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Abstract

In the current paper, we introduce a concept of a best proximity point for multiplication
of two non-self mappings in the setting of strictly convex Banach algebras and present some
sufficient conditions to ensure the existence of such points by using a projection mapping
defined on a union of proximal sets. Examples are given to support our main conclusions.
We also give an extension version of Schauder’s fixed point problem to non-self mappings
and used to find an optimum solution for a system of differential equations.
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1 Introduction and Preliminaries

Let X be a normed linear space. Throughout this article B(x; r) (N (x; r)) denotes the closed
(open) ball at x ∈ X with radius r > 0.

Brouwer’s theorem (1911) states that any continuous function T : B(0; 1) ⊆ Rn → B(0; 1) has
at leat one fixed point. Brouwer’s theorem has many applications in various fields of mathematics.
For example, it is related to existence theorems in differential and integral equations and plays
an important role in proving the existence of the Nash equilibrium problem in game theory. We
mention that the one dimensional case of this problem is a conclusion of the intermediate value
theorem.

Because of importance of Brouwer’s theorem it was extended from Euclidean spaces to Banach
spaces by Schauder in 1930 as follows:

Theorem 1.1. Let U be a nonempty, compact and convex subset of a Banach space X and T be
a continuous self mapping on U . Then T has a fixed point.

It is worth noticing that Schauder’s fixed point theorem is valid in locally convex spaces ( see
Theorem 2.3.8 in [14]).

Definition 1.2. Let X and Y be normed linear spaces and K be a subset of X. A mapping
T : K → Y is said to be a compact operator if T maps bounded sets into relatively compact sets.
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The next theorem is a well-known extension of Schauder’s fixed point theorem.

Theorem 1.3. Let K be a nonempty, bounded, closed and convex subset of a Banach space X
and T : K → K be a continuous and compact operator. Then T has a fixed point.

Let U and V be two nonempty subsets of a metric space (M,d). Because the functional
equation Tx = x, where T : U → V is a given non-self mapping, does not necessarily have a
solution, it is desirable in this case to find an approximate solution x? ∈ U such that the error
d(x?, Tx?) is minimized.

Definition 1.4. Let U and V be nonempty subsets of a metric space (M,d) and T : U → V be a
non-self mapping. A point x? ∈ U is called a best proximity point of T if

d(x?, Tx?) = dist(U, V ) := inf{d(u, v) : (u, v) ∈ U × V }.

Indeed, best proximity point theorems have been studied to find necessary conditions such
that the minimization problem

min
u∈U

d(u, Tu), (1)

has at least one solution. Moreover, if the underlying mapping is a self mapping, then it can
be observed that a best proximity point is essentially a fixed point. We refer to [3, 4, 10, 13]
for some existence, uniqueness and convergence of a best proximity point for various classes of
non-self mappings. We also point out the paper [1], where the authors introduced appropriate
dominating property to obtain both the existence and uniqueness of a common best proximity
point for suitable mappings.

Definition 1.5. A Banach space X is said to be strictly convex if the following implication holds
x, y, p ∈ X and R > 0: 

‖x− p‖ ≤ R,

‖y − p‖ ≤ R,

x 6= y

⇒ ‖x+ y

2
− p‖ < R.

It is well known that Hilbert spaces and lp spaces (1 < p < ∞) are strictly convex Banach
spaces.

We will say that a pair (U, V ) of subsets of a Banach space X has a property, whenever both
U and V have that property. For example (U, V ) is convex means that both U and V are convex
subsets of X.

For a nonempty pair (U, V ) of subsets of a Banach space X, its proximal pair is denoted by
(U0, V0) and is defined as follows

U0 = {u ∈ U : ∃ v′ ∈ V | ‖u− v′‖ = dist(U, V )},

V0 = {v ∈ V : ∃ u′ ∈ U | ‖u′ − v‖ = dist(U, V )}.
It is worth mentioning that if (U, V ) is a nonempty, bounded, closed and convex pair in a

reflexive Banach space X then its proximal pair (U0, V0) is also nonempty, closed and convex.
For a nonempty subset U of a Banach space X a metric projection operator PU : X → 2U is

defined as
PU(x) := {u ∈ U : ‖x− u‖ = dist({x}, U)},

where 2U denotes the set of all subsets of U . It is well known that if U is a nonempty, closed and
convex subset of a reflexive and strictly convex Banach space X, then the metric projection PU
is single valued from X to U , that is, PU : X → U is a mapping with ‖x−PU(x)‖ = dist({x}, U)
for any x ∈ X.
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Proposition 1.6. ([7, 8]) Let (U, V ) be a nonempty, bounded, closed and convex pair in a reflexive
and strictly convex Banach space X. Define a projection mapping P : U0 ∪ V0 → U0 ∪ V0 as

P(x) =

{
PU0(x); if x ∈ V0,

PV0(x); if x ∈ U0.
(2)

Then the following statements hold:

(i) ‖x−Px‖ = dist(U, V ) for any x ∈ U0 ∪ V0 and P is cyclic on U0 ∪ V0, that is, P(U0) ⊆ V0

and P(V0) ⊆ U0;

(ii) P|U0 and P|V0 are isometry;

(iii) P|U0 and P|V0 are affine;

(iv) P2|U0 = iU0 and P2|V0 = iV0, where iA denotes the identity mapping on a nonempty subset
A of X.

Definition 1.7. ([12]) Let (U, V ) be a pair of nonempty subsets of a metric space (M,d) with
U0 6= ∅. The pair (U, V ) is said to have P-property if and only if{

d(x1, y1) = dist(U, V ),

d(x2, y2) = dist(U, V ),
⇒ d(x1, x2) = d(y1, y2),

where x1, x2 ∈ U0 and y1, y2 ∈ V0.

It is remarkable to note that every nonempty, closed and convex pair in a strictly convex
Banach space X has the P-property (see Example 2.3 of [9]).

This paper is organized as follows: In Section 2. we prove a best proximity point theorem for
the multiplication of two non-self mappings in strictly Banach algebras. We also present examples
to illustrate the main existence results. In Section 3. we give a generalization of Schauder’s
fixed point theorem for non-self mappings by using the concept of measure of noncompactness in
strictly convex Banach spaces. Finally, in Section 4. as an application of the extension version of
Schauder’s fixed point problem, we investigate the existence of an optimum solution for a system
of differential equations.

2 Best proximity points in Banach algebras

The next theorem is the first main result of this article.

Theorem 2.1. Let (U, V ) be a nonempty, bounded, closed and convex pair in a reflexive and
strictly convex Banach algebra X. Assume that T : U → X and S : V → X are two operators
satisfying the following conditions:

(i) There exists a real number k ∈ [0, 1) such that ‖T x− T y‖ ≤ k‖x− y‖ for any x, y ∈ U0;

(ii) S is a continuous and compact operator on V0;

(iii) T (U0)S(V0) ⊆ U0.
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If kM < 1, then there is an element v? ∈ V0 for which

‖v? − T (Pv?)Sv?‖ = dist(U, V ), (3)

where M := sup{‖Sv‖ : v ∈ V0} and P is a projection mapping defined in (2). That is, v? is a
best proximity point for the multiplicative mapping T S.

Proof. Since (U, V ) is a bounded, closed and convex pair in a reflexive Banach space X, its
proximal (U0, V0) is also nonempty, closed and convex. Let v ∈ V0 be an arbitrary element and
define Tv : U0 → U0 with

Tv(u) = (T u)(Sv), ∀u ∈ U0.

From the assumption (iii), Tv is well-defined. Also, for any u1, u2 ∈ U0 we have

‖Tv(u1)− Tv(u2)‖ = ‖(T u1)(Sv)− (T u2)(Sv)‖
≤ ‖Sv‖‖T u1 − T u2‖
≤ kM︸︷︷︸

<1

‖u1 − u2‖,

which implies that the mapping Tv is a contraction map and since the set U0 is complete, by the
Banach contraction principle, Tv has a unique fixed point, say g(v) ∈ U0. Thus

g(v) = Tv
(
g(v)

)
=
(
T (gv)

)
(Sv).

Therefore, g : V0 → U0 is a mapping for which

g(v) =
(
T (gv)

)
(Sv), ∀v ∈ V0.

We show that g is continuous on V0. Let {vn} be a sequence in V0 such that vn → v ∈ V0. Then

‖gvn − gv‖ = ‖
(
T (gvn)

)
(Svn)−

(
T (gv)

)
(Sv)‖

≤ ‖
(
T (gvn)

)
(Svn)−

(
T (gv)

)
(Svn)‖+ ‖

(
T (gv)

)
(Svn)−

(
T (gv)

)
(Sv)‖

≤ ‖T (gvn)− T (gv)‖‖Svn‖+ ‖T (gv)‖‖Svn − Sv‖
≤ kM‖gvn − gv‖+ ‖T (gv)‖‖Svn − Sv‖,

and so,

‖gvn − gv‖ ≤
‖T (gv)‖
1− kM

‖Svn − Sv‖.

By the fact that S is continuous, if n → ∞ in above relation, we obtain gvn → gv, that is, g is
continuous.

Next we prove that g is a compact operator. At first note that for any u ∈ U0 we have

‖T u‖ ≤ ‖T u′‖+ ‖T u− T u′‖
≤ ‖T u′‖+ k‖u− u′‖
≤ ‖T u′‖+ kdiam(U0)︸ ︷︷ ︸

:=ρ

,

where u′ ∈ U0 is an arbitrary and fixed element. Hence, ‖T u‖ ≤ ρ for all u ∈ U0. Now let ε > 0 be
given. Since S is a compact operator, the set S(V0) is compact and so S(V0) is totally bounded.
This implies that there exists a finite (1−kM

ρ
)ε-net in V0, say E = {v1, v2, . . . , vn}. That is,

S(V0) ⊆
n⋃
j=1

N
(
Svj; (

1− kM
ρ

)ε
)
.
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So, for any v ∈ V0 there is an element vj for some j ∈ {1, 2, . . . , n} such that ‖Sv−Svj‖ < (1−kM
ρ

)ε.
Thereby,

‖gv − gvj‖ = ‖
(
T (gv)

)
(Sv)−

(
T (gvj)

)
(Svj)‖

≤ ‖
(
T (gv)

)
(Sv)−

(
T (gvj)

)
(Sv)‖+ ‖

(
T (gvj)

)
(Sv)−

(
T (gvj)

)
(Svj)‖

≤ ‖T (gv)− T (gvj)‖‖Sv‖+ ‖T (gvj)‖‖Sv − Svj‖

< kM‖gv − gvj‖+ ρ(
1− kM

ρ
)ε.

Hence, ‖gv − gvj‖ < ε which concludes that

g(V0) ⊆
n⋃
j=1

N (gvj; ε),

that is, g(V0) is totally bounded which ensures that g(V0) is a compact set. Then g is a compact
operator.

Consider the projection mapping defined in (2). Then

Pg(V0) ⊆ P(U0) ⊆ V0,

which deduces that Pg maps V0 into itself. Continuity of the mapping g on V0 and the projection
mapping P on U0 yields that Pg is continuous too. Since g(V0) is a compact set and that P|U0 is
continuous, P

(
g(V0)

)
is compact. Besides,

(Pg)V0 = P
(
g(V0)

)
⊆ P

(
g(V0)

)
= P

(
g(V0)

)
,

which implies that Pg is a compact operator. It now follows from the Schauder’s fixed point
theorem (Theorem 1.3) that there exists an element v? ∈ V0 for which Pgv? = v?. By the
statement (i) of the Proposition 1.6 we have

‖gv? − v?‖ = ‖gv? − Pgv?‖ = dist(U, V ) = ‖Pv? − v?‖.

Because of the fact that the pair (U, V ) has the P-property, we must have gv? = Pv? and so,

‖T (Pv?)Sv? − v?‖ = dist(U, V ),

and this completes the proof.

Remark 2.2. It is worth noticing that if in Theorem 2.1 U0 6= ∅, then we do not need the reflexivity
assumption of a Banach space X. Besides, if U ∩ V 6= ∅, then U0 = V0 = U ∩ V , and so the
projection mapping P defined on U0 ∪ V0 is identity. That is, the strict convexity assumption of
the Banach algebra X can be dropped. In this case, we obtain a fixed point for the mapping T S,
i.e., there exists a point u? ∈ U0 such that T u?Su? = u?.

The next corollary is a main result of [2].

Corollary 2.3. Let U be a nonempty, bounded, closed and convex subset of a Banach algebra X
and let T ,S : U → X be two mappings such that

(i) There exists a real number k ∈ [0, 1) such that ‖T x− T y‖ ≤ k‖x− y‖ for any x, y ∈ U ;
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(ii) S is a continuous and compact operator;

(iii) T (U)S(U) ⊆ U .

If kM < 1, then

∃ u? ∈ U s.t. T u?Su? = u?, (4)

where M = sup{Su : u ∈ U}.

Proof. It is sufficient to consider V = U in Theorem 2.1. In this case, U0 = V0 = U and the
projection mapping P should be identity on U and so, the result follows from Theorem 2.1.

Let us illustrate Theorem 2.1 with the next example.

Example 2.4. Consider the complex plane X = C with the Euclidean norm as a strictly convex
Banach algebra and let

U = [0, 2], V =
{
v + i : 0 ≤ v ≤ 1

}
.

Clearly, dist(U, V ) = 2 and that
U0 = [0, 1], V0 = V.

In this situation, the projection mapping P : V0 → U0 is defined by

P(v + i) = v, ∀v ∈ [0, 1].

Define T : U → X and S : V → X with

T (u) =
u+ 1

2
, S(v + i) =

√
v, ∀(u, v) ∈ [0, 2]× [0, 1].

Then T is contraction with contractive constant k = 1
2
. Also, S is a continuous and compact

operator. Moreover,

T (u)S(v + i) = (
u+ 1

2
)(
√
v), ∀(u, v) ∈ [0, 1]× [0, 1],

which implies that T (U0)S(V0) ⊆ U0. It is worth noticing that

M := sup{S(v + i)︸ ︷︷ ︸
=
√
v

: v ∈ [0, 1]} = 1,

and so, kM < 1. Therefore, from Theorem 2.1 the equation (3) has a solution, that is, there exists
a point v? ∈ V0 such that

‖v? − T (Pv?)Sv?‖ = dist(U, V ),

and in this case, v? ∈ {i, 1 + i}.

Example 2.5. Let K = [0, 1] and X = L∞(K) with the pointwise multiplication (fg)x = f(x)g(x)
and with the supremum norm. Then X is a Banach algebra which is not strictly convex. Set

U =
{
f ∈ X ; 0 ≤ f ≤ 1

2
(a.e.)

}
, V =

{
g ∈ X ; 0 ≤ g ≤ iK (a.e.)

}
,
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where iK denotes the identity mapping on the set K. Obviously, (U, V ) is a bounded, closed and
convex pair with dist(U, V ) = 0 and

U0 = V0 =
{
h ∈ X ; 0 ≤ h ≤ min{1

2
, iK} (a.e.)

}
.

Define T : U → X and S : V → X with

(T f)x =
1

4
& (Sg)x = x+

∫ x

0

g(t)dt, ∀x ∈ K.

It is easy to see that T is contraction and S is a continuous and compact operator. Also, for any
h1, h2 ∈ U0 we have (

T h1Sh2

)
(x) =

(
T h1

)
(x)
(
Sh2

)
(x)

=
1

4

(
x+

∫ x

0

h2(t)dt
)

≤ min
{1

2
, iK
}
,

which shows that T h1Sh2 ∈ U0 for all h1, h2 ∈ U0 and so, T (U0)S(U0) ⊆ U0. Furthermore,

M := sup{‖Sh‖ : h ∈ U0} ≤ 1 + sup
x∈K

∫ x

0

1

2
dt =

3

2
,

and so, kM < 1 for k ∈ (0, 2
3
). It now follows from the Remark 2.2 that there exists an element

u? ∈ U0 for which T u?Su? = u? or equivalently,

u?(x) =
1

4
x+

1

4

∫ x

0

u?(t)dt.

It is worth noticing that the only solution of the above integral equation is u?(x) = e
1
4
x − 1.

3 An extension of Schauder’s fixed point theorem

In this section we present a generalization of Schauder’s fixed point in order to study the existence
of a best proximity point. To this end we fix the following notation.

Notation. Let (U, V ) be a nonempty, bounded, closed and convex pair in a reflexive and
strictly convex Banach space X and T : U → V be a non-self mapping such that T (U0) ⊆ V0.
Put U0 := U0 and V0 := V0 and for all n ∈ N ∪ {0} define

Vn+1 = con
(
T Un

)
, Un+1 = P(Vn+1),

where P is a projection mapping defined in Proposition 1.6.

Proposition 3.1. Let (U, V ) be a nonempty, bounded, closed and convex pair in a reflexive and
strictly convex Banach space X and T : U → V be a non-self mapping such that T (U0) ⊆ V0.
Then {(Un,Vn)}n∈N∪{0} is a descending sequence of nonempty, closed and convex pairs in U0×V0.
Also,

dist(Un,Vn) = dist(U, V ), ∀n ∈ N ∪ {0}.

Moreover, T (Un) ⊆ Vn for all n ∈ N.
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Proof. Clearly, Vn is nonempty, closed and convex for any n ∈ N ∪ {0}. So, each Un is also
nonempty. Let {uj}j∈N be a sequence in Un such that uj → u ∈ U0. Then for any j ∈ N there
exists an element vj ∈ Vn for which uj = Pvj. By this reality that P2|V0 = iV0 (statement (iv) of
Proposition 1.6), we obtain

Puj = P2(vj) = vj, ∀j ∈ N.

Continuity of P on U0 deduces that Puj → Pu and so, vj → Pu which concludes that Pu ∈ Vn.
Thus

u = P(Pu) ∈ P(Vn) = Un,
that is, Un is closed. Now assume that u, u′ ∈ Un. Then there are points v, v′ ∈ Vn for which
u = Pv and u′ = Pv′. Affinity of the projection mapping P on V0 implies that for any λ ∈ [0, 1]
we have

λu+ (1− λ)u′ = λPv + (1− λ)Pv′

= P
(
λv + (1− λ)v′

)
∈ P(Vn) = Un,

which ensures that the set Un is convex. Besides,

V1 = con
(
T U0

)
⊆ V0,

U1 = P(V1) ⊆ P(V0) ⊆ U0,

which concludes that

V2 = con
(
T U1

)
= con

(
T (PV1)

)
⊆ con

(
T (U0)

)
= V1,

U2 = P(V2) ⊆ P(V1) = U1.

Continuing this process and by induction we obtain

Vn = con
(
T Un−1

)
= con

(
T (PVn−1)

)
⊆ con

(
T (Un−2)

)
= Vn−1,

Un = P(Vn) ⊆ P(Vn−1) = Un−1 ∀n ∈ N.

Hence {(Un,Vn)}n∈N∪{0} is a descending sequence.
Also, we note that dist(U0,V0) = dist(U, V ). Let u0 ∈ U0. Since T (U0) ⊆ V0 and X is strictly
convex, there exists a unique element u1 ∈ U0 such that ‖u1 − T u0‖ = dist(U, V ). In this case,
T u0 ∈ V1 and P(T u0) = u1 ∈ U1 which implies that dist(U1,V1) = dist(U, V ). Again by the
fact that T (U0) ⊆ V0 and X is strictly convex, there exists a unique element u2 ∈ U0 for which
‖u2 − T u1‖ = dist(U, V ). We now have T u1 ∈ V2 and P(T u1) = u2 ∈ U2 which concludes that
dist(U2,V2) = dist(U, V ). By a similar argument we can see that dist(Un,Vn) = dist(U, V ) for all
n ∈ N ∪ {0}. Moreover, for any n ∈ N we have

T (Un) ⊆ con
(
T Un

)
= Vn+1 ⊆ Vn,

and this completes the proof.

Let
∑

be a family of all nonempty and bounded subsets of a Banach space X. We recall that a
function µ :

∑
→ [0,∞) is called a measure of noncompactness (MNC) if it satisfies the following

conditions:
(i) µ(A) = 0 iff A is relatively compact,
(ii) µ(A) = µ(A) for all A ∈

∑
,

(iii) µ(A ∪B) = max{µ(A), µ(B)} for all A,B ∈
∑

.
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We mention that just recently, Keyvanloo et al. ([11]) introduced a notion of weighted sequence
spaces and constructed a Hausdorff measure of noncompactness in these spaces. They used this
notion to obtain the existence of solutions of certain infinite systems of third-order three-point
nonhomogeneous boundary value problems.

Definition 3.2. Let (U, V ) be a nonempty, bounded, closed and convex pair in a reflexive and
strictly convex Banach space X and T : U → V be a non-self mapping such that T (U0) ⊆ V0. We
will say that T is a generalized condensing non-self mapping whenever

∃ n0 ∈ N : µ(Vn0) = 0,

where µ is an MNC on
∑

.

We are now in position to state another main result of this article.

Theorem 3.3. Let (U, V ) be a nonempty, bounded, closed and convex pair in a reflexive and
strictly convex Banach space X and T : U → V be a non-self mapping such that T (U0) ⊆ V0. If T
is a continuous and generalized condensing non-self mapping, then T has a best proximity point,
that is, there exists a point u? ∈ U such that ‖u? − T u?‖ = dist(U, V ).

Proof. It follows from Proposition 3.1 that {(Un,Vn)}n∈N∪{0} is a descending sequence of nonempty,
closed and convex pairs in X. Since T is generalized condensing,

∃ n0 ∈ N : µ(Vn0) = 0,

which concludes that Vn0 is relatively compact by the definition of MNC. On the other hand, from
Proposition 3.1, T (Un0) ⊆ Vn0 and so T is a compact and continuous non-self mapping from Un0

to Vn0 . We now have
P
(
T (Un0)

)
⊆ P(Vn0) = Un0 ,

which ensures that PT maps Un0 into itself and that PT is a continuous and compact operator.
Using Schauder’s fixed point theorem, PT has a fixed point in Un0 , say u?. Thus

‖u? − T u?‖ = ‖PT u? − T u?‖ = dist(U, V ),

and we are finished.

Corollary 3.4. Let (U, V ) be a nonempty, bounded, closed and convex pair in a reflexive and
strictly convex Banach space X and T : U → V be a non-self mapping such that T (U0) ⊆ V0. If
T is compact and continuous, then T has a best proximity point.

Proof. It is sufficient note that since T is compact, T is a generalized condensing non-self mapping
with n0 = 1 and the result follows from Theorem 3.3, directly.

Remark 3.5. It is worth mentioning that the reflexivity assumption of a Banach space X in Propo-
sition 3.1, Theorem 3.3 and Corollary 3.4 ensures that the proximal pair (U0, V0) is nonempty.
So, this condition can be removed if we suppose that the set U0 is nonempty.
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4 Application to a system of differential equations

In the latest section of this article, we apply the existence of a best proximity point of Corollary
3.4 to find an optimum solution for a system of differential equations. In this order, we fix the
following notations:

For (u0, v0) ∈ R2 let

E =
{

(u, v) ∈ R2 : |u− u0| ≤ 1, |v − v0| ≤ 1
}
.

Suppose that (u, v1), (u, v2) ∈ E are such that v1 < v2 and let f1 and f2 be two different real-valued
functions on the set E. Consider the following system of differential equations:{

dv
du

= f1(u, v) ; v(u0) = v2,
dv
du

= f2(u, v) ; v(u0) = v1.
(5)

It is worth noticing that this system does not have a solution. Let X be a Banach space C([0, 1])
consists of all continuous real functions defined on [0, 1] which is renormed according to

‖v‖ = ‖v‖2 + ‖v‖∞, ∀v ∈ X.

Due to presence of ‖.‖2, the Banach space (X, ‖.‖) is strictly convex. Moreover, it is easy to check
that

‖v‖∞ ≤ ‖v‖ ≤ 2‖v‖∞, ∀v ∈ X. (6)

Set

U =
{
ν ∈ X : |ν(u)− v0| ≤ 1, ν(u0) = v2, ν(u) ≥ v2

}
,

V =
{
v ∈ X : |v(u)− v0| ≤ 1, v(u0) = v1, v(u) ≤ v1

}
.

Clearly, (U, V ) is a closed and convex pair in X. Let (ν, v) ∈ U×V . Then we have |ν(u)−v(u)| ≥
|v2 − v1| and so,

‖ν − v‖2 =
[ ∫ 1

0

|ν(u)− v(u)|2du
] 1

2

≥
[ ∫ 1

0

|v2 − v1|2du
] 1

2

= |v2 − v1|.

Therefore,

‖ν − v‖ = ‖ν − v‖2 + ‖ν − v‖∞ ≥ 2|v2 − v1|.

Since (v2, v1) ∈ U × V , we must have

dist(U, V ) = 2|v2 − v1|,

and so, the proximal pair (U0, V0) is nonempty. Clearly (U0, V0) is a convex pair and by the fact
that X is strictly convex, the pair (U, V ) has the P-property and hence by Lemma 3.1 of [6], the
proximal pair (U0, V0) is closed. Define a mapping T : U → X by(

T ν
)
u = v1 −

∫ u

u0

∣∣f2

(
x, ν(x)

)∣∣dx ; ν ∈ U.
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Then
(
T ν
)
(u0) = v1 and

(
T ν
)
(u) ≤ v1. Suppose that L > 0 is a common bound of the functions

f1 and f2 and let

δ < min
{

1,
1− |v1 − v0|

L
,

1− |v2 − v0|
L

,
|v2 − v1|

4L

}
.

Now by considering the strictly convex Banach space X =
(
C([0, δ]), ‖.‖

)
we obtain

∣∣(T ν)(u)− v0

∣∣ =
∣∣v1 −

∫ u

u0

|f2

(
x, ν(x)

)
|dx− v0

∣∣
≤ |v1 − v0|+

∫ u

u0

|f2

(
x, ν(x)

)
|dx

≤ |v1 − v0|+ L |u− u0|︸ ︷︷ ︸
<δ

≤ 1.

Thereby, T maps U to the set V .

Definition 4.1. We say that ν? ∈ U is an optimum solution for the system (5) whenever

‖ν? − T ν?‖ = dist(U, V ),

that is, ν? is a best proximity point for the non-self mapping T .

The next theorem guarantees the existence of an optimum solution of the system (5).

Theorem 4.2. Under the aforesaid hypothesis and notations of this section, if moreover,

|f1

(
x, v(x)

)
|+ |f2

(
x, ν(x)

)
| ≤ 1

2
|ν(x)− v(x)| − |v2 − v1|,

whenever 1
2
|ν(x)− v(x)| > |v2 − v1|, then the system (5) has an optimum solution.

Proof. We first assert that T (U0) ⊆ V0. Define a mapping S : V → X with

(
Sv
)
u = v2 +

∫ u

u0

∣∣f1

(
x, v(x)

)∣∣dx ; v ∈ V.

In this situation, (Sv)u0 = v2 and (Sv)u ≥ v2. Moreover,

∣∣(Sv)(u)− v0

∣∣ =
∣∣v2 +

∫ u

u0

|f1

(
x, v(x)

)
|dx− v0

∣∣
≤ |v2 − v0|+

∫ u

u0

|f1

(
x, v(x)

)
|dx

≤ |v2 − v0|+ L |u− u0|︸ ︷︷ ︸
<δ

≤ 1,

and so, Sv ∈ U for any v ∈ V which concludes that S(V ) ⊆ U . Now for any (ν, v) ∈ U × V set

Γ1 =
{
x ∈ [u0, u0 + δ] ;

1

2
|ν(x)− v(x)| > |v2 − v1|

}
,

Γ2 =
{
x ∈ [u0, u0 + δ] ;

1

2
|ν(x)− v(x)| ≤ |v2 − v1|

}
.
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Then we have

|(T ν)u− (Sv)u|

=
∣∣∣(v1 −

∫ u

u0

∣∣f2

(
x, ν(x)

)∣∣dx)− (v2 +

∫ u

u0

∣∣f1

(
x, v(x)

)∣∣dx)
∣∣∣

≤ |v2 − v1|+
∫ u

u0

(
∣∣f2

(
x, ν(x)

)∣∣+
∣∣f1

(
x, v(x)

)∣∣)dx
= |v2 − v1|+

∫
Γ1

(
∣∣f2

(
x, ν(x)

)∣∣+
∣∣f1

(
x, v(x)

)∣∣)dx+

∫
Γ2

(
∣∣f2

(
x, ν(x)

)∣∣+
∣∣f1

(
x, v(x)

)∣∣)dx
= |v2 − v1|+

1

2
‖ν − v‖∞ − |v2 − v1|+ 2Lδ︸︷︷︸

< 1
2
|v2−v1|

≤ 1

2
‖ν − v‖∞ +

1

2
|v2 − v1|

≤ 1

2
‖ν − v‖∞ +

1

2
‖ν − v‖2 (since |v2 − v1| ≤ ‖ν − v‖2)

=
1

2
‖ν − v‖.

This yields that

‖T ν − Sv‖∞ ≤
1

2
‖ν − v‖. (7)

Hence by using the relations (6) and (7) we obtain

‖T ν − Sv‖ ≤ 2‖T ν − Sv‖∞ ≤ ‖ν − v‖, ∀(ν, v) ∈ U × V. (8)

Now if ν1 ∈ U0, then there exists an element v1 ∈ V such that ‖ν1 − v1‖ = dist(U, V ). Thus from
(8) we have

‖T ν1 − Sv1‖ ≤ ‖ν1 − v1‖ = dist(U, V ),

which implies that T ν1 ∈ V0. Thereby T (U0) ⊆ V0.
It is obvious that the mapping T is continuous. Also, if ν ∈ U , then

|(T ν)u| =
∣∣∣v1 −

∫ u

u0

∣∣f2

(
x, ν(x)

)∣∣dx∣∣∣
≤ |v1|+

∫ u

u0

∣∣f2

(
x, ν(x)

)∣∣dx
≤ |v1|+ Lδ,

and so the family of {T ν}ν∈U is bounded. On the other hand, if ν ∈ U and u1, u2 ∈ [u0, u0 + δ]
with u1 < u2 then we have

|(T ν)u1 − (T ν)u2|

=
∣∣∣v1 −

∫ u1

u0

∣∣f2

(
x, ν(x)

)∣∣dx− v1 +

∫ u2

u0

∣∣f2

(
x, ν(x)

)∣∣dx∣∣∣
=

∫ u2

u1

∣∣f2

(
x, ν(x)

)∣∣dx
≤ L|u2 − u1|.
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Thus {T ν}ν∈U is a family of equicontinuous functions. It now follows from the Arzela-Ascoli’s
Theorem that T (U) is compact which means that T is a compact operator. Therefore by Corollary
3.4, T has a best proximity point and this point is an optimum solution of the system (5).
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