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1 Introduction

The problem of characterizing maps preserving certain equivalence relations

has received the attention of many researchers in the last few decades. One of

the topics is the study of similarity preserving maps.

Let A be a unital algebra. Two elements A and B in A are said to be

similar if A = TBT−1 for some invertible T ∈ A. Hiai [2] characterized linear

maps Φ defined on the matrix algebra that preserve similarity, which means

that if matrices A and B are similar, then Φ(A) and Φ(B) are similar as well.

Maps preserving similarity on infinite-dimensional spaces have been considered

by many authors [1, 4, 5, 7, 10, 15, 16, 18]. For the Banach space case, Lu and

Peng [10] proved that if X is an infinite-dimensional complex Banach space and

Φ is a similarity preserving linear map on B(X), the algebra of all bounded linear

operators on X, then Φ must be of the form either Φ(A) = cTAT−1 + h(A)I or

Φ(A) = cTA∗T−1 + h(A)I for some complex number c, some invertible operator

T and some similarity-invariant linear functional h. Recently, for the non-prime

algebras case, the author and Lu [16] characterized the structure of linear maps

preserving similarity on J -subspace lattice algebras.

In this paper we will deal with maps that preserve another equivalence rela-

tion. Let A be an algebra with unit I. Recall that two elements A and B in
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A are equivalent, denoted by A ∼ B, if there exist invertible elements T, S ∈ A
such that A = TBS. Obviously, equivalence is a weaker relation than similarity.

A map Φ from A into another algebra is said to be equivalence preserving if

Φ(A) ∼ Φ(B) whenever A ∼ B; Φ is said to be equivalence preserving in both

directions if A ∼ B if and only if Φ(A) ∼ Φ(B). In [3], linear maps on the algebra

of all n× n matrices preserving equivalence were characterized. For the infinite-

dimensional case, Petek and Radić [12] proved that if X is an infinite-dimensional

reflexive complex Banach space, then linear bijections Φ : B(X) → B(X) pre-

serve equivalence if and only if there exist bounded invertible linear operators

T, S such that either Φ(A) = TAS for all A, or Φ(A) = TA∗S for all A, where A∗

denotes the adjoint of A. Later, in the paper [13], they studied the nonlinear map

case. Recently, Radić [17] considered linear maps on B(X) preserving another

type of equivalence, and then refined the corresponding result stated in [12].

Since B(X) is prime, more generally, one may ask what is the structure of

linear maps preserving equivalence on non-prime algebras. The purpose of this

paper is to give the structure of linear maps preserving equivalence on reflexive

algebras with J -subspace lattices. Note that our approach is quite different from

that of [12].

Let us introduce some notations used in this paper. Throughout, X will be a

Banach space over the real or complex field F. By X∗ we denote the topological

dual of X. A family L of closed subspaces of X is called a subspace lattice on X

if it contains (0) and X, and is closed under the operations closed linear span ∨
and intersection ∧ in the sense that ∨γ∈ΓLγ ∈ L and ∧γ∈ΓLγ ∈ L for every family

{Lγ : γ ∈ Γ} of elements in L. Given a subspace lattice L on X, the associated

subspace lattice algebra AlgL is the set of operators on X leaving every subspace

in L invariant, that is,

AlgL = {A ∈ B(X) : Ax ∈ L for every x ∈ L and for every L ∈ L}.

Given a subspace lattice L of X, put

J (L) = {K ∈ L : K 6= (0) and K− 6= X},

where K− = ∨{L ∈ L : L 6⊇ K}. Call L a J -subspace lattice (simply, JSL) if

(1) ∨{K : K ∈ J (L)} = X;

(2) ∧{K− : K ∈ J (L)} = (0);

(3) K ∨K− = X, for every K ∈ J (L);
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(4) K ∧K− = (0), for every K ∈ J (L).

Note that if L = {(0), X}, then J (L) = {X} and AlgL = B(X). An example

of a J -subspace lattice is any pentagon subspace lattice P = {(0), K, L,M,X}.
Here K, L and M are subspaces of X satisfying K ∨ L = X, K ∧M = (0) and

L ⊂ M . In this case, K− = M , L− = K and J (P) = {K,L}. For further

discussion of pentagon subspace lattice see [6]. Another important element of the

class of J -subspace lattices is the Boolean subspace lattice [9].

For L ∈ L, L⊥ denotes the annihilator of L, that is, L⊥ = {f ∈ X∗ : f(x) =

0 for all x ∈ L}. For nonzero vectors x ∈ X and f ∈ X∗, we define the rank-one

operator x⊗ f by y 7→ f(y)x for y ∈ X.

We close this section by summarizing some lemmas on JSL algebras, which

will be used to prove our main result.

Lemma 1.1. ( [8]) Let L be a J -subspace lattice on a Banach space X. Then

x ⊗ f ∈ AlgL if and only if there exists a unique element K ∈ J (L) such that

x ∈ K and f ∈ K⊥− , where K⊥− means (K−)⊥.

Lemma 1.2. ( [14, Lemma 1.2]) Let L be a J -subspace lattice on a Banach

space X.

(1) For E,F ∈ J (L), E 6= F implies that F ⊆ E−.

(2) For E,F ∈ J (L), E 6= F implies that E ∧ F = (0).

Remark 1.3. Suppose L is a J -subspace lattice on a Banach space X. Let E,F ∈
J (L) with E 6= F . Take nonzero vectors x ∈ E, y ∈ F , f ∈ E⊥− , g ∈ F⊥− . By

Lemma 1.1, x ⊗ f, y ⊗ g ∈ AlgL. For any A ∈ AlgL, by Lemma 1.2, we have

x ⊗ fAy ⊗ g = 0. However, both x ⊗ f and y ⊗ g are not zero. So, AlgL is not

prime.

2 Preliminaries

Throughout this section, L will always denote a J -subspace lattice on a real

or complex Banach space X. For K ∈ J (L), F1(K) stands for the set of all rank-

one operators x⊗f with x ∈ K and f ∈ K⊥− . By Lemma 1.1, ∅ 6= F1(K) ⊆ AlgL
for each K ∈ J (L). Observe that A|K− = 0 for every A ∈ F1(K), where A|K−
denotes the restriction of A to K−.

We begin with an easy and useful lemma.
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Lemma 2.1. Let K ∈ J (L) and x⊗ f ∈ F1(K). Then I + x⊗ f is invertible in

AlgL if and only if f(x) 6= −1.

Proof. If f(x) = −1, then we have (I + x ⊗ f)x = 0. So, I + x ⊗ f is not

invertible. Now assume that f(x) 6= −1. Then

(I + x⊗ f)

(
I − 1

1 + f(x)
x⊗ f

)
= I,

which implies that I + x⊗ f is invertible in AlgL.

By the above lemma, we know that for every rank-one operator x⊗f ∈ AlgL,

I + x ⊗ f is invertible in AlgL if and only if I + x ⊗ f is invertible in B(X). It

is easy to see that all rank-one operators in B(X) are mutually equivalent. Next

we give a necessary and sufficient condition for two rank-one operators in JSL

algebras to be equivalent.

Proposition 2.2. Let K1, K2 ∈ J (L). Suppose R1 ∈ F1(K1) and R2 ∈ F1(K2).

Then R1 ∼ R2 if and only if K1 = K2.

Proof. Let R1 = x ⊗ f and R2 = y ⊗ g, where x ∈ K1, y ∈ K2, f ∈ K⊥1−,

g ∈ K⊥2− are nonzero. First show the necessity. Assume that there exist invertible

operators T, S ∈ AlgL such that x ⊗ f = Ty ⊗ gS. So, x and Ty are linearly

dependent. Since Ty is a nonzero vector in K2, it follows from Lemma 1.2 that

K1 = K2. Now we show the sufficiency. For this, let K = K1 = K2. We first

prove two claims.

Claim 1. If 0 6= x, y ∈ K and 0 6= f ∈ K⊥− , then x⊗ f ∼ y ⊗ f .

If x and y are linearly dependent, then we can write y = αx for some nonzero

α ∈ F. Let T = αI and S = I. Then T, S are invertible in AlgL and Tx⊗ fS =

y ⊗ f . So, x ⊗ f ∼ y ⊗ f . Now assume that x and y are linearly independent.

Take h ∈ K⊥− such that h(x) = 1 and h(y) = 1. Let T = I − (x − y) ⊗ h and

S = I. Then T is invertible in AlgL by Lemma 2.1 and Tx ⊗ fS = y ⊗ f . So,

x⊗ f ∼ y ⊗ f .

Claim 2. If 0 6= x ∈ K and 0 6= f, g ∈ K⊥− , then x⊗ f ∼ x⊗ g.

If f and g are linearly dependent, then we are done by Claim 1. Now assume

that f and g are linearly independent. Then we can find z ∈ K such that

f(z) = g(z) = 1. Let T = I and S = I − z ⊗ (f − g). Then, S is invertible in

AlgL by Lemma 2.1 and Tx⊗ fS = x⊗ g. So, x⊗ f ∼ x⊗ g.

Now, by Claim 1, we get x ⊗ f ∼ y ⊗ f. By Claim 2, we get y ⊗ f ∼ y ⊗ g.
Hence, by the transitivity, we arrive at R1 ∼ R2, completing the proof.
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The following lemma gives a characterization of rank-one operators in JSL

algebras involving equivalence relation, which in fact plays a key role in this

paper.

Lemma 2.3. Let R be a nonzero operator in AlgL. Then the following are

equivalent.

(1) R is of rank one.

(2) R ∼ 2R and for every A ∼ R with R 6= A ∈ AlgL, A+R ∼ R implies that

A−R ∼ R.

Proof. (1)⇒ (2). It is a direct consequence of Proposition 2.2.

(2) ⇒ (1). Since ∨{K : K ∈ J (L)} = X and R 6= 0, there exist some

K ∈ J (L) and some x ∈ K such that Rx 6= 0. Take f ∈ K⊥− such that f(x) = 1.

Then, by Lemma 2.1, I + 2x ⊗ f and I + x ⊗ f are both invertible in AlgL.

Compute

R(I + 2x⊗ f) = R + 2Rx⊗ f.

Let A = R+2Rx⊗f . Then A 6= R and A ∼ R by the above equation. Moreover,

since

2R(I + x⊗ f) = 2R + 2Rx⊗ f,

we have A + R ∼ 2R ∼ R. It follows that R ∼ A − R = 2Rx ⊗ f by the

assumption. So, R is of rank one.

3 Main result

In this section, we will give the structure of linear maps preserving equivalence

in both directions on JSL algebras. For a J -subspace lattice L on a Banach space

X, we denote by J2(L) the set {K ∈ J (L) : dimK ≥ 2}. Our main result reads

as follows.

Theorem 3.1. Let L1 and L2 be J -subspace lattices on real or complex Banach

spaces X1 and X2, respectively. Suppose Φ : AlgL1 → AlgL2 is a surjective linear

map preserving equivalence in both directions.

(1) There exists a bijection K 7→ K̂ from J (L1) onto J (L2).

(2) Assume that Φ(U) = I for some U ∈ AlgL1. Then for each K ∈ J2(L1),

one of the following holds.
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(a) UK is invertible and there exists a bijective continuous linear map TK :

K → K̂ such that

Φ(A)y = TKAU
−1
K T−1

K y

for all A ∈ AlgL1 and all y ∈ K̂, where UK denotes the operator

U |K : K → K.

(b) U∗
K⊥−

is invertible and there exists a bijective continuous linear map

TK : K⊥− → K̂ such that

Φ(A)y = TKA
∗(U∗K⊥−

)−1T−1
K y

for all A ∈ AlgL1 and all y ∈ K̂, where U∗
K⊥−

denotes the operator

U∗|K⊥− : K⊥− → K⊥− .

(3) For each L ∈ J (L2) with dimL = 1, there exists a linear functional hL on

AlgL1 such that

Φ(A)y = hL(A)y

for all A ∈ AlgL1 and all y ∈ L.

To prove Theorem 3.1, we need several lemmas. In the following, let the map

Φ satisfy the hypotheses of Theorem 3.1.

Lemma 3.2. Φ is injective.

Proof. Let Φ(A) = Φ(B) for some A,B ∈ AlgL1. Then we have Φ(A − B) =

Φ(A)−Φ(B) = 0. This together with the fact that Φ(0) = 0 gives us A−B ∼ 0.

Hence, A = B.

Lemma 3.3. Φ preserves rank-one operators in both directions.

Proof. Let A be of rank one. Then by Proposition 2.2, A ∼ 2A. It follows

that Φ(A) ∼ 2Φ(A). Suppose Φ(B) ∼ Φ(A) with Φ(B) 6= Φ(A) such that

Φ(B) + Φ(A) ∼ Φ(A). Then B ∼ A, B 6= A and B + A ∼ A. So we can apply

Lemma 2.3 to conclude that B−A ∼ A, which implies that Φ(B)−Φ(A) ∼ Φ(A).

Applying Lemma 2.3 again, we obtain that Φ(A) is of rank one. The same

discussion implies that if Φ(A) is of rank one, then A is of rank one. Consequently,

Φ preserves rank-one operators in both directions.

Lemma 3.4. Let K be in J (L1). Then there is a bijection K 7→ K̂ from J (L1)

onto J (L2) such that Φ(F1(K)) = F1(K̂).
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Proof. Let K be in J (L1). Fix an operator R0 ∈ F1(K). By Lemma 3.3, there

exists a rank-one operator W0 ∈ AlgL2 such that Φ(R0) = W0. It follows from

Lemma 1.1 that there exists a unique element K̂ ∈ J (L2) such that W0 ∈ F1(K̂).

For any R ∈ F1(K), by Proposition 2.2, we have R ∼ R0. Then Φ(R) ∼ Φ(R0).

This together with Proposition 2.2 gives Φ(R) ∈ F1(K̂). Thus, the map K 7→ K̂

is well defined and Φ(F1(K)) ⊆ F1(K̂). Since Φ−1 has the same property as Φ,

one can get that F1(K̂) ⊆ Φ(F1(K)). So, Φ(F1(K)) = F1(K̂).

Next we show that the map K 7→ K̂ is injective. Let K̂1 = K̂2, K1, K2 ∈
J (L1). Take R1 ∈ F1(K1) and R2 ∈ F1(K2). Then we can obtain that Φ(R1) ∈
F1(K̂1) and Φ(R2) ∈ F1(K̂2). Since K̂1 = K̂2, we have Φ(R1) ∼ Φ(R2) by

Proposition 2.2. It follows that R1 ∼ R2. Applying Proposition 2.2 again, we get

K1 = K2.

Finally, we prove that the map K 7→ K̂ is surjective. Let L be an arbitrary

element in J (L2). Take W ∈ F1(L). By Lemma 3.3, there exists a rank-one

operator R ∈ AlgL1 such that Φ(R) = W . It follows from Lemma 1.1 that there

exists a unique element K ∈ J (L1) such that R ∈ F1(K). By the definition

of the map, we have W ∈ F1(K̂). This together with Lemma 1.2 implies that

L = K̂.

Proposition 3.5. Let K ∈ J2(L1). Then one of the following holds.

(1) There exist bijective linear maps TK : K → K̂ and SK : K⊥− → K̂⊥− such

that

Φ(x⊗ f) = TKx⊗ SKf

for every x⊗ f ∈ F1(K).

(2) There exist bijective linear maps TK : K⊥− → K̂ and SK : K → K̂⊥−such

that

Φ(x⊗ f) = TKf ⊗ SKx

for every x⊗ f ∈ F1(K).

Proof. The proof is similar to the proof of Theorem 3.1 and 3.3 in [11].

Since Φ is surjective, we can assume that Φ(U) = I for some U ∈ AlgL1. In

the following, we always assume that the first case in Proposition 3.5 holds. The

proof in the second case is similar. Let K ∈ J2(L1). Then there exist bijective

linear maps TK : K → K̂ and SK : K⊥− → K̂⊥− such that

Φ(x⊗ f) = TKx⊗ SKf (3.1)

for every x⊗ f ∈ F1(K).
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Lemma 3.6. Let K ∈ J2(L1). Then for every x ∈ K and f ∈ K⊥− , we have

SKf(TKUx) = f(x) (3.2)

and

SKU
∗f(TKx) = f(x). (3.3)

Proof. Let x0 ∈ K and f0 ∈ K⊥− be such that f0(x0) = 0. For every λ ∈ F,

I + λx0 ⊗ f0 is invertible by Lemma 2.1. Then

U ∼ U(I + λx0 ⊗ f0) = U + λUx0 ⊗ f0.

This together with Eq. (3.1) gives

I ∼ I + λTKUx0 ⊗ SKf0.

So, I + λTKUx0 ⊗ SKf0 is invertible. Applying Lemma 2.1 again, we can obtain

that λSKf0(TKUx0) 6= −1. As λ is an arbitrary scalar, we have

SKf0(TKUx0) = 0 (3.4)

for every x0 ∈ K and f0 ∈ K⊥− with f0(x0) = 0.

Now we will prove that there exists a scalar c ∈ {0, 1} such that

SKf(TKUx) = cf(x) (3.5)

for every x ∈ K and f ∈ K⊥− . Fix x1 ∈ K and f1 ∈ K⊥− with f1(x1) = 1 and set

c = SKf1(TKUx1). Choose any λ ∈ F \ {−1}. Then by Lemma 2.1, I + λx1 ⊗ f1

is invertible. So,

U ∼ U(I + λx1 ⊗ f1) = U + λUx1 ⊗ f1.

From this and Eq. (3.1) we get that

I ∼ I + λTKUx1 ⊗ SKf1,

which implies that I + λTKUx1 ⊗ SKf1 is invertible. Applying Lemma 2.1, for

any λ ∈ F \ {−1}, we have λc 6= −1. This further yields that c = 0 or c = 1.

We claim that for every z ∈ K and h ∈ K⊥− with f1(x1) = h(z) = 1 and

f1(z) = h(x1) = 0, SKh(TKUz) = c. Actually, since f1(z) = h(x1) = 0, by Eq.

(3.4), we have SKf1(TKUz) = 0 = SKh(TKUx1). This together with Eq. (3.4)

gives us

0 = SK(f1 + h)(TKU(x1 − z))

= SKf1(TKUx1)− SKf1(TKUz) + SKh(TKUx1)− SKh(TKUz)

= SKf1(TKUx1)− SKh(TKUz),
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which implies that SKh(TKUz) = c.

Now we distinguish two cases according to the dimension of K.

Case 1: 2 ≤ dimK <∞.

Assume that dimK = n, where 2 ≤ n < ∞. Let {x1, x2, . . . , xn} be a basis

of K and {f1, f2, . . . , fn} be a basis of K⊥− satisfying fi(xj) = δij, where δij is

the Kronecker delta. For any x ∈ K and any f ∈ K⊥− , write x =
∑n

i=1 αixi and

f =
∑n

j=1 βjfj for some α1, . . . , αn, β1, . . . , βn ∈ F. Then f(x) =
∑n

i=1 αiβi. By

the above claim and Eq. (3.4), we see that

SKf(TKUx) = SK

(
n∑
j=1

βjfj

)(
TKU

(
n∑
i=1

αixi

))

=
n∑
i=1

αiβiSKfi(TKUxi)

= c

n∑
i=1

αiβi = cf(x).

Case 2: K is infinite-dimensional.

By the linearity of TK and SK , it suffices to show that SKf(TKUx) = c for

every x ∈ K and f ∈ K⊥− with f(x) = 1. Since K is infinite-dimensional, we can

choose a vector y ∈ K such that f(y) = f1(y) = 0 and y /∈ span{x, x1} as follows:

take linearly independent vectors y1, y2 ∈ K such that f(y1) = f(y2) = 0 and

y1, y2 /∈ span{x, x1}. We firstly assume that f1(y1) = 0 or f1(y2) = 0. Set y = yi

if f1(yi) = 0, for i = 1, 2. Then the vector y ∈ K is as required. Now assume

that f1(y1) 6= 0 6= f1(y2). Set y = f1(y2)y1 − f1(y1)y2. Then f(y) = f1(y) = 0,

as desired. Now we can find a functional g ∈ K⊥− such that g(y) = 1 and

g(x) = g(x1) = 0. By the above claim, we have SKf1(TKUx1) = SKg(TKUy) and

SKf(TKUx) = SKg(TKUy), which yields that SKf(TKUx) = c.

Finally, we will show that c = 1. For this, assume on the contrary that c = 0.

Then SKf(TKUx) = 0 for all x ∈ K and f ∈ K⊥− . By the surjectivity of SK and

the injectivity of TK , we have

Ux = 0 (3.6)

for all x ∈ K. Take y0 ∈ K̂ and g0 ∈ K̂⊥− such that g0(y0) = 1. By Lemma 3.4,

there exists an operator x0 ⊗ f0 ∈ F1(K) such that Φ(x0 ⊗ f0) = y0 ⊗ g0. Note

that all invertible operators in AlgL2 are mutually equivalent, and that I+y0⊗g0

is invertible by Lemma 2.1. It follows that

I ∼ I + y0 ⊗ g0.
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Then

U ∼ U + x0 ⊗ f0.

From this, we can get

TUS = U + x0 ⊗ f0

for some invertible operators T, S ∈ AlgL1. Take z0 ∈ K such that f0(z0) = 1.

Applying the above equation to z0, we can get

TUSz0 = Uz0 + x0.

Note that Sz0 ∈ K. By Eq. (3.6), x0 = 0, a contraction.

If we started the proof of this Lemma by U ∼ (I + λx ⊗ f)U instead of

U ∼ U(I +λx⊗ f) in the proof of Eq. (3.4) and then continuing the proof in the

same way, we would get Eq. (3.3).

Lemma 3.7. Let K ∈ J2(L1). Then TK and SK are continuous.

Proof. First we show the continuity of the operator TKUK . By the closed graph

theorem, it suffices to prove that TKUK is a closed operator. Let {xn}∞n=1 be a

sequence in K such that xn → x and TKUKxn → y (n→∞), where x ∈ K and

y ∈ K̂. Take any f ∈ K⊥− . Then SKf(TKUK(xn−x))→ SKf(y−TKUKx). On the

other hand, by Eq. (3.2), we have SKf(TKUK(xn− x)) = f(xn− x)→ 0. Hence,

SKf(y−TKUKx) = 0. Since SK is surjective, we can get that g(y−TKUKx) = 0

for all g ∈ K̂⊥− . Note that K̂ ∧ K̂− = (0) and y − TKUKx ∈ K̂. So, y = TKUKx.

Applying Eq. (3.2) and the bijectivity of SK , we have S−1
K g(x) = g(TKUKx)

for every x ∈ K and every g ∈ K̂⊥− . Then

|S−1
K g(x)| = |g(TKUKx)| ≤ ‖g‖‖TKUK‖‖x‖

for every x ∈ K. Since K ∧K− = (0) and K ∨K− = X, we can regard K⊥− as

the dual space K∗ of K. Hence,

‖S−1
K g‖ ≤ ‖TKUK‖‖g‖

for every g ∈ K̂⊥− . So, ‖S−1
K ‖ ≤ ‖TKUK‖, and hence, S−1

K as well as SK is

continuous. By a similar argument as above, we can obtain that TK is continuous.

The proof is complete.

Lemma 3.8. Let K ∈ J2(L1). Then the operator UK is invertible.
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Proof. First we show that UK has dense range. Otherwise, there exists a

nonzero functional f ∈ K⊥− such that f(Ux) = 0 for all x ∈ K, that is, U∗f(x) = 0

for all x ∈ K. Note that U∗f ∈ K⊥− and K ∨K− = X. So, U∗f = 0 and hence,

SKU
∗f = 0. By Eq. (3.3), we have f(x) = 0 for all x ∈ K. This together with

the fact that K ∨K− = X gives f = 0, a contraction.

Next we show that UK is bounded below. Let x be any nonzero vector in K.

Since K ∧K− = (0), we can find fx ∈ K⊥− with ‖fx‖ = 1 such that fx(x) = ‖x‖.
Note that SK and TK are continuous by Lemma 3.7. It follows from Eq. (3.2)

that

‖x‖ = |fx(x)| = |SKfx(TKUKx)| ≤ ‖SKfx‖ · ‖TKUKx‖ ≤ ‖SK‖ · ‖TK‖ · ‖UKx‖.

As x is arbitrary, the operator UK is bounded below. The proof is complete.

Lemma 3.9. Let K ∈ J2(L1). Then for every y ∈ K̂ and f ∈ K⊥− , we have

SKf(y) = f(U−1
K T−1

K y). Moreover, Φ(x ⊗ f)y = TKx ⊗ fU−1
K T−1

K y for every

x⊗ f ∈ F1(K) and y ∈ K̂.

Proof. By Lemma 3.8 and Eq. (3.2), we have SKf(TKx) = f(U−1
K x) for every

x ∈ K and f ∈ K⊥− . Noticing the bijectivity of TK , we can change the above

equation into SKf(y) = f(U−1
K T−1

K y) for every y ∈ K̂ and f ∈ K⊥− . From this

and Eq. (3.1), we conclude that Φ(x ⊗ f)y = TKx ⊗ SKfy = TKx ⊗ fU−1
K T−1

K y

for every x⊗ f ∈ F1(K) and y ∈ K̂. The proof is complete.

The proof of Theorem 3.1. (1) follows from Lemma 3.4 and (3) is obvious.

To show (2), let K be in J2(L1). By Lemma 3.8, UK is invertible. We will show

that

Φ(A)y = TKAU
−1
K T−1

K y

for all A ∈ AlgL1 and all y ∈ K̂.

To this end, let A ∈ AlgL1 and set B = Φ(A). We can assume that A|K 6= 0

and B is invertible in AlgL2. Actually, if A|K = 0 or B is non-invertible, then

we can take a nonzero scalar λ ∈ F such that (A + λU)|K 6= 0 and B + λI is

invertible in AlgL2. In this case, we may replace A by A+ λU .

Choose any nonzero vectors x ∈ K and f ∈ K⊥− such that f(x) = 0. Let

λ ∈ F be arbitrary. By Lemma 2.1, I + λx⊗ f is invertible. Then we have

A ∼ A(I + λx⊗ f) = A+ λAx⊗ f.

This together with Eq. (3.1) gives us

B ∼ B + λTKAx⊗ SKf = B(I + λB−1TKAx⊗ SKf).
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Since B is invertible in AlgL2, I + λB−1TKAx ⊗ SKf is invertible. Applying

Lemma 2.1, we have λSKf(B−1TKAx) 6= −1. Note that λ is an arbitrary scalar.

Hence, SKf(B−1TKAx) = 0, which, together with Lemma 3.9, implies that

f(U−1
K T−1

K B−1TKAx) = 0

for every x ∈ K and f ∈ K⊥− . As K ∧K− = (0), there exists a scalar µ ∈ F such

that

U−1
K T−1

K B−1TKAx = µx (3.7)

for all x ∈ K.

Now take x1 ∈ K and f1 ∈ K⊥− such that f1(x1) = 1. Then, by Lemma 2.1,

I + λx1 ⊗ f1 is invertible for every λ ∈ F \ {−1}. So, for every λ ∈ F \ {−1}, we

have

A ∼ A(I + λx1 ⊗ f1) = A+ λAx1 ⊗ f1.

It follows from Eq. (3.1) that

B ∼ B + λTKAx1 ⊗ SKf1 = B(I + λB−1TKAx1 ⊗ SKf1).

Since B is invertible in AlgL2, I + λB−1TKAx1 ⊗ SKf1 is invertible for every

λ ∈ F \ {−1}. So, λSKf1(B−1TKAx1) 6= −1 for every λ ∈ F \ {−1} by Lemma

2.1. This implies that either SKf1(B−1TKAx1) = 0 or SKf1(B−1TKAx1) = 1.

Therefore, by Lemma 3.9, we have either

f1(U−1
K T−1

K B−1TKAx1) = 0 (3.8)

or

f1(U−1
K T−1

K B−1TKAx1) = 1. (3.9)

First assume that Eq. (3.8) holds. Then, by Eq. (3.7), we have

µ = µf1(x1) = f1(µx1) = f1(U−1
K T−1

K B−1TKAx1) = 0.

So, U−1
K T−1

K B−1TKAx = 0 for all x ∈ K, which further yields that A|K = 0, a

contraction. Now assume that Eq. (3.9) holds. Then, by Eq. (3.7), we have

µ = µf1(x1) = f1(µx1) = f1(U−1
K T−1

K B−1TKAx1) = 1.

So,

U−1
K T−1

K B−1TKAx = x
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for all x ∈ K. Equivalently,

TKAU
−1
K T−1

K y = By

for all y ∈ K̂. The proof is complete.
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