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Abstract. In this paper we prove the existence of fast homoclinic solutions for the
following class of damped vibration systems

ü(t) + q(t)u̇(t)− L(t)u(t) + b(t) |u(t)|p−2 u(t) +∇W (t, u(t)) = 0, t ∈ R
where L(t) is a symmetric matrix-valued function only uniformly positive definite, p > 2,
b ∈ C(R,R) and W ∈ C1(R× RN ,R) is with sublinear nonlinearity or satisfying a new
superquadratic condition generalizing the well-known Ambrosetti-Rabinowitz condition.
To the best of our knowledge, our results are new and generalize some recent results in
the literature.
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1. Introduction. In this paper, we are concerned with the following damped vibra-
tion system

(DV) ü(t) + q(t)u̇(t)− L(t)u(t) + b(t) |u(t)|p−2 u(t) +∇W (t, u(t)) = 0, t ∈ R

where q, b : R −→ R are continuous functions, p > 2 is a constant, L ∈ C(R,RN2
)

is a symmetric matrix-valued function only uniformly positive definite and W : R ×
RN −→ R is a continuous function, differentiable with respect to the second variable
with continuous derivative ∇W (t, x) = ∂W

∂x
(t, x).

When q(t) = 0 and b(t) = 0 for all t ∈ R, system (DV) reduces to the following second
order Hamiltonian system

(HS) ü(t)− L(t)u(t) +∇W (t, u(t)) = 0, t ∈ R.
As usual, a solution u of (HS) is called homoclinic (to 0) if u(t) −→ 0 as |t| −→ ∞.
If moreover u 6= 0, then u is called a nontrivial homoclinic solution. In the last three
decades, the existence of homoclinic solutions for system (HS) has been studied by
many mathematicians via critical point theory and variational methods, see for example
2-4,6,8-14,17-21,35,38,39] and the references cited therein.
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During the last ten more years, some authors have been concerned with the fast
homoclinic solutions (see Definition 2.1) for system (DV), with b(t) = 0 for all t ∈ R,
see [1,5,15,16,28-34,36,37] and the references listed therein. In these last papers, the
function L is required to satisfy different coercive conditions such as
(1.1) L(t) is a positive definite matrix for all t ∈ R and the smallest eigenvalue of L(t)

l(t) = inf
|ξ|=1

L(t)ξ · ξ −→∞ as |t| −→ ∞;

(1.2) there exists a constant γ < 0 such that

l(t) |t|γ−1 −→∞ as |t| −→ ∞;

(1.3) l(t) is bounded from below and there exists a constant r0 > 0 such that

lim
|s|−→∞

measQ({t ∈ (s− r0, s+ r0)/L(t) < MIN}) = 0, ∀M > 0,

where measQ denotes the Lebesgue’s measure on R with density eQ(t) and Q(t) =∫ t
0
q(s)ds;

(1.4) l(t) is bounded from below and there exists a constant γ > 1 such that

measQ(
{
t ∈ R/ |t|−γ L(t) < MIN

}
) < +∞, ∀M > 0.

Moreover in these papers, Q is such that Q(t) −→ ∞ as |t| −→ ∞ and the poten-
tial W (t, x) is assumed to be subquadratic, superquadratic, asymptotically quadratic at
infinity with respect to the second variable or a combination of a subquadratic and a
superquadratic terms.

Furthermore, in [7], Cheng consider the second-order Hamiltonian system

(1.5) ü(t) + b(t) |u(t)|µ−2 u(t) +∇H(t, u(t)) = 0

where µ > 2 is a constant, b ∈ C(R,R) and H ∈ C1(R × RN ,R) are T−periodic in the
first variable and obtained the existence of periodic solutions for system (1.5) under the
following conditions

(1.6) b ∈ C(R,R) and

∫ T

0

b(t)dt > 0;

(1.7) lim sup
|x|−→0

H(t, x)

|x|2
= 0, uniformly for all t ∈ R;

(1.8) there exist two periodic functions g, h ∈ L1(0, T ;R+) and a constant 0 ≤ ν < 1
such that

|∇H(t, x)| ≤ g(t) |x|ν + h(t), ∀(t, x) ∈ [0, T ]× RN ;

(1.9) H(t,−x) = H(t, x), ∀(t, x) ∈ R× RN .

Motivated by the previous works, in this paper we are interested to the existence of
nontrivial fast homoclinic solutions for (DV) when L(t) is uniformly positive definite not
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necessary coercive and the potential W (t, x) satisfies some new conditions. More pre-
cisely, Section 3 is devoted to the case when b 6= 0 and the nonlinearity ∇W (t, x) grows
faster than |x|ν , 0 < ν < 1. In Section 4, b = 0 and the potential W (t, x) satisfies a new
condition weaker than the well-known Ambrosetti-Rabinowitz superquadratic condition.
To the best of our knowledge, our results are new and generalize some recent results in
the literature.

2. Preliminaries. In order to introduce the concept of fast homoclinic solutions for
(DV) conveniently, we firstly describe some properties of the weighted Sobolev space
E on which the certain variational functional associated with (DV) is defined and the
fast homoclinic solutions of (DV) are the critical points of such functional. We shall use
L2
Q(R) to denote the Hilbert space of measurable functions from R into RN under the

inner product

< u, v >L2
Q

=

∫
R
eQ(t)u(t) · v(t)dt

and the induced norm

‖u‖L2
Q

=

(∫
R
eQ(t) |u(t)|2 dt

) 1
2

.

Similarly, LsQ(R) (1 ≤ s < ∞) denotes the Banach space of functions on R with values

in RN under the norm

‖u‖LsQ =

(∫
R
eQ(t) |u(t)|s dt

) 1
s

and L∞Q (R) denotes the Banach space of functions on R with values in RN under the
norm

‖u‖L∞Q = esssup
{
e
Q(t)
2 |u(t)| /t ∈ R

}
.

In this paper, we assume that L satisfies the following condition
(L) L(t) is uniformly positive definite.
Let

E =

{
u ∈ H1

Q(R)/

∫
R
eQ(t)L(t)u(t) · u(t)dt <∞

}
where

H1
Q(R) =

{
u ∈ L2

Q(R)/u̇ ∈ L2
Q(R)

}
.

Then E equipped with the following inner product and norm is a Hilbert space

< u, v >=

∫
R
eQ(t) (u̇(t) · v̇(t) + L(t)u(t) · v(t)) dt, u, v ∈ E

‖u‖ =< u, u >
1
2 , u ∈ E.
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Evidently, under assumption (L), E is continuously embedded in H1
Q(R) and hence E is

continuously embedded in LsQ(R) for 2 ≤ s ≤ ∞, that is for all 2 ≤ s ≤ ∞, there exists
a constant ηs > 0 such that

(2.1) ‖u‖LsQ ≤ ηs ‖u‖ , ∀u ∈ E.

Definition 2.1. A solution u of (DV) is called a fast homoclinic orbit if u ∈ E.

To study the critical points of the variational functional associated with (DV), we
recall the following critical point theorem.

Lemma 2.1 (Mountain Pass Theorem) [22]. Let E be a Banach space and I ∈
C1(E,R) satisfies the Palais-Smale condition and I(0) = 0. If I satisfies the following
conditions
(i) there exist constants ρ, α > 0 such that I∂Bρ ≥ α;

(ii) there exists e ∈ E \Bρ such that I(e) ≤ 0.
Then I possesses a critical value c ≥ α given by

c = inf
g∈Γ

max
s∈[0,1]

I(g(s))

where Bρ is the open ball in E of radius ρ about 0, and

Γ = {g ∈ C([0, 1], E)/g(0) = 0, g(1) = e} .

3. Sublinear nonlinearity. In this Section, we are concerned with the sublinear
nonlinearity case. More precisely, we consider the following conditions
(B) b ∈ C(R,R) and

∫
R e

Q(t)b(t)dt > 0;
(W1) there exists a constant r > 0 such that

W (t, x) ≤ 1

4η2
2

|x|2 , ∀t ∈ R, |x| ≤ r,

where η2 is a sobolev constant defined in Section 2;
(W2) there exist two functions g, h ∈ L1

Q(R,R+) such that

|∇W (t, x)| ≤ g(t)γ(|x|) + h(t), ∀(t, x) ∈ R× RN ,

where γ ∈ C(R+,R+) is a nondecreasing function with the properties lims−→∞
γ(s)
s

= 0
and lims−→∞ γ(s) =∞.
Our main result in this Section reads as follows

Theorem 3.1. Assume that (L), (B), (W1) and (W2) are satisfied. Then (DV) pos-
sesses a nontrivial fast homoclinic solution.
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Example 3.1. Consider the map

W (t, x) =
1

2η2
2(1 + |t|2)

|x|2

ln(e+ |x|2)
∀(t, x) ∈ R× RN

and set g(t) = 1
η22(1+|t|2)

. We have for all (t, x) ∈ R× RN

∇W (t, x) =
∂W

∂x
(t, x) = g(t)x

(e+ |x|2) ln(e+ |x|2)− |x|2

(e+ |x|2) ln2(e+ |x|2)
.

Hence one gets

|∇W (t, x)| ≤ g(t)
|x|

ln(e+ |x|2)
.

Set γ(s) = s
ln(e+s2)

. It is clear that lims−→∞ γ(s) = +∞ and lims−→∞
γ(s)
s

= 0. It remains

to prove that γ is nondecreasing. For s > 0, we have

γ′(s) =
(e+ s2) ln(e+ s2)− 2s2

(e+ s2) ln2(e+ s2)
.

Let θ(u) = (e+ u) ln(e+ u)− 2u, we have for u > 0

θ′(u) = ln(e+ u)− 1 > 0.

Hence θ is nondecreasing and then θ(u) ≥ θ(0) = 0. Therefore γ is nondecreasing and
the function W (t, x) satisfies all the conditions of Theorem 3.1.

Proof of Theorem 3.1. Consider the variational functional associated to system
(DV), defined on the space E introduced in Section 2, by

ϕ(u) =
1

2

∫
R
eQ(t)

[
|u̇(t)|2 + L(t)u(t) · u(t)

]
dt−1

p

∫
R
eQ(t)b(t) |u(t)|p dt−

∫
R
eQ(t)W (t, u(t))dt.

It is well known that under assumption (W2), the functional ϕ is continuously differen-
tiable on E and

ϕ′(u)v =

∫
R
eQ(t) [u̇(t) · v̇(t) + L(t)u(t) · v(t)] dt

−
∫
R
eQ(t) |u(t)|p−2 u(t) · v(t)dt−

∫
R
eQ(t)∇W (t, u(t)) · v(t)dt

=< u, v > −
∫
R
eQ(t) |u(t)|p−2 u(t) · v(t)dt−

∫
R
eQ(t)∇W (t, u(t)) · v(t)dt

for all u, v ∈ E. Moreover, the nontrivial critical points of ϕ on E are fast homoclinic
solutions of (DV). In the following, we will proceed by successive lemmas.
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Lemma 3.1. Suppose that (W2) holds, then there exist two positive constants c0, c1

such that

‖∇W (t, u)‖L1
Q
≤ c0γ(‖u‖L∞) + c1, ∀u ∈ E.

Proof : Let u ∈ E. By (W2) and the increasing property of γ, one has

‖∇W (t, u)‖L1
Q

=

∫
R
eQ(t) |∇W (t, u)| dt ≤

∫
R
eQ(t) [g(t)γ(|u(t)|) + h(t)] dt

≤ c0γ(‖u‖L∞) + c1,

where c0 = 1 + ‖g‖L1
Q

and c1 = 1 + ‖h‖L1
Q

.

Lemma 3.2. Suppose that (L), (B) and (W1) are satisfied. Then there exist two
positive constants ρ, α such that ϕ|∂Bρ ≥ α.

Proof : Let ρ0 ∈ (0, r
η∞

) and u ∈ Bρ. Then we have |u(t)| ≤ ‖u‖L∞ ≤ r for all t ∈ R.

Hence (B) implies

ϕ(u) ≥ 1

2

∫
R
eQ(t) |u̇(t)|2 dt− 1

p

∫
R
eQ(t)b(t)dt ‖u‖pL∞ −

1

2η2
2

∫
R
eQ(t) |u|2 dt

≥ 1

4
‖u‖2 − ηp∞

p

∫
R
eQ(t)b(t)dt ‖u‖p .

Choosing ρ ∈ (0,min

{
ρ0,
(

1
2ηp∞

∫
R e

Q(t)b(t)dt

) 1
p−2

}
) small enough such that

α =
1

4
ρ2 − ηp∞

p

∫
R
eQ(t)b(t)dtρp > 0

then one has ϕ|∂Bρ ≥ α.

Lemma 3.3. Assume that (L) and (W1) hold. Then ϕ satisfies the Palais-Smale
condition.

Proof : Let (un) be a Palais-Smale sequence in E, that is (ϕ(un)) is bounded and
ϕ′(un) −→ 0 as n −→∞. Hence, there exists a constant M > 0 such that

|ϕ(un)| ≤M and ‖ϕ′(un)‖ ≤M, ∀n ∈ N.
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By the Mean Value Theorem and Lemma 3.1, we have∣∣∣∣p ∫
R
eQ(t)W (t, un)dt−

∫
R
eQ(t)∇W (t, un) · undt

∣∣∣∣
=

∣∣∣∣p ∫
R
eQ(t)∇W (t, θnun) · undt−

∫
R
eQ(t)∇W (t, un) · undt

∣∣∣∣
≤ (p+ 1) ‖un‖L∞ [c0γ(‖u‖L∞) + c1]

≤ (p+ 1)η∞ ‖un‖ [c0γ(‖u‖L∞) + c1]

where 0 < θn < 1. Therefore, we have

p− 2

2
‖un‖2 = pϕ(un)− ϕ′(un)un + p

∫
R
eQ(t)W (t, un)dt−

∫
R
eQ(t)∇W (t, un) · undt

≤ pM +M ‖un‖+ (p+ 1)η∞ ‖un‖ [c0γ(η∞ ‖un‖) + c1] .

Since lims−→∞
γ(s)
s

= 0, then (un) is bounded. By a standard argument, we prove that
(un) possesses a convergent subsequence.

Lemma 3.4. Assume that (L), (B), (W1) and (W2) are satisfied. Then there exists
e ∈ E such that ‖e‖ > ρ and ϕ(e) ≤ 0.

Proof : Condition (B) implies that there exists t0 ∈ R such that b(t0) > 0. By the
continuity of b, there exists a constant ν > 0 such that

b(t) >
1

2
b(t0), ∀t ∈ (t0 − ν, t0 + ν) ⊂ R.

Let v0 ∈ E \ {0} with support included in (t0 − ν, t0 + ν) and define

u0(t) =

{
v0(t) if t ∈ [t0 − ν, t0 + ν]
0 elsewhere.

Then u0 ∈ E. For ξ ∈ R \ {0}, one has

ϕ(ξu0) =
1

2

∫
R
eQ(t)

[
|ξu̇0(t)|2 + L(t)ξu0(t) · ξu0(t)

]
dt

− 1

p

∫
R
eQ(t)b(t) |ξu0(t)|p dt−

∫
R
eQ(t)W (t, ξu0(t))dt

≤ |ξ|
2

2
‖u0‖2 − |ξ|

p

p

b(t0)

2

∫ t0+ν

t0−ν
eQ(t) |u0(t)|p dt

+ |ξ| ‖u0‖L∞ [c0γ(|ξ| ‖u0‖L∞) + c1] .

Since p > 2, the property lims−→∞
γ(s)
s

= 0 implies that lim|ξ|−→∞ ϕ(ξu0) = −∞. Take
ξ0 large enough such that ϕ(ξ0u0) ≤ 0, then e = ξ0u0 satisfies condition (ii) of Lemma
2.1.
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Lemma 3.2-3.4 imply that all the conditions of Lemma 2.1 are satisfied. Therefore
ϕ has a critical point u satisfying ϕ(u) ≥ α > ϕ(0) and then system (DV) possesses a
nontrivial fast homoclinic solution.

4. Superquadratic growth. In this Section we are concerned with the existence
of fast homoclinic solutions for the following damped vibration system

(DV) ü(t) + q(t)u̇(t)− L(t)u(t) +∇W (t, u(t)) = 0, t ∈ R

when the potential W satisfies a new condition generalizing the well-known Ambrosetti-
Rabinowitz superquadratic condition. More precisely, we consider the following condi-
tions
(W3) there exist a bounded set D ⊂ R with int(D) 6= φ, µ > 2 and θ > µ

µ−2
such that

(i) 0 < µW (t, x) ≤ ∇W (t, x) · x, ∀t ∈ D, ∀x ∈ RN \ {0} ,

(ii) 0 ≤ 2W (t, x) ≤ ∇W (t, x) · x ≤ 1

θ
L(t)x · x, ∀t /∈ D, ∀x ∈ RN ;

(W4) |∇W (t, x)| = o(|x|) as |x| −→ 0 uniformly in t ∈ R.

We state our main result in this Section.

Theorem 4.1. Assume that (L), (W3) and (W4) hold. Then (DV) possesses a non-
trivial fast homoclinic solution.

Example 4.1. Let a ∈ C(R,R) be such that a(t) > 0 on (−1, 1) and a(t) = 0 on
R \ (−1, 1). Consider the potential

W (t, x) = a(t) |x|3 .
Choosing D = (−1, 1), it is easy to show that W (t, x) satisfies conditions (W3) and (W4)
but W (t, x) does not satisfy the Ambrosetti-Rabinowitz condition.

Proof of Theorem 4.1. Consider the continuously differentiable functional ψ asso-
ciated to system (DV)

ψ(u) =
1

2

∫
R
eQ(t)

[
|u̇(t)|2 + L(t)u(t) · u(t)

]
dt−

∫
R
eQ(t)W (t, u(t))dt

defined on the space E introduced in Section 2. It is well known that under condition
(W4), ψ is continuously differentiable on E and we have

ψ′(u)v =

∫
R
eQ(t) [u̇(t) · v̇(t) + L(t)u(t) · v(t)] dt−

∫
R
eQ(t)∇W (t, u(t)) · v(t)dt

=< u, v > −
∫
R
eQ(t)∇W (t, u(t)) · v(t)dt
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for all u, v ∈ E. Moreover, the critical points of ψ on E are fast homoclinic solutions of
(DV). In the following, we will proceed by successive lemmas.

Lemma 4.1. Assume that (L) and (W4) hold. Then there exist positive constants
ρ, α such that ψ|∂Bρ ≥ α.

Proof : By (W4), for all ε > 0 there exists a constant r > 0 such that

|∇W (t, x)| ≤ ε |x| , ∀t ∈ R, ∀ |x| ≤ r.

Taking ε = 1
2η22

, ρ = r
η∞

and α = ρ2

4
yields for all u ∈ ∂Bρ

ψ(u) =
1

2
‖u‖2 −

∫
R
eQ(t)W (t, u(t))dt

≥ 1

2
‖u‖2 − ε

2

∫
R
eQ(t) |u(t)|2 dt

≥ 1

4
‖u‖2 = α.

Lemma 4.2. Suppose that (L), (W3) and (W4) are satisfied. Then there exists e ∈ E
such that ‖e‖ > ρ and ψ(e) ≤ 0.

Proof : By (W3)(i), there exists a constant c1 > 0 such that

(4.1) W (t, x) ≥ c1 |x|µ , ∀t ∈ D, |x| ≥ 1.

Let u0 ∈ E \ {0} with support contained in D. By (W4), Fatou’s lemma and (4.1), one
has

lim sup
s−→∞

ψ(su0)

s2
=

1

2
‖u0‖2 − lim inf

s−→∞

∫
R
eQ(t)W (t, su0)

s2
dt

=
1

2
‖u0‖2 − lim inf

s−→∞

∫
D\{t/u0(t)=0}

eQ(t)W (t, su0)

|su0|µ
sµ−2 |u0|µ dt

≤ 1

2
‖u0‖2 − lim inf

s−→∞

∫
D\{t/u0(t)=0}

eQ(t)c1s
µ−2 |u0|µ dt

≤ 1

2
‖u0‖2 −

∫
D\{t/u0(t)=0}

eQ(t) lim inf
s−→∞

c1s
µ−2 |u0|µ dt = −∞.

Hence there exists a constant s0 large enough such that ψ(s0u0) < 0 and ‖s0u0‖ > ρ.
Choosing e = s0u0, then e satisfies ‖e‖ > ρ and ψ(e) < 0.

Lemma 4.3. Under assumptions (L), (W3) and (W4), ψ satisfies the (PS) condition.
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Proof : Let (un) be a Palais-Smale sequence, that is

(4.2) (ψ(un)) is bounded and ψ′(un) −→ 0 as n −→∞.

By (W3)(i) and (4.2) we have

(4.3)

∫
R
eQ(t)

[
|u̇n(t)|2 + L(t)un(t) · un(t)

]
dt

=

∫
R
eQ(t)∇W (t, un(t)) · vn(t)dt+ ψ′(un)un

≥
∫
D

eQ(t)∇W (t, un(t)) · undt+ o(‖un‖)

≥ µ

∫
D

eQ(t)W (t, un(t))dt+ o(‖un‖).

Combining (4.2), (4.3) and (W3)(ii), there exists a positive constant c2 such that

1

2

∫
R
eQ(t)

[
|u̇n(t)|2 + L(t)un(t) · un(t)

]
dt

=

∫
R
eQ(t)W (t, un(t))dt+ ψ(un)

≤
∫
D

eQ(t)W (t, un(t))dt+

∫
R\D

eQ(t)W (t, un(t))dt+ c2

≤
∫
D

eQ(t)W (t, un(t))dt+
1

2θ

∫
R\D

eQ(t)L(t)un(t) · un(t)dt+ c2

≤ 1

µ

∫
R
eQ(t)

[
|u̇n(t)|2 + L(t)un(t) · un(t)

]
dt+

1

2θ

∫
R
eQ(t)

[
|u̇n(t)|2 + L(t)un(t) · un(t)

]
dt

+ o(‖un‖) + c2,

which implies (µ
2
− 1− µ

2θ

)
‖un‖2 ≤ µc2 + o(‖un‖).

Since µ
2
− 1− µ

2θ
> 0 we deduce that (un) is bounded in E. It remains to prove that (un)

is strongly convergent in E. Since E is reflexive, then up to a subsequence if necessary,
we may assume that un ⇀ u in E. Sinse D is bounded, there exists a positive constant
r such that D ⊂ Br. Let χr be a cut-off function satisfying

χr = 0 on Br, χr = 1 on R \B2r, 0 ≤ χr ≤ 1 and
∣∣∣χ′r∣∣∣ ≤ c3

r
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for a positive constant c3. We have

ψ′(un)χrun =

∫
R
eQ(t)

[
u̇n(t) ·

.︷︸︸︷
χrun(t) + L(t)un(t) · un(t)χr

]
dt

−
∫
R
eQ(t)∇W (t, un(t)) · un(t)χrdt

=

∫
R
eQ(t)

[
|u̇n(t)|2 + L(t)un(t) · un(t)

]
χrdt

+

∫
R
eQ(t)u̇n(t) · un(t)χ̇rdt−

∫
R
eQ(t)∇W (t, un(t)) · vn(t)χr(t)dt

which with (W3)(ii) implies

(4.4)

∫
R
eQ(t)

[
|u̇n(t)|2 + L(t)un(t) · un(t)

]
χrdt

= −
∫
R
eQ(t)u̇n(t) · un(t)χ̇rdt+

∫
R
eQ(t)∇W (t, un(t)) · vn(t)χr(t)dt+ ψ′(un)χrun

≤ −
∫
R
eQ(t)u̇n(t) · un(t)χ̇rdt+

1

θ

∫
R
eQ(t)

[
|u̇n(t)|2 + L(t)un(t) · un(t)

]
χrdt

+ ψ′(un)χrun.

Combining (4.4) with Hölder’s inequality, for positive constants c4, c5, c6 yields(
1− 1

θ

)∫
R
eQ(t)

[
|u̇n(t)|2 + L(t)un(t) · un(t)

]
χrdt

≤ c4

r
‖u̇n‖L2

Q
‖un‖L2

Q
+ ψ′(un)χrun

≤ c4

r
η2 ‖un‖2 + ‖ψ′(un)‖ ‖χrun‖

≤ c5

r
+ c6 ‖ψ′(un)‖ .

For all ε > 0, we can choose r0 > 0 and n0 ∈ N such that∫
R\B2r

eQ(t)
[
|u̇n(t)|2 + L(t)un(t) · un(t)

]
dt ≤

∫
R
eQ(t)

[
|u̇n(t)|2 + L(t)un(t) · un(t)

]
χrdt ≤ ε

for all r ≥ r0 and n ≥ n0. Hence, it is easy to check that (un) converges strongly to u in
E.

Lemmas 4.1-4.3 imply that all the conditions of Lemma 2.1 are satisfied. Therefore ψ
possesses a critical point u satisfying ψ(u) ≥ α > 0, and then (DV) possesses a nontrivial
fast homoclinic solution.
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