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1. Introduction and basic results

The theory of measure of noncompactness(MNC) has various applications especially in the

study of nonlinear analysis, fixed point theory, optimizations, integral equations, differential

equations and many more. In the year 1930, Kuratowski provided the first description of it.

Gohberg et al. [13], Sadovskii [26], and Geobel [12] proposed the Hausdorff’s measure of noncom-

pactness. One can refer [4] for more details of MNC. The concept of MNC was used by Darbo

[7] and he developed the famous Darbo fixed point theorem which generalize the Schauder

fixed point theorem. Since then many researcher generalized the Darbo fixed point theorem

and present their applications in verifying the existence solution for a class of fractional integral

equations, integral equation, differential equation, hybrid differential equation in Banach spaces,

see [6, 8, 9, 10, 16, 15, 22, 27, 29].

The integral equations is helpful in modelling and defining real life problems in the field

of physics, biology and economics. Many authour have extensively studied and contributed

in solving equations involving integral and differential equations with the help of fixed point
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theory and measure of noncompactness. Arab et al. [3] introduced a new µ contraction to

generalized Darbo’s fixed point theorem and verified the result on functional integral equation.

Alqahtani et al. [2] studied the solvability of volterra type fractional equation by using hybrid

type contraction in metric space and also merged several known fixed point theorems. Recently

Haque et al. [14] generalized the Darbo’s fixed point theorem and investigate the solvability of

infinite system of integral equation of fractional order integral equations. Which enthused us

to study fractional integral equation and in this paper we checked the solvability of fractional

integral equation (3.1).

At the outset we will familiarize the reader with the notations that will be use in this paper.

Let R+ denote the set [0,∞) and N denotes the set of all natural number. Let (E, ‖ . ‖) be

a Banach space and C be a nonempty subset of E. C and conC are also used to represent

the closure and convex closure of C, respectively. Further ME is the family of nonempty and

bounded subset of E, while NE denotes its subfamily of all relatively compact sets.

Definition 1.1. [4] A function ν : ME → R+ is called a measure of noncompactness in the

space E if it satisfies the following conditions:

(i) the family ker ν = {Q1 ∈ME : ν (Q1) = 0} is nonempty and ker ν ⊂ NE ;

(ii) Q1 ⊂ Q2 =⇒ ν (Q1) ≤ ν (Q2) ;

(iii) ν
(
Q̄1

)
= ν (Q1) ;

(iv) ν (conQ1) = ν (Q1) ;

(v) ν (λQ1 + (1− λ)Q2) ≤ λν (Q1) + (1− λ) ν (Q2) for λ ∈ [0, 1] ;

(vi) if Qn ∈ME , Qn = Qn, Qn+1 ⊂ Qn for n = 1, 2, 3, . . . and lim
n→∞

ν (Qn) = 0, then
∞⋂
n=1

Qn

is nonempty.

In addition to the above conditions, if ν satisfies the following conditions then, ν is said to

be sublinear

(i) ν(λQ1) = |λ|ν(Q1) for λ ∈ R.
(ii) ν(Q1 +Q2) ≤ ν(Q1) + ν(Q2).

Definition 1.2. [4, 17] For a bounded subset D of a metric space X the Kuratowski measure of

noncompactness is defined as

α (D) = inf

{
ε > 0 : D ⊂

n⋃
i=1

Di, diam (Di) < ε for i = 1, 2, 3, . . . , n;n ∈ N

}
.

Then the function α is known as Kuratowski’s MNC.

Definition 1.3. [5] For a bounded subset D of a metric space Q the Hausdorff measure of

noncompactness χ(D) is defined as

χ(D) = inf

{
ε > 0 : D ⊂

n⋂
i=1

∆(ξi, ri), ξi ∈ Q, ri < ε, 1 ≤ i ≤ n;n ∈ N

}
.
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Here ∆(ξi, ri) denotes the open ball whose center is at ξi and of radius ri.

Theorem 1.4. [1] There is at least one fixed point for every continuous mapping T : D → D in

a nonempty, convex, and compact subset D of the Banach space E.

Definition 1.5. [7] Consider D to be a nonempty, bounded, closed, and convex subset of the

Banach space E. If for a continuous mapping T : D → D, a constant κ ∈ [0, 1) exists such that

ν(TQ) ≤ κν(Q), Q ⊆ D

Then T has a fixed point.

Definition 1.6. Let TF be the set of continuous and increasing functions of each variables F

from R+ × R+ to R+ such that

lim
m→∞

F (xm, ym) = 0⇔ lim
m→∞

xm = lim
m→∞

ym = 0.

Definition 1.7. Let TB be the set of functions b : R+ × R+ → [0, 1). Also, let Tφ be the set of

functions φ : R+ → R+ which is continuous and increasing.

Example 1.8. Consider the function b(ϑ̄, ϑ) = |ϑ̄− ϑ| ∀ϑ̄, ϑ ∈ (n, n+ 1), where n ∈ R+. Then

b ∈ TB.

2. New results

Theorem 2.1. Let B̂ be a nonempty bounded, convex and closed subset of a Banach space E

and T : B̂ → B̂ is a continuous function such that

F (νTQ, φ(νTQ)) ≤ b(νQ, φ(νQ))F (νQ, φνQ),

where Q is a nonempty subset of B̂, F ∈ TF , b ∈ TB, φ ∈ Tφ and ν is an arbitrary MNC. Then

T has at least one fixed point.

Proof. First we construct a sequence (Qn), where Q1 = Q and Qn+1 = con(TQn) for n ≥ 1.

Then TQ1 = TQ ⊆ Q = Q1, Q2 = con(TQ1) ⊆ Q = Q1 and proceeding in same way we get

Q1 ⊇ Q2 ⊇ Q3 ⊇ · · · ⊇ Qn ⊇ Qn+1 ⊇ . . . .
If there exists n̂ ∈ N such that ν(Qn̂) = 0 then the theorem is proved. Let ν(Qn) > 0, ∀n ∈ N,
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then the sequence {νQn} is nonnegative, decreasing and bounded below sequence.

F (νQn+1, φ(νQn+1)) = F (νconTQn, φν(conTQn))

= F (νTQn, φ(νTQn))

≤ b(νQn, φ(νQn))F (νQn, φ(νQn))

≤ b(νQn, φ(νQn))b(νQn−1, φ(νQn−1))F (νQn−1, φ(νQn−1))

...

≤
( n∏
i=1

b(νQi, φ(νQi))

)
F (νQ1, φ(νQ1)).

The above inequality suggest that

lim
n→∞

F (νQn, φ(νQn)) = 0.

By the definition of F we conclude that lim
n→∞

(νQn) = 0. Now Qn ⊇ Qn+1 and by the definition

of ν it is proved that Q∞ =
∞⋂
n=1

Qn is nonempty, convex and closed subset of Q and also under

T,Q∞ is invariant. So applying Schauder’s theorem we get that T has atleast one fixed point

in Q∞ ⊆ Q. �

Corollary 2.2. Let T : Ω→ Ω be a continous operator. Let F ∈ TF ,b ∈ TB and also φ : R+ →
R+ such that

F (νTQ, φ(νTQ)) ≤ κF (νQ, φ(νQ)).

Then T has a fixed point.

Proof. Putting b(νQ, φ(νQ)) = κ ∈ [0, 1) in Theorem 2.1 then we get the desired result. �

Corollary 2.3. Let T : Ω → Ω be a continous operator. Let F ∈ TF , b ∈ TB and also

φ : R+ → R+ such that

νTQ+ φ(νTQ) ≤ κ(νQ+ φ(νQ))

Then T has a fixed point

Proof. Putting F (x, y) = x+ y in the the Corollary 2.2, we get the desired result �

Remark 2.4. Putting φ(ζ) ≡ 0 in the Corollary 2.3 we get Darbo’s fixed point theorem

Theorem 2.5. Let T : Ω → Ω be a continuous operator. Also F ∈ TF , b ∈ TB, φ ∈ Tφ and if

diam(TΩ) > 0 implies that

F (diam(TΩ), φ(diamTΩ)) ≤ b(diamΩ, φ(diamΩ))F (diamΩ, φ(diamΩ)).

Then T has a fixed point.
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Proof. Consider the function σ(Ω) = diam(Ω), where diam(Ω) = sup{‖ ω − $ ‖;ω,$ ∈ Ω},
then σ is a MNC on the space E in the sense of Definition 1.1. By the same argument as given

in [11, Proposition 3.2], the Theorem 2.1 insured a closed convex and nonempty subset of Ω

which is invariant under T such that diam(Ω∞) = 0. Then we infer that the set Ω∞ contains a

single element.

If possible there exist two elements say ζ1, ζ2 and let Ω = {ζ1, ζ2}.
Here diam(Ω) = diam(TΩ) =‖ ζ1 − ζ2 ‖> 0. Then

F (diamTΩ, φ(diamTΩ)) ≤ b(diamΩ, φ(diamΩ))F (diamΩ, φ(diamΩ)).

This implies that b(diamΩ, φ(diamΩ)) ≥ 1, which is a contradiction. Hence ζ1 = ζ2. �

Corollary 2.6. Let T : Ω → Ω be an operator. If there exist F ∈ TF , b ∈ TB and φ ∈ Tφ such

that ‖ Tω − T$ ‖> 0 implies that

F (‖ Tω − T$ ‖, φ(‖ Tω − T$ ‖)) ≤ b(‖ ω −$ ‖, φ(‖ ω −$ ‖))F (‖ ω −$ ‖, φ(‖ ω −$ ‖)).

Then T has a fixed point.

Proof. If diam(TΩ) > 0 then

F ( sup
ω,$∈Ω

‖ Tω − T$ ‖, sup
ω,$∈Ω

φ(‖ Tω − T$ ‖))

= sup
ω,$∈Ω

F (‖ Tω − T$ ‖, φ(‖ Tω − T$ ‖))

≤ sup
ω,$∈Ω

b(‖ ω −$ ‖, φ(‖ ω −$ ‖))F (‖ ω −$ ‖, φ(‖ ω −$ ‖))

≤ b( sup
ω,$∈Ω

‖ ω −$ ‖, φ( sup
ω,$∈Ω

‖ ω −$ ‖))F ( sup
ω,$∈Ω

‖ ω −$ ‖, φ( sup
ω,$∈Ω

‖ ω −$ ‖)).

Thus we get that if diam(TΩ) > 0 then

F (diam(TΩ), φ(diamTΩ)) ≤ b(diamΩ, φ(diamΩ))F (diamΩ, φ(diamΩ)).

Thus by Theorem 2.5, T has a fixed point. �

Theorem 2.7. If E is a Banach space and C is a closed convex subset of E. Let T1 and T2 be

two operators on C such that

(1) (T1 + T2)Ĉ ⊆ C, ∀ Ĉ ⊆ C.
(2) There exist F ∈ TF , b ∈ TB and φ ∈ Tφ such that ‖ T1ω − T1$ ‖> 0 implies that

F (‖ T1ω − T1$ ‖, φ(‖ T1ω − T1$ ‖)) ≤ b(‖ ω −$ ‖, φ(‖ ω −$ ‖))F (‖ ω −$ ‖, φ(‖ ω −$ ‖))

(3) T2 is a continuous and compact operator.

Then T = T1 + T2 : C → C has a fixed point.
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Proof. Suppose Q ⊆ E with α(Q) > 0, where α is the Kuratowski’s MNC. Then corresponding

to every n ∈ N, Q1, Q2, . . . , Qn are all bounded sets such that Q ⊆
⋃n
i=1Qi and diam(Qi) ≤

α(Q) + 1
n . If α(T1Q) > 0 and since T1(Q) ⊆

⋃n
i=1 T1(Q1) then there exist î ∈ {1, 2, 3, ..., n} such

that α(T1Q) ≤ diamT1(Qî).

Then

F (α(T1Q), φ(αT1Q) ≤ F (diamT1Qî, φ(αT1Qî))

≤ b(diamQî, φ(diamQî))F (diamQî, φ(diamQî))

≤ b
(
α(Q) +

1

n
, φ(α(Q)) +

1

n

)
F

(
α(Q) +

1

n
, φ(α(Q)) +

1

n

)
as n→∞ we get

F (α(T1Q), φ(αT1Q)) ≤ b(α(Q), φ(α(Q)))F (αQ, φ(αQ)).

Using assumption (3) and by using the definition of α

F (α(TQ), φ(αTQ)) = F (α(T1 + T2)Q,φ(α(T1 + T2)Q))

≤ F (αT1Q+ αT2Q,φ(αT1Q+ αT2Q))

= F (αT1Q,φ(αT1Q))

≤ b(αQ, φ(αQ))F (αQ, φ(αQ)).

Thus T has a fixed point. �

3. Applications

In this section we will deal with the existence of the solution of the equation (3.1). Let

(E, ‖ . ‖) be a Banach space and C(I, E) be the collection of continuous fuction from I → E,

where γ, β > 0 I = [0, D]. Let ϑ(ζ) ∈ C(I, E) and consider the fractional integral equation

ϑ(ζ) = f(ζ, ϑ(ζ)) +
Hϑ(ζ)

Γγ

∫ ζ

0

sβ−1u(ζ, s, ϑ(s))

(ζβ − sβ)1−γ ds. (3.1)

We consider the following assumptions

(a1) f : I × E → E is continuous and there exist F ∈ TF , b ∈ TB and φ ∈ Tφ such that

‖ f(ζ, ϑ(ζ))− f(ζ, %(ζ)) ‖> 0

⇒ F (‖ f(ζ, ϑ(ζ))− f(ζ, %(ζ)) ‖, φ(‖ f(ζ, ϑ(ζ))− f(ζ, %(ζ)) ‖)

≤ b(‖ ϑ− % ‖, φ(‖ ϑ− % ‖))F (‖ ϑ− % ‖, φ(‖ ϑ− % ‖)).

Also let ‖ f(ζ, ϑ(ζ)) ‖≤ ψ1(‖ ϑ ‖) and M̂ = sup{ψ1(‖ ϑ ‖); ϑ ∈ C(I, E)} < ∞, where

ψ1 : R+ → R+ and I = [0, D].

(a2) H is an operator on C(I, E) which is continuous and there exists an increasing function

ψ : R+ → R+ such that ‖ Hϑ(ζ) ‖≤ ψ(‖ ϑ ‖).
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(a3) u : I × I × R → R is continuous function such that u(I × I × ×R) ⊆ R+ and Û =

sup{|u(ζ, s, ϑ(s))|; ζ, s ∈ I, u(s) ∈ C+(I)}.
(a4) lim

ξ→∞
inf ψ(ξ)ÛDβγ

ξβΓ(γ+1) < 1.

Theorem 3.1. Under the above assumtions (a1) − (a4) the equation (3.1) has a solutions in

C(I, E), where I = [0, D]

Proof. Consider the operator on C(I, E) defined by

Tϑ(ζ) = f(t, ϑ(ζ)) +
Hϑ(ζ)

Γγ

∫ ζ

0

sβ−1u(ζ, s, ϑ(s))

(ζβ − sβ)1−γ ds.

Let us divide the operator T into two parts T1 and T2 such that T = T1 + T2, where T1ϑ(ζ) =

f(ζ, ϑ(ζ)) and T2 = Hϑ(ζ)F1ϑ(ζ) such that F1ϑ(ζ) = 1
Γγ

∫ ζ
0
sβ−1u(t,s,ϑ(s))

(tβ−sβ)1−γ
ds.

Now we will first show that T is well defined on C(I, E). It is very easy to see that T1 is

well defined. We will show that T2 is well defined. Let ε > 0 be arbitrary and ϑ(ζ) ∈ C(I, E)

be fixed such that r̂ =‖ ϑ ‖. Also let ζ1, ζ2 ∈ I, without the loss of generality we can assume

that ζ2 > ζ1. Then

|T2ϑ(ζ2)− T2ϑ(ζ1)|

=
1

Γγ

∣∣∣∣Hϑ(ζ2)

∫ ζ2

0

sβ−1u(ζ2, s, ϑ(s))

(ζβ2 − sβ)1−γ
ds−Hϑ(ζ1)

∫ ζ1

0

sβ−1u(ζ1, s, ϑ(s))

(ζβ1 − sβ)1−γ
ds

∣∣∣∣
≤ 1

Γγ

∣∣∣∣Hϑ(ζ2)

∫ ζ2

0

sβ−1u(ζ2, s, ϑ(s))

(ζβ2 − sβ)1−γ
ds−Hϑ(ζ2)

∫ ζ1

0

sβ−1u(ζ2, s, ϑ(s))

(ζβ2 − sβ)1−γ
ds

∣∣∣∣
+

1

Γγ

∣∣∣∣Hϑ(ζ2)

∫ ζ1

0

sβ−1u(ζ2, s, ϑ(s))

(ζβ2 − sβ)1−γ
ds−Hϑ(ζ1)

∫ ζ1

0

sβ−1u(ζ1, s, ϑ(s))

(ζβ2 − sβ)1−γ
ds

∣∣∣∣
+

1

Γγ

∣∣∣∣Hϑ(ζ1)

∫ ζ1

0

sβ−1u(ζ1, s, ϑ(s))

(ζβ2 − sβ)1−γ
ds−Hϑ(ζ1)

∫ ζ1

0

sβ−1u(ζ1, s, ϑ(s))

(ζβ1 − sβ)1−γ
ds

∣∣∣∣
≤ 1

Γγ

∣∣∣∣Hϑ(ζ2)

∫ ζ2

ζ1

sβ−1u(ζ2, s, ϑ(s))

(ζβ2 − sβ)1−γ
ds

∣∣∣∣
+
|Hϑ(ζ2)−Hϑ(ζ1)|

Γγ

∫ ζ1

0

sβ−1|u(ζ2, s, ϑ(s))− u(ζ1, s, ϑ(s))|
(ζβ2 − sβ)1−γ

ds

+
1

Γγ

∣∣∣∣Hϑ(ζ1)

∫ ζ1

0
sβ−1u(ζ1, s, ϑ(s))

[
1

(ζβ2 − sβ)1−γ
− 1

(ζβ1 − sβ)1−γ

]
ds

≤ ψ(‖ ϑ ‖)Û
βΓ(γ + 1)

(ζβ2 − ζ
β
1 )γ +

‖ Hϑ(ζ2)−Hϑ(ζ1)) ‖ ω(u, ε)

βΓ(γ + 1)
ζβγ1 +

ψ(‖ ϑ ‖)Û
βΓ(γ + 1)

[ζβγ2 − ζ
βγ
1 − (ζβ2 − ζ

β
1 )γ ]

=
‖ Hϑ(ζ2 −Hϑ(ζ1)) ‖ ω(u, ε)

βΓ(γ + 1)
ζβγ1 +

ψ(‖ ϑ ‖)Û
βΓ(γ + 1)

[ζβγ2 − ζ
βγ
1 ],

where ω(u, ε) = sup{|u(ζ2, s, ϑ(s))− u(ζ1, s, ϑ(s))|; ζ1, ζ2 ∈ I, ϑ ∈ [−r̂, r̂].
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So by the continuity of H and u we can say that ‖ T2ϑ(ζ2) − T2ϑ(ζ1) ‖→ 0, as ζ2 → ζ1.

Thus T2 ∈ C(I, E).

Now we will show that T2 is continuous operator let ϑ(ζ) ∈ C(I, E) be fixed. Since H is

continuous operator on C(I, E) so there exists ε̂1 > 0 such that

‖ Hϑ(ζ)−H%(ζ) ‖< ε̂1, ∀ ‖ ϑ(ζ)− %(ζ) ‖< δ̂1.

Also

|F1ϑ(ζ)− F1%(ζ)| = 1

Γγ

∣∣∣∣ ∫ ζ

0

sβ−1u(ζ, s, ϑ(s))

(ζβ − sβ)1−γ ds−
∫ ζ

0

sβ−1u(ζ, s, %(s))

(ζβ − sβ)1−γ ds

∣∣∣∣
=

1

Γγ

∫ ζ

0

sβ−1|u(ζ, s, ϑ(s))− u(ζ, s, %(s))|
(ζβ − sβ)1−γ ds

≤ ω(u, ε̂2)Dβγ

βΓ(γ + 1)
,

where ω(u, ε̂2) = sup{|u(ζ, s, ϑ)− u(ζ, s, %)|; ζ, s ∈ I, ‖ ϑ(ζ)− %(ζ) ‖< δ̂2}.
Thus, ‖ F1ϑ(ζ)− F1%(ζ) ‖≤ ω(u,ε2)Dβγ

βΓ(γ+1) .

Also

|F1ϑ(ζ)| = 1

Γγ

∣∣∣∣ ∫ ζ

0

sβ−1u(ζ, s, ϑ(s))

(ζβ − sβ)1−γ ds

∣∣∣∣
≤ ÛDβγ

βΓ(γ + 1)
.

Therefore ‖ F1ϑ(ζ) ‖≤ ÛDβγ

βΓ(γ+1)

For δ = min{δ̂1, δ̂2} and ‖ ϑ(ζ)− %(ζ) ‖< δ. We have

‖ T2ϑ(ζ)− T2%(ζ) ‖ =‖ Hϑ(ζ)F1ϑ(ζ)−H%(ζ)T%(ζ) ‖

≤‖ Hϑ(ζ)−Hy(ζ) ‖‖ F1ϑ(ζ) ‖ + ‖ Hϑ(ζ) ‖‖ F1ϑ(ζ)− F1%(ζ) ‖

≤ ε̂1
ÛDβγ

βΓ(γ + 1)
+
ψ ‖ ϑ ‖ Dβγω(u, ε̂2)

βΓ(γ + 1)
.

As ‖ ϑ(ζ) − %(ζ) ‖→ 0 implies that ε̂1, ω(u, ε̂2) → 0, therefore from the above relation we get

that T2 is continuous on C(I, E).

Now we will show that T2 is compact. Let B̂ = {ϑ ∈ C(I, E) : ‖ ϑ ‖< 1} be an open ball in

C(I, E). In order to prove T2 is compact, we are required to show that T2B̂ is compact.
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Let ϑ(ζ) ∈ B̂

‖ T2ϑ(ζ) ‖ =‖ Hϑ(ζ)F1ϑ(ζ) ‖

≤‖ Hϑ(ζ) ‖‖ F1ϑ(ζ) ‖

≤ ψ(‖ 1 ‖) ÛDβγ

βΓ(γ + 1)

= M(say).

Thus T2B̂ is uniformly bounded. Let ϑ ∈ B̂ and ε > 0 be given. Since Hϑ(ζ) and F1ϑ(ζ) are

uniformly continuous so there exist δ̂1(ε), δ̂2(ε) > 0 such that for all ζ1, ζ2 ∈ I
(i) ‖ ζ2 − ζ1 ‖< δ̂1(ε)⇒‖ Hϑ(ζ2)−Hϑ(ζ1) ‖< ε1

(ii) ‖ ζ2 − ζ1 ‖< δ̂2(ε)⇒‖ Hϑ(ζ2)−Hϑ(ζ1) ‖< ε2.

Let δ̂(ε) = min{δ̂1(ε), δ̂2(ε), ε1, ε2}, where ε1, ε2 depends on ε. So for ζ1, ζ2 ∈ I and ‖ (ζ2)−ζ1 ‖<
δ̂(ε) we have

‖ Tϑ(ζ2)− Tϑ(ζ1) ‖ =‖ Hϑ(ζ2)F1ϑ(ζ2)−Hϑ(ζ1)F1ϑ(ζ1) ‖

≤‖ Hϑ(ζ2)−Hϑ(ζ1) ‖ ‖ F1ϑ(ζ2) ‖ + ‖ Hϑ(ζ1) ‖ ‖ F1ϑ(ζ2)− F1ϑ(ζ1) ‖

< ε1
ÛDβγ

βΓ(γ + 1)
+ ψ(‖ ϑ ‖)ε2

< ε.

For ε1 = εβΓ(γ+1)

2ÛTβγ
and ε2 = ε

2ψ(‖1‖) . Thus T2(B̂) is uniformly bounded and equcontinuous subset

of C(I, E). By Arzelá-Ascoli’s theorem we conclude that T2 is compact.

Let ϑ, % ∈ C(I, E) be such that ‖ T1ϑ− T1% ‖> 0. Since every continuous functions attains

its maximum on a compact set, there exists ζ ∈ I such that

0 <‖ T1ϑ− T1% ‖=‖ f(ζ, ϑ(ζ))− f(ζ, %(ζ)) ‖ .

Now by using assumption (a1) and for F ∈ TF , b ∈ TB and φ : R+ → R+ we have

F (‖ T1ϑ− T1% ‖, φ(‖ T1ϑ− T1% ‖)) = F (‖ f(ζ, ϑ(ζ))− f(ζ, %(ζ)) ‖, φ(‖ f(ζ, ϑ(ζ))− f(ζ, %(ζ)) ‖)

≤ b(‖ ϑ− % ‖, φ(‖ ϑ− % ‖)F (‖ ϑ− % ‖, φ(‖ ϑ− % ‖)).

Since by assumption (a1)

‖ T1ϑ ‖=‖ f(ζ, u(ζ)) ‖≤ ψ1(‖ ϑ ‖) ≤ M̂.

So T1 is bounded. Finally we will show that there exists r̂ > 0 such that T (B̂r̂) ⊆ B̂r̂, where

B̂r̂ = {ϑ ∈ C(I, E); ‖ ϑ ‖≤ r̂}. Let if possible suppose there exists ξ > 0 such that ϑξ ∈ B̂r̂ such

that ‖ Tϑξ ‖> ξ. Then we have

lim
ξ→∞

inf
1

ξ
‖ Tϑξ ‖≥ 1.
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Then,

‖ Tϑξ ‖ ≤‖ f(ζ, ϑξ(ζ)) ‖ + ‖ Hϑξ(ζ)Fϑξ(ζ) ‖

≤‖ T1ϑξ ‖ + ‖ Hϑξ(ζ) ‖‖ Fϑξ(ζ) ‖

≤ M̂ + ψ(‖ ϑξ ‖)
ÛDβγ

βΓ(γ + 1)

≤ M̂ + ψ(‖ ξ ‖) ÛDβγ

βΓ(γ + 1)
.

Thus

lim inf
ξ→∞

1

ξ
‖ Tϑξ ‖≤ lim inf

ξ→∞

ψ(ξ)ÛDβγ

ξβΓ(γ + 1)
< 1,

which is a contradiction. Thus from the given above discussion and using Theorem 2.7 we

conclude that T has at least one fixed point �

Example 3.2. Consider the fractional integral equation

ϑ(ζ) =
e−α(ζ+2)

1 + ζ2
cos(|ϑ(ζ)|) +

√
|ϑ(ζ)|

9Γ(1
2)(1 + |ϑ(ζ)|2)

∫ ζ

0

s3 sin(|ϑ(ζ)|)√
ζ4 − s4(1 + ζ2 + s2)

ds. (3.2)

Proof. Here γ = 1
2 , β = 4 and I = [0, D], D < ∞. The function f : I × R → R is defined by

f(ζ, ϑ(ζ)) = e−α(ζ+2)

1+ζ2
cos(|ϑ(ζ)|) is continuous which can be easily seen as follows

|f(ζ, ϑ(ζ))− f(ζ, %(ζ)| ≤ e−α(ζ+2)

1 + ζ2
| cos(ϑ)− cos(%)| ≤ e−2α|ϑ− %|.

Also ψ1(ζ) : R+ → R by ψ1(ζ) = cos(ζ) with M̂ = 1 such that

|f(ζ, ϑ(ζ))| =
∣∣∣∣e−α(ζ+2)

1 + ζ2
cos(|ϑ(ζ)|)

∣∣∣∣ ≤ cos(|ϑ(ζ)|) = ψ1(|ϑ(ζ)|).

The operator H on C(I,R) given by Hϑ(ζ) =

√
|ϑ(ζ)|

3(1+|ϑ(ζ)|2)
. And if we define ψ(ζ) =

√
ζ

3 which is

an increasing function then

|Hϑ(ζ)| =
∣∣∣∣

√
|ϑ(ζ)|

3(1 + |ϑ(ζ)|2)

∣∣∣∣ ≤
√
|ϑ(ζ)|
3

= ψ(|ϑ|).

Now by considering the function F ∈ TF by F (x1, x2) = x1 + x2, φ(x1) = e−2αx1 and b ∈ TB
by b(x1, x2) = e−2α.
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If |f(ζ, ϑ(ζ))− f(ζ, %(ζ))| > 0

F (|f(ζ, ϑ(ζ))− f(ζ, %(ζ))|, φ(|f(ζ, ϑ(ζ))− f(ζ, %(ζ))|))

= F ((|f(ζ, ϑ(ζ))− f(ζ, %(ζ))|), e−2α|f(ζ, ϑ(ζ))− f(ζ, %(ζ))|)

≤ F (e−2α|ϑ− %|, e−4α|ϑ− %|)

= e−2α|ϑ− %|+ e−4α|ϑ− %|

= e−2α(|ϑ− %|+ e−2α|ϑ− %|)

= b(|ϑ− %|, φ(|ϑ− %|))F (|ϑ− %|, e−2α|ϑ− %|)

= b(|ϑ− %|, φ(|ϑ− %|))F (|ϑ− %|, φ(|ϑ− %|)).

Also u : I × I × R→ R is defined as u(ζ, s, ϑ(s)) = sin(|ϑ(s)|)
3(1+ζ2+s2)

, then Û = 1
3 .

Finally

lim inf
ξ→∞

ψ(ξ)ÛDβγ

ξβΓ(γ + 1)
= lim inf

ξ→∞

√
ξD2

36ξΓ(3
2)

= 0 < 1.

Thus the equation (3.2) satisfies all the assumptions of Theorem 3.1. So we conclude that there

exists a solution for equation (3.2) in C(I,R). �

Example 3.3. Consider the fractional integral equation

µ(t) =
sin |µ(t)|

(2 + t2) ln(3 + α)
+

3
√
|υ(t)|

2Γ(2
3)e1+|µ(t)|

∫ t

0

s5 cos(1 + |µ(t)|)
4(t6 − s6)

1
3
√

1 + tαsρ
ds, where α, ρ > 0. (3.3)

Proof. Here γ = 2
3 , β = 6 and I = [0, D], D <∞. The function f : I × R→ R which is defined

as f(t, µ(t)) = sin |µ(t)|
(2+t2) ln(3+α)

is continuous, because

|f(t, µ(t))− f(t, ϑ(t))| ≤ 1

(2 + t2) ln(3 + α)
| sin(µ)− sin(ϑ)| ≤ 1

ln(3 + α)
|µ− ϑ|.

Also ψ1 : R+ → R+ is given by ψ1(t) = sin(t) with M̂ = 1 such that

|f(t, µ(t))| =
∣∣∣∣ sin |µ(t)|
(2 + t2)ln(3 + α)

∣∣∣∣ ≤ sin(|µ(t)|) = ψ1(|µ(t)|).

The operator H on C(I,R) given by H(µ(t)) =
3
√
|µ(t)|

2Γ( 2
3

)e1+|µ(t)|
. Then

|Hµ(t)| =
∣∣∣∣ 3

√
|µ(t)|

2Γ(2
3)e1+|µ(t)|

∣∣∣∣ ≤ 3
√
|µ(t)|
2

= ψ(|µ(t)|),

where ψ(t) =
3
√
|t|

2 is increasing function which can be easily seen.

Now by considering the functions F ∈ TF by F (x1, x2) = x1 +x2, φ(µ) = µ
ln(3+α) and b ∈ TB

by b(x1, x2) = 1
ln(3+α) .
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Indeed if |f(t, µ(t))− f(t, ϑ(t))| > 0

F (|f(t, µ(t))− f(t, ϑ(t))|, φ(|f(t, µ(t))− f(t, ϑ(t))|))

= F

(
|f(t, µ(t))− f(t, ϑ(t))|, 1

ln(3 + α)
|f(t, µ(t))− f(t, ϑ(t))|

)
≤ F

(
1

ln(3 + α)
|µ− ϑ|, 1

(ln(3 + α))2
|µ− ϑ|

)
=

1

ln(3 + α)
|µ− ϑ|+ 1

(ln(3 + α))2
|µ− ϑ|

=
1

ln(3 + α)

(
|µ− ϑ|+ 1

ln(3 + α)
|µ− ϑ|

)
= b(|µ− ϑ|, φ(|µ− ϑ|))F

(
|µ− ϑ|, 1

ln(3 + α)
|µ− ϑ|

)
= b(|µ− ϑ|, φ(|µ− ϑ|))F (|µ− ϑ|, φ(|µ− ϑ|)).

Also u : I × I × R→ R is defined by u(t, s, µ(t)) = cos(1+|µ(t)|)
4
√

1+tαsρ
, then Û = 1

4 .

Finally

lim inf
ξ→∞

ψ(ξ)ÛDβγ

ξβΓ(γ + 1)
= lim inf

ξ→∞

3
√
|ξ|D2

54ξΓ(5
4)

= 0 < 1.

Thus the equation (3.3) satisfies all the assumptions of Theorem 3.1. So we conclude that there

exists a solution for equation (3.3) in C(I,R). �
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