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Abstract. In this paper, we have introduced different variants of par-
tial delay differential operators in Cn which conveniently accommodate
all the existing operators in the literature under one umbrella. Manip-
ulating the operators, we extend a number of results related to the
various forms of finite order transcendental entire solutions of several
Fermat-type partial delay differential equations upto C3. Our results
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1. Introduction

It is well known that for m > 3 the Fermat equation xm + ym = 1 does
not admit nontrivial solutions in rational numbers but it does so for m = 2
( [33,34]).

The most basic Fermat-type functional equations are the circle func-
tional equation f2 + g2 = 1, and the cubic equation f3 + g3 = 1. Obviously,
generalizing the powers of these functions, a series of Fermat-type functional
equations can be produced. The main theme to study these equations are to
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seek proper types of solutions of the concerned equations. Using Nevanlinna
theory [11] as a tool, for the Fermat-type functional equation

fm(z) + gm(z) = 1, (1.1)

Montel [25] and Gross [7] established some remarkable results about the exis-
tence of entire and meromorphic solutions of (1.1). In the mean time, in 1939,
Iyer [13] proved that when m = 2, the entire solutions of equation (1.1) are
f(z) = cos(α(z)), g(z) = sin(α(z)), where α(z) is an entire function. As the
time progressed researchers perceived that Nevanlinna theory of meromor-
phic functions (see [11]) could be rendered as a theoretical tool to investigate
the existence as well as to determine the form of transcendental entire or
meromorphic solutions of different Fermat-types differential equations in the
complex field. For several research questions on Fermat-type equations, we
refer to the article of Gundersen [8]. For extensive research work, we refer the
readers to go through the articles (see [16,32,38,39]) and references therein.

In 2004, Yang and Li [39] studied the existence of meromorphic solutions
to the equation

f2(z) +
(
anf

(n)(z) + an+1f
(n+1)(z)

)2
= 1, (1.2)

an and an+1 are non-zero constants, and proved that (1.2) has no transcen-
dental meromorphic solutions.

The establishment of the difference analogues of Nevanlinna theories in
2006, specially the difference analogue lemma of the logarithmic derivative
lemma (see [5, 9, 10]) expedite the research activities regarding the existence
and the form of the entire or meromorphic solutions of Fermat-type difference
and differential-difference equations (see [21–23]).

In 2012, Liu et al. [22] first inspected finite order transcendental entire
solutions of the Fermat-type shift equation f(z)2 + f(z+ c)2 = 1 and proved
that the form of the solution is f(z) = sin(Az+B), where A = (4k+ 1)π/2c,
B ∈ C, k ∈ Z. As far as the development of finding the solutions of Fermat
type shift equations are concerned, this result can be considered as a path
breaking achievement. After that, citing this article, a plethora of research
works were appeared in the literature.

In 2021, Banerjee and Biswas [1] generalized the result as follows:

Theorem A. [1] The non-linear c-shift equation f(z)2 + L2
c(z, f) = 1, where

Lc(z, f) =
∑n
j=0 ajf(z+ jc) has finite order transcendental entire solution of

the form

f(z) =
eaz+b + e−az−b

2

satisfying the conditions a0 +
∑n
j=1 aje

jc = −i and a0 +
∑n
j=1 aje

−jc = i.
Here eac 6= ±1. Also if n = 1, a0 6= ±a1 is required.
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The advent of partial differential equations in the realm of Fermat types
equations further enriched the field (see [6, 27]). Before we discuss in detail,
we recall here the definition of it.

Definition 1.1. [24,40] An equation is called a differential-difference equation,
if it includes derivatives, shifts, or differences of f(z), which can be called
DDE, in short. An equation is called a complex partial differential-difference
equation, if it includes partial derivatives, shifts, or differences of f(z), which
can be called PDDE, in short.

Note 1.1. For the sake of convenience, we will write partial shift differential
equation and partial difference differential equation according as the presence
of shift or difference operator in the concern equations.

As far as the authors knowledge is concerned, in 1999, Saleeby, first
started an investigation into the existence and form of entire and meromor-
phic solutions of Fermat-type partial differential equations (see [29,30]). Most
noticeably, in 1995, Khavinson [14], proved that any entire solution of the
partial differential equation(

∂u

∂z1

)2

+

(
∂u

∂z2

)2

= 1

must be linear, i.e., u(z1, z2) = az1+bz2+c, where a, b, c ∈ C, and a2+b2 = 1.
Inspired by this result, Li [18–20] investigated on the partial differential equa-
tions with more general forms such as u2z1 + u2z2 = p, u2z1 + u2z2 = eq, etc,

where p, q are polynomials in C2. With the help of the difference Nevanlinna
theory for several complex variables (see [2,3,15]), Xu and Cao [35], Xu and
his co-authors [37, 40] obtained some interesting results on the characteriza-
tions of entire and meromorphic solutions for some Fermat-type difference
equations and systems of difference equations which are the extensions from
one complex variable to several several complex variables.

From now on, we denote by z + w = (z1 + w1, z2 + w2, . . . , zn + wn)
for any z = (z1, z2, . . . , zn), w = (w1, w2, . . . , wn) ∈ Cn. By jc we mean
(jc1, jc2, . . . , jcn) for any c = (c1, c2, . . . , cn) ∈ Cn and j ∈ N. The shift
of f(z) is defined by f(z + c), whereas the difference of f(z) is defined by
∆cf(z) = f(z + c)− f(z) (see [15]).

Xu and Cao [35] extended Theorem 1.1 of [22] to the case of several
complex variables as follows.

Theorem B. [35] Let c = (c1, c2, . . . , cn) ∈ Cn r {0}. Then any non-constant
entire solution f : Cn → P1(C) with finite order of the Fermat-type shift
equation f(z)2 + f(z + c)2 = 1 has the form of f(z) = cos(L(z) +B), where
L is a linear function of the form L(z) = a1z1 + · · ·+ anzn on Cn such that
L(c) = −π/2− 2kπ (k ∈ Z), and B is a constant on C.

However, Zheng and Xu [40] proved that the difference analogue of
Theorem B cease to hold in C2. In fact, Zheng and Xu’s [40] result is as
follows:
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Theorem C. [40] Let c = (c1, c2) ∈ C2 r {(0, 0)}. Then the equation

f(z)2 + [f(z + c)− f(z)]2 = 1

has no transcendental entire solutions with finite order.

Let us now define three operators Li, i = 1, 2, 3 as follows:

(i) L1(f) :=
∑k
j=1 ajf(z + cj),

(ii) L2(f) :=
∑s
m=1 bm

∂mf(z + dm)

∂zm1
and

(iii) L3(f) =
∑t
l=1 el

∂lf(z)

∂zl1
, where z, cj , dm are all constants in Cn; aj , bm, el

are constants in C, j = 1, 2, . . . , k, m = 1, 2, . . . , s, l = 1, 2, . . . , t.

We call L1, L2 and L3 as linear shift operator, linear shift partial differ-
ential operator and linear partial differential operator, respectively. We also
call L̃ := L1+L2+L3 as partial delay differential operator and L̃p := L1+L2

as proper partial delay differential operator.

In particular, when cj = jc and dm = md; c, d ∈ Cn, j = 1, 2, . . . , k,
m = 1, 2, . . . , s, then L1 and L2 are called the reduced linear shift and reduced
linear shift partial differential operators, and they are denoted by Lr1(f) and

Lr2(f), respectively. We also call L̃p
r

:= Lr1 + Lr2 as proper reduced partial
delay differential operator.

In view of the above definitions, it will be interesting to further inves-
tigate Theorems A–C in C3 under the aegis of the following Fermat-type
equation:

f(z)2 + [a0f(z) + L̃p
r
(f)]2 = 1. (1.3)

So, we have our first result as follows:

Theorem 1.2. Let c = (c1, c2, c3), d = (d1, d2, c3) be two non-zero constants
in C3; aj , bm are constants in C with at least one of aj or bm are non-
zero, j = 1, 2 . . . , k, m = 1, 2 . . . , s, where n, k, s be positive integers. Then
any finite order transcendental entire solutions of (1.3) must be one of the
following three types:

(i) If Lr1(f) 6≡ 0 and Lr2(f) ≡ 0, then f(z) = −i sinh(L(z) +
∑4
j=1Hj(sj) +

ξ),where L(z) =
∑3
µ=1 αµzµ, H1(s1) is a polynomial in s1 := d11z1 +

d12z2, H2(s2) is a polynomial in s2 := d22z2+d23z3, H3(s3) is a polyno-
mial in s3 := d31z1 + d33z3 and H4(s4) is a polynomial in s4 := d41z1 +
d42z2+d43z3 with d11c1+d12c2 = 0, d22c2+d23c3 = 0, d31c1+d33c3 = 0
and d41c1 +d42c2 +d43c3 = 0, ξ, αµ, dij are all constants in C, and L(z)
satisfy relations{

a0 +
∑k
j=1 aje

jL(c) = i;

a0 +
∑k
j=1 aje

−jL(c) = −i.
(1.4)
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(ii) If Lr1(f) ≡ 0 and Lr2(f) 6≡ 0, then f(z) = −i sinh(L(z) +
∑4
j=1Hj(sj) +

ξ), where L(z) and Hj(sj) are defined as in (i), j = 1, 2, 3, 4, and L(z)
satisfies the relation

a0 +

s∑
m=1

bmα
memL(d) = i;

a0 +

s∑
m=1

(−1)mbmα
me−mL(d) = −i,

where α can be found from the relation

α1 + d11H
′
1(s1) + d31H

′
3(s3) + d41H

′
4(s4) = α. (1.5)

In particular, if d11 6= 0, then H1(s1) is linear in s1. If d31 6= 0,
then H3(s3) is linear in s3 and if d41 6= 0, then H4(s4) is linear in s4.

(iii) If Lr1(f) 6≡ 0, Lr2(f) 6≡ 0 with c = d, then f(z) = −i sinh(L(z) +∑4
j=1Hj(sj) + ξ), where L(z) and Hj(sj) are defined as in (i), j =

1, 2, 3, 4, and L(z) satisfy relations
a0 +

k∑
j=1

aje
−jL(c) +

s∑
m=1

(−1)mbmα
me−mL(c) = −i,

a0 +

k∑
j=1

aje
jL(c) +

s∑
m=1

bmα
memL(c) = i,

where α satisfies the relation (1.5).

In particular, if d11 6= 0, then H1(s1) is linear in s1. If d31 6= 0,
then H3(s3) is linear in s3 and if d41 6= 0, then H4(s4) is linear in s4.

Remark 1.3. Following the same procedure adopted to prove Theorem 1.2 (i),
one can easily verify that in C2, the form of transcendental entire solutions
of

f(z)2 + (a0f(z) + Lr1(f))
2

= 1

will be f(z) = −i sinh(L(z) +H(s1) + ξ), where L(z) = α1z1 + α2z2, H(s1)
is a polynomial in s1 := d1z1 + d2z2 with d1c1 + d2c2 = 0, and L(z) satisfies
the relation (1.4) in C2, which is clearly the generalization of Theorems B
and C.

Remark 1.4. In view of (i) of Theorem 1.2, we can easily see that Theorem
1.2 is an improvement of Theorem A to a large extent.

Remark 1.5. Let a0 = −1, Lr1(f) = f(z + c) and Lr2(f) ≡ 0. If f be a finite
order transcendental entire solution of (1.3), then in view of the conclusion
(i) of Theorem 1.2, we must have eL(c) = 1+i and e−L(c) = 1−i, which is not
possible. Therefore, in this case (1.3) has no solution. Hence from Theorem
1.2, we can easily deduce Theorem C.
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Remark 1.6. Though in the statements of Theorems A and B, no restrictions
other than finite were imposed on the order of the solutions, we see that in
the conclusion of both the theorems, the concerned solutions are of order 1.
But, in Theorem 1.2, we see that the form of the solutions may be of any
integer order. In particular, if Hj(sj) be constant for all j = 1, 2, 3, 4, then
we obtain exactly the form of the solutions as exhibited in Theorems A and
B.

Next, we exhibit some examples in support of Theorem 1.2.

Example 1.7. Let L(z) = 2z1 − 3z2, c =

(
3πi

20
,−3πi

20

)
∈ C2 and n be any

positive integer. Then, in view of (i) of Theorem 1.2, it can be shown that
f(z) = −i sinh(2z1 + 3z2 + (z1 + z2)n + 1) is a solution of

f(z)2 + [f(z) +
√

2f(z + c)]2 = 1.

Example 1.8. Let a0 = α1 = 1, b2 =
√

2. Let c = (c1, 0) ∈ C2r {0} such that

L(c) =

(
2mπ +

3π

4

)
i. Then, in view of conclusion (ii) of Theorem 1.2, we

can easily see that f(z) = −i sinh(z1 + 2z2 + zn2 + 1) is a solution of (1.3),
where n is any positive integer.

Example 1.9. Let a0 = b1 = b3 = α1 = 1, b2 = 2. Let c = (c1, c2) ∈ C2 r {0}

such that L(c) =

(
2mπ +

3π

4

)
i. Then, in view of (ii) of Theorem 1.2, we

can easily see that f(z) = −i sinh(z1 + 2z2 + 1) is a solution of

f(z)2 +

[
f(z) +

∂f(z + c)

∂z1
+ 2

∂2f(z + c)

∂z21
+
∂3f(z + c)

∂z31

]2
= 1.

From Theorem 1.2, we easily obtain the following Corollaries.

Corollary 1.10. Let a1 6= 0, b1 6= 0 and αλ 6= ±a1/b1. Then the finite order
transcendental entire solutions of the equation

f(z)2 +

[
a1f(z + c) + b1

∂f(z + c)

∂z1

]2
= 1

must be of the form f(z) = −i sinh
(
L(z) +

∑4
j=1Hj(sj) + ξ

)
, where L(z)

and Hj(sj) are defined as in (iii) of Theorem 1.2 such that

eL(c) =
i

a1 + b1α
and a21 = 1 + b21α

2,

and α satisfies the relation (1.5).

Corollary 1.11. Let a1, b1 be two non-zero constants in C. Then any finite
order transcendental entire solutions of the equation

f(z)2 +

[
a1∆cf(z) + b1

∂f(z + c)

∂z1

]2
= 1
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must be of the form f(z) = −i sinh
(
L(z) +

∑4
j=1Hj(sj) + ξ

)
, where L(z)

and Hj(sj) are defined as in (iii) of Theorem 1.2 such that

eL(c) =
a1 + i

a1 + b1α
and b21α

2 + 1 = 0,

and α satisfies the relation (1.5).

Corollary 1.12. Let b1, b2 and α1 be non-zero constants in C such that α1 6=
±b1/b2. Then, the finite order transcendental entire solutions of the equation

f(z)2 +

[
b1
∂f(z + c)

∂z1
+ b2

∂2f(z + c)

∂z21

]2
= 1

must be of the form f(z) = −i sinh
(
L(z) +

∑4
j=1Hj(sj) + ξ

)
, where L(z)

and Hj(sj) are defined as in (ii) of Theorem 1.2 such that

eL(c) =
i

(b1 + b2α)α
and (b22α

2 − b21)α2 = 1,

and α satisfies the relation (1.5).

In 2020, Xu and Cao [36] obtained the following result.

Theorem D. [36] Any transcendental entire solution with finite order of the
of the Fermat-type partial differential equation

f2(z1, z2) +

(
∂f(z1, z2)

∂z1

)2

= 1 (1.6)

has the form of f(z1, z2) = sin(z1 + g(z2)) , where g(z2) is a polynomial in
one variable z2.

In connection to Theorem D, let us now demonstrate the following result
of Chen and Xu [4].

Theorem E. [4] Let b1 and b2 be two nonzero constants in C. Then

f2(z1, z2) +

[
b1
∂f

∂z1
+ b2

∂2f

∂z21

]2
= 1 (1.7)

has no transcendental entire solutions with finite order in C2.

In this paper, we are interested to investigate the existence and forms
of finite order transcendental entire solutions of more general equation than
(1.6) and (1.7). For this we consider the following partial differential-difference
equation

f(z)2 + L3(f)2 = 1, (1.8)

and obtained the result as follows.
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Theorem 1.13. The finite order transcendental entire solutions of (1.8) must
be of the form

f(z) = −i sinh(αλzλ + Φ(z1, z2, . . . , zλ−1, zλ+1, . . . , zn)),

where αλ be a non-zero constant in C and Φ(z1, z2, . . . , zλ−1, zλ+1, . . . , zn) is
a polynomial in z1, z2, . . . , zλ−1, zλ+1, . . . , zn such that

t∑
l=1

elα
l
λ = i and

t∑
l=1

(−1)lelα
l
λ = −i.

Remark 1.14. From Theorem 1.13, it can be easily obtain Theorems D and

E by taking L3(f) = e1
∂f

∂z1
+ e2

∂2f

∂z21
, e1, e2 are non-zero constants in C.

Therefore, Theorem 1.13 is more general than Theorems D and E.

Example 1.15. In view of Theorem 1.13, it is easily seen that

f(z) = −i sinh(z1 + z102 + z52 + z2 + 1)

is a solution of

f(z)2 +

[
∂f

∂z1
+
∂2f

∂z21
+ (i− 1)

∂3f

∂z31
− ∂4f

∂z41

]2
= 1.

Next, we would like to mention a result due to Xu and Cao [35], in
which the authors have investigated the solutions of the following Fermat-
type partial differential-difference equation

f2(z1 + c1, z2 + c2) +

(
∂f(z1, z2)

∂z1

)2

= 1. (1.9)

Xu and Cao [35] proved the following theorem.

Theorem F. [35] Let c = (c1, c2) be a constant in C2. Then any transcenden-
tal entire solution with finite order of the Fermat-type partial differential-
difference equation (2.14) has the form f(z1, z2) = sin(Az1 + Bz2 + H(z2)),
Where A,B are constant on C satisfying A2 = 1 and Aei(Ac1+Bc2) = 1, and
H(z2) is a polynomial in one variable z2 such that H(z2) ≡ H(z2+c2). In the
special case whenever c2 6= 0, we have f(z1, z2) = sin(Az1+Bz2+Constant).

In this paper, for further extension and generalization of Theorem F,
we consider the following partial differential-difference equation

f(z + c)2 + (Lr2(f) + L3(f))
2

= 1 (1.10)

in C3 which is more general setting than (1.9), and obtained the result as
follows.

Theorem 1.16. Let c = (c1, c2, c3) ∈ C3r{0} and d = mc, m ∈ N. Then, any
finite order transcendental entire solutions of (1.10) must be of the form

f(z) = −i sinh

L(z)− L(c) +

4∑
j=1

Hj(sj) + ξ

 ,
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where L(z) and Hj(sj) are defined as in (i), j = 1, 2, 3, 4, and L(z) satisfy
the relations

s∑
m=1

(−1)mbmα
me−mL(c)+L(c) +

t∑
l=1

(−1)lelα
leL(c) = −i,

s∑
m=1

bmα
memL(c)−L(c) +

t∑
l=1

elα
le−L(c) = i,

where α satisfies the relation (1.5).

In particular, if d11 6= 0, then H1(s1) is linear in s1. If d31 6= 0, then
H3(s3) is linear in s3 and if d41 6= 0, then H4(s4) is linear in s4.

Now, we exhibit some examples in order to show the existence of solu-
tions in Theorem 1.16.

Example 1.17. Let α1 = β1 = 1, β2 = −1 and c = (πi, πi) ∈ C2. Then in
view of Theorem 1.16, it is clear that f(z) = −i sinh(z1 + z2 + 3 − 2πi) is a
solution of

f(z + c)2 +

[
∂∆cf(z)

∂z1
− i∂f(z + c)

∂z1

]2
= 1.

Example 1.18. Let α1 = 1 and c =

(
1

3
log(
√

2 + 1),
1

3
log(
√

2 + 1)

)
∈ C2.

Then we can easily verified that f(z) = −i sinh(z1 + z2 − log(
√

2 + 1) + 1) is
a solution of

f(z + c)2 +

[
∂f

∂z1
+ i

∂2f

∂z21
+ (
√

2i− 1)
∂3f

∂31

]2
= 1.

Example 1.19. Let α1 = e1 = 1, e3 = −1, e5 = i and c = (2π, 0) ∈ C2. Then
for any positive integer n, f(z) = −i sinh(z1+z2+zn2 +zn−12 +1) is a solution
of

f(z + c)2 +

[
∂f

∂z1
− ∂3f

∂z31
+ i

∂5f

∂51

]2
= 1.

From the above Theorem 1.16, we can easily deduce the following Corol-
lary.

Corollary 1.20. Let L2(f) ≡ 0 and L3(f) = b1
∂f

∂z1
+ b2

∂2f

∂z21
, where b1, b2 are

non-zero constants in C. Then any transcendental entire solutions of (1.10)
has the form

f(z) = −i sinh

L(z)− L(c) +

4∑
j=1

Hj(sj) + ξ

 ,

where L(z) and Hj(s1) are defined as in Theorem 1.16 and and L(z) satisfies
the relation

eL(c) = −i(b1 + b2α)α, and (b22α
2 − b21)α2 = 1,
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and α satisfies the relation (1.5).

Remark 1.21. In Corollary 1.20, the surprising fact one can observe is that
if f(z) in equation (1.7) is replaced by its shift f(z + c), then solution must
exists, and the precise form of the solutions can be obtained.

2. Proofs of the main results

Before we starting the proof of the main results, we present here some neces-
sary lemmas which will play key role to prove the main results of this paper.

Lemma 2.1. [17, 28, 31] For an entire function F on Cn, F (0) 6≡ 0 and put
ρ(nF ) = ρ < ∞. Then there exist a canonical function fF and a function
gF ∈ Cn such that F (z) = fF (z)egF (z). For the special case n = 1, fF is the
canonical product of Weierstrass.

Lemma 2.2. [26] If g and h are entire functions on the complex plane C and
g(h) is an entire function of finite order, then there are only two possible
cases: either

(i) the internal function h is a polynomial and the external function g is of
finite order; or else

(ii) the internal function h is not a polynomial but a function of finite order,
and the external function g is of zero order.

Lemma 2.3. [12] Suppose that a0(z), a1(z), . . . , an(z) (n > 1) are mero-
morphic functions on Cm and g0(z), g1(z), . . . , gn(z) are entire functions
on Cm such that gj(z) − gk(z) are not constants for 0 6 j < k 6 n. If∑n
j=0 aj(z)e

gj(z) ≡ 0 and || T (r, aj) = o(T (r)), j = 0, 1, . . . , n,

where T (r) = min06j<k6nT
(
r, egj(z)−gk(z)

)
, then aj(z) ≡ 0 (j = 0, 1, . . . , n).

Proof of Theorem 1.2. First we rewrite (1.3) as the following.

(a0f(z) + L̃rp(f) + if(z))(a0f(z) + L̃rp(f)− if(z)) = 1.

Since f(z) is finite order transcendental entire, in view of Lemma 2.2,
we get a non-constant polynomial p(z) in Cn such that

a0f(z) + L̃rp(f) + if(z) = ep(z), a0f(z) + L̃rp(f)− if(z) = e−p(z),

which yield that

a0f(z) + L̃rp(f) =
ep(z) + e−p(z)

2
, f(z) =

ep(z) − e−p(z)

2i
. (2.1)

Let us consider three possible cases in the following.

Case 1. Let Lr1(f) 6≡ 0 and Lr2(f) ≡ 0. Then (2.1) leads to

k∑
j=1

aje
p(z+jc)+p(z) −

k∑
j=1

aje
p(z)−p(z+jc) + (a0 − i)e2p(z)

= a0 + i. (2.2)

Now, we consider the following two subcases.
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Subcase 1.1. Let p(z + d) − p(z) = η1, a constant in C. As p(z) is a
polynomial, this leads to

p(z) = L(z) +H1(s1) +H2(s2) +H3(s3) +H4(s4) + ξ, (2.3)

where L(z) =
∑3
µ=1 αµzµ, H1(s1) is a polynomial in s1 := d11z1 + d12z2,

H2(s2) is a polynomial in s2 := d22z2 + d23z3, H3(s3) is a polynomial in
s3 := d31z1 + d33z3 and H4(s4) is a polynomial in s4 := d41z1 + d42z2 + d43z3
with d11c1+d12c2 = 0, d22c2+d23c3 = 0, d31c1+d33c3 = 0 and d41c1+d42c2+
d43c3 = 0, αµ, dij are all constants in C. Thus, p(z + jd)− p(z) = L(jd) for
all j ∈ N.

Hence, (2.2) reduces to

k∑
j=1

aje
p(z+jc)+p(z) + (a0 − i)e2p(z) = a0 + i+

k∑
j=1

aje
−jL(c). (2.4)

We claim that

a0 + i+

k∑
j=1

aje
−jL(c) = 0. (2.5)

Otherwise, from (2.4), we geta0 + i+

k∑
j=1

aje
−jL(c)

 e−2p(z) =

k∑
j=1

aje
jL(c) + (a0 − i).

This implies that p(z) must be constant, which is a contradiction. Hence,
our claim is established.

Therefore, in view of (2.4) and (2.5), we obtain that

a0 − i+

k∑
j=1

aje
jL(c) = 0. (2.6)

Thus, in view of (2.1), we obtain

f(z) = −i sinh(L(z) +H1(s1) +H2(s2) +H3(s3) +H4(s4) + ξ),

where L(z) satisfies the relation (2.5) and (2.6).

Subcase 1.2. Let p(z + c) − p(z) be non-constant. Then we can easily
verify that p(z + jc)− p(z) are all non-constants, j = 1, 2, . . . , k.

Now, in view of Lemma 2.3, we must conclude from (2.2) that a0 = ±i
and aj = 0 for all j = 1, 2, . . . , k. But this is a contradiction to the assumption
that at-least one aj 6= 0.

Case 2. Let Lr1(f) ≡ 0 and Lr2(f) 6≡ 0.

Differentiating second equation of (2.1) j times partially with respect
to zλ, we obtain

∂jf(z)

∂zj1
=
h1(z)ep(z) − h2(z)e−p(z)

2i
, (2.7)
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12 A. Banerjee and G. Haldar

where 
h1(z) =

(
∂p
∂z1

)j
+H1j

(
∂jp

∂zj1
, . . . , ∂p∂z1

)
,

h2(z) = (−1)j
(
∂p
∂z1

)j
+H2j

(
∂jp

∂zj1
, . . . , ∂p∂z1

)
,

(2.8)

H1j and H2j are partial differential polynomials of p(z) of degree less than
j, j = 1, 2, . . . , s.

Then, it follows from (2.1) that

s∑
m=1

bmh1(z +md)ep(z+md)+p(z) −
s∑

m=1

bmh2(z +md)ep(z)−p(z+md)

+(a0 − i)e2p(z) = a0 + i. (2.9)

Now, we consider the following two possible subcases.

Subcase 2.1. Let p(z + d) − p(z) = η1, a constant in C. As p(z) is a
polynomial, the form of the polynomial p(z) is the same as in (2.3). Thus,
p(z + jd)− p(z) = L(jd) for all j ∈ N.

Therefore, (2.9) yields that

s∑
m=1

bmh1(z +md)ep(z+md)+p(z) + (a0 − i)e2p(z)

= a0 + i+

s∑
m=1

bmh1(z +md)e−mL(d). (2.10)

In view of (2.10) and by similar arguments as in Subcase 1.1, we can
conclude that

a0 + i+

s∑
m=1

bmh1(z +md)e−mL(d) ≡ 0. (2.11)

Therefore, it follows from (2.10) and (2.11) that

a0 − i+

s∑
m=1

bmh2(z +md)emL(d) ≡ 0. (2.12)

Now, in view of (2.8) and (2.11), we must conclude that
∂p

∂z1
must be

constant, say α ∈ C.

Therefore, in view of (2.3), it follows that

∂p

∂z1
= α1 + d11H

′
1(s1) + d31H

′
3(s3) + d41H

′
4(s4) = α. (2.13)

In particular, if d11 6= 0 then in view of (2.13), we conclude that H1(s1)
is linear in s1. Similarly if d31 6= 0, then H3(s3) is linear in s3 and if d41 6= 0,
then H4(s4) is linear in s4.
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Therefore, it follows from (2.11) and (2.12) that
a0 +

s∑
m=1

bmα
memL(d) = −i

a0 +

s∑
m=1

(−1)mbmα
me−mL(d) = i.

Hence, it follows from (2.1) that

f(z) = −i sinh(L(z) +H1(s1) +H2(s2) +H3(s3) +H4(s4) + ξ).

Case 2.2. Let p(z+d)−p(z) be non-constant. Then by similar arguments
as in Subcase 1.2, we can get a contradiction.

Case 3. Let Lr1(f) 6≡ 0, Lr2(f) 6≡ 0 and c = d ∈ C3.
In view of (2.1) and (2.7), we obtain that

k∑
j=1

aje
p(z+jd)+p(z) −

k∑
j=1

aje
p(z)−p(z+jd) +

s∑
m=1

bmh1(z +md)ep(z+md)+p(z)

−
s∑

m=1

bmh2(z +md)ep(z)−p(z+md) + (a0 − i)e2p(z) = a0 + i. (2.14)

Now, we consider the following two possible cases.
Subcase 3.1. Let p(z + d)− p(z) = η2, where η2 is a constant in C.

Then, the form of the polynomial p(z) is the same as in (2.3). Then
p(z + νd)− p(z) = νL(d) for all ν ∈ N.

Hence, it follows from (2.14) that

k∑
j=1

aje
p(z+jd)+p(z) +

s∑
m=1

bmh1(z +md)ep(z+md)+p(z) + (a0 − i)e2p(z)

= a0 + i+

k∑
j=1

aje
−jL(d) +

s∑
m=1

bmh2(z +md)e−mL(d). (2.15)

Now, we consider the following two possible subcases.

Subcase 3.1.1. Let

a0 + i+

k∑
j=1

aje
−jL(d) +

s∑
m=1

bmh2(z +md)e−mL(d) ≡ 0. (2.16)

Then, it follows from (2.16) that

s∑
m=1

bm

[
(−1)m

(
∂p

∂z1

)m
+H2m

(
∂mp

∂zm1
, . . . ,

∂p

∂z1

)]
e−mL(d)

= −(a0 + i)−
k∑
j=1

aje
−jL(d). (2.17)
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In view of (2.15) and (2.16), we obtain that

k∑
j=1

aje
jL(d) +

s∑
m=1

bmh1(z +md)emL(d) = −(a0 − i). (2.18)

Now, in view of (2.17), we can conclude that
∂p

∂z1
is a constant, say α

in C. Then, in view of (2.3), we must get (2.13).

Therefore, from (2.16) and (2.18), we obtain that
a0 +

k∑
j=1

aje
−jL(d) +

s∑
m=1

(−1)mbmα
me−mL(d) = −i

a0 +

k∑
j=1

aje
jL(d) +

s∑
m=1

bmα
memL(d) = i.

(2.19)

Hence, it follows from (1.3) that

f(z) = −i sinh(L(z) +H1(s1) +H2(s2) +H3(s3) +H4(s4) + ξ),

where L(z) satisfies the relation (2.19).

Subcase 3.1.2. Let

a0 + i+

k∑
j=1

aje
−jL(d) +

s∑
m=1

bmh2(z +md)e−mL(d) 6≡ 0.

Then, from (2.15), we can easily obtain thata0 + i+

k∑
j=1

aje
−jL(d) +

s∑
m=1

bmh2(z +md)e−mL(d)

 e−2p(z)
= a0 − i+

k∑
j=1

aje
jL(d) +

s∑
m=1

bmh1(z +md)emL(d).

This leads us p(z) is constant, which is a contradiction.

Case 3.2. Let p(z + d)− p(z) be non-constant.

Then, it can be easily deduce that p(z+jd)−p(z) are all non-constants,
j = 1, 2, . . . , s.

But, then in view of Lemma 2.3, it follows from (2.15) that

aj = 0, bmh1(z +md) = 0, bmh2(z +md) = 0, a0 = ±i

for all j = 1, 2, . . . , k, m = 1, 2, . . . , s. This is a contradiction since atleast
one of aj 6= 0. �
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Proof of Theorem 1.13. Let f be a transcendental entire solution of (1.8).
Then by similar arguments as in Theorem 1.2, we obtain

L3(f) =
ep(z) + e−p(z)

2
, f(z) =

ep(z) − e−p(z)

2i
, (2.20)

where p(z) is a non-constant polynomial in Cn.

In view of (2.7) and (2.20), we obtain[
t∑
l=1

elh1(z)− i

]
e2p(z) =

t∑
l=1

elh2(z) + i, (2.21)

where h1(z) =
(
∂p
∂zλ

)l
+ H1l

(
∂lp
∂zlλ

, . . . , ∂p∂zλ

)
and h2(z) = (−1)l

(
∂p
∂zλ

)l
+

H2l

(
∂lp
∂zlλ

, . . . , ∂p∂zλ

)
, H1l and H2l are polynomials of partial derivatives of

p(z) of degree less than j.

Since p(z) is a non-constant polynomial, it follows from (2.21) that

t∑
l=1

elh1(z) = i and

t∑
l=1

elh2(z) = −i. (2.22)

In view of the form of h1(z) and h2(z), we conclude from (2.22) that
∂p

∂zλ
must be a non-zero constant in C, say αλ. This implies that

p(z) = αλzλ + Φ(z1, z2, . . . , zλ−1, zλ+1, . . . , zn),

Φ(z1, z2, . . . , zλ−1, zλ+1, . . . , zn) is a polynomial in z1, z2, . . . , zλ−1, zλ+1, . . . , zn

Therefore, from (2.22), we obtain

t∑
l=1

elα
l
λ = i and

t∑
l=1

(−1)lelα
l
λ = −i.

Hence, it follows from (2.20) that

f(z) = −i sinh(αλzλ + Φ(z1, z2, . . . , zλ−1, zλ+1, . . . , zn)).

�

Proof of Theorem 1.16. Let f be a transcendental entire solution of (1.10).
Then by similar arguments as in Theorem 1.2, we obtain

Lr2(f) + L3(f) =
ep(z) + e−p(z)

2
, f(z + c) =

ep(z) − e−p(z)

2i
, (2.23)

where p(z) is a non-constant polynomial in C3.
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16 A. Banerjee and G. Haldar

In view of (2.7) and (2.23), we obtain

s∑
m=1

bmh1(z +mc− c)ep(z+mc−c)+p(z) +

t∑
l=1

elh1(z − c)ep(z−c)+p(z)

−
s∑

m=1

bmh2(z +mc− c)e−p(z+mc−c)+p(z) −
t∑
l=1

elh2(z − c)e−p(z−c)+p(z)

−ie2p(z) = i. (2.24)

Now, we consider two possible cases.

Case 1. Let p(z − c)− p(z) = η, a constant in C.

Since p(z) is a polynomial, the form of the polynomial p(z) is the same
as in (2.3). This implies that p(z−c)−p(z) = −L(c) and p(z+jc−c)−p(z) =
jL(c)− L(c) for all j = 1, 2, . . . , s.

Therefore, (2.24) reduces to

s∑
m=1

bmh1(z +mc− c)ep(z+mc−c)+p(z) +

t∑
l=1

elh1(z − c)ep(z−c)+p(z) − ie2p(z)

=

s∑
m=1

bmh2(z +mc− c)e−mL(c)+L(c) +

t∑
l=1

elh2(z − c)eL(c) + i. (2.25)

Now, we discuss the possible two subcases.

Subcase 1.1. Let
s∑

m=1

bmh2(z +mc− c)e−mL(c)+L(c) +

t∑
l=1

elh2(z − c)eL(c) + i ≡ 0. (2.26)

Then, it follows from (2.25) and (2.26) that

s∑
m=1

bmh1(z +mc− c)emL(c)−L(c) +

t∑
l=1

elh1(z − c)e−L(c) − i ≡ 0. (2.27)

In view of (2.8) and (2.27), we conclude that
∂p

∂z1
is a constant, say α

in C. Therefore, in view of (2.3), we obtain (2.13).

Hence, in a similar manner as done in Subcase 2.1 of Theorem 1.2, we
can characterize the form of the polynomials H1(s1), H3(s3) and H4(s4).

Thus, we obtain from (2.26) and (2.27) that
s∑

m=1

(−1)mbmα
me−mL(c)+L(c) +

t∑
l=1

(−1)lelα
leL(c) = −i,

s∑
m=1

bmα
memL(c)−L(c) +

t∑
l=1

elα
le−L(c) = i.
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Hence, it follows from (2.23) that

f(z) = −i sinh

L(z) +

4∑
j=1

Hj(sj)− L(c) + ξ

 .

Subcase 1.2. Let
s∑

m=1

bmh2(z +mc− c)e−mL(c)+L(c) +

t∑
l=1

elh2(z − c)eL(c) + i 6≡ 0.

Then it follows from (2.25) that[
s∑

m=1

bmh2(z +mc− c)e−mL(c)+L(c) +

t∑
l=1

elh2(z − c)eL(c) + i

]
e−2p(z)

=

s∑
m=1

bmh1(z +mc− c)emL(c)−L(c) +

t∑
l=1

elh1(z − c)e−L(c) − i.

This implies that p(z) is constant, which is a contradiction.

Subcase 2. Let p(z− c)− p(z) be non-constant. This implies that p(z+
jc− c)− p(z) is also non-constant for all j ∈ N.

Therefore, by Lemma 2.3, it follows from (2.24) that i = 0, which is a
contradiction.

This completes the proof of the theorem. �

3. Concluding remark and an open question

Observe that we have been able to exhaustively determine the form of the
finite order transcendental entire solutions of equations (1.3) and (1.10) for
Lr1(f) + Lr2(f) and Lr2(f), respectively. It is therefore natural to ask the
following open question.

Question 3.1. What could be the form of finite order transcendental entire
solutions when we replace Lr1(f)+Lr2(f) by L1(f)+L2(f) in (1.3) and Lr2(f)
by L2(f) in (1.10)?
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