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Abstract

Let A be a bounded linear operator in a Hilbert space whose Hermitian component
AI = (A − A∗)/2i (A∗ is the adjoint operator), belongs to the Macaev ideal, i.e. the
eigenvalues λk(AI) (k = 1, 2, ...) of AI taken with the multiplicities satisfy the condition∑∞

k=1(2k − 1)−1|λk(AI)| < ∞. Under certain restrictions it is proved that each operator
commuting with A has a closed nontrivial invariant subspace. An illustrative example is
presented.
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1 Introduction and statement of the main result

Let H be a Hilbert space with a scalar product (., .)H and the unit operator I, and L(H) denote
the set of all bounded linear operators in H. For an A ∈ L(H), A∗ is the adjoint operator,
σ(A) is the spectrum, and AI = (A − A∗)/2.

A subspace H1 ⊆ H is an invariant one for A, if for any x ∈ H1, we have Ax ∈ H1. It is
said to be nontrivial if H1 6= 0 and H1 6= H.

The problem of the existence of nontrivial closed invariant subspaces for linear operators is
one of the most important problems of the theory of linear operators. In spite of its long history
that problem continues to attract the attention of many scientists because of the absence of
its complete solution. The classical results connected with the problem of the existence of
invariant subspaces are presented in the well-known book [2]; the recent results can be found in
the survey [18] and papers [4, 6, 14, 15, 16, 23, 24], and the references, which are given therein.

One of the celebrated results here belongs to V. Lomonosov [17] who has proved, in partic-
ular, that each bounded linear operator in a Banach space, commuting with a compact one has
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nontrivial closed invariant subspaces. That result has caused a great interest of mathematicians
[1, 7, 8, 9, 21, 22, 25], etc. Below we prove the existence of nontrivial invariant subspaces for
a class of operators in H commuting with a non-compact linear operator having a compact
Hermitian component. That class contains various integro-differential operators.

Introduce the notations. For two orthogonal projections P1, P2 in H we write P1 < P2

if P1H ⊂ P2H. A set P of orthogonal projections in H containing at least two orthogonal
projections is called a chain, if from P1, P2 ∈ P with P1 6= P2 it follows that either P1 < P2 or
P1 > P2. For two chains P1,P2 we write P1 < P2 if from P ∈ P1 it follows that P ∈ P2. In
this case we say that P1 precedes P2. The chain that precedes only itself is called a maximal
chain.

For a chain P , let P−, P+ ∈ P , and P− < P+. If for every P ∈ P we have either P < P−

or P > P +, then the pair (P+, P−) is called a gap of P . Besides, dim (P+H) 	 (P−H) is the
dimension of the gap.

An orthogonal projection P in H is called a limit projection of a chain P if there is a
sequence Pk ∈ P (k = 1, 2, ...) which strongly converges to P . A chain is said to be closed if it
contains all its limit projections.

As it is shown in [11, Proposition XX.4.1, p. 478], [3, Theorem II.14.1], a chain is maximal
if and only if it is closed, contains 0 and I, and all its gaps (if they exist) are one dimensional.
A maximal chain is said to be continuous, if it does not have gaps.

We will say that a maximal chain P is proper of A ∈ L(H), or A has a maximal proper
chain P , if PAP = AP for any P ∈ P . Let σ(A) be real. Then a proper chain P of A is said
to be separating σ(A), if for any t ∈ σ(A) exists Pt ∈ P , such that

σ(APt|PtH) ⊂ (−∞, t] and σ((I − Pt)A|(I − Pt)H) ⊂ [t,∞). (1.1)

Here and below C|H1 (C ∈ L(H)) means the restriction of C onto a subspace H1.
The aim of this paper is to prove the following theorem.

Theorem 1.1 Let A ∈ L(H) with a real spectrum have a continuous maximal proper chain P
separating its spectrum. Then P is also a proper chain of any X ∈ L(H) commuting with A.

The proof of this theorem is presented in the next section.
Recall that the Macaev ideal Sω is defined as the set of compact operators K satisfying the

condition
∞∑

k=1

sk(K)

2k − 1
< ∞,

where sk(K) are the eigenvalues of (K∗K)1/2 enumerated in the non-increasing order with the
multiplicities taken into account, cf. [13, 20].

V. Macaev and Ju. Ljubich [19, 20] have shown that A ∈ L(H) with a real spectrum has a
maximal chain separating σ(A), provided AI ∈ Sω. Now Theorem 1.1 implies.

Corollary 1.2 Let the maximal proper chain P of A ∈ L(H) with a real spectrum and AI ∈ Sω

be continuous. Then P is also a proper chain of any X ∈ L(H) commuting with A.

This corollary can be considered as a particular generalization of the Lomonosov theorem for
operators in a Hilbert space.
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2 Proofs of Theorems 1.1

1. Following the definitions from [13, Sec. V.1], we will say that an operator-valued function
P (t) defined on a bounded closed set Ω of real numbers is a standard projection function if

a) all values P (t) (t ∈ Ω) are orthogonal projections in H,
b) for all t1 < t2 (t1, t2 ∈ Ω) P (t1) < P (t2),
c) P (t) is strongly continuous on Ω, i.e. for any f ∈ H, P (t)f is continuous in the norm on

Ω.
Let P be some chain and P (t) some standard projection function. We will say that that

P (t) is obtained by the parameterization of P on Ω, if P coincides with the set of all values of
P (t). Naturally, P (t) is said to be invariant for A if P (t)AP (t) = AP (t) for all t ∈ Ω.

A standard projection function is called continuous if the set of its values is a continuous
chain. Recall that under consideration it is assumed that σ(A) is real and P is continuous. Put
a = inf σ(A) and b = sup σ(A). Since P is continuous, due to [13, Theorem V.1.1], P admits a
parameterization P (t) on [a, b], such that (P (t)f, f)H is absolutely continuous for any f ∈ H.

If P (t) is a parameterization of the maximal chain P separating σ(A), we will say that P (t)
separates σ(A). In this case, according to (1.1),

σ(AP (t)|P (t)H) = [a, t] and σ((I − P (t))A|(I − P (t))H) = [t, b] (t ∈ [a, b]). (2.1)

So
σ(AP (t)|P (t)H) ∩ σ((I − P (s))A|(I − P (s)) = ∅ (a ≤ t < s ≤ b). (2.2)

2. Let H1, H2 be Hilbert spaces, Ck ∈ L(Hk) (k = 1, 2), and M be a bounded linear operator
acting from H1 into H2. Assume that σ(C1) ∩ σ(C2) = ∅. Then due to Theorem I.3.1 [5] (see
also equation (3.10) from [5, Section I.3]), the operator equation

Y C1 − C2Y = M

has a solution Y , which is a a bounded linear operator acting from H1 into H2 and representable
as

Y = −
1

4π2

∫

L2

∫

L1

1

λ − μ
Rμ(C2)MRλ(C1)dλ dμ, (2.3)

where Lk is a Jordan contour surrounding σ(Ck) (k = 1, 2).
If, in particular, Y C2 = C1Y , then M = 0 and from (3.3) it follows that Y = 0.
To prove Theorem 1.1 we need the following lemma.

Lemma 2.1 Let A ∈ L(H) with a real σ(A) have a continuous invariant standard projection
function P (t) (a ≤ t ≤ b). Let there be a Z ∈ L(H), such that P (t) is invariant also for the
operator T = ZA − AZ. Then P (t) is invariant for Z.

Proof: Since P (t) is invariant for T , we have

(I − P (s))TP (s) = 0 (a ≤ s ≤ b),

and therefore,

(I − P (s))TP (s)P (t) = (I − P (s))TP (t) = 0 (a ≤ t < s ≤ b). (2.4)
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For fixed s, t ∈ (a, b) with s > t, put P = P (t) and Q = I − P (s). Then QP = 0. Since P (s)
is invariant for A, we can write QAQ = QA. Due to (2.2)

σ(AP |PH) ∩ σ(QA|QH) = ∅.

According to (2.4) QTP = 0, i.e.

Q(AZ − ZA)P = QAQZP − QZPAP = 0.

Making use of (2.3) with M = 0, Y = QZP , C2 = QA and C1 = AP , we obtain QXP = 0, or

(I − P (s))ZP (t) = 0 (b > s > t ≥ a).

Letting s → t, and taking into account that P (t) is continuous, we get (I − P (t))ZP (t) = 0,
or P (t)ZP (t) = ZP (t) for any t ∈ (a, b). This proves the lemma. �

Proof of Theorem 1.1: Take Z = X. Then T = AX −XA = 0. So P (t)TP (t) = TP (t) = 0.
Now the required result follows from Lemma 2.1. �

3 Example

Let L2(0, 1) be the Hilbert space of complex functions f defined on [0, 1] with the traditional

scalar product and norm ‖f‖ = (
∫ 1

0
|f(s)|2ds)1/2. Consider the operator C defined by

(Cf)(x) = a(x)f(x) +

∫ 1

x

K(x, y)f(y)dy (x ∈ [0, 1]; f ∈ L2(0, 1)), (3.1)

where a(.) is a real continuous nondecreasing function defined on [0 , 1] and the kernel K(x, y) :
{0 ≤ x ≤ y ≤ 1} → C satisfies the condition

∫ 1

0

∫ 1

x

|K(x, y)|2dy dx < ∞. (3.2)

So the Volterra operator

V : f →
∫ 1

x

K(x, y)f(y)dy (x ∈ [0, 1]; f ∈ L2(0, 1))

is a Hilbert-Schmidt one. Note that condition (3.1) is imposed for the simplicity. Similarly one
can consider the Schatten-von Neumann Volterra operators.

Introduce the projection function P̂ (s) by

(P̂ (s)f)(x) =

{
f(x) if 0 ≤ x ≤ s,
0 if s < x ≤ 1

(3.3)
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(f ∈ L2(0, 1), s ∈ (0, 1)), P̂ (0) = 0, P̂ (1) = I. We have

(CP̂ (s)f)(x) = a(x)f(x) +

∫ 1

x

K(x, y)f(y)dy for x ≤ s, and (AP̂ (s)f)(x) = 0 for x > s.

Therefore, CP̂ (s) = P̂ (s)CP̂ (s) (0 ≤ s ≤ 1), i.e. the values of P̂ (s) form the maximal
continuous chain of C.

Due to Corollary 8.2 from [10], σ(C) = σ(D), where D is defined by

(Df)(x) = a(x)f(x) (x ∈ [0, 1], f ∈ L2(0, 1)),

and thus
σ(C) = {z ∈ R : z = a(x), 0 ≤ x ≤ 1} = [a, b]

with a = infa≤x≤b a(x), b = supa≤x≤b a(x). According to (3.2), C − C∗ = V − V ∗ is a Hilbert-
Schmidt operator. Now Corollary 1.2 implies.

Corollary 3.1 Let C be defined by (3.1) and condition (3.2) hold. Then for any X ∈ L(L2(0, 1))
commuting with C the projection function P̂ (s) defined by (3.3) is invariant.
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