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A SZEGŐ LIMIT THEOREM RELATED TO THE HILBERT MATRIX

PETER OTTE

ABSTRACT. The Szegő limit theorem by Fedele and Gebert for matrices of the type identity minus
Hankel matrix is proved for the special case 1− β

π
HN,α where HN,α is the N ×N-Hilbert matrix, α ≥ 1

2 ,
and β ∈C. The proof uses operator theoretic tools and a reduction to the classical Kac–Akhiezer theorem
for the Carleman operator. Thereby, the validity of the theorem for this special Hankel matrix can be
extended from |β |< 1 to β ∈C\ ]1,∞[. The bound on the correction term is improved to O(1) instead of
o(ln(N)) for β ∈ C\ [1,∞[. The limit case β = 1 is derived directly from the asymptotics for general β .

1. Introduction

The Hilbert matrix appeared recently in the investigation of several problems such as Anderson’s
orthogonality catastrophe for Fermi gases [3], [7] and the spectral statistics of random matrices [4]. In
particular, all those problems led to some sort of Szegő limit theorem for determinants. Subsequently,
Fedele and Gebert [2] proved a Szegő limit theorem for det(1− β

π
HN) with a general N ×N Hankel

matrix HN and a parameter β ∈ C, |β |< 1.
Here, we give an alternative proof for the special case when HN is the Hilbert matrix. The proof uses

operator theoretic methods. A key ingredient is Wouk’s integral formula (3) for the operator logarithm
instead of the usual Taylor series. Thereby, the restriction |β |< 1 can be replaced by the much weaker
β /∈ [1,∞[ and the correction term is improved to O(1) instead of o(ln(N)) as in [2]. The limit case
β = 1 is directly deduced from the asymptotics for general β ’s by use of a simple product formula, see
(6), which eventually is a consequence of the third binomial formula.

To be more precise, we consider the general Hilbert matrix

HN,α =
( 1

j+ k+α

)
j,k=0,...,N−1

, N ∈ N, α > 0.

and obtain a Szegő limit theorem for det(1− β

π
HN,α) with α ≥ 1

2 . The case 0 < α < 1
2 is not treated

herein since it would cause additional technical difficulties. The first main result of the paper is the
following, see Theorem 4.5.

Theorem 1.1. Let N ∈ N, α ≥ 1
2 and β ∈ C\ [1,∞[. Then, the Hilbert matrix HN,α satisfies

det
(
1− β

π
HN,α

)
= exp[

1
2

ln(N)γ(β )+O(1)] as N → ∞

with the coefficient

γ(β ) =
1

π2 [arcosh(−β )]2 +
1
4
.
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A SZEGŐ LIMIT THEOREM RELATED TO THE HILBERT MATRIX 2

Here, arcosh is the principal branch on the cut plane C\ ]−∞,−1[.

Note that γ(β ) is given in a different but equivalent form in [2], see (38).
The special determinant in Theorem 1.1 appeared in the study of the free Fermi gas in a magnetic

field [7]. The transition probability between the ground states of a system of N free fermions in an
interval of length L with and without a magnetic field is given by a certain N ×N determinant DN,L. In
the so-called thermodynamic limit, N,L → ∞ with the particle density N/L = ρ > 0 kept fixed, this
determinant satisfies

ln(DN,L) = ln(det(1−βKN))+O(1).

The N ×N matrix KN is explicitly given [7, p. 12] and does not depend on the magnetic field, which
enters only through the parameter β . In order to determine the asymptotics of DN,L we, thus, would
have to prove a Szegő limit theorem related to KN which is somewhat tricky due to the complicated
structure of KN . However, the asymptotically dominant part turns out to be given by the Hilbert matrix
HN,α with α = 1

2 (there is a slightly different notation in [7] concerning α). The O(1) term in the
asymptotic formula for DN,L is due to so-called finite size effects caused by the electrons having been
confined to an interval of finite length. The precise nature of these finite size effects is of physical
interest in its own right. Therefore, it is desirable that the correction terms in the Szegő limit theorems
are as small as possible, ideally O(1).

The proof of Theorem 1.1 consists of two parts. In the first part, we relate the determinant of the
Hilbert matrix HN,α to the Fredholm determinant of an integral operator GN,α on a Hilbert space,
Lemma 3.1,

det(1− β

π
HN,α) = det(1− β

π
GN,α).

The idea here is, essentially, to write the matrix entries of HN,α as Laplace transforms

1
j+α

=
∫

∞

0
e−( j+α)x dx, j ∈ N0, α > 0.

We then show, Proposition 3.5, that

det(1− β

π
GN,α) = det(1− β

π
P[α

2 ,N+α
2 ]

KP[α
2 ,N+α

2 ]
)∆N(β ).

Here P[a,b] denotes the orthogonal projection corresponding to the characteristic function χ[a,b] of the
interval [a,b] and K is the Carleman operator

(Kϕ)(x) =
∫

∞

0

1
x+ y

ϕ(y)dy.

The so-called perturbation determinant ∆N(β ), cf. (9), can be shown to satisfy

ln(∆N(β )) = O(1) as N → ∞.

Here is where Wouk’s integral formula (3) is used, see (10).
In the second part, we transform the Carleman operator K unitarily to a convolution operator K0,

Lemma 4.2. Since the projection P[α
2 ,N+α

2 ]
has to be transformed accordingly N becomes n α

2
(N).

Finally, we apply a general version of the classical Kac–Akhiezer theorem, Proposition 4.1, to K0
thereby completing the proof.
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If we had used the Taylor series of the logarithm as in [2] we would have to work with

ln
(
det(1− β

π
HN,α)

)
=−

∞

∑
n=1

1
n

β n

πn tr(Hn
N,α).

However, the infinite series restricts the result to those β for which the series converges, namely
|β |< 1.

The second main result concerns the limit case β = 1, see Theorem 5.8.

Theorem 1.2. Let α ≥ 1
2 . Then,

ln
(
det(1− 1

π
HN,α)

)
=

1
2

ln(N)γ(1)+o(ln(N)) as N → ∞

with γ(1) =−3
4 .

The key idea of the proof is to write, Lemma 2.1,

1
det(1− 1

π
HN,α)

=
∞

∏
m=0

det
(
1+(

1
π

HN,α)
2m)

and use, at least formally, the asymptotics of each factor from Corollary 4.6. The corollary itself
follows easily from Theorem 4.5 with the aid of the roots of unity. This idea can be made rigorous
yielding, however, only a lower bound for the desired asymptotics, Proposition 5.8. Fortunately, since
HN,α is a non-negative operator an upper bound, Proposition 5.1, follows immediately from

det(1− 1
π

HN,α)≤ det(1− β

π
HN,α), β < 1,

and Theorem 4.5.
The limit case β = 1 was (for a special α) also treated in [4, Thm. 1.4]. The method used therein

relied on the explicit diagonalization of the infinite Hilbert matrix.

2. Determinants

For a trace class operator A : H → H on a separable Hilbert space H one can define the Fredholm
determinant det(1−A). One way to do this is via the trace

(1) ln(det(1−A)) = tr[ln(1−A)]

with the principal branch of the logarithm

(2) ln(1− z) =−z
∫ 1

0

1
1− rz

, z ∈ C\ [1,∞[.

The operator logarithm on the right-hand side is given by Wouk’s integral formula [15]

(3) ln(1−A) =−
∫ 1

0
A(1− rA)−1 dr

which is valid whenever the spectrum σ(A) of A satisfies σ(A)∩ [1,∞[ = /0. For alternative definitions
and further properties see e.g. [13, XIII]. Standard estimates for trace class operators A,B : H → H
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are (see [13, Lemma 4, p. 323])

|det(1−A)| ≤ e∥A∥1 ,(4)

|det(1−A)−det(1−B)| ≤ ∥A−B∥1 exp
[
∥A∥1 +∥B∥1 +1

]
.(5)

Another estimate, which is of special importance herein (see Section 5), is based upon the infinite
product

(6)
1

1− x
=

∞

∏
m=0

(1+ x2m
), x ∈ R, |x|< 1,

more precisely on the version for determinant.

Lemma 2.1. Let A : H → H be a trace class operator with ∥A∥< 1. Then,

(7)
1

det(1−A)
=

∞

∏
m=0

det(1+A2m
)

where the infinite product converges absolutely. Furthermore,

(8)
1

|det(1−A)|
≤

M

∏
m=0

det(1+A2m
)exp

[
∞

∑
m=M+1

∥A2m∥1

]
, M ∈ N0.

Proof. We start off from the analogon of (6)

1
det(1−A)

=
1

det(1−A2M
)

M−1

∏
m=0

det(1+A2m
), M ∈ N.

By (4), (5), and Hölder’s inequality for the trace norm∣∣∣M−1

∏
m=0

det(1+A2m
)
∣∣∣≤ M−1

∏
m=0

(1+∥A∥2m−1∥A∥1)

and
|det(1−A2M

)−1| ≤ ∥A∥2M−1∥A∥1 exp
[
∥A2M−1∥∥A∥1 +1

]
.

Using the assumption ∥A∥< 1 we deduce

1
det(1−A)

= lim
M→∞

1
det(1−A2M

)

M−1

∏
m=0

det(1+A2m
) =

∞

∏
m=0

det(1+A2m
).

This is (7). Finally, write

1
det(1−A)

=
M

∏
m=0

det(1+A2m
)

∞

∏
m=M+1

det(1+A2m
)

and apply (4) to the second factor. This shows (8). □

The determinants of two trace class operators A and B are related via the perturbation determinant ∆

(9) det(1−A) = det(1−B)∆, ∆ := det(1− (1−A)−1(B−A))
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as long as the operator 1−A is invertible. Wouk’s formula (3) yields

(10) ln(∆) =− tr
[
(B−A)

∫ 1

0
(1− rA− (1− r)B)−1 dr

]
.

3. Hilbert matrix and Carleman operator

The Hilbert matrix is

(11) HN,α =
( 1

j+ k+α

)
j,k=0,...,N−1

, α > 0.

It is well-known that as an operator HN,α : CN → CN it satisfies

(12) 0 ≤ HN,α for α > 0 and HN,α < π1 for α ≥ 1
2

in the sense of quadratic forms. We will not treat the case 0 < α < 1
2 and, thus, do not need the

corresponding norm. With the aid of the Laplace transform

1
j+α

=
∫

∞

0
e− jxe−αx dx, j ∈ N0, α > 0,

we obtain a Hankel integral operator with, essentially, the same spectrum as HN,α .

Lemma 3.1. Let α > 0 and N ∈ N. Define the Hankel integral operator GN,α : L2(R+)→ L2(R+),

(GN,αϕ)(x) =
∫

∞

0
GN,α(x+ y)ϕ(y)dy, x ∈ R+,

with kernel function

GN,α(x) := e−
α
2 x

N−1

∑
j=0

e− jx = e−
α
2 x e

x
2

2sinh( x
2)
(1− e−Nx).

Then, σ(HN,α)\{0}= σ(GN,α)\{0}. In particular, ∥GN,α∥= ∥HN,α∥.

Proof. With the functions

e j ∈ L2(R+), e j(x) = e− jx−α
2 x, j ∈ N0,

we define the operators A : L2(R+)→ CN and B : CN → L2(R+), c = (c0, . . . ,cN−1),

(Aϕ) j =
∫

∞

0
e j(x)ϕ(x)dx, j = 0, . . . ,N −1, (Bc)(x) =

N−1

∑
j=0

c je j(x), x ∈ R+.

It is easily checked that HN,α = AB : CN → CN . On the other hand, BA : L2(R+)→ L2(R+),

(BAϕ)(x) =
N−1

∑
j=0

e j(x)
∫

∞

0
e j(y)ϕ(y)dy =

∫
∞

0
ϕ(y)

N−1

∑
j=0

e j(x)e j(y)dy = (GN,αϕ)(x)

since e j(x)e j(y) = e j(x+ y). Now, σ(AB)\{0}= σ(BA)\{0} which completes the proof. □
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A SZEGŐ LIMIT THEOREM RELATED TO THE HILBERT MATRIX 6

We extract the asymptotically relevant part of the operator GN,α . This gives rise to orthogonal
projections generated by characteristic functions. Throughout, we will use the notation

(13) P[a,b] : L2(X)→ L2(X), (P[a,b]ϕ)(x) = χ[a,b](x)ϕ(x)

where χ[a,b] is the characteristic function of the interval [a,b] and X may be R or R+.

Lemma 3.2. Let Eα : L2(R+)→ L2(R+) be the integral operator with kernel function

(14) Eα(x,y) = e−x(y+α
2 ).

Then Eα , α ≥ 0, is bounded with ∥Eα∥ ≤
√

π . Moreover, EαP[0,N]Eα , α > 0, is a trace class operator
on L2(R+) with

(15) ∥EαP[0,N]E
∗
α∥1 =

1
2

ln
(2N +α

α

)
.

The difference
DN := GN,α −EαP[0,N]E

∗
α

is trace class with ∥DN∥ ≤Cα < ∞ for all N ∈ N.

Proof. We use a generalized version of the Schur test (see [5, Thm. 5.2]) with test functions p(x) =
q(x) = 1√

x . Then, by standard computations∫
∞

0
e−x(y+α

2 )
1
√

y
dy =

√
π√
x

e−
αx
2 ≤

√
π

1√
x
, x > 0.

Likewise, ∫
∞

0

1√
x

e−x(y+α
2 ) dx ≤

∫
∞

0

1√
x

e−xy dx =
√

π
1
√

y
, y > 0.

This implies Eα is bounded with the given estimate for the norm.
In order to show the trace class property we start from the simple formula

1− e−Nx = x
∫ N

0
e−xt dt

and rewrite the kernel function GN,α

GN,α(x) = e−
α
2 x e

x
2 x

2sinh( x
2)

∫ N

0
ext dt =

∫ N

0
e−x(t+α

2 ) dt + e−
α
2 x[ e

x
2 x

2sinh( x
2)

−1
]∫ N

0
e−xt dt.

The first term gives rise to the Hankel operator G̃N,α with kernel function

G̃N,α(x) =
∫ N

0
e−x(t+α

2 ) dt.

We write this as follows (cf. (14))

G̃N,α(x+ y) =
∫ N

0
e−(x+y)(t+α

2 ) dt =
∫ N

0
e−x(t+α

2 )e−(t+α
2 )y dt =

∫ N

0
Eα(x, t)Eα(y, t)dt
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A SZEGŐ LIMIT THEOREM RELATED TO THE HILBERT MATRIX 7

which implies G̃N,α = EαP[0,N]E∗
α . Since, obviously, EαP[0,N]E∗

α ≥ 0 we obtain

∥EαP[0,N]E
∗
α∥1 = tr(EαP[0,N]E

∗
α) =

∫
∞

0

∫ N

0
e−2x(y+α

2 ) dydx =
∫ N

0

1
α +2y

dy =
1
2

ln
(α +2N

α

)
.

The remaining difference is the Hankel operator DN with kernel function

DN(x) := e−
α
2 x[ e

x
2 x

2sinh( x
2)

−1
]∫ N

0
e−xt dt =

[ e
x
2 x

2sinh( x
2)

−1
]∫ N+α

2

α
2

e−xt dt.

In order to show that DN is in the trace class we use Howland’s criterion [6, Thm. 2.1], which also
gives a bound on the trace norm. To this end, we need the derivative

D′
N(x) =

{
1− e−x − xe−x

(1− e−x)2 −
[ x

1− e−x −1
]
x
}∫ N+α

2

α
2

e−xt dt.

Via the elementary estimates

0 ≤ x
1− e−x −1 ≤ x, 0 ≤ 1− e−x − xe−x

(1− e−x)2 ≤ 1 for x ≥ 0,

we obtain

|D′
N(x)| ≤ (1+ x2)

∫ N+α
2

α
2

e−xt dt ≤ (x+
1
x
)e−

α
2 x.

Then, Howland’s criterion shows that DN is in the trace class with

∥DN∥1 ≤
∫

∞

0
x

1
2

[∫
∞

x
|D′

N(y)|2 dy
] 1

2
dx ≤

∫
∞

0
x

1
2

[∫
∞

x
(y2 +2+

1
y2 )e

−αy dy
] 1

2
dx =: Cα .

Elementary estimates show that Cα < ∞ for α > 0. Note that Cα does not depend on N. □

We relate EαP[0,N]E∗
α to the Carleman operator K : L2(R+)→ L2(R+),

(16) (Kϕ)(x) =
∫

∞

0

1
x+ y

ϕ(y)dy, x ∈ R+.

It is well-known that K is self-adjoint and satisfies (see [12, Theorem 8.14] for the operator norm)

(17) 0 ≤ K ≤ π.

We define the translation operator

(18) Tα : L2(R+)→ L2(R+), (Tαϕ)(x) =

{
ϕ(x− α

2 ) for x ≥ α

2 ,

0 for 0 ≤ x < α

2 .

Its pseudo inverse is given by

T+
α : L2(R+)→ L2(R+), (T+

α ϕ)(x) = ϕ(x+
α

2
), x ≥ 0.

That is to say,

(19) P[α
2 ,∞[TαT+

α = P[α
2 ,∞[.

We move the α from the integral operator to the projection.
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Lemma 3.3. Let α > 0 and N ∈ N. The operator EαP[0,N]E∗
α and the Carleman operator K, cf. (14)

and (16), satisfy

(20) σ(EαP[0,N]E
∗
α)\{0}= σ(P[α

2 ,N+α
2 ]

KP[α
2 ,N+α

2 ]
)\{0}.

Proof. We know that
σ(EαP[0,N]E

∗
α)\{0}= σ(E∗

αEαP[0,N])\{0}.
The product E∗

αEα is a quasi-Carleman operator

(E∗
αEα)(x,y) =

∫
∞

0
e−(x+α

2 )te−t(y+α
2 ) dt =

1
x+ y+α

.

By using Tα (cf. (18))

(E∗
αEαP[0,N]ϕ)(x) =

∫ N

0

1
x+ y+α

ϕ(y)dy

=
∫ N+α

2

α
2

1
x+ y+ α

2
ϕ(y− α

2
)dy

=
∫

∞

0

1
x+ y+ α

2
χ[α

2 ,N+α
2 ]
(Tαϕ)(y)dy

= (T+
α KP[α

2 ,N+α
2 ]

Tαϕ)(x).

In operator form this reads
E∗

αEαP[0,N] = T+
α KP[α

2 ,N+α
2 ]

Tα

which implies

σ(E∗
αEαP[0,N])\{0}= σ(KP[α

2 ,N+α
2 ]

TαT+
α )\{0}= σ(KP[α

2 ,N+α
2 ]
)\{0}.

Here we used (19). This implies (20). □

In order to use the perturbation determinant (9) we need a certain inverse.

Lemma 3.4. Let α ≥ 1
2 . Furthermore, let β ∈ C \ [1,∞[, s ∈ [0,1], and N ∈ N. Then, the operator

1−βAN,α(s),

AN,α(s) :=
1
π

(
(1− s)EαP[0,N]E

∗
α + sGN,α

)
,

is invertible with

∥(1−βAN,α(s))−1∥ ≤


1 for Re(β )≤ 0,

1
1−Re(β ) for 0 < Re(β )< 1,
|β |

| Im(β )| for Im(β ) ̸= 0.

Proof. We use the Lax–Milgram theorem to show invertibility of 1− βAN,α(s) and to prove the
estimates for the norm of the inverse. Note that Lemmas 3.2 and 3.1 along with (12) imply 0 ≤
AN,α(s)≤ 1 in the sense of quadratic forms. Furthermore,

Re(1−βAN,α(s)) = 1−Re(β )AN,α(s).
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Hence, for Re(β )≤ 0
Re(1−βAN,α(s))≥ 1

and for 0 < Re(β )< 1

Re(1−βAN,α(s))≥ (1−Re(β ))1 with 1−Re(β )> 0,

which yield the first two cases. In the third case, surely β ̸= 0. Hence,

1−βAN,α(s) = β (
1
β
1−AN,α(s))

and

Im(
1
β
1−AN,α(s)) =− β

|β |2
1.

This implies that the inverse exists and is bounded with

∥(1−βAN,α(s))−1∥= 1
|β |

∥( 1
β
1−AN,α(s))−1∥ ≤ 1

|β |
|β |2

| Im(β )|
.

This completes the proof. □

The asymptotics of the determinant under study is given by the corresponding determinant of the
Carleman operator.

Proposition 3.5. Let α > 0 and N ∈ N. The operator P[α
2 ,N+α

2 ]
KP[α

2 ,N+α
2 ]

: L2(R+) → L2(R+), cf.
(16), is in the trace class. Furthermore, if α ≥ 1

2 and β ∈ C\ [1,∞[,

det(1− β

π
HN,α) = det(1− β

π
P[α

2 ,N+α
2 ]

KP[α
2 ,N+α

2 ]
)∆N(β )

where the perturbation determinant can be bounded as

exp[−C(β )|β |∥DN∥1]≤ |∆N(β )| ≤ exp[C(β )|β |∥DN∥1]

with 0 ≤C(β )< ∞ independent of N, cf. Lemmas 3.4 and 3.2.

Proof. The trace class property follows immediately from Lemmas 3.3 and 3.2. We apply the formula
(9) for the perturbation determinant to the operator (cf. Lemma 3.2)

GN,α = EαP[0,N]E
∗
α +DN

thereby obtaining

det(1− β

π
GN,α) = det(1− β

π
EαP[0,N]E

∗
α)∆N(β ).

Using the formula (10) for the perturbation determinant we write this as

∆N(β ) = exp
[
−β

π

∫ 1

0
tr
{[
1−AN,α(s)

]−1DN

}
ds
]

with AN,α(s) from Lemma 3.4. Finally, we bound the trace by the trace norm and use Lemma 3.4 to
estimate the norm of the inverse. This completes the proof. □
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4. Szegő limit theorem

In order to handle the complex parameter β we formulate an abstract Szegő theorem for normal
operators based upon [10] and [1].

Proposition 4.1. Let A : H → H be a bounded normal operator with

(21) Re(λ )≥ m, Im(λ ) ∈ [y0 −h,y0 +h] for all λ ∈ σ(A)

where m,y0 ∈ R and 0 ≤ h < π

2 . Furthermore, let P : H → H be an orthonormal projection such
that PAP is trace class. Then, the determinant of the operator PeAP : ran(P)→ ran(P) satisfies

(22) det(PeAP) = exp[tr(PAP)+ρ(A)]

where the correction term ρ(A) ∈ C satisfies

(23) |ρ(A)| ≤ 1
2

e|m|

cos(h)
e∥A∥∥PA(1−P)∥2∥(1−P)AP∥2.

Proof. From (19) in [10] follows

|ρ(A)| ≤ e∥A∥∥PA(1−P)∥2∥(1−P)AP∥2

∫ 1

0
t∥(PetAP)−1P∥dt.

From (15) and (16) in [1] we infer

∥(PetAP)−1P∥ ≤ e|m|

cos(h)
, 0 ≤ t ≤ 1,

which proves the statement. □

In the special case when A : L2(R)→ L2(R) is a convolution operator with even kernel function
A(x) = A(−x) and P = P[−n,n] the Hilbert–Schmidt norm appearing in Proposition 4.1 can be written
after some simple calculations as

∥P[−n,n]A(1−P[−n,n])∥2
2 =

∫
|x|≤n

∫
|y|≥n

|A(x− y)|2 dydx

= 2
∫ n

0
x|A(x)|2 dx+2n

∫
∞

n
|A(x)|2 dx+2

∫ n

0

∫
∞

n
|A(x+ y)|2 dydx.

(24)

In order to apply the abstract result in Proposition 4.1 to our case, we have to write the operator at hand
as 1− β

π
K = eA. In other words we need a logarithm which is no problem here since the Carleman

operator K can be diagonalized explicitly by means of the Mellin transform. For our purposes it is
more convenient to stop halfway and transform it into a convolution operator.

Lemma 4.2. The operator Wa : L2(R+)→ L2(R), a ∈ R,

(25) (Waϕ)(s) =
√

2es+a
ϕ(e2s+2a), s ∈ R, ϕ ∈ L2(R+)

is unitary. It transforms the Carleman operator K into a convolution operator

(26) WaKW ∗
a = K0, K0 : L2(R)→ L2(R), K0(x− y) =

1
cosh(x− y)
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and the projection with a = 1
4(ln(N + α

2 )+ ln(α

2 ))

(27) WaP[α
2 ,N+α

2 ]
W ∗

a = P[−n α
2
(N),n α

2
(N)], n α

2
(N) =

1
4

ln(
N + α

2
α

2
).

Proof. Cf. [12, Ch. 10, Thm. 2.1] and also [16]. We will use the substitution

x = e2s+2a, dx = 2e2s+2a ds.

The unitarity follows from, ϕ ∈ L2(R+),

∥Waϕ∥2 = 2
∫
R
|ϕ(e2s+2a)|2e2s+2a ds =

∫
∞

0
|ϕ(x)|2 dx = ∥ϕ∥2

and the analogous calculation for W ∗
a . For the Carleman operator we obtain

(WaKϕ)(s) =
√

2es+a
∫

∞

0

1
e2s+2a + y

ϕ(y)dy

=
√

2es+a
∫
R

2e2t+2a

e2s+2a + e2t+2a ϕ(e2t+2a)dt

=
√

2
∫
R

2
es−t + et−s et+a

ϕ(e2t+2a)dt

=
∫
R

1
cosh(s− t)

(Waϕ)(t)dt

= (K0Waϕ)(s)

which reads in operator form
WaK = K0Wa.

This yields (26). Finally,

χ[α
2 ,N+

α
2 ]
(e2s+2a) =

{
1 for α

2 ≤ e2s+2a ≤ N + α

2 ,

0 otherwise,
=

{
1 for 1

2 ln(α

2 )−a ≤ s ≤ 1
2 ln(N + α

2 )−a,
0 otherwise.

The special a yields the formula (27) for the projection. □

Via the Fourier transform

(28) (Fϕ)(ω) := ϕ̂(ω) :=
1√
2π

∫
R

e−iωx
ϕ(x)dx, ϕ ∈ L2(R),

the convolution operator K0 can be transformed into a multiplication operator

(29) FK0ϕ =
√

2πK̂0ϕ̂, K̂0(ω) =

√
π

2
1

cosh(ωπ

2 )
.

Thereby, we can construct the logarithm needed for the Szegő theorem.

Lemma 4.3. Let β ∈ C\ [1,∞[ and let the convolution operator A0 : L2(R)→ L2(R) be given by its
kernel function

(30) A0(x) =
1

2π

∫
R

eiωx ln
(
1− β

cosh(ωπ

2 )

)
dω, Â0(ω) =

1√
2π

ln
(
1− β

cosh(ωπ

2 )

)
.
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Then,

(31) eA0 = 1− β

π
K0.

Furthermore, the spectrum σ(A0) of A0 satisfies

(32)

{Re(λ ) | λ ∈ σ(A0)}= [m,M] with M = max{0, ln |1−β |},

m =

{
ln |1− Re(β )

β
| if 0 ≤ Re(β )≤ |β |2,

min{0, ln |1−β |} otherwise,

and

(33)
{Im(λ ) | λ ∈ σ(A0)}= [y0 −h,y0 +h], y0 =

1
2

a(β ), h =
1
2
|a(β )|< π

2
,

a(β ) =−sign(Im(β ))

[
π

2
− arctan(

1−Re(β )
| Im(β )|

)

]
.

Proof. To get all the π’s right note that (31) is, via the Fourier transform (cf. (28)), equivalent to

exp(
√

2πÂ0(ω)) = 1− β

π

√
2πK̂0(ω).

Solving for Â0(ω) and using (29) for K̂0(ω) as well as the inverse Fourier transform prove (30).
The spectrum of A0 is given up to factor through the numerical range of the function Â0

σ(A0) = {ln(1− β

cosh(ωπ

2 )
) | ω ∈ R}∪{0}= {ln(1− sβ ) | 0 ≤ s ≤ 1}.

Using the the principal branch of the logarithm as in (2) yields

ln(1− sβ ) =−β

∫ s

0

1
1−β t

dt =−
∫ s

0

β −|β |2t
|1−β t|2

dt.

The imaginary part is

Im(ln(1− sβ )) =− Im(β )
∫ s

0

1
|1−β t|2

dt.

The integral vanishes at s = 0 and attains its maximal value at s = 1. For Im(β ) ̸= 0 we obtain after
some standard substitutions

Im(ln(1−β )) =− Im(β )
∫

∞

1

1
|t −β |2

dt =−sign(Im(β ))
∫

∞

1−Re(β )
| Im(β )|

1
t2 +1

dt

and for the remaining case

Im(ln(1− β

s
)) = 0 for Im(β ) = 0.

this implies (33). The bound h ≤ π

2 is obvious. Since h = π

2 would require 1−Re(β ) < 0 and
Im(β ) = 0 this cannot occur due to the assumptions on β .

The real part is

Re(ln(1− sβ )) =−
∫ s

0

Re(β )−|β |2t
|1−β t|2

dt = ln |1− sβ |=: f (s).
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For those β ’s satisfying
0 ≤ Re(β )≤ |β |2

the function f has a single local extremum at s− ∈ [0,1], which is a minimum with

f (s−) = ln
∣∣1− Re(β )

β

∣∣= ln
( | Im(β )|

|β |
)
≤ 0.

For any other β the extremal values are given by f (0) = 0 and f (1) = ln |1−β |. This proves (32). □

We apply Proposition 4.1 to the operator K0.

Proposition 4.4. Let β ∈ C\ [1,∞[ and n ≥ 0. Then for K0 from (26),

(34) det
(
1− β

π
P[−n,n]K0P[−n,n]

)
= exp[2nγ(β )+ρn].

Here

(35) γ(β ) =
1

π2

∫
∞

0
ln
(
1− β

cosh(ω)

)
dω =

1
π2

[
arcosh(−β )

]2
+

1
4

and the correction term ρn ∈ C satisfies (cf. (30))

|ρn| ≤
3

4π

e|m|

cos(h)
(
∥Â0∥1 +∥Â′′

0∥1
)2

with m from (32), 0 ≤ h < π

2 from (33), and Â0 from (30). ∥ · ∥1 denotes the L1(R)-Norm.

Proof. We check the conditions of Proposition 4.1. The second part of (21) follows immediately from
(33) since 0 ≤ h < π

2 for β ∈ C\ [1,∞[. For the real part the only critical cases in (32) are β = 1 and
Re(β )

β
= 1, which is equivalent to β = 1. Since β /∈ ]1,∞] this cannot occur. Hence, there is an m ∈ R

with |m|< ∞ such that the first part in (21) holds true.
In order to bound the correction ρn term we use (24). Since A0 is the Fourier transform of an

L1-function Â0 that is arbitrarily often differentiable and vanishes at infinity appropriately, cf. (30), a
simple integration by parts shows

|A0(x)| ≤
1√
2π

1
1+ x2

[
∥Â0∥1 +∥Â′′

0∥1
]
, x ∈ R.

For β /∈ ]1,∞] the L1-norms are finite which follows most conveniently from the representation

Â0(ω) =− β√
2π

∫ 1

0

1
cosh(ωπ

2 )− tβ
dt

and the analogous formula for Â′′
0(ω). The integrals in (24) become in our case

2
∫ n

0

x
(1+ x2)2 dx ≤ 1, 2n

∫
∞

n

1
(1+ x2)2 dx ≤

∫
∞

n

2x
(1+ x2)2 dx =

1
1+n2 ,

2
∫ n

0

∫
∞

n

1
(1+(x+ y)2)2 dydx ≤ 2n

∫
∞

n

1
(1+ y2)2 dy ≤ 1

1+n2 .
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Thereby,

∥P[−n,n]A0(1−P[−n,n])∥ · ∥(1−P[−n,n])A0P[−n,n]∥ ≤
3

2π
[∥Â0∥1 +∥Â′′

0∥1]

Finally, the leading term in (22) is

tr(P[−n,n]A0P[−n,n]) = 2nA0(0)

Now,

A0(0) =
1

2π

∫
R

ln
(
1− β

cosh(ωπ

2 )

)
dω =

2
π2

∫
∞

0
ln
(
1− β

cosh(ω)

)
dω =

1
π2 [arcosh(−β )]2 +

1
4

where we evaluated the integral via Lemma A.2. This completes the proof. □

We summarize our findings by formulating the main result, the Szegő limit theorem for the Hilbert
matrix.

Theorem 4.5. Let α ≥ 1
2 and N ∈ N. Then, the Hilbert matrix HN,α , see (11), satisfies for all

β ∈ C\ [1,∞[

(36) det
(
1− β

π
HN,α

)
= exp[

1
2

ln(N)γ(β )+O(1)] as N → ∞

with the coefficient

(37) γ(β ) =
1

π2 [arcosh(−β )]2 +
1
4
.

Proof. From Proposition 3.5 we know

ln
(
det(1− β

π
HN,α)

)
= ln

(
det(1− β

π
P[−α

2 ,N+α
2 ]

KP[−α
2 ,N+α

2 ]
)
)
+O(1)

with the Carleman operator K from (16). From Proposition 4.4 we infer

det(1− β

π
P[−α

2 ,N+α
2 ]

KP[−α
2 ,N+α

2 ]
) = det(1−P[−n α

2
(N),n α

2
(N)]K0P[−n α

2
(N),n α

2
(N)]).

The Szegő theorem for K0, Proposition 4.4, is

ln
(
det(1−P[−n α

2
(N),n α

2
(N)]K0P[−n α

2
(N),n α

2
(N)])

)
= 2n α

2
(N)γ(β )+O(1).

Combining these formulae and noting

n α
2
(N) =

1
4

ln
(N + α

2
α

2

)
=

1
4

ln(N)+O(1) as N → ∞

prove the theorem. □

Though the result in [2] looks a bit different from ours it is actually the same. For,

arcosh(x) = iarccos(x), arccos(x) =
π

2
− arcsin(x), x ∈ [−1,1].

These imply
1

π2 (arcosh(−β ))2 +
1
4
=− 1

π2 (
π

2
− arcsin(−β ))2 +

1
4
=− 1

π2 (arcsin(β )2 +π arcsin(β ))
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which yields the asymptotic formula from [2, (1.5)]

(38) ln
(
det(1− β

π
HN,α)

)
∼− 1

2π2

(
[arcsin(β )]2 +π arcsin(β )

)
ln(N) as N → ∞.

By a simple argument based upon the roots of unity we extend our Szegő theorem to even powers of
the Hilbert matrix. This will be used for the limit case β = 1, which is not covered by Theorem 4.5.

Corollary 4.6. Let m ∈ N and α ≥ 1
2 . Then, the Hilbert matrix HN,α satisfies

(39) det
(
1+

1
π2m H2m

N,α

)
= exp[

1
2

ln(N)γ2m +O(1)] as N → ∞

where

(40) γ2m =
2

π2

∫
∞

0
ln
(
1+

1
cosh(ω)2m

)
dω.

Proof. Let us define

ηk =
2k−1

2m
, k = 1, . . . ,m,

whereby we can factorize the determinant into

det(1+
1

π2m H2m
N,α) =

m

∏
k=1

det(1+
1
π

eiπηkHN,α)
m

∏
k=1

det(1+
1
π

e−iπηkHN,α).

Note that e±iηk ̸=−1. Therefore, we may apply Theorem 4.5 to each factor in the product which yields
for the leading term in the asymptotics

γ2m =
2

π2

{ m

∑
k=1

∫
∞

0
ln
(
1− eiπηk

cosh(ω)

)
dω +

m

∑
k=1

∫
∞

0
ln
(
1− e−iπηk

cosh(ω)

)
dω

}
.

Here we used the integral representation (35) for the coefficients. In order to rewrite this we note that
for the principal branch of the logarithm

ln(z)+ ln(z̄) = ln(zz̄) = 2ln(|z|) for all z ∈ C\{0}
which implies

γ2m =
2

π2

∫
∞

0
ln
[ m

∏
k=−m

(1− eiπηk

cosh(ω)
)
]

dω

and thus (40). Since the product is finite the sum of the O(1) terms in (36) is still O(1) which shows
(39). □

5. Limit case

We treat the limit case β = 1, which was not covered by Theorem 4.5, by showing that it is the limit,
hence the name, of the asymptotics for admissible β . More precisely, we provide an upper and lower
bound for the asymptotics. The upper bound is straightforward.

Proposition 5.1. Let α ≥ 1
2 and N ∈ N. Then,

(41) limsup
N→∞

2
ln(N)

ln
(
det(1− 1

π
HN,α)

)
≤ γ(1).
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A SZEGŐ LIMIT THEOREM RELATED TO THE HILBERT MATRIX 16

Proof. Let β < 1. Since HN,α ≥ 0,

(42) det(1− 1
π

HN,α)≤ det(1− β

π
HN,α).

We already know the asymptotics for these β ’s from Theorem 4.5

limsup
N→∞

2
ln(N)

ln
(
det(1− 1

π
HN,α)

)
≤ liminf

N→∞

2
ln(N)

ln
(
det(1− β

π
HN,α)

)
= γ(β ).

Since this is valid for all β < 1 and, moreover, γ(β )→ γ(1) as β → 1 we obtain (41) □

For the lower bound we employ Lemma 2.1. To this end, we need estimates for tr(Hm
N,α). The

method parallels that of Section 3 in that we replace the Hilbert matrix by the Carleman operator. For
an intermediate step we need the so-called ’odd’ Hilbert matrix

(43) H− : ℓ2(N0)→ ℓ2(N0), H− = (h j+k) j,k∈N0 , h j =

{
1

j+1 for j even,

0 for j odd.

It is more convenient here to work with the projection operator

(44) PN : ℓ2(N0)→ ℓ2(N0), (PNc) j =

{
c j for 0 ≤ j ≤ N −1,
0 for j ≥ N +1

instead of the finite odd Hilbert matrix.

Lemma 5.2. Let α ≥ 1
2 . Then, for all m,N ∈ N

(45) tr[Hm
N,α ]≤ 2m tr[(P2NH−)

m]≤ 2m tr[P2NHm
− ].

Proof. We start with the odd Hilbert matrix

tr[(P2NH−)
m] =

2N−1

∑
j1,..., jm=0

m

∏
l=1

h jl+ jl+1

=
N−1

∑
k1,...,km=0

m

∏
l=1

1
2kl +2kl+1 +1

+
N−1

∑
k1,...,km=0

m

∏
l=1

1
2kl +1+2kl+1 +1+1

≥ 1
2m

N−1

∑
k1,...,km=0

m

∏
l=1

1
kl + kl+1 +

1
2

≥ 1
2m

N−1

∑
k1,...,km=0

m

∏
l=1

1
kl + kl+1 +α

=
1

2m tr[Hm
N,α ].

Here we used that h jl+ jl+1 ̸= 0 only if jl + jl+1 is even which is the case when either all of the jl are
even or all are odd. This yields the first inequality in (45). The second inequality follows from P2N
being an orthogonal projection and H∗

N,α = HN,α . □
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With the aid of the orthonormal Laguerre functions l j, j ∈ N0, we define the unitary operator

(46) U : L2(R+)→ ℓ2(N0), (Uϕ) j =
∫

∞

0
l j(x)ϕ(x)dx, j ∈ N0.

This transforms PN into the projection with Christoffel–Darboux kernel

(47) PN =UΠNU∗, ΠN(x,y) :=
N

∑
k=0

lk(x)lk(y)

and the odd Hilbert matrix into the Carleman operator [12, pp. 54, 55]

(48) 2H− =UKU∗, 2m tr(PNHm
−) = tr(ΠNKm).

The kernel function of the Carleman operator has a critical behavior at x = 0 and x = ∞, cf. (16).
Therefore, we use an appropriate cut-off.

Lemma 5.3. Let 0 ≤ δ ≤ L. Then, for all m,N ∈ N

(49) 2m tr[PNHm
− ]≤ 2tr[P[δ ,L]K

m]+ (1+π
m) tr[P⊥

[δ ,L]ΠN ], P⊥
[δ ,L] := 1−P[δ ,L].

Proof. We use (48) and decompose the trace

tr(ΠNKm) = tr[P[δ ,L]ΠNP[δ ,L]K
m]+2Retr[P⊥

[δ ,L]ΠNP[δ ,L]K
m]+ tr[P⊥

[δ ,L]ΠNP⊥
[δ ,L]K

m].

Since all operators involved are non-negative we can bound the traces through the operator norm

tr(ΠNKm)≤ ∥P[δ ,L]ΠNP[δ ,L]∥ tr[P[δ ,L]K
m]+2

(
tr(P⊥

[δ ,L]ΠN
) 1

2
(
tr(P[δ ,L]K

m)
) 1

2 + tr(P⊥
[δ ,L]ΠN)∥K∥m

≤ tr[P[δ ,L]K
m]+2

(
tr(P⊥

[δ ,L]ΠN
) 1

2
(
tr(P[δ ,L]K

m)
) 1

2 + tr(P⊥
[δ ,L]ΠN)π

m

≤ 2tr[P[δ ,L]K
m]+ (1+π

m) tr(P⊥
[δ ,L]ΠN).

Here we used the Cauchy–Schwarz inequality for the trace and (17). This proves the lemma. □

The trace of the Carleman operator can be expressed as a simple integral.

Lemma 5.4. Let δ > 0 and N ≥ 0. Then, for all m ∈ N

tr[P[δ ,N+δ ]K
m] = 2nδ (N)πm−2

∫
R

1
[cosh(ω)]m

dω, nδ (N) =
1
4

ln
(N +δ

δ

)
.

Proof. From Lemma 4.2 we immediately infer

tr[P[δ ,N+δ ]K
m] = tr[P[−nδ (N),nδ (N)]K

m
0 ].

Via the diagonalization FK0F
∗ =

√
2πK̂0, see (28) and (29), we obtain

tr[P[−nδ (N),nδ (N)]K
m
0 ] = (2π)

m
2 tr[P−nδ (N),nδ (N)]F

∗K̂m
0 F ] = (2π)

m
2 tr[FP[−nδ (N),nδ (N)]F

∗K̂m
0 ].

Now,

FP[−nδ (N),nδ (N)]F
∗(x,y) =

1
2π

∫ n

−n
e−iω(x−y) dω

and thus
tr[P[−nδ (N),nδ (N)]K

m
0 ] =

1
2π

2nδ (N)(2π)
m
2

∫
R

K̂0(ω)m dω.
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This implies

tr[P[−nδ (N),nδ (N)]K
m
0 ] = 2nδ (N)(2π)

m−2
2

∫
R

[√
π

2
1

cosh(πω

2 )

]m

dω = 2nδ (N)πm−2
∫
R

1
[cosh(ω)]m

dω

which proves the lemma. □

In order to bound the traces of the projection operator in (49) we need pointwise estimates for the
Laguerre polynomials. The first one is Szegő’s inequality, [14, (7.21.3)],

(50) |Ln(x)| ≤ e
x
2 , x ≥ 0, n ∈ N0.

The second one is the less known Lewandowski–Szynal inequality [8, Corollary 1], which bounds the
Laguerre polynomial via the incomplete Gamma function

(51) |Ln(x)| ≤
ex

n!

∫
∞

x
tne−t dt, x ≥ 0, n ∈ N0.

We will also need the simple formula

(52)
n

∑
k=0

1
k!

xk =
ex

n!

∫
∞

x
tne−t dt,

whereby one could replace the integral in (51) by the partial sum of the exponential function ex. In
particular, (51) is better for large x than (50) but does not converge to (50) for large n and fixed x
because of the different exponents.

Lemma 5.5. Let δ ≥ 0. Furthermore, let N ∈ N and L > 0 such that N
L < 1

2 . Then,

tr[P⊥
[δ ,L]ΠN ]≤ δ (N +1)+

4
1
2 −

N
L

1
N!

e−
L
2 LN .

Proof. First note that P⊥
[δ ,L] = P[0,δ ]+P[L,∞[. Using Szegő’s inequality (50) we obtain

tr[P[0,δ ]ΠN ] =
∫

δ

0

N

∑
n=0

ln(x)2 dx ≤ δ (N +1).

The remaining trace is a bit more difficult. To simplify the calculations, we apply Szegő’s inequality to
one factor in

0 ≤ ΠN(x,x) =
N

∑
n=0

ln(x)2 ≤
N

∑
n=0

|ln(x)|, x ≥ 0

and then use the Lewandowski–Szynal inequality (51), x ≥ 0,

0 ≤ ΠN(x,x)≤
N

∑
n=0

e
x
2

n!

∫
∞

x
tne−t dt = e

x
2

∫
∞

x
e−t

N

∑
n=0

tn

n!
dt =

1
N!

e
x
2

∫
∞

x

∫
∞

t
sNe−s dsdt.
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In the last step we used (52). Furthermore,

N! tr[P[L,∞[ΠN ] =
∫

∞

L
e

x
2

∫
∞

x
sNe−s(s− x)dsdx

= e−
L
2

∫
∞

0
e

x
2

∫
∞

x
(s+L)Ne−s(s− x)dsdx

= e−
L
2 LN

∫
∞

0
(1+

s
L
)Ne−

s
2

∫ s

0
e−

x
2 xdxds

≤ e−
L
2 LN

∫
∞

0
e

N
L se−

s
2

∫ s

0
e−

x
2 xdxds.

For simplicity we bound the x-integral by 4

N! tr[P[L,∞[ΠN ]≤ 4e−
L
2 LN

∫
∞

0
e

N
L se−

s
2 ds = 4e−

L
2 LN 1

1
2 −

N
L

.

This completes the proof. □

We combine the preceding estimates to obtain a bound on the trace of the Hilbert matrix.

Lemma 5.6. Let α ≥ 1
2 and N,m ∈ N with m ≥ 5. Then,

(53)
1

π2m tr(H2m

N,α)≤C
{ 1

2
m
2

[
ln(m)+ ln(N)

]
+

1
m2 +

1
(2N)!

(mN)2Ne−
1
2 mN

}
with some explicitely given constant 0 ≤C < ∞.

Proof. Lemmas 5.2 and 5.3 imply

(54)
1

π2m tr[H2m

N,α ]≤
2

π2m tr(P[δ ,L]K
2m
)+2tr

(
P⊥
[δ ,L]Π2N

)
.

We let δ and L depend on m and N in an appropriate way

δ :=
1

(2N +1)m2 , L := mN,

and bound the first term in (54) with the aid of Lemma 5.4 and (62)

(55)
2

π2m tr(P[δ ,L]K
2m
)≤ 4

π2
nδ (L−δ )√

2m−1 −1
≤ 2

π2
1

2
m
2

ln(m3N(2N +1)).

For the second term follows via Lemma 5.5 (m ≥ 5)

2 tr
(
P⊥
[δ ,L]Π2N

)
≤ 2

(
δ (2N +1)+

4
1
2 −

2N
L

1
(2N)!

L2Ne−
L
2

)
= 2

( 1
m2 +

4
1
2 −

2
m

1
(2N)!

(mL)2Ne−
1
2 mN

)
.

(56)

Via some elementary estimates, (55) and (56) imply (53). □

Now, everything is at hand to prove the complement of Proposition 5.1.
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Proposition 5.7. Let α ≥ 1
2 . Then,

(57) − liminf
N→∞

2
ln(N)

ln
(
det(1− 1

π
HN,α)

)
≤ 3

4
.

Proof. Since H2m

N,α is a non-negative operator the trace norm in (8) equals the trace

(58) − ln
(
det(1− 1

π
HN,α)

)
≤

M

∑
m=0

ln
(
det(1+(

1
π

HN,α)
2m
)
)
+

∞

∑
m=M+1

1
π2m tr(H2m

N,α).

We bound the traces via Lemma 5.6 (with M ≥ 4)
∞

∑
m=M+1

1
π2m tr(H2m

N,α)≤C1

∞

∑
m=M+1

{ 1
2

m
2

[
ln(m)+ ln(N)

]
+

1
m2

}
+C1

N2N

(2N)!

∞

∑
m=M+1

m2Ne−
1
2 mN .

For the first sum

(59) liminf
N→∞

1
ln(N)

∞

∑
m=M+1

{ 1
2

m
2

[
ln(m)+ ln(N)

]
+

1
m2

}
=

∞

∑
m=M+1

1
2

m
2
.

The second series requires a bit more reasoning. For sufficiently large M ∈ N,

1
(2N)!

N2N
∞

∑
m=M+1

m2Ne−
1
2 mN ≤ 1

(2N)!
N2N

∫
∞

M
t2Ne−

1
2 Nt dt

=
1

(2N)!
2
N

e−
1
2 MN(MN)2N

∫
∞

0

(
1+

2t
MN

)2Ne−t dt

≤ 1
(2N)!

2
N

e−
1
2 MN(MN)2N

∫
∞

0
e

4t
M e−t dt

≤C2
1

N
3
2

( e
2
)2Ne−

1
2 MNM2N

≤C2
1

N
3
2

exp
[
(2−2ln(2)− 1

2
M+2ln(M))N

]
with some constant C2 ≥ 0. In the next to last step we used the lower bound from Stirling’s formula.
For M large enough, the argument of the exponential function becomes negative which shows that the
expression coverges to zero as N → ∞ even without the factor ln(N). Now, divide (58) by 1

2 ln(N) and
use Corollary 4.6 and (59) to deduce

(60) − liminf
N→∞

2
ln(N)

ln
(
det(1− 1

π
HN,α)

)
≤

M

∑
m=0

γ2m +C3

∞

∑
m=M+1

1
2

m
2

with C3 ≥ 0 to adjust for a different factor in (59). Since (60) is true for all (sufficiently large) M ∈ N
we may perform the limit M → ∞

− liminf
N→∞

2
ln(N)

ln
(
det(1− 1

π
HN,α)

)
≤

∞

∑
m=0

γ2m .
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We evaluate the infinite sum by using the explicit form of the γk’s in (40)
∞

∑
m=0

γ2m =
2

π2

∞

∑
m=0

∫
∞

0
ln
(
1+

1
[cosh(ω)]2

m

)
dω =

2
π2

∫
∞

0
ln
( ∞

∏
m=0

(
1+

1
[cosh(ω)]2

m

))
dω.

Interchanging summation and integration can be justified via Lebesgue’s convergence theorem. With
(6) we obtain

∞

∑
m=0

γ2m =
2

π2

∫
∞

0
ln
( 1

1− 1
cosh(ω)

)
dω =− 2

π2

∫
∞

0
ln
(

1− 1
cosh(ω)

)
dω =

3
4
.

In the last step we used Lemma A.3. This yields (57). □

We combine the lower and upper bound.

Theorem 5.8. Let α ≥ 1
2 . Then,

ln
(
det(1− 1

π
HN,α)

)
=

1
2

ln(N)γ(1)+o(ln(N)) as N → ∞

with γ(1) =−3
4 .

Proof. From Propositions 5.1 and 5.7 we obtain

−3
4
≤ liminf

N→∞

2
ln(N)

ln
(
det(1− 1

π
HN,α)

)
≤ limsup

N→∞

2
ln(N)

ln
(
det(1− 1

π
HN,α)

)
≤ γ(1) =−3

4
,

cf. (37). This proves the statement. □

6. Limit case for α = 1

For the special Hilbert matrix with α = 1, cf. (11), there is an alternative way to prove the trace
estimates (Lemmas 5.2, 5.3, 5.5, 5.6) used in Proposition 5.8 to bound the limit inferior. Starting point
is a simple estimate for the hyperbolic sine.

Lemma 6.1. Let 0 ≤ δ ≤ 1
3 . Then, the hyperbolic sine satisfies the estimate

y
sinh(y)

≤ 2δ e−δy, y > 0.

Proof. We use Lazarevic’s inequality [9, 3.6.9]

cosh(y)≤
[

sinh(y)
y

]p

, y ̸= 0, p ≥ 3.

For the proof note that sinh(y)/y ≥ 1 whence one only has to consider the case p = 3. Using
cosh(y)≥ ey/2 yields the claimed inequality with δ = 1/p. □

We replace the Hilbert matrix by the Carleman operator.

Lemma 6.2. Let N,m ∈ N and 0 < δ ≤ 1
3 . Then,

0 ≤ tr[Hm
N,1]≤ 2mδ tr[P[δ ,N+δ ]K

m]

with K the Carleman operator (16).
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Proof. From Lemma 3.1 follows

tr[Hm
N,1] = tr[Gm

N,1], m ∈ N.

Recall the kernel function (see Lemma 3.1 and the proof of Lemma 3.2)

GN,1(x) =
x

2sinh( x
2)

∫ N

0
e−sx ds.

With the aid of Lemma 6.1

0 ≤ GN,1(x+ y)≤ 2δ e−δ (x+y)
∫ N

0
e−s(x+y) ds = 2δ

∫ N

0
e−(s+δ )(x+y) ds = 2δ (E2δ P[0,N]E

∗
2δ
)(x,y)

where E2δ is from (14) with α = 2δ . Since δ > 0 we may take the trace, Lemma 3.2

0 ≤ tr[Hm
N,1] = tr[Gm

N,1]≤ 2mδ tr[(E2δ P[0,N]E
∗
2δ
)m]

where we used that the kernel functions are (pointwise) non-negative. Via Lemma 3.3

tr[(E2δ P[0,N]E
∗
2δ
)m] = tr[(P[δ ,N+δ ]KP[δ ,N+δ ])

m]≤ tr[P[δ ,N+δ ]K
m]

In the last step we used 0 ≤ P[δ ,N+δ ] ≤ 1 in the sense of quadratic forms. □

We replace the Carleman operator K by the convolution operator K0.

Lemma 6.3. Let 0 < δ ≤ 1
3 . With the convolution operator K0 from Lemma 4.2

tr[P[δ ,N+δ ]K
m] = tr[P[−n,n]K

m
0 ], nδ (N) =

1
4

ln
N +δ

δ
.

Proof. See Lemma 4.2. □

Using the diagonalization of the convolution operator K0, see (29), we express the trace as a simple
integral.

Lemma 6.4. Let m ∈ N and n ≥ 0. Then,

tr[P[−n,n]K
m
0 ] = 2nπ

m−2
∫
R

1
[cosh(ω)]m

dω.

Proof. Via the diagonalization FK0F
∗ =

√
2πK̂0, see (28) and (29), we obtain

tr[P[−n,n]K
m
0 ] = (2π)

m
2 tr[P−n,n]F

∗K̂m
0 F ] = (2π)

m
2 tr[FP[−n,n]F

∗K̂m
0 ].

Now,

FP[−n,n]F
∗(x,y) =

1
2π

∫ n

−n
e−iω(x−y) dω

and thus
tr[P[−n,n]K

m
0 ] =

1
2π

2n(2π)
m
2

∫
R

K̂0(ω)m dω.

This implies

tr[P[−n,n]K
m
0 ] = 2n(2π)

m−2
2

∫
R

[√
π

2
1

cosh(πω

2 )

]m

dω = 2nπ
m−2

∫
R

1
[cosh(ω)]m

dω

which proves the lemma. □
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We give now a new proof of Proposition 5.7. We formulate only the relevant part.

Proposition 6.5. The special Hilbert matrix HN,1, cf. (11), satisfies

− liminf
N→∞

2
ln(N)

ln
(
det(1− 1

π
HN,1)

)
≤

∞

∑
m=0

γ2m .

Proof. We start from (58) but use now Lemmas 6.2 through 6.4. These imply (we only need even
exponents)

1
π2k tr[H2k

N,1]≤
2nδ (N)

π2 22kδ

∫
R

1
[cosh(ω)]2k dω, 0 < δ ≤ 1

3
, nδ (N) =

1
4

ln
N +δ

δ
,

which can be further estimated with the aid of (62)

1
π2k tr[H2k

N,1]≤
2nδ (N)

π2 22kδ 2√
k−1

, k ≥ 2.

In order to compensate the exponentially growing prefactor we choose δ = 1
k ,

1
π2k tr[H2k

N,1]≤
16
π2

n 1
k
(N)

√
k−1

, n 1
k
(N) =

1
4

ln[(N +
1
k
)k].

Now we can estimate the infinite sum in (58)
∞

∑
m=M+1

1
π2m tr[H2m

N,1]≤
16
π2

∞

∑
m=M+1

1√
2m−1 −1

1
4

ln
(
(N +

1
2m−1 )2

m−1)
≤ 4

π2

∞

∑
m=M

1√
2m −1

{
m ln(2)+ ln(N +

1
2m )

}
≤C1

∞

∑
m=M

m√
2m −1

+C2 ln(N +1)
∞

∑
m=M

1√
2m −1

.

This yields the analogue of (60)

− liminf
N→∞

2
ln(N)

ln
(
det(1− 1

π
HN,1)

)
≤

M

∑
m=0

γ2m +C3

∞

∑
m=M

1√
2m −1

.

Letting M → ∞ we obtain the statement. □

Appendix A. Integrals

Lemma A.1. Let m ∈ N. Then,

(61) I2m :=
∫
R

1
cosh(x)2m dx = 2

m−1

∏
k=1

2k
2k+1

= 2
4m−1[(m−1)!]2

(2m−1)!
,

which can be estimated

(62) I2m+2 ≤
2√
m
, m ∈ N.
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Proof. We note d
dx tanh(x) = 1/cosh(x)2 and integrate by parts

I2m+2 =
∫
R

1
[cosh(x)]2m

1
[cosh(x)]2

dx

=

[
1

[cosh(x)]2m
sinh(x)
cosh(x)

]∞

−∞

+2m
∫
R

sinh(x)
[cosh(x)]2m+1

sinh(x)
cosh(x)

dx

= 2m
∫
R

[cosh(x)]2

[cosh(x)]2m+2 dx−2m
∫
R

1
[cosh(x)]2m+2 dx

= 2mI2m −2mI2m+2.

We solve for I2m+2 to obtain the recursion formula

I2(m+1) =
2m

2m+1
I2m

which immediately yields

I2(m+1) = 2
m

∏
k=1

2k
2k+1

= 2
m

∏
k=1

k
k+ 1

2
since I2 = 2. This implies (61). In order to derive the bound we use the inequality between the
geometric and arithmetic mean

I2(m+1) = 2
√

m
m+ 1

2

√
m
√

m−1
m− 1

2

√
m−1

√
m−2

m− 3
2

· · ·
√

2
√

1
1+ 1

2

√
1 ≤ 2

√
m

m+ 1
2

≤ 2√
m
.

This proves (62). □

The following integral is a special case of an integral that appeared in the study of the ground state
energy of the free Fermi gas [11]. We evaluate it here for the sake of completeness.

Lemma A.2. Let β ∈ C\ [1,∞[. Then,

(63) I(β ) :=
∫

∞

0
ln
(
1− β

cosh(x)
)

dx =
1
2
[arcosh(−β )]2 +

π2

8
.

Here, arcosh is the principal branch on the cut plane C\ ]−∞,−1[.

Proof. First of all, we transform the integral into a form that can be treated by standard methods. To
this end, we write f (x) = cosh(x)−1 for short. Note that f (0) = 0, f (∞) = ∞, and f ′(x)> 0 for x > 0.
Therefore,

x = f−1(y), dx =
d
dy

( f−1(y))dy,

is a well-defined substitution. Hence,

I(β ) =
∫

∞

0
ln(1− β

f (x)+1
)dx =

∫
∞

0
ln(1− β

y+1
)

d
dy

( f−1(y))dy.

An integration by parts yields

I(β ) =−β

∫
∞

0

1
y+1−β

1
y+1

f−1(y)dy =
∫

∞

0

[ 1
y+1

− 1
y+1−β

]
f−1(y)dy.
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The integral is of the type

I(β ) =
∫

∞

0
r(y)g(y)dy, g(y) := f−1(y)

where the rational function r does not have poles in [0,∞[. Such integrals can be evaluated by standard
methods if one finds a function h with a certain jump at [0,∞[. In our case

h(z) :=− 1
4πi

[arcosh(−z−1)]2.

Then, via the residue theorem

I(β ) = 2πi ∑
z∈C\[0,∞[

res(r(z)h(z))

=
1
2 ∑

z∈C\[0,∞[

res
[

1
z+1−β

[arcosh(−z−1)]2
]
− 1

2 ∑
z∈C\[0,∞[

res
[

1
z+1

[arcosh(−z−1)]2
]

=
1
2
[arcosh(−β )]2 − 1

2
[arcosh(0)]2

which yields (63). □

The method used to prove the preceding lemma does not work in the case β = 1. One could use a
continuity argument to cover this case as well. Instead, we transform the integral into a well-known
integral.

Lemma A.3. Let β = 1 in Lemma A.2. Then,

(64) I(1) =
∫

∞

0
ln
(
1− 1

cosh(x)
)

dx =−3π2

8
.

Proof. Despite the singularity at x = 0 the integral is well-defined since the logarithm x 7→ ln(x) is
integrable a x = 0. We integrate by parts and use some standard formulae for the hyperbolic functions

I(1) =−
∫

∞

0

x
cosh(x)−1

sinh(x)
cosh(x)

dx

=−
∫

∞

0

x
[cosh(x)]2 −1

(cosh(x)+1)sinh(x)
cosh(x)

dx

=−
∫

∞

0

x
sinh(x)

dx−
∫

∞

0

x
sinh(x)cosh(x)

dx

=−3
2

∫
∞

0

x
sinh(x)

dx.

The latter integral is well-known and has the value π2

4 . It can be evaluated via Cauchy’s integral
theorem and an appropriate integration contour. A possible choice is the rectangle with vertices ±R
and ±R+ iπ with a small half circle at iπ cut out. □
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