that we
denote by {4 : t > 0} is analytic and compact in Xz x X.

Remark 2.5. Consider the fractional partial differential equation
Pt + (—Ap) g + 2(—Ap) 2 g = a(—Ap) 2 f(uy),
e (0,2) = ug(x) € X2, ug(0,2) = uy(z) € X3,
for positive time and x € ). This problem for variable u, comes from fractional formulation

of the initial value problem in (1.4) for variable [50‘] with

«

Vg = ofl(l — a)(*AD)%ua + a_l(*AD)l_Taﬁtua,

that 1s, it can be rewritten in X2 x X as the parabolic Cauchy problem
(2.3)

A R P R P W . |
dt | va Va Fe(ua) | " e,y Lot =) (~Ap)zug +a T (~Ap) Ty
where A* is the operator given by (2.2)), see e.g. [4].

Combining the growing conditions and sign on the f (see ); a dissipative condition
of the type limsupyy_,, % < py, with py being the first eigenvalue of the negative Dirichlet
Laplacian —Ap in L*(Q); spectral properties of the operator A and its fractional powers
(—A is the infinitesimal generator of compact analytic semigroup with exponential decay),
and the properties of embedding of the fractional powers spaces X* = D(A%) we can conclude
that the initial value problems and are globally well-posed and they possess a global
attractor in some space in the scale of fractional powers spaces of the operator A, for more

details see [3, 5, 6], 7], [§].

From now on we consider the logarithmic counterpart of the problem ([1.4]) continuing the
analysis in [3].
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LOGARITHMIC EVOLUTION EQUATIONS 7

2.3. Logarithmic operators. In this section, we study the spectral properties of the un-
bounded linear operator that we will understand as being the logarithmic operator of A.
Using properties of the logarithmic Dirichlet Laplacian operator, we have the following re-
sult.

Theorem 2.6. Let A and A be operators as in (1.3)-(1.5]), respectively. For each [z] €
D(log A) we have

1 1

Proof: By definition

D(—log A) = { m eY:3 11{]%%(At e m }
with

g o]

v .0 v

for any lg] € D(—log A). Using the explicit formula for A" given in Lemma (vi), we

obtain

W [anatron A-teoe ‘
_ _ ¢
log A4 M fm [ —Atnr a2 1| o
_ (—log A2 + Iu + A" 2v
—Avu+ (—log Az + I)v]’
Clearly, D(log A) = D(—1log A) and

1 1
—logA—1 —A"2
log A [u} =2 X 1 lu] )
v A§ 5 IOgA + I v
O

Using properties of the logarithmic Dirichlet Laplacian operator and the characterizations
we can prove the following result.

Theorem 2.7. Let A and A be operators as in (1.3)-(1.5), respectively. The point spectrum
of log A consists of eigenvalues

1
A =logpun, neN,
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8 F. D. M. BEZERRA AND L. A. SANTOS

where {p,;n € N} denotes the ordered sequence of eigenvalues of A including their multiplic-

ity.
wwaf]-o[]

Proof: Let
be the eingevalue problem for the logarithmic operator log A. Thanks to Theorem we

obtain
(25) {(logAé —DNu—A"20 = A,

Azu+ (log A2 + I)v = Av.
Using the first equation in (2.5) we have
v=A2(log A2 — Iu — Az,
and using the second equation in (2.5) we obtain
u + (log? Az — INu — A(log Az 4 INu = A(log Az — Du — Mu.
Then
1 1
N — 2log u2 X + log® u2 = 0,
for n e N.
Therefore
A =logui, neN,
where {y,;n € N} denotes the ordered sequence of eigenvalues of A including their multi-
plicity. Il

2.4. Logarithmic equations. We now can write an initial-boundary value problem for wu,
derived from abstract Cauchy problem ([1.6) using the explicit formula for log A given by
(2.4]) with

v = (—Ap)?(log(—Ap)? — Tug + (—Ap)?ésue
as follows

1
(2.6) 8fug + 1 logQ(—AD)w + log(—Ap)diuy = (—AD)_%f(Ug), t>0, xe,

since det(—log A) = 11og” A, tr(—log A) = —log A and the term first row and second column

of —log A is equal to A"2, see e.g. [4, Corollary 2.5]. The boundary and initial conditions
are given by

U(Oa IL') = Uo(l'), atu(()?x) = UI(I)7 T E Q?
u(t,x) =0, t=>0, xed

The following results deal with the well-posedness of the problem (1.6) in X I x X , in
other words, we will prove that (2.6)) is locally well-posed in H3(€2).
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Theorem 2.8. The linear Cauchy problem associated with (1.6)) (with f identically zero)
(2.7)
Uo

G [Zﬂ“k’gm m =0, t>0, M N l(—ADﬁaog(—ADﬁ ~ Dug + <—AD>%u1] ’

is well-posed in X Ix X ;in other words, the problem associated with the logarithmic linear
wave equation

O?uy + ilogz(—AD)w + log(—Ap)diuy = 0, t>0,xe,
wp(0,2) = ug(x) € X2, dup(0,2) = uy(z) € X2, t >0,z €,
is well-posed in H () and the explicit solution is given by
(2.8) ug(t) = (—Ap) (I + tlog(—Ap))ue + H(—Ap) 2wy

Proof: The well-posedness follows from the theory of fractional powers of densely defined
closed operators and geometric theory of (semi)linear equations, see e.g. [I, Chapter III,
p. 152 and 153] and [16, Chapter 1]. For the explicit solution w,, we consider the first

component of the equation
Ve Vo

since — log A is the infinitesimal generator of the strongly continuous semigroup {A~": ¢t >
0}. Note that A" was explicitly obtained in Lemma [2.4(v1). O

The next two propositions were proved in [2]; namely, see [2, Proposition 2.9] and [2,
Proposition 2.10], respectively.

Proposition 2.9. Suppose that (1.2)) holds. Then, for all uy,us € X3,
-1 -1
|f(u) = fluz)|x < efur = usf gy (U4 Jual 3+ flua]? ).

Consequently, given [ul] , [u2
(%1 V2

(D) =P =l o] = Lot L G D 122

Proposition 2.10. Suppose that (1.2)) holds. Then, for all u € X2, we get

[f(w)lx < e+ [ul?,)-

}eXéxX,

p—1
L)
X2xX

Consequently, given lﬂ e X3 x X, we have

D =l e+ 12 L)

Finally, the following result guarantees the local well-posedness of the problem (|1.6]) in Y.
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Theorem 2.11. Let Q be a bounded Lipschitz domain in RN, N > 3, and let y, denote the

first eigenvalue of A. Assume (1.2)) and py > 1. Then we have

i) For any [50] € Y there exists a unique mild solution [Zq € C([0, Tugwo), Y) of (L.6]
0 i

defined on a mazimal interval of existence [0, Ty, ,); namely

- e[ e [ 20

This solution depends continuously on the initial data and satisfies a blow up alternative

in'Y. In particular, if H [Ze] H —norm remains bounded as long as the solution exists then
e | lly

Tug,vo = Q0.

i1) For any [zo] € D(log A), the solution in part i) above is a regular solution. Namely,
0

(2.9 H & C([0, 7y ), D105 A4)) (2 C (0, g ), V)

Uy

and l;fe] satisfies (|1.6)).
[

Proof: The part i) follows from Proposition and the classical [21, Theorem 1.4, p. 185].
The part i) follows from Proposition , Proposition and the classical Theorem [2.1
and [21, Theorem 1.5, p. 185]. O
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