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Abstract. In this paper, we have introduced different variants of par-
tial delay differential operators in C™ which conveniently accommodate
all the existing operators in the literature under one umbrella. Manip-
ulating the operators, we extend a number of results related to the
various forms of finite order transcendental entire solutions of several
Fermat-type partial delay differential equations upto C®. Our results
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15 (2018), 1-14], [Anal. Math., 48 (2022), 199-226], [Electron. J. Differ.
Equ., 2021(18) (2021), 1-11] and [Sib. Electron. Math. Report, 18(1)
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1. Introduction

It is well known that for m > 3 the Fermat equation 2™ + y™ = 1 does
not admit nontrivial solutions in rational numbers but it does so for m = 2
( [33,34)).

The most basic Fermat-type functional equations are the circle func-
tional equation f2? 4+ ¢g? = 1, and the cubic equation f2 + g2 = 1. Obviously,
generalizing the powers of these functions, a series of Fermat-type functional
equations can be produced. The main theme to study these equations are to
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2 A. Banerjee and G. Haldar

seek proper types of solutions of the concerned equations. Using Nevanlinna
theory [11] as a tool, for the Fermat-type functional equation

(2 +9™(2) =1, (1.1)

Montel [25] and Gross [7] established some remarkable results about the exis-
tence of entire and meromorphic solutions of (1.1). In the mean time, in 1939,
Iyer [13] proved that when m = 2, the entire solutions of equation (1.1) are
f(z) = cos(a(z)), g(z) = sin(a(z)), where a(z) is an entire function. As the
time progressed researchers perceived that Nevanlinna theory of meromor-
phic functions (see [11]) could be rendered as a theoretical tool to investigate
the existence as well as to determine the form of transcendental entire or
meromorphic solutions of different Fermat-types differential equations in the
complex field. For several research questions on Fermat-type equations, we
refer to the article of Gundersen [8]. For extensive research work, we refer the
readers to go through the articles (see [16,32,38,39]) and references therein.

In 2004, Yang and Li [39] studied the existence of meromorphic solutions
to the equation

£+ (a0 f ) + ana fG)) =1, (12)

ay, and a,11 are non-zero constants, and proved that (1.2) has no transcen-
dental meromorphic solutions.

The establishment of the difference analogues of Nevanlinna theories in
2006, specially the difference analogue lemma of the logarithmic derivative
lemma (see [5,9,10]) expedite the research activities regarding the existence
and the form of the entire or meromorphic solutions of Fermat-type difference
and differential-difference equations (see [21-23]).

In 2012, Liu et al. [22] first inspected finite order transcendental entire
solutions of the Fermat-type shift equation f(z)%+ f(z+c)? = 1 and proved
that the form of the solution is f(z) = sin(Az + B), where A = (4k + 1)7/2e¢,
B € C, k € Z. As far as the development of finding the solutions of Fermat
type shift equations are concerned, this result can be considered as a path
breaking achievement. After that, citing this article, a plethora of research
works were appeared in the literature.

In 2021, Banerjee and Biswas [1] generalized the result as follows:

Theorem A. [1] The non-linear c-shift equation f(z)? + L2(z, f) = 1, where
L.(z,f) = Z?:o a; f(z+ jc) has finite order transcendental entire solution of
the form

eaz+b + e—az—b

12 = —=

satisfying the conditions ag + Z?:l aje’® = —i and ag + 2?21 aje”d¢ = i.
Here €€ £ +1. Also if n = 1, ag # +a, is required.
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The advent of partial differential equations in the realm of Fermat types
equations further enriched the field (see [6,27]). Before we discuss in detail,
we recall here the definition of it.

Definition 1.1. [24,40] An equation is called a differential-difference equation,
if it includes derivatives, shifts, or differences of f(z), which can be called
DDE, in short. An equation is called a complex partial differential-difference
equation, if it includes partial derivatives, shifts, or differences of f(z), which
can be called PDDE, in short.

Note 1.1. For the sake of convenience, we will write partial shift differential
equation and partial difference differential equation according as the presence
of shift or difference operator in the concern equations.

As far as the authors knowledge is concerned, in 1999, Saleeby, first
started an investigation into the existence and form of entire and meromor-
phic solutions of Fermat-type partial differential equations (see [29,30]). Most
noticeably, in 1995, Khavinson [14], proved that any entire solution of the
partial differential equation

@ 2_|_ % 2—]_
821 622 o

must be linear, i.e., u(z1, 22) = az; +bze+c, where a,b,c € C, and a®+b* = 1.
Inspired by this result, Li [18-20] investigated on the partial differential equa-
tions with more general forms such as u? +uZ, = p, u2 + u2, = €4, etc,
where p, ¢ are polynomials in C2. With the help of the difference Nevanlinna
theory for several complex variables (see [2,3,15]), Xu and Cao [35], Xu and
his co-authors [37,40] obtained some interesting results on the characteriza-
tions of entire and meromorphic solutions for some Fermat-type difference
equations and systems of difference equations which are the extensions from
one complex variable to several several complex variables.

From now on, we denote by z +w = (21 + w1, 22 + Wa, ..., 2, + Wy)
for any z = (21,22,...,2n),w = (w1, wa,...,w,) € C". By jc we mean
(jei,jeay ..., jep) for any ¢ = (c1,¢9,...,¢,) € C* and j € N. The shift
of f(z) is defined by f(z + ¢), whereas the difference of f(z) is defined by
Acf(z) = f(z4¢) = f(2) (see [15]).

Xu and Cao [35] extended Theorem 1.1 of [22] to the case of several
complex variables as follows.

Theorem B. [35] Let ¢ = (c1,¢2,...,¢n) € C* ~ {0}. Then any non-constant
entire solution f : C* — P!(C) with finite order of the Fermat-type shift
equation f(2)? + f(z + ¢)? = 1 has the form of f(z) = cos(L(z) + B), where
L is a linear function of the form L(z) = a1z1 + -+ - + anz, on C" such that
L(c) = —7/2 —2knm (k € Z), and B is a constant on C.

However, Zheng and Xu [40] proved that the difference analogue of
Theorem B cease to hold in C2. In fact, Zheng and Xu’s [40] result is as
follows:
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4 A. Banerjee and G. Haldar

Theorem C. [40] Let ¢ = (c1,c2) € C? . {(0,0)}. Then the equation
FEP+ e+ - fE) =1

has no transcendental entire solutions with finite order.

Let us now define three operators L;, i = 1,2, 3 as follows:
. k
(1) Ll(f) = Zj:l ajf(z + Cj),

0" f(z + dm)

d
P an

(i) Lo(f) =301 bm

al
(iii) Ls(f) = Zle elafilz), where 2, ¢, d,, are all constants in C*; a;, by, €
21

are constants in C, j =1,2,....k,m=1,2,...,s,1=1,2,...,t

We call Ly, Ly and L3 as linear shift operator, linear shift partial differ-
ential operator and linear partial differential operator, respectively. We also
call L := L1+ Lo+ L3 as partial delay differential operator and Lp =Li+Ls
as proper partial delay differential operator.

In particular, when ¢; = jc and d,,, = md; ¢,d € C"*, 5 = 1,2,...,k,
m=1,2,...,s,then Ly and L are called the reduced linear shift and reduced
linear shift partial differential operators, and they are denoted by Li(f) and
L5(f), respectively. We also call Lpr := L] 4+ L} as proper reduced partial
delay differential operator.

In view of the above definitions, it will be interesting to further inves-

tigate Theorems A-C in C3 under the aegis of the following Fermat-type
equation:

F(2)? +[aof(z) + L, (f)]? =1. (1.3)

So, we have our first result as follows:

Theorem 1.2. Let ¢ = (c1,¢2,¢3),d = (d1,da,c3) be two non-zero constants
in C3; aj,by, are constants in C with at least one of aj or by, are non-
zero, j = 1,2....k, m = 1,2...,s, where n,k,s be positive integers. Then
any finite order tmnscendental entire solutions of (1.3) must be one of the
following three types:

(i) If Li(f) # 0 and Ly(f) = 0, then f(z) = —isinh(L(z) + Y5_, H;(s;) +
&), where L(z) = Zi:1 auzy, Hi(s1) is a polynomial in s1 = di121 +
d1229, Ho(s2) is a polynomial in sg := daszs+daszzs, Hz(s3) is a polyno-
mial in s3 := dg121 + d3zzs and Hy(s4) is a polynomial in s4 := da121 +
da222 +dy323 with dyyc1 +dizco = 0, dagca +dazcs = 0, dz1c1 +dzzes =0
and daici +dasco +dazcs = 0, §, oy, dij are all constants in C, and L(z)
satisfy relations

{ao + 3 4t = s (1.4)

e _ .
ao + ;- ae ike) = _,
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(ii) If LT (f) =0 and L5(f) £ 0, then f(z) = —isinh(L(z )—l—zj 1 Hj(sj)+
€), where L(z) and H;(s;) are defined as in (i), j =1,2,3,4, and L(z)
satisfies the relation

ag + Z bmozmemL d) — 1;
ao + Z mb a™e —mL(d) _ = —i,

where a can be found from the relation
a1 + duH{(sl) + d31H§(83) + d41H4/L(S4) = Q. (15)

In particular, if diy # 0, then Hy(s1) is linear in s1. If d3; # 0,

then Hs(s3) is linear in s3 and if dq1 # 0, then Hy(s4) is linear in sq4.

(iii) If LY(f) # 0, L5(f) # 0 with ¢ = d, then f(z) = —isinh(L(z) +

Zj:l H;(sj) + &), where L(z) and H;(s;) are defined as in (i), j =
1,2,3,4, and L(2) satisfy relations

ao +Za e—]L(c) + Z mb a™e —mL(c) _ = —i,

ap + ZajejL(c) + Z bmamemL(c) =i,

j=1 m=1
where « satisfies the relation (1.5).

In particular, if dyy # 0, then Hy(s1) is linear in s1. If d3; # 0,
then Hs(ss3) is linear in s3 and if da1 # 0, then Hy(s4) is linear in sq4.

Remark 1.3. Following the same procedure adopted to prove Theorem 1.2 (i),
one can easily verify that in C2, the form of transcendental entire solutions
of

F(2)* + (aof(2) + L ()" = 1

will be f(z) = —isinh(L(z) + H(s1) + &), where L(z) = a121 + aaza, H(s1)
is a polynomial in s1 := dy21 + dazs with dicy + dacs = 0, and L(2) satisfies
the relation (1.4) in C2, which is clearly the generalization of Theorems B
and C.

Remark 1.4. In view of (i) of Theorem 1.2, we can easily see that Theorem
1.2 is an improvement of Theorem A to a large extent.

Remark 1.5. Let ag = —1, L7(f) = f(z+ ¢) and LL(f) = 0. If f be a finite
order transcendental entire solution of (1.3), then in view of the conclusion
(i) of Theorem 1.2, we must have e%(¢) = 144 and e=%(¢) = 1—4, which is not
possible. Therefore, in this case (1.3) has no solution. Hence from Theorem
1.2, we can easily deduce Theorem C.

16 May 2023 19:36:14 PDT
230223-Haldar Version 3 - Submitted to Rocky Mountain J. Math.
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Remark 1.6. Though in the statements of Theorems A and B, no restrictions
other than finite were imposed on the order of the solutions, we see that in
the conclusion of both the theorems, the concerned solutions are of order 1.
But, in Theorem 1.2, we see that the form of the solutions may be of any
integer order. In particular, if H;(s;) be constant for all j = 1,2, 3,4, then
we obtain exactly the form of the solutions as exhibited in Theorems A and
B.

Next, we exhibit some examples in support of Theorem 1.2.

3mt 3w
Example 1.7. Let L(z) = 221 — 329, ¢ = (;027—;02 € C? and n be any

positive integer. Then, in view of (i) of Theorem 1.2, it can be shown that
f(2) = —isinh(221 4+ 322 4+ (21 + 22)™ + 1) is a solution of

FEPH[f(2) +V2f(z+ o) = 1.
Example 1.8. Let ag = a1 = 1, by = /2. Let ¢ = (¢1,0) € C?~ {0} such that
3
L(c) = (2m7‘r + I) i. Then, in view of conclusion (ii) of Theorem 1.2, we

can easily see that f(z) = —isinh(z; + 222 + 27 + 1) is a solution of (1.3),
where n is any positive integer.

Example 1.9. Let ag = by = b3 = a; = 1, by = 2. Let ¢ = (¢1,¢c2) € C? {0}
such that L(c) = ( 2mnm + i%r i. Then, in view of (ii) of Theorem 1.2, we

can easily see that f(z) = —isinh(z; + 229 + 1) is a solution of

of(z+¢) 0 fz+0)  Pfz+0]" _
* 021 2 022 * 923} =t

£ + | 112
From Theorem 1.2, we easily obtain the following Corollaries.

Corollary 1.10. Let a; # 0, by # 0 and ay # +a1/b1. Then the finite order
transcendental entire solutions of the equation

af(z+c)]2:1

1P + [+ o+ 0 225

must be of the form f(z) = —isinh (L(z) + Z?zl H;(sj)+ f), where L(z)
and H;(s;) are defined as in (i) of Theorem 1.2 such that
el = — ' gnd al =1+bla?,
a1 + bla
and « satisfies the relation (1.5).

Corollary 1.11. Let a1,by be two non-zero constants in C. Then any finite
order transcendental entire solutions of the equation

NICENN

F(2)* + |a1Acf(2) + by oo =1
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On entire solutions of different variants... 7

must be of the form f(z) = —isinh (L(z) + Z?zl H;(sj)+ 5), where L(z)
and H;(s;) are defined as in (i) of Theorem 1.2 such that
el = it and bia® +1=0,
a1 + b

and « satisfies the relation (1.5).

Corollary 1.12. Let by, bs and ay be non-zero constants in C such that o #
+b1/by. Then, the finite order transcendental entire solutions of the equation

o(+o) 62f(z+c)rl

2
0z 022

P + [bl

must be of the form f(z) = —isinh (L(z) + Z?zl H;(sj)+ 5), where L(z)
and H;(s;) are defined as in (i) of Theorem 1.2 such that

L(e) _

e\ = and (b0 —b3)a? =1,

i
(b1 + bac)c
and « satisfies the relation (1.5).

In 2020, Xu and Cao [36] obtained the following result.

Theorem D. [36] Any transcendental entire solution with finite order of the
of the Fermat-type partial differential equation

2
(21, 20) + (8]((;;@)) =1 (1.6)

has the form of f(z1,22) = sin(z1 + ¢g(22)) , where g(z2) is a polynomial in
one variable z,.

In connection to Theorem D, let us now demonstrate the following result
of Chen and Xu [4].

Theorem E. [4] Let by and by be two nonzero constants in C. Then

2 2
f2 (21, 22) + [5152{4-522;5} =1 (1.7)

has no transcendental entire solutions with finite order in C2.

In this paper, we are interested to investigate the existence and forms
of finite order transcendental entire solutions of more general equation than
(1.6) and (1.7). For this we consider the following partial differential-difference
equation

F()?+ La(f)? =1, (1.8)

and obtained the result as follows.
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8 A. Banerjee and G. Haldar

Theorem 1.13. The finite order transcendental entire solutions of (1.8) must
be of the form

f(z) = —isinh(axzy + P(21, 22, - -+ 5 ZA—15 ZAt1s- - -5 2n)),s
where ay be a non-zero constant in C and ®(z1, 22, .+, Zx—1, Zr41s- -5 2n) 1S
a polynomial in 21,22, ...,Zx—1,Zx+1,- - -, Zn Such that

t t
E e =i and g (=1)eial, = —i.
=1 =1

Remark 1.14. From Theorem 1.13, it can be easily obtain Theorems D and

. af 0% f .
E by taking L3(f) = e1=— + ea—=%, e1,€2 are non-zero constants in C.

321 8,2% ’
Therefore, Theorem 1.13 is more general than Theorems D and E.

Example 1.15. In view of Theorem 1.13, it is easily seen that
f(z) = —isinh(z; 4+ 23° + 25 + 2 + 1)
is a solution of
of o . f 97
2
Z) L2 I —1)— - —| =1
S [32’1 * 022 + (i )82? 0z}

Next, we would like to mention a result due to Xu and Cao [35], in
which the authors have investigated the solutions of the following Fermat-
type partial differential-difference equation

0f(z1,22)\* _ 1
82’1 '
Xu and Cao [35] proved the following theorem.

f (= +01722+C2)+( (1.9)

Theorem F. [35] Let ¢ = (c1,c2) be a constant in C?. Then any transcenden-
tal entire solution with finite order of the Fermat-type partial differential-
difference equation (2.14) has the form f(z1, z2) = sin(A4z; + Bzs + H(22)),
Where A, B are constant on C satisfying A% = 1 and Ae!(Ac1+B¢2) = 1 and
H(zy) is a polynomial in one variable z5 such that H(z3) = H(2z2+¢2). In the
special case whenever ¢ # 0, we have f(z1, 2z2) = sin(Az, + Bzs 4+ Constant).

In this paper, for further extension and generalization of Theorem F,
we consider the following partial differential-difference equation

flz+0)* + (L(f) + Ls()* = 1 (1.10)

in C* which is more general setting than (1.9), and obtained the result as
follows.

Theorem 1.16. Let ¢ = (c1,c2,c3) € C2~ {0} and d = mc, m € N. Then, any
finite order transcendental entire solutions of (1.10) must be of the form

4
f(z) = —isinh L(z)fL(c)+ZHj(sj)+§ ,

Jj=1
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On entire solutions of different variants... 9

where L(z) and H;(s;) are defined as in (i), j = 1,2,3,4, and L(z) satisfy
the relations

S

t
Z( )mb Oémeme(c +L(c) + Z 6[0[ e L(c) _ = —i,
=1

m=1 =

S

E by ™emEe)—Lie +E erate O =
m=1

where o satisfies the relation (1.5).

In particular, if di1 # 0, then Hy(s1) is linear in s1. If d3; # 0, then
Hs(s3) s linear in s3 and if dgy # 0, then Hy(ss) is linear in s4.

Now, we exhibit some examples in order to show the existence of solu-
tions in Theorem 1.16.

Example 1.17. Let oy = 31 = 1,8 = —1 and ¢ = (7i,7i) € C2. Then in
view of Theorem 1.16, it is clear that f(z) = —isinh(z; + 22 +3 — 2mi) is a
solution of

0Bcf(z) _0f(z+0))’
2
=1
oo+ | 25LE O
Example 1.18. Let oy = 1 and ¢ = ( log(\f—i— 1)) e C2.
Then we can easily verified that f(z) = —i smh(zl + 25 —log(v2+1)+1) is

a solution of

2
f(z+c)2+[af +i 22J20+(\/§z’—1)83f] =1.
21

0z1 03
Example 1.19. Let oy =e; =1, e3 = —1, e5 = i and ¢ = (2m,0) € C2. Then
for any positive integer n, f(z) = —isinh(z; + 29 + 25 + 251 4+1) is a solution
of

af  3f  9°F1°
2 — — — — p—
fz+o)* + {8,21 R +1 % 1.

From the above Theorem 1.16, we can easily deduce the following Corol-
lary.
_ of o*f
Corollary 1.20. Let Lo(f) =0 and L3(f) = 5187 + bza 5
41
non-zero constants in C. Then any transcendental entire solutions of (1.10)
has the form

where by, by are

4
f(z) = —isinh | L(z) = L(c) + > _ Hj(s;) + £ | ,

j=1
where L(z) and H;(s1) are defined as in Theorem 1.16 and and L(z) satisfies
the relation

eHO) = —i(by + bya)a, and (b20® —b})a? =1,
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10 A. Banerjee and G. Haldar

and « satisfies the relation (1.5).

Remark 1.21. In Corollary 1.20, the surprising fact one can observe is that
if f(z) in equation (1.7) is replaced by its shift f(z 4 ¢), then solution must
exists, and the precise form of the solutions can be obtained.

2. Proofs of the main results

Before we starting the proof of the main results, we present here some neces-
sary lemmas which will play key role to prove the main results of this paper.

Lemma 2.1. [17, 28, 31] For an entire function F on C", F(0) £ 0 and put
p(ng) = p < co. Then there exist a canonical function fr and a function
gr € C" such that F(z) = fr(2)e9% ). For the special case n =1, fr is the
canonical product of Weierstrass.

Lemma 2.2. [26] If g and h are entire functions on the complex plane C and
g(h) is an entire function of finite order, then there are only two possible
cases: either

(i) the internal function h is a polynomial and the external function g is of
finite order; or else

(ii) the internal function h is not a polynomial but a function of finite order,
and the external function g is of zero order.

Lemma 2.3. [12] Suppose that ag(z),a1(z),...,an(z) (n = 1) are mero-
morphic functions on C™ and go(z),91(2),...,9n(2) are entire functions
on C™ such that g;(z) — gr(z) are not constants for 0 < j < k < n. If
Z?:o a;j(2)e%) =0 and || T(r,a;) = o(T(r)), 1 =0,1,...,n,
where T(r) = ming<j<k<nT (r, €9 =9:E)) then aj(2) =0 (j =0,1,...,n).
Proof of Theorem 1.2. First we rewrite (1.3) as the following.

(a0f(2) + Ly(f) +if () (anf (2) + Ly(f) = if(2)) =
Since f(z) is finite order transcendental entire, in view of Lemma 2.2,
we get a non-constant polynomial p(z) in C™ such that

aof(2) + L (f) +if(2) = ?®), agf(2) + Li(f) —if(z) = e P,
which yield that

eP(2) 4 e—p(2) eP(z) _ e—p(2)

wf(2)+ () =, fe) = — @)

Let us consider three possible cases in the following.
Case 1. Let L7(f) # 0 and Lr(f) = 0. Then (2.1) leads to

Za ep(ztic)+p(z) _ Za eP(2)=p(z+je) (ao )6217(2)

= ag +i. (2.2)

Now, we consider the following two subcases.
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Subcase 1.1. Let p(z + d) — p(z) = 71, a constant in C. As p(z) is a
polynomial, this leads to

p(2) = L(z) + Hy(s1) + Ha(s2) + H3z(s3) + Ha(s4) + &, (2.3)
where L(z) = 22:1 auzy, Hi(s1) is a polynomial in s1 := di121 + di222,
Hy(s2) is a polynomial in sg := dogza + dozzs, Hs(s3) is a polynomial in

S3 1= d3121 +ds3zs and Hy(s4) is a polynomial in s4 := dyg121 + daaza + dys2s
with dy1c1 +diace = 0, daaco+dazcz = 0, dz1c1 +dszcs = 0 and dyic1+dgaca+
dazcs = 0, o, d;j are all constants in C. Thus, p(z + jd) — p(z) = L(jd) for
all j € N.
Hence, (2.2) reduces to
k k
Z a;ePCHIOTPE) 4 (g —0)e?PE) = ag 4+ i+ Zaje_JL(c). (2.4)
j=1 j=1
We claim that

k
ag + 1+ Z aje L) = o, (2.5)
j=1
Otherwise, from (2.4), we get
k k
ap+1i+ Z aze )| e72p(2) = ZajejL(C) + (ap — 1).
j=1 j=1

This implies that p(z) must be constant, which is a contradiction. Hence,
our claim is established.

Therefore, in view of (2.4) and (2.5), we obtain that

k
ao — 1+ Z ajejL(C) =0. (2.6)

j=1
Thus, in view of (2.1), we obtain
f(z) = —isinh(L(2) + Hy(s1) + Ha(s2) + Hs(s3) + Ha(s4) + &),
where L(z) satisfies the relation (2.5) and (2.6).
Subcase 1.2. Let p(z + ¢) — p(z) be non-constant. Then we can easily
verify that p(z + jc) — p(z) are all non-constants, j = 1,2,... k.

Now, in view of Lemma 2.3, we must conclude from (2.2) that ag = +i
and a; = 0forall j = 1,2,...,k. But this is a contradiction to the assumption
that at-least one a; # 0.

Case 2. Let L7(f) =0 and L5(f) # 0.

Differentiating second equation of (2.1) j times partially with respect
to zy, we obtain
D f(z)  hi(2)eP?) — ho(z)e P

2) _ , , (2.7)
0z 24
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where
op \’ 9 P
() = (22) +Hy (3. 32),
. J J
o= (3 < (31 2),

H,; and Ha; are partial differential polynomials of p(z) of degree less than
ji=1,2,...,s.

Then, it follows from (2.1) that

(2.8)

S buha (2 + md) PO ™ by oz 4 md)ep)plma)

m=1 m=1
+(ag — 1)e*P*) = ag +i. (2.9)
Now, we consider the following two possible subcases.

Subcase 2.1. Let p(z + d) — p(z) = 11, a constant in C. As p(z) is a
polynomial, the form of the polynomial p(z) is the same as in (2.3). Thus,
p(z + jd) — p(z) = L(jd) for all j € N.

Therefore, (2.9) yields that

Z bhi(z + md)ep(z+md)+p(z) + (ap — i)e2p(z)

m=1
=ag+1i+ Z bmhi(z + md)e‘mL(d). (2.10)
m=1

In view of (2.10) and by similar arguments as in Subcase 1.1, we can
conclude that

ap +1i+ Z bmhi(z +md)e” ™D = 0. (2.11)

m=1

Therefore, it follows from (2.10) and (2.11) that

ag — 1+ Z bha(z + md)emL(d) =0. (2.12)

m=1

o
Now, in view of (2.8) and (2.11), we must conclude that P ust be
21
constant, say a € C.

Therefore, in view of (2.3), it follows that

0
87,51 = o1 + dllH{(Sl) + dngé(Sg) + d41H£1(S4) = Q. (213)
In particular, if di; # 0 then in view of (2.13), we conclude that Hi(s1)
is linear in s;. Similarly if d3; # 0, then Hs(s3) is linear in s3 and if dq; # 0,
then Hy(sy) is linear in sq4.
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Therefore, it follows from (2.11) and (2.12) that
ap + zs: b ™™ =
m=1
ap + i (=1)"bpame D — 4,
m=1

Hence, it follows from (2.1) that
f(z) = —isinh(L(2) + Hy(s1) + Ha(s2) + H3(s3) + Ha(sa) +€).

Case 2.2. Let p(z+d)—p(z) be non-constant. Then by similar arguments
as in Subcase 1.2, we can get a contradiction.

Case 3. Let L7 (f) #0, L5(f) 20 and ¢ = d € C3.
In view of (2.1) and (2.7), we obtain that

k k s
Z ajep(z+jd)+p(2) — Z ajep(Z)—p(Z+jd) + Z bmhi(z + md)ePGTmd+r(z)

j=1 j=1 m=1
_ Z bha(z + md)ep(Z)—p(z+md) + (ag — i)er(Z) = ag + 1. (2.14)
m=1

Now, we consider the following two possible cases.
Subcase 3.1. Let p(z + d) — p(z) = 12, where 72 is a constant in C.

Then, the form of the polynomial p(z) is the same as in (2.3). Then
p(z +vd) —p(z) = vL(d) for all v € N.

Hence, it follows from (2.14) that

k s
Z a;ePETID+P(E) 4 Z bhi (z + md)ePGETmIHPE) (g — 4)e?P(?)
j=1 m=1

k s
=ag+1+ Z aje_jL(d) + Z bmho(z + md)e‘mL(d). (2.15)
j=1 m=1
Now, we consider the following two possible subcases.

Subcase 3.1.1. Let
k s
ag + 1+ Z aje L@ 4 Z bmhs(z +md)e ™4 = 0, (2.16)

j=1 m=1

Then, it follows from (2.16) that
ap\" O™p I\ e
by [(—=1)™ Hopy | —,..., — mL(d)
S b |07 (52) o (G )|

k
= —(ap+1) — Zaje_jL(d). (2.17)
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In view of (2.15) and (2.16), we obtain that

k s
> a e D N " byha (2 + md)e™ D = —(ag — ). (2.18)
j=1 m=1
Now, in view of (2.17), we can conclude that a— is a constant, say o
21

in C. Then, in view of (2.3), we must get (2.13).

Therefore, from (2.16) and (2.18), we obtain that

3

S S e
m=l (2.19)
ag + Z a;e? @ 4 b =,
m=1
Hence, it follows from (1.3) that
f(z) = —isinh(L(z) + Hi(s1) + Ha(s2) + Hs(s3) + Ha(s4) + &),
where L(z) satisfies the relation (2.19).

Subcase 3.1.2. Let
k

ap+1i+ Z aje L@ 4 Z bimha(z +md)e”™HD £ 0,

j=1 m=1

Then, from (2.15), we can easily obtain that

k s
ap +1i+ Z aze L@ 4 Z bimha(z + md)e”™mHD | ¢=2p(z)

j=1 m=1

—ao—z—|—Za eJL(d)—l—Zb hy(z + md)e™ @,
Jj=1

This leads us p(z) is constant, which is a contradiction.
Case 3.2. Let p(z + d) — p(z) be non-constant.

Then, it can be easily deduce that p(z+ jd) — p(z) are all non-constants,
i=1,2,....5

But, then in view of Lemma 2.3, it follows from (2.15) that
a; =0, bphi(z+md) =0, byrho(z+md) =0, ag = =%i

forall j =1,2,...,k, m = 1,2,...,s. This is a contradiction since atleast
one of a; # 0. O
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Proof of Theorem 1.13. Let f be a transcendental entire solution of (1.8).
Then by similar arguments as in Theorem 1.2, we obtain

ep(z) + efp(z) ep(z) — efp(z)
Lo(f) = T fa) = T (220)
i
where p(z) is a non-constant polynomial in C™.

In view of (2.7) and (2.20), we obtain

t t
lz ethy(z z} e2P(2) = Zelhg(z) + 1, (2.21)
1=1

=1
!
where hi(z) = (aa;;) + Hy (azz 7""82 ) and hy(2) = (-1)' (gzi) +
Hy, (%, ceey 687’; , Hy; and Ho; are polynomials of partial derivatives of
A

p(z) of degree less than j.

Since p(z) is a non-constant polynomial, it follows from (2.21) that

t t
Zelhl(z) =4 and Zelhg(z) = —q. (2.22)
=1 =1

In view of the form of hi(z) and ha(z), we conclude from (2.22) that

0
P must be a non-zero constant in C, say «). This implies that

82,\
p(z) = axzxn + P(21,29, - -, Za—1, Zat1y - - 5 Zn),

D(21,29,. ..y ZA—1, ZA+1, - - - 5 2n) IS @ polynomial in 21, 22, . .., Zx—1, Zx41,- - - Zn

Therefore, from (2.22), we obtain
t
Zelal)\ =i and Z(—l)lelal)\ = —i.
1=1 1=1
Hence, it follows from (2.20) that
f(z) = —isinh(axzy + P(21,22, - -, Z2A—1, Zaf1s- -5 2n))-
O
Proof of Theorem 1.16. Let f be a transcendental entire solution of (1.10).
Then by similar arguments as in Theorem 1.2, we obtain

P() 4 o—p(2) () _ o—p(2)

Ly(f) + Ls(f) = 5 , flz4¢) = oF . (2.23)

where p(z) is a non-constant polynomial in C3.
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In view of (2.7) and (2.23), we obtain

s t
Z bmhi(z + me — C)ep(2+mc—6)+p(2) + Z erhy(z — C)ep(z—c)-i-p(Z)

m=1 =1

s t
- Z bimha(z + me — ¢)e PEFme=a+p(z) _ Z etha(z — ¢)e PETO+P()
m=1 =1
—ie?P(*) =, (2.24)
Now, we consider two possible cases.
Case 1. Let p(z — ¢) — p(z) = 1, a constant in C.

Since p(z) is a polynomial, the form of the polynomial p(z) is the same
as in (2.3). This implies that p(z —¢) —p(z) = —L(c) and p(z+jc—c)—p(z) =
jL(c) — L(c) for all j = 1,2,...,s

Therefore, (2.24) reduces to

s t
Z byha (2 + me — C)ep(ermcfc)ﬂ)(Z) + Z ethy(z — C)ep(Z*C)er(Z) _ e2r()

m=1 =1

= Zb ha(z 4+ me — ¢)e”MLOHL( °)+Zelh2 z—c)elld) 4. (2.25)
=1

Now, we discuss the possible two subcases.
Subcase 1.1. Let

s t
Z bha(z +me — c)e” mL(e)+L(c) 4 Z etha(z —¢) L(C) +:=0. (2.26)

m=1 =1

Then, it follows from (2.25) and (2.26) that

Zb hi(z 4 me — ¢)emL©=L© —|—Zelh1 z—c)eH —i=0. (2.27)

m=1 =1

In view of (2.8) and (2.27), we conclude that 9 is a constant, say o

0z
in C. Therefore, in view of (2.3), we obtain (2.13).

Hence, in a similar manner as done in Subcase 2.1 of Theorem 1.2, we
can characterize the form of the polynomials Hq(s1), Hs(s3) and Hy(sy4).

Thus, we obtain from (2.26) and (2.27) that

S

Z(_l)mb a™e —mL(c)+L(c) +Z elaleL(c _ —’i,

m=1

Z b, amem (@=L 4 Zelale—L(c) -

m=1 =1
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On entire solutions of different variants... 17

Hence, it follows from (2.23) that

4

f(z) = —isinh | L(z) + Y Hj(s;) — L(c) + ¢

j=1

Subcase 1.2. Let

s t
Z bmha(z +me — ¢)e mEEFLE) 4 Z etha(z —¢)el @ i £ 0.

m=1 =1
Then it follows from (2.25) that

s ¢
Z bmha(z +me — ¢)e”mEEFLE) Z etha(z — ¢)e ) 4| e=2(2)

m=1 =1

s t
- Z bmhi(z + me — ¢)e™ M=) Z erthy(z — c)e M9 —i.
m=1 =1

This implies that p(z) is constant, which is a contradiction.

Subcase 2. Let p(z — ¢) — p(z) be non-constant. This implies that p(z +
je—c¢) — p(z) is also non-constant for all j € N.

Therefore, by Lemma 2.3, it follows from (2.24) that ¢ = 0, which is a
contradiction.

This completes the proof of the theorem. ([

3. Concluding remark and an open question

Observe that we have been able to exhaustively determine the form of the
finite order transcendental entire solutions of equations (1.3) and (1.10) for
L7(f) + L5(f) and L5(f), respectively. It is therefore natural to ask the
following open question.

Question 3.1. What could be the form of finite order transcendental entire
solutions when we replace L7 (f)+ L5(f) by L1(f)+ La2(f) in (1.3) and L5(f)
by La(f) in (1.10)?
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