On entire solutions of different variants of Fermat-type partial delay differential equations in several complex variables

Abhijit Banerjee and Goutam Haldar*

Abstract

In this paper, we have introduced different variants of partial delay differential operators in \mathbb{C}^{n} which conveniently accommodate all the existing operators in the literature under one umbrella. Manipulating the operators, we extend a number of results related to the various forms of finite order transcendental entire solutions of several Fermat-type partial delay differential equations upto \mathbb{C}^{3}. Our results are the improvements of some recent results like [Mediterr. J. Math., 15 (2018), 1-14], [Anal. Math., 48 (2022), 199-226], [Electron. J. Differ. Equ., 2021(18) (2021), 1-11] and [Sib. Electron. Math. Report, 18(1) (2021), 479-494]. In addition, some examples relevant to the content of the paper have been exhibited.

Mathematics Subject Classification (2010). 30D35, 39A45, 32H30, 39A14, 35A20.
Keywords. Functions of several complex variables, Fermat-type equation, entire solutions, Nevanlinna theory.

1. Introduction

It is well known that for $m \geqslant 3$ the Fermat equation $x^{m}+y^{m}=1$ does not admit nontrivial solutions in rational numbers but it does so for $m=2$ ($[33,34])$.

The most basic Fermat-type functional equations are the circle functional equation $f^{2}+g^{2}=1$, and the cubic equation $f^{3}+g^{3}=1$. Obviously, generalizing the powers of these functions, a series of Fermat-type functional equations can be produced. The main theme to study these equations are to

[^0]seek proper types of solutions of the concerned equations. Using Nevanlinna theory [11] as a tool, for the Fermat-type functional equation
\[

$$
\begin{equation*}
f^{m}(z)+g^{m}(z)=1 \tag{1.1}
\end{equation*}
$$

\]

Montel [25] and Gross [7] established some remarkable results about the existence of entire and meromorphic solutions of (1.1). In the mean time, in 1939, Iyer [13] proved that when $m=2$, the entire solutions of equation (1.1) are $f(z)=\cos (\alpha(z)), g(z)=\sin (\alpha(z))$, where $\alpha(z)$ is an entire function. As the time progressed researchers perceived that Nevanlinna theory of meromorphic functions (see [11]) could be rendered as a theoretical tool to investigate the existence as well as to determine the form of transcendental entire or meromorphic solutions of different Fermat-types differential equations in the complex field. For several research questions on Fermat-type equations, we refer to the article of Gundersen [8]. For extensive research work, we refer the readers to go through the articles (see $[16,32,38,39]$) and references therein.

In 2004, Yang and Li [39] studied the existence of meromorphic solutions to the equation

$$
\begin{equation*}
f^{2}(z)+\left(a_{n} f^{(n)}(z)+a_{n+1} f^{(n+1)}(z)\right)^{2}=1 \tag{1.2}
\end{equation*}
$$

a_{n} and a_{n+1} are non-zero constants, and proved that (1.2) has no transcendental meromorphic solutions.

The establishment of the difference analogues of Nevanlinna theories in 2006, specially the difference analogue lemma of the logarithmic derivative lemma (see $[5,9,10]$) expedite the research activities regarding the existence and the form of the entire or meromorphic solutions of Fermat-type difference and differential-difference equations (see [21-23]).

In 2012, Liu et al. [22] first inspected finite order transcendental entire solutions of the Fermat-type shift equation $f(z)^{2}+f(z+c)^{2}=1$ and proved that the form of the solution is $f(z)=\sin (A z+B)$, where $A=(4 k+1) \pi / 2 c$, $B \in \mathbb{C}, k \in \mathbb{Z}$. As far as the development of finding the solutions of Fermat type shift equations are concerned, this result can be considered as a path breaking achievement. After that, citing this article, a plethora of research works were appeared in the literature.

In 2021, Banerjee and Biswas [1] generalized the result as follows:
Theorem A. [1] The non-linear c-shift equation $f(z)^{2}+L_{c}^{2}(z, f)=1$, where $L_{c}(z, f)=\sum_{j=0}^{n} a_{j} f(z+j c)$ has finite order transcendental entire solution of the form

$$
f(z)=\frac{e^{a z+b}+e^{-a z-b}}{2}
$$

satisfying the conditions $a_{0}+\sum_{j=1}^{n} a_{j} e^{j c}=-i$ and $a_{0}+\sum_{j=1}^{n} a_{j} e^{-j c}=i$. Here $e^{a c} \neq \pm 1$. Also if $n=1, a_{0} \neq \pm a_{1}$ is required.

The advent of partial differential equations in the realm of Fermat types equations further enriched the field (see [6, 27]). Before we discuss in detail, we recall here the definition of it.

Definition 1.1. $[24,40]$ An equation is called a differential-difference equation, if it includes derivatives, shifts, or differences of $f(z)$, which can be called DDE, in short. An equation is called a complex partial differential-difference equation, if it includes partial derivatives, shifts, or differences of $f(z)$, which can be called PDDE, in short.

Note 1.1. For the sake of convenience, we will write partial shift differential equation and partial difference differential equation according as the presence of shift or difference operator in the concern equations.

As far as the authors knowledge is concerned, in 1999, Saleeby, first started an investigation into the existence and form of entire and meromorphic solutions of Fermat-type partial differential equations (see [29,30]). Most noticeably, in 1995, Khavinson [14], proved that any entire solution of the partial differential equation

$$
\left(\frac{\partial u}{\partial z_{1}}\right)^{2}+\left(\frac{\partial u}{\partial z_{2}}\right)^{2}=1
$$

must be linear, i.e., $u\left(z_{1}, z_{2}\right)=a z_{1}+b z_{2}+c$, where $a, b, c \in \mathbb{C}$, and $a^{2}+b^{2}=1$. Inspired by this result, $\mathrm{Li}[18-20]$ investigated on the partial differential equations with more general forms such as $u_{z_{1}}^{2}+u_{z_{2}}^{2}=p, u_{z_{1}}^{2}+u_{z_{2}}^{2}=e^{q}$, etc, where p, q are polynomials in \mathbb{C}^{2}. With the help of the difference Nevanlinna theory for several complex variables (see [2,3,15]), Xu and Cao [35], Xu and his co-authors $[37,40]$ obtained some interesting results on the characterizations of entire and meromorphic solutions for some Fermat-type difference equations and systems of difference equations which are the extensions from one complex variable to several several complex variables.

From now on, we denote by $z+w=\left(z_{1}+w_{1}, z_{2}+w_{2}, \ldots, z_{n}+w_{n}\right)$ for any $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right), w=\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in \mathbb{C}^{n}$. By $j c$ we mean $\left(j c_{1}, j c_{2}, \ldots, j c_{n}\right)$ for any $c=\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in \mathbb{C}^{n}$ and $j \in \mathbb{N}$. The shift of $f(z)$ is defined by $f(z+c)$, whereas the difference of $f(z)$ is defined by $\Delta_{c} f(z)=f(z+c)-f(z)($ see $[15])$.

Xu and Cao [35] extended Theorem 1.1 of [22] to the case of several complex variables as follows.

Theorem B. [35] Let $c=\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in \mathbb{C}^{n} \backslash\{0\}$. Then any non-constant entire solution $f: \mathbb{C}^{n} \rightarrow \mathbb{P}^{1}(\mathbb{C})$ with finite order of the Fermat-type shift equation $f(z)^{2}+f(z+c)^{2}=1$ has the form of $f(z)=\cos (L(z)+B)$, where L is a linear function of the form $L(z)=a_{1} z_{1}+\cdots+a_{n} z_{n}$ on \mathbb{C}^{n} such that $L(c)=-\pi / 2-2 k \pi(k \in \mathbb{Z})$, and B is a constant on \mathbb{C}.

However, Zheng and Xu [40] proved that the difference analogue of Theorem B cease to hold in \mathbb{C}^{2}. In fact, Zheng and Xu's [40] result is as follows:

Theorem C. [40] Let $c=\left(c_{1}, c_{2}\right) \in \mathbb{C}^{2} \backslash\{(0,0)\}$. Then the equation

$$
f(z)^{2}+[f(z+c)-f(z)]^{2}=1
$$

has no transcendental entire solutions with finite order.
Let us now define three operators $L_{i}, i=1,2,3$ as follows:
(i) $L_{1}(f):=\sum_{j=1}^{k} a_{j} f\left(z+c_{j}\right)$,
(ii) $L_{2}(f):=\sum_{m=1}^{s} b_{m} \frac{\partial^{m} f\left(z+d_{m}\right)}{\partial z_{1}^{m}}$ and
(iii) $L_{3}(f)=\sum_{l=1}^{t} e_{l} \frac{\partial^{l} f(z)}{\partial z_{1}^{l}}$, where z, c_{j}, d_{m} are all constants in $\mathbb{C}^{n} ; a_{j}, b_{m}, e_{l}$ are constants in $\mathbb{C}, j=1,2, \ldots, k, m=1,2, \ldots, s, l=1,2, \ldots, t$.
We call L_{1}, L_{2} and L_{3} as linear shift operator, linear shift partial differential operator and linear partial differential operator, respectively. We also call $\tilde{L}:=L_{1}+L_{2}+L_{3}$ as partial delay differential operator and $\tilde{L_{p}}:=L_{1}+L_{2}$ as proper partial delay differential operator.

In particular, when $c_{j}=j c$ and $d_{m}=m d ; c, d \in \mathbb{C}^{n}, j=1,2, \ldots, k$, $m=1,2, \ldots, s$, then L_{1} and L_{2} are called the reduced linear shift and reduced linear shift partial differential operators, and they are denoted by $L_{1}^{r}(f)$ and $L_{2}^{r}(f)$, respectively. We also call ${\tilde{L_{p}}}^{r}:=L_{1}^{r}+L_{2}^{r}$ as proper reduced partial delay differential operator.

In view of the above definitions, it will be interesting to further investigate Theorems $\mathrm{A}-\mathrm{C}$ in \mathbb{C}^{3} under the aegis of the following Fermat-type equation:

$$
\begin{equation*}
f(z)^{2}+\left[a_{0} f(z)+{\tilde{L_{p}}}^{r}(f)\right]^{2}=1 \tag{1.3}
\end{equation*}
$$

So, we have our first result as follows:
Theorem 1.2. Let $c=\left(c_{1}, c_{2}, c_{3}\right), d=\left(d_{1}, d_{2}, c_{3}\right)$ be two non-zero constants in $\mathbb{C}^{3} ; a_{j}, b_{m}$ are constants in \mathbb{C} with at least one of a_{j} or b_{m} are nonzero, $j=1,2 \ldots, k, m=1,2 \ldots, s$, where n, k, s be positive integers. Then any finite order transcendental entire solutions of (1.3) must be one of the following three types:
(i) If $L_{1}^{r}(f) \not \equiv 0$ and $L_{2}^{r}(f) \equiv 0$, then $f(z)=-i \sinh \left(L(z)+\sum_{j=1}^{4} H_{j}\left(s_{j}\right)+\right.$ $\xi)$, where $L(z)=\sum_{\mu=1}^{3} \alpha_{\mu} z_{\mu}, H_{1}\left(s_{1}\right)$ is a polynomial in $s_{1}:=d_{11} z_{1}+$ $d_{12} z_{2}, H_{2}\left(s_{2}\right)$ is a polynomial in $s_{2}:=d_{22} z_{2}+d_{23} z_{3}, H_{3}\left(s_{3}\right)$ is a polynomial in $s_{3}:=d_{31} z_{1}+d_{33} z_{3}$ and $H_{4}\left(s_{4}\right)$ is a polynomial in $s_{4}:=d_{41} z_{1}+$ $d_{42} z_{2}+d_{43} z_{3}$ with $d_{11} c_{1}+d_{12} c_{2}=0, d_{22} c_{2}+d_{23} c_{3}=0, d_{31} c_{1}+d_{33} c_{3}=0$ and $d_{41} c_{1}+d_{42} c_{2}+d_{43} c_{3}=0, \xi, \alpha_{\mu}, d_{i j}$ are all constants in \mathbb{C}, and $L(z)$ satisfy relations

$$
\left\{\begin{array}{l}
a_{0}+\sum_{j=1}^{k} a_{j} e^{j L(c)}=i \tag{1.4}\\
a_{0}+\sum_{j=1}^{k} a_{j} e^{-j L(c)}=-i
\end{array}\right.
$$

(ii) If $L_{1}^{r}(f) \equiv 0$ and $L_{2}^{r}(f) \not \equiv 0$, then $f(z)=-i \sinh \left(L(z)+\sum_{j=1}^{4} H_{j}\left(s_{j}\right)+\right.$ $\xi)$, where $L(z)$ and $H_{j}\left(s_{j}\right)$ are defined as in $(i), j=1,2,3,4$, and $L(z)$ satisfies the relation

$$
\left\{\begin{array}{l}
a_{0}+\sum_{m=1}^{s} b_{m} \alpha^{m} e^{m L(d)}=i \\
a_{0}+\sum_{m=1}^{s}(-1)^{m} b_{m} \alpha^{m} e^{-m L(d)}=-i
\end{array}\right.
$$

where α can be found from the relation

$$
\begin{equation*}
\alpha_{1}+d_{11} H_{1}^{\prime}\left(s_{1}\right)+d_{31} H_{3}^{\prime}\left(s_{3}\right)+d_{41} H_{4}^{\prime}\left(s_{4}\right)=\alpha \tag{1.5}
\end{equation*}
$$

In particular, if $d_{11} \neq 0$, then $H_{1}\left(s_{1}\right)$ is linear in s_{1}. If $d_{31} \neq 0$, then $H_{3}\left(s_{3}\right)$ is linear in s_{3} and if $d_{41} \neq 0$, then $H_{4}\left(s_{4}\right)$ is linear in s_{4}.
(iii) If $L_{1}^{r}(f) \not \equiv 0, L_{2}^{r}(f) \not \equiv 0$ with $c=d$, then $f(z)=-i \sinh (L(z)+$ $\left.\sum_{j=1}^{4} H_{j}\left(s_{j}\right)+\xi\right)$, where $L(z)$ and $H_{j}\left(s_{j}\right)$ are defined as in $(i), j=$ $1,2,3,4$, and $L(z)$ satisfy relations

$$
\left\{\begin{array}{l}
a_{0}+\sum_{j=1}^{k} a_{j} e^{-j L(c)}+\sum_{m=1}^{s}(-1)^{m} b_{m} \alpha^{m} e^{-m L(c)}=-i \\
a_{0}+\sum_{j=1}^{k} a_{j} e^{j L(c)}+\sum_{m=1}^{s} b_{m} \alpha^{m} e^{m L(c)}=i
\end{array}\right.
$$

where α satisfies the relation (1.5).
In particular, if $d_{11} \neq 0$, then $H_{1}\left(s_{1}\right)$ is linear in s_{1}. If $d_{31} \neq 0$, then $H_{3}\left(s_{3}\right)$ is linear in s_{3} and if $d_{41} \neq 0$, then $H_{4}\left(s_{4}\right)$ is linear in s_{4}.

Remark 1.3. Following the same procedure adopted to prove Theorem 1.2 (i), one can easily verify that in \mathbb{C}^{2}, the form of transcendental entire solutions of

$$
f(z)^{2}+\left(a_{0} f(z)+L_{1}^{r}(f)\right)^{2}=1
$$

will be $f(z)=-i \sinh \left(L(z)+H\left(s_{1}\right)+\xi\right)$, where $L(z)=\alpha_{1} z_{1}+\alpha_{2} z_{2}, H\left(s_{1}\right)$ is a polynomial in $s_{1}:=d_{1} z_{1}+d_{2} z_{2}$ with $d_{1} c_{1}+d_{2} c_{2}=0$, and $L(z)$ satisfies the relation (1.4) in \mathbb{C}^{2}, which is clearly the generalization of Theorems B and C.

Remark 1.4. In view of (i) of Theorem 1.2 , we can easily see that Theorem 1.2 is an improvement of Theorem A to a large extent.

Remark 1.5. Let $a_{0}=-1, L_{1}^{r}(f)=f(z+c)$ and $L_{2}^{r}(f) \equiv 0$. If f be a finite order transcendental entire solution of (1.3), then in view of the conclusion (i) of Theorem 1.2, we must have $e^{L(c)}=1+i$ and $e^{-L(c)}=1-i$, which is not possible. Therefore, in this case (1.3) has no solution. Hence from Theorem 1.2 , we can easily deduce Theorem C.

Remark 1.6. Though in the statements of Theorems A and B, no restrictions other than finite were imposed on the order of the solutions, we see that in the conclusion of both the theorems, the concerned solutions are of order 1. But, in Theorem 1.2, we see that the form of the solutions may be of any integer order. In particular, if $H_{j}\left(s_{j}\right)$ be constant for all $j=1,2,3,4$, then we obtain exactly the form of the solutions as exhibited in Theorems A and B.

Next, we exhibit some examples in support of Theorem 1.2.
Example 1.7. Let $L(z)=2 z_{1}-3 z_{2}, c=\left(\frac{3 \pi i}{20},-\frac{3 \pi i}{20}\right) \in \mathbb{C}^{2}$ and n be any positive integer. Then, in view of (i) of Theorem 1.2, it can be shown that $f(z)=-i \sinh \left(2 z_{1}+3 z_{2}+\left(z_{1}+z_{2}\right)^{n}+1\right)$ is a solution of

$$
f(z)^{2}+[f(z)+\sqrt{2} f(z+c)]^{2}=1
$$

Example 1.8. Let $a_{0}=\alpha_{1}=1, b_{2}=\sqrt{2}$. Let $c=\left(c_{1}, 0\right) \in \mathbb{C}^{2} \backslash\{0\}$ such that $L(c)=\left(2 m \pi+\frac{3 \pi}{4}\right) i$. Then, in view of conclusion (ii) of Theorem 1.2, we can easily see that $f(z)=-i \sinh \left(z_{1}+2 z_{2}+z_{2}^{n}+1\right)$ is a solution of (1.3), where n is any positive integer.

Example 1.9. Let $a_{0}=b_{1}=b_{3}=\alpha_{1}=1, b_{2}=2$. Let $c=\left(c_{1}, c_{2}\right) \in \mathbb{C}^{2} \backslash\{0\}$ such that $L(c)=\left(2 m \pi+\frac{3 \pi}{4}\right) i$. Then, in view of (ii) of Theorem 1.2, we can easily see that $f(z)=-i \sinh \left(z_{1}+2 z_{2}+1\right)$ is a solution of

$$
f(z)^{2}+\left[f(z)+\frac{\partial f(z+c)}{\partial z_{1}}+2 \frac{\partial^{2} f(z+c)}{\partial z_{1}^{2}}+\frac{\partial^{3} f(z+c)}{\partial z_{1}^{3}}\right]^{2}=1
$$

From Theorem 1.2, we easily obtain the following Corollaries.
Corollary 1.10. Let $a_{1} \neq 0, b_{1} \neq 0$ and $\alpha_{\lambda} \neq \pm a_{1} / b_{1}$. Then the finite order transcendental entire solutions of the equation

$$
f(z)^{2}+\left[a_{1} f(z+c)+b_{1} \frac{\partial f(z+c)}{\partial z_{1}}\right]^{2}=1
$$

must be of the form $f(z)=-i \sinh \left(L(z)+\sum_{j=1}^{4} H_{j}\left(s_{j}\right)+\xi\right)$, where $L(z)$ and $H_{j}\left(s_{j}\right)$ are defined as in (iii) of Theorem 1.2 such that

$$
e^{L(c)}=\frac{i}{a_{1}+b_{1} \alpha} \text { and } a_{1}^{2}=1+b_{1}^{2} \alpha^{2}
$$

and α satisfies the relation (1.5).
Corollary 1.11. Let a_{1}, b_{1} be two non-zero constants in \mathbb{C}. Then any finite order transcendental entire solutions of the equation

$$
f(z)^{2}+\left[a_{1} \Delta_{c} f(z)+b_{1} \frac{\partial f(z+c)}{\partial z_{1}}\right]^{2}=1
$$

must be of the form $f(z)=-i \sinh \left(L(z)+\sum_{j=1}^{4} H_{j}\left(s_{j}\right)+\xi\right)$, where $L(z)$ and $H_{j}\left(s_{j}\right)$ are defined as in (iii) of Theorem 1.2 such that

$$
e^{L(c)}=\frac{a_{1}+i}{a_{1}+b_{1} \alpha} \text { and } b_{1}^{2} \alpha^{2}+1=0
$$

and α satisfies the relation (1.5).
Corollary 1.12. Let b_{1}, b_{2} and α_{1} be non-zero constants in \mathbb{C} such that $\alpha_{1} \neq$ $\pm b_{1} / b_{2}$. Then, the finite order transcendental entire solutions of the equation

$$
f(z)^{2}+\left[b_{1} \frac{\partial f(z+c)}{\partial z_{1}}+b_{2} \frac{\partial^{2} f(z+c)}{\partial z_{1}^{2}}\right]^{2}=1
$$

must be of the form $f(z)=-i \sinh \left(L(z)+\sum_{j=1}^{4} H_{j}\left(s_{j}\right)+\xi\right)$, where $L(z)$ and $H_{j}\left(s_{j}\right)$ are defined as in (ii) of Theorem 1.2 such that

$$
e^{L(c)}=\frac{i}{\left(b_{1}+b_{2} \alpha\right) \alpha} \quad \text { and }\left(b_{2}^{2} \alpha^{2}-b_{1}^{2}\right) \alpha^{2}=1
$$

and α satisfies the relation (1.5).
In 2020, Xu and Cao [36] obtained the following result.
Theorem D. [36] Any transcendental entire solution with finite order of the of the Fermat-type partial differential equation

$$
\begin{equation*}
f^{2}\left(z_{1}, z_{2}\right)+\left(\frac{\partial f\left(z_{1}, z_{2}\right)}{\partial z_{1}}\right)^{2}=1 \tag{1.6}
\end{equation*}
$$

has the form of $f\left(z_{1}, z_{2}\right)=\sin \left(z_{1}+g\left(z_{2}\right)\right)$, where $g\left(z_{2}\right)$ is a polynomial in one variable z_{2}.

In connection to Theorem D, let us now demonstrate the following result of Chen and Xu [4].

Theorem E. [4] Let b_{1} and b_{2} be two nonzero constants in \mathbb{C}. Then

$$
\begin{equation*}
f^{2}\left(z_{1}, z_{2}\right)+\left[b_{1} \frac{\partial f}{\partial z_{1}}+b_{2} \frac{\partial^{2} f}{\partial z_{1}^{2}}\right]^{2}=1 \tag{1.7}
\end{equation*}
$$

has no transcendental entire solutions with finite order in \mathbb{C}^{2}.
In this paper, we are interested to investigate the existence and forms of finite order transcendental entire solutions of more general equation than (1.6) and (1.7). For this we consider the following partial differential-difference equation

$$
\begin{equation*}
f(z)^{2}+L_{3}(f)^{2}=1 \tag{1.8}
\end{equation*}
$$

and obtained the result as follows.

Theorem 1.13. The finite order transcendental entire solutions of (1.8) must be of the form

$$
f(z)=-i \sinh \left(\alpha_{\lambda} z_{\lambda}+\Phi\left(z_{1}, z_{2}, \ldots, z_{\lambda-1}, z_{\lambda+1}, \ldots, z_{n}\right)\right)
$$

where α_{λ} be a non-zero constant in \mathbb{C} and $\Phi\left(z_{1}, z_{2}, \ldots, z_{\lambda-1}, z_{\lambda+1}, \ldots, z_{n}\right)$ is a polynomial in $z_{1}, z_{2}, \ldots, z_{\lambda-1}, z_{\lambda+1}, \ldots, z_{n}$ such that

$$
\sum_{l=1}^{t} e_{l} \alpha_{\lambda}^{l}=i \text { and } \sum_{l=1}^{t}(-1)^{l} e_{l} \alpha_{\lambda}^{l}=-i
$$

Remark 1.14. From Theorem 1.13, it can be easily obtain Theorems D and E by taking $L_{3}(f)=e_{1} \frac{\partial f}{\partial z_{1}}+e_{2} \frac{\partial^{2} f}{\partial z_{1}^{2}}, e_{1}, e_{2}$ are non-zero constants in \mathbb{C}. Therefore, Theorem 1.13 is more general than Theorems D and E.

Example 1.15. In view of Theorem 1.13, it is easily seen that

$$
f(z)=-i \sinh \left(z_{1}+z_{2}^{10}+z_{2}^{5}+z_{2}+1\right)
$$

is a solution of

$$
f(z)^{2}+\left[\frac{\partial f}{\partial z_{1}}+\frac{\partial^{2} f}{\partial z_{1}^{2}}+(i-1) \frac{\partial^{3} f}{\partial z_{1}^{3}}-\frac{\partial^{4} f}{\partial z_{1}^{4}}\right]^{2}=1
$$

Next, we would like to mention a result due to Xu and Cao [35], in which the authors have investigated the solutions of the following Fermattype partial differential-difference equation

$$
\begin{equation*}
f^{2}\left(z_{1}+c_{1}, z_{2}+c_{2}\right)+\left(\frac{\partial f\left(z_{1}, z_{2}\right)}{\partial z_{1}}\right)^{2}=1 \tag{1.9}
\end{equation*}
$$

Xu and Cao [35] proved the following theorem.
Theorem F. [35] Let $c=\left(c_{1}, c_{2}\right)$ be a constant in \mathbb{C}^{2}. Then any transcendental entire solution with finite order of the Fermat-type partial differentialdifference equation (2.14) has the form $f\left(z_{1}, z_{2}\right)=\sin \left(A z_{1}+B z_{2}+H\left(z_{2}\right)\right)$, Where A, B are constant on \mathbb{C} satisfying $A^{2}=1$ and $A e^{i\left(A c_{1}+B c_{2}\right)}=1$, and $H\left(z_{2}\right)$ is a polynomial in one variable z_{2} such that $H\left(z_{2}\right) \equiv H\left(z_{2}+c_{2}\right)$. In the special case whenever $c_{2} \neq 0$, we have $f\left(z_{1}, z_{2}\right)=\sin \left(A z_{1}+B z_{2}+\right.$ Constant $)$.

In this paper, for further extension and generalization of Theorem F , we consider the following partial differential-difference equation

$$
\begin{equation*}
f(z+c)^{2}+\left(L_{2}^{r}(f)+L_{3}(f)\right)^{2}=1 \tag{1.10}
\end{equation*}
$$

in \mathbb{C}^{3} which is more general setting than (1.9), and obtained the result as follows.

Theorem 1.16. Let $c=\left(c_{1}, c_{2}, c_{3}\right) \in \mathbb{C}^{3} \backslash\{0\}$ and $d=m c, m \in \mathbb{N}$. Then, any finite order transcendental entire solutions of (1.10) must be of the form

$$
f(z)=-i \sinh \left(L(z)-L(c)+\sum_{j=1}^{4} H_{j}\left(s_{j}\right)+\xi\right)
$$

where $L(z)$ and $H_{j}\left(s_{j}\right)$ are defined as in $(i), j=1,2,3,4$, and $L(z)$ satisfy the relations

$$
\left\{\begin{array}{l}
\sum_{m=1}^{s}(-1)^{m} b_{m} \alpha^{m} e^{-m L(c)+L(c)}+\sum_{l=1}^{t}(-1)^{l} e_{l} \alpha^{l} e^{L(c)}=-i, \\
\sum_{m=1}^{s} b_{m} \alpha^{m} e^{m L(c)-L(c)}+\sum_{l=1}^{t} e_{l} \alpha^{l} e^{-L(c)}=i
\end{array}\right.
$$

where α satisfies the relation (1.5).
In particular, if $d_{11} \neq 0$, then $H_{1}\left(s_{1}\right)$ is linear in s_{1}. If $d_{31} \neq 0$, then $H_{3}\left(s_{3}\right)$ is linear in s_{3} and if $d_{41} \neq 0$, then $H_{4}\left(s_{4}\right)$ is linear in s_{4}.

Now, we exhibit some examples in order to show the existence of solutions in Theorem 1.16.

Example 1.17. Let $\alpha_{1}=\beta_{1}=1, \beta_{2}=-1$ and $c=(\pi i, \pi i) \in \mathbb{C}^{2}$. Then in view of Theorem 1.16, it is clear that $f(z)=-i \sinh \left(z_{1}+z_{2}+3-2 \pi i\right)$ is a solution of

$$
f(z+c)^{2}+\left[\frac{\partial \Delta_{c} f(z)}{\partial z_{1}}-i \frac{\partial f(z+c)}{\partial z_{1}}\right]^{2}=1
$$

Example 1.18. Let $\alpha_{1}=1$ and $c=\left(\frac{1}{3} \log (\sqrt{2}+1), \frac{1}{3} \log (\sqrt{2}+1)\right) \in \mathbb{C}^{2}$. Then we can easily verified that $f(z)=-i \sinh \left(z_{1}+z_{2}-\log (\sqrt{2}+1)+1\right)$ is a solution of

$$
f(z+c)^{2}+\left[\frac{\partial f}{\partial z_{1}}+i \frac{\partial^{2} f}{\partial z_{1}^{2}}+(\sqrt{2} i-1) \frac{\partial^{3} f}{\partial_{1}^{3}}\right]^{2}=1
$$

Example 1.19. Let $\alpha_{1}=e_{1}=1, e_{3}=-1, e_{5}=i$ and $c=(2 \pi, 0) \in \mathbb{C}^{2}$. Then for any positive integer $n, f(z)=-i \sinh \left(z_{1}+z_{2}+z_{2}^{n}+z_{2}^{n-1}+1\right)$ is a solution of

$$
f(z+c)^{2}+\left[\frac{\partial f}{\partial z_{1}}-\frac{\partial^{3} f}{\partial z_{1}^{3}}+i \frac{\partial^{5} f}{\partial_{1}^{5}}\right]^{2}=1
$$

From the above Theorem 1.16, we can easily deduce the following Corollary.
Corollary 1.20. Let $L_{2}(f) \equiv 0$ and $L_{3}(f)=b_{1} \frac{\partial f}{\partial z_{1}}+b_{2} \frac{\partial^{2} f}{\partial z_{1}^{2}}$, where b_{1}, b_{2} are non-zero constants in \mathbb{C}. Then any transcendental entire solutions of (1.10) has the form

$$
f(z)=-i \sinh \left(L(z)-L(c)+\sum_{j=1}^{4} H_{j}\left(s_{j}\right)+\xi\right)
$$

where $L(z)$ and $H_{j}\left(s_{1}\right)$ are defined as in Theorem 1.16 and and $L(z)$ satisfies the relation

$$
e^{L(c)}=-i\left(b_{1}+b_{2} \alpha\right) \alpha, \quad \text { and }\left(b_{2}^{2} \alpha^{2}-b_{1}^{2}\right) \alpha^{2}=1
$$

and α satisfies the relation (1.5).
Remark 1.21. In Corollary 1.20, the surprising fact one can observe is that if $f(z)$ in equation (1.7) is replaced by its shift $f(z+c)$, then solution must exists, and the precise form of the solutions can be obtained.

2. Proofs of the main results

Before we starting the proof of the main results, we present here some necessary lemmas which will play key role to prove the main results of this paper.

Lemma 2.1. [17, 28, 31] For an entire function F on $\mathbb{C}^{n}, F(0) \not \equiv 0$ and put $\rho\left(n_{F}\right)=\rho<\infty$. Then there exist a canonical function f_{F} and a function $g_{F} \in \mathbb{C}^{n}$ such that $F(z)=f_{F}(z) e^{g_{F}(z)}$. For the special case $n=1, f_{F}$ is the canonical product of Weierstrass.

Lemma 2.2. [26] If g and h are entire functions on the complex plane \mathbb{C} and $g(h)$ is an entire function of finite order, then there are only two possible cases: either
(i) the internal function h is a polynomial and the external function g is of finite order; or else
(ii) the internal function h is not a polynomial but a function of finite order, and the external function g is of zero order.
Lemma 2.3. [12] Suppose that $a_{0}(z), a_{1}(z), \ldots, a_{n}(z)(n \geqslant 1)$ are meromorphic functions on \mathbb{C}^{m} and $g_{0}(z), g_{1}(z), \ldots, g_{n}(z)$ are entire functions on \mathbb{C}^{m} such that $g_{j}(z)-g_{k}(z)$ are not constants for $0 \leqslant j<k \leqslant n$. If $\sum_{j=0}^{n} a_{j}(z) e^{g_{j}(z)} \equiv 0$ and $\| T\left(r, a_{j}\right)=o(T(r)), j=0,1, \ldots, n$, where $T(r)=\min _{0 \leqslant j<k \leqslant n} T\left(r, e^{g_{j}(z)-g_{k}(z)}\right)$, then $a_{j}(z) \equiv 0(j=0,1, \ldots, n)$.
Proof of Theorem 1.2. First we rewrite (1.3) as the following.

$$
\left(a_{0} f(z)+\tilde{L}_{p}^{r}(f)+i f(z)\right)\left(a_{0} f(z)+\tilde{L}_{p}^{r}(f)-i f(z)\right)=1
$$

Since $f(z)$ is finite order transcendental entire, in view of Lemma 2.2, we get a non-constant polynomial $p(z)$ in \mathbb{C}^{n} such that

$$
a_{0} f(z)+\tilde{L}_{p}^{r}(f)+i f(z)=e^{p(z)}, a_{0} f(z)+\tilde{L}_{p}^{r}(f)-i f(z)=e^{-p(z)}
$$

which yield that

$$
\begin{equation*}
a_{0} f(z)+\tilde{L}_{p}^{r}(f)=\frac{e^{p(z)}+e^{-p(z)}}{2}, f(z)=\frac{e^{p(z)}-e^{-p(z)}}{2 i} \tag{2.1}
\end{equation*}
$$

Let us consider three possible cases in the following.
Case 1. Let $L_{1}^{r}(f) \not \equiv 0$ and $L_{2}^{r}(f) \equiv 0$. Then (2.1) leads to

$$
\begin{align*}
& \sum_{j=1}^{k} a_{j} e^{p(z+j c)+p(z)}-\sum_{j=1}^{k} a_{j} e^{p(z)-p(z+j c)}+\left(a_{0}-i\right) e^{2 p(z)} \\
& =a_{0}+i \tag{2.2}
\end{align*}
$$

Now, we consider the following two subcases.

Subcase 1.1. Let $p(z+d)-p(z)=\eta_{1}$, a constant in \mathbb{C}. As $p(z)$ is a polynomial, this leads to

$$
\begin{equation*}
p(z)=L(z)+H_{1}\left(s_{1}\right)+H_{2}\left(s_{2}\right)+H_{3}\left(s_{3}\right)+H_{4}\left(s_{4}\right)+\xi \tag{2.3}
\end{equation*}
$$

where $L(z)=\sum_{\mu=1}^{3} \alpha_{\mu} z_{\mu}, H_{1}\left(s_{1}\right)$ is a polynomial in $s_{1}:=d_{11} z_{1}+d_{12} z_{2}$, $H_{2}\left(s_{2}\right)$ is a polynomial in $s_{2}:=d_{22} z_{2}+d_{23} z_{3}, H_{3}\left(s_{3}\right)$ is a polynomial in $s_{3}:=d_{31} z_{1}+d_{33} z_{3}$ and $H_{4}\left(s_{4}\right)$ is a polynomial in $s_{4}:=d_{41} z_{1}+d_{42} z_{2}+d_{43} z_{3}$ with $d_{11} c_{1}+d_{12} c_{2}=0, d_{22} c_{2}+d_{23} c_{3}=0, d_{31} c_{1}+d_{33} c_{3}=0$ and $d_{41} c_{1}+d_{42} c_{2}+$ $d_{43} c_{3}=0, \alpha_{\mu}, d_{i j}$ are all constants in \mathbb{C}. Thus, $p(z+j d)-p(z)=L(j d)$ for all $j \in \mathbb{N}$.

Hence, (2.2) reduces to

$$
\begin{equation*}
\sum_{j=1}^{k} a_{j} e^{p(z+j c)+p(z)}+\left(a_{0}-i\right) e^{2 p(z)}=a_{0}+i+\sum_{j=1}^{k} a_{j} e^{-j L(c)} . \tag{2.4}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
a_{0}+i+\sum_{j=1}^{k} a_{j} e^{-j L(c)}=0 . \tag{2.5}
\end{equation*}
$$

Otherwise, from (2.4), we get

$$
\left[a_{0}+i+\sum_{j=1}^{k} a_{j} e^{-j L(c)}\right] e^{-2 p(z)}=\sum_{j=1}^{k} a_{j} e^{j L(c)}+\left(a_{0}-i\right) .
$$

This implies that $p(z)$ must be constant, which is a contradiction. Hence, our claim is established.

Therefore, in view of (2.4) and (2.5), we obtain that

$$
\begin{equation*}
a_{0}-i+\sum_{j=1}^{k} a_{j} e^{j L(c)}=0 \tag{2.6}
\end{equation*}
$$

Thus, in view of (2.1), we obtain

$$
f(z)=-i \sinh \left(L(z)+H_{1}\left(s_{1}\right)+H_{2}\left(s_{2}\right)+H_{3}\left(s_{3}\right)+H_{4}\left(s_{4}\right)+\xi\right),
$$

where $L(z)$ satisfies the relation (2.5) and (2.6).
Subcase 1.2. Let $p(z+c)-p(z)$ be non-constant. Then we can easily verify that $p(z+j c)-p(z)$ are all non-constants, $j=1,2, \ldots, k$.

Now, in view of Lemma 2.3, we must conclude from (2.2) that $a_{0}= \pm i$ and $a_{j}=0$ for all $j=1,2, \ldots, k$. But this is a contradiction to the assumption that at-least one $a_{j} \neq 0$.

Case 2. Let $L_{1}^{r}(f) \equiv 0$ and $L_{2}^{r}(f) \not \equiv 0$.
Differentiating second equation of (2.1) j times partially with respect to z_{λ}, we obtain

$$
\begin{equation*}
\frac{\partial^{j} f(z)}{\partial z_{1}^{j}}=\frac{h_{1}(z) e^{p(z)}-h_{2}(z) e^{-p(z)}}{2 i} \tag{2.7}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
h_{1}(z)=\left(\frac{\partial p}{\partial z_{1}}\right)^{j}+H_{1 j}\left(\frac{\partial^{j} p}{\partial z_{1}^{j}}, \ldots, \frac{\partial p}{\partial z_{1}}\right) \tag{2.8}\\
h_{2}(z)=(-1)^{j}\left(\frac{\partial p}{\partial z_{1}}\right)^{j}+H_{2 j}\left(\frac{\partial^{j} p}{\partial z_{1}^{j}}, \ldots, \frac{\partial p}{\partial z_{1}}\right)
\end{array}\right.
$$

$H_{1 j}$ and $H_{2 j}$ are partial differential polynomials of $p(z)$ of degree less than $j, j=1,2, \ldots, s$.

Then, it follows from (2.1) that

$$
\begin{align*}
& \sum_{m=1}^{s} b_{m} h_{1}(z+m d) e^{p(z+m d)+p(z)}-\sum_{m=1}^{s} b_{m} h_{2}(z+m d) e^{p(z)-p(z+m d)} \\
& +\left(a_{0}-i\right) e^{2 p(z)}=a_{0}+i \tag{2.9}
\end{align*}
$$

Now, we consider the following two possible subcases.
Subcase 2.1. Let $p(z+d)-p(z)=\eta_{1}$, a constant in \mathbb{C}. As $p(z)$ is a polynomial, the form of the polynomial $p(z)$ is the same as in (2.3). Thus, $p(z+j d)-p(z)=L(j d)$ for all $j \in \mathbb{N}$.

Therefore, (2.9) yields that

$$
\begin{align*}
& \sum_{m=1}^{s} b_{m} h_{1}(z+m d) e^{p(z+m d)+p(z)}+\left(a_{0}-i\right) e^{2 p(z)} \\
& =a_{0}+i+\sum_{m=1}^{s} b_{m} h_{1}(z+m d) e^{-m L(d)} \tag{2.10}
\end{align*}
$$

In view of (2.10) and by similar arguments as in Subcase 1.1, we can conclude that

$$
\begin{equation*}
a_{0}+i+\sum_{m=1}^{s} b_{m} h_{1}(z+m d) e^{-m L(d)} \equiv 0 \tag{2.11}
\end{equation*}
$$

Therefore, it follows from (2.10) and (2.11) that

$$
\begin{equation*}
a_{0}-i+\sum_{m=1}^{s} b_{m} h_{2}(z+m d) e^{m L(d)} \equiv 0 \tag{2.12}
\end{equation*}
$$

Now, in view of (2.8) and (2.11), we must conclude that $\frac{\partial p}{\partial z_{1}}$ must be constant, say $\alpha \in \mathbb{C}$.

Therefore, in view of (2.3), it follows that

$$
\begin{equation*}
\frac{\partial p}{\partial z_{1}}=\alpha_{1}+d_{11} H_{1}^{\prime}\left(s_{1}\right)+d_{31} H_{3}^{\prime}\left(s_{3}\right)+d_{41} H_{4}^{\prime}\left(s_{4}\right)=\alpha \tag{2.13}
\end{equation*}
$$

In particular, if $d_{11} \neq 0$ then in view of (2.13), we conclude that $H_{1}\left(s_{1}\right)$ is linear in s_{1}. Similarly if $d_{31} \neq 0$, then $H_{3}\left(s_{3}\right)$ is linear in s_{3} and if $d_{41} \neq 0$, then $H_{4}\left(s_{4}\right)$ is linear in s_{4}.

Therefore, it follows from (2.11) and (2.12) that

$$
\left\{\begin{array}{l}
a_{0}+\sum_{m=1}^{s} b_{m} \alpha^{m} e^{m L(d)}=-i \\
a_{0}+\sum_{m=1}^{s}(-1)^{m} b_{m} \alpha^{m} e^{-m L(d)}=i
\end{array}\right.
$$

Hence, it follows from (2.1) that

$$
f(z)=-i \sinh \left(L(z)+H_{1}\left(s_{1}\right)+H_{2}\left(s_{2}\right)+H_{3}\left(s_{3}\right)+H_{4}\left(s_{4}\right)+\xi\right) .
$$

Case 2.2. Let $p(z+d)-p(z)$ be non-constant. Then by similar arguments as in Subcase 1.2, we can get a contradiction.

Case 3. Let $L_{1}^{r}(f) \not \equiv 0, L_{2}^{r}(f) \not \equiv 0$ and $c=d \in \mathbb{C}^{3}$.
In view of (2.1) and (2.7), we obtain that

$$
\begin{align*}
& \sum_{j=1}^{k} a_{j} e^{p(z+j d)+p(z)}-\sum_{j=1}^{k} a_{j} e^{p(z)-p(z+j d)}+\sum_{m=1}^{s} b_{m} h_{1}(z+m d) e^{p(z+m d)+p(z)} \\
& -\sum_{m=1}^{s} b_{m} h_{2}(z+m d) e^{p(z)-p(z+m d)}+\left(a_{0}-i\right) e^{2 p(z)}=a_{0}+i \tag{2.14}
\end{align*}
$$

Now, we consider the following two possible cases.
Subcase 3.1. Let $p(z+d)-p(z)=\eta_{2}$, where η_{2} is a constant in \mathbb{C}.
Then, the form of the polynomial $p(z)$ is the same as in (2.3). Then $p(z+\nu d)-p(z)=\nu L(d)$ for all $\nu \in \mathbb{N}$.

Hence, it follows from (2.14) that

$$
\begin{align*}
& \sum_{j=1}^{k} a_{j} e^{p(z+j d)+p(z)}+\sum_{m=1}^{s} b_{m} h_{1}(z+m d) e^{p(z+m d)+p(z)}+\left(a_{0}-i\right) e^{2 p(z)} \\
& =a_{0}+i+\sum_{j=1}^{k} a_{j} e^{-j L(d)}+\sum_{m=1}^{s} b_{m} h_{2}(z+m d) e^{-m L(d)} \tag{2.15}
\end{align*}
$$

Now, we consider the following two possible subcases.
Subcase 3.1.1. Let

$$
\begin{equation*}
a_{0}+i+\sum_{j=1}^{k} a_{j} e^{-j L(d)}+\sum_{m=1}^{s} b_{m} h_{2}(z+m d) e^{-m L(d)} \equiv 0 \tag{2.16}
\end{equation*}
$$

Then, it follows from (2.16) that

$$
\begin{align*}
& \sum_{m=1}^{s} b_{m}\left[(-1)^{m}\left(\frac{\partial p}{\partial z_{1}}\right)^{m}+H_{2 m}\left(\frac{\partial^{m} p}{\partial z_{1}^{m}}, \ldots, \frac{\partial p}{\partial z_{1}}\right)\right] e^{-m L(d)} \\
& =-\left(a_{0}+i\right)-\sum_{j=1}^{k} a_{j} e^{-j L(d)} \tag{2.17}
\end{align*}
$$

In view of (2.15) and (2.16), we obtain that

$$
\begin{equation*}
\sum_{j=1}^{k} a_{j} e^{j L(d)}+\sum_{m=1}^{s} b_{m} h_{1}(z+m d) e^{m L(d)}=-\left(a_{0}-i\right) \tag{2.18}
\end{equation*}
$$

Now, in view of (2.17), we can conclude that $\frac{\partial p}{\partial z_{1}}$ is a constant, say α in \mathbb{C}. Then, in view of (2.3), we must get (2.13).

Therefore, from (2.16) and (2.18), we obtain that

$$
\left\{\begin{array}{l}
a_{0}+\sum_{j=1}^{k} a_{j} e^{-j L(d)}+\sum_{m=1}^{s}(-1)^{m} b_{m} \alpha^{m} e^{-m L(d)}=-i \tag{2.19}\\
a_{0}+\sum_{j=1}^{k} a_{j} e^{j L(d)}+\sum_{m=1}^{s} b_{m} \alpha^{m} e^{m L(d)}=i
\end{array}\right.
$$

Hence, it follows from (1.3) that

$$
f(z)=-i \sinh \left(L(z)+H_{1}\left(s_{1}\right)+H_{2}\left(s_{2}\right)+H_{3}\left(s_{3}\right)+H_{4}\left(s_{4}\right)+\xi\right)
$$

where $L(z)$ satisfies the relation (2.19).
Subcase 3.1.2 Let

$$
a_{0}+i+\sum_{j=1}^{k} a_{j} e^{-j L(d)}+\sum_{m=1}^{s} b_{m} h_{2}(z+m d) e^{-m L(d)} \not \equiv 0 .
$$

Then, from (2.15), we can easily obtain that

$$
\begin{aligned}
& {\left[a_{0}+i+\sum_{j=1}^{k} a_{j} e^{-j L(d)}+\sum_{m=1}^{s} b_{m} h_{2}(z+m d) e^{-m L(d)}\right] e^{-2 p(z)}} \\
& =a_{0}-i+\sum_{j=1}^{k} a_{j} e^{j L(d)}+\sum_{m=1}^{s} b_{m} h_{1}(z+m d) e^{m L(d)}
\end{aligned}
$$

This leads us $p(z)$ is constant, which is a contradiction.
Case 3.2. Let $p(z+d)-p(z)$ be non-constant.
Then, it can be easily deduce that $p(z+j d)-p(z)$ are all non-constants, $j=1,2, \ldots, s$.

But, then in view of Lemma 2.3, it follows from (2.15) that

$$
a_{j}=0, \quad b_{m} h_{1}(z+m d)=0, \quad b_{m} h_{2}(z+m d)=0, \quad a_{0}= \pm i
$$

for all $j=1,2, \ldots, k, m=1,2, \ldots, s$. This is a contradiction since atleast one of $a_{j} \neq 0$.

Proof of Theorem 1.13. Let f be a transcendental entire solution of (1.8). Then by similar arguments as in Theorem 1.2, we obtain

$$
\begin{equation*}
L_{3}(f)=\frac{e^{p(z)}+e^{-p(z)}}{2}, \quad f(z)=\frac{e^{p(z)}-e^{-p(z)}}{2 i} \tag{2.20}
\end{equation*}
$$

where $p(z)$ is a non-constant polynomial in \mathbb{C}^{n}.
In view of (2.7) and (2.20), we obtain

$$
\begin{equation*}
\left[\sum_{l=1}^{t} e_{l} h_{1}(z)-i\right] e^{2 p(z)}=\sum_{l=1}^{t} e_{l} h_{2}(z)+i \tag{2.21}
\end{equation*}
$$

where $h_{1}(z)=\left(\frac{\partial p}{\partial z_{\lambda}}\right)^{l}+H_{1 l}\left(\frac{\partial^{l} p}{\partial z_{\lambda}^{l}}, \ldots, \frac{\partial p}{\partial z_{\lambda}}\right)$ and $h_{2}(z)=(-1)^{l}\left(\frac{\partial p}{\partial z_{\lambda}}\right)^{l}+$ $H_{2 l}\left(\frac{\partial^{l} p}{\partial z_{\lambda}^{l}}, \ldots, \frac{\partial p}{\partial z_{\lambda}}\right), H_{1 l}$ and $H_{2 l}$ are polynomials of partial derivatives of $p(z)$ of degree less than j.

Since $p(z)$ is a non-constant polynomial, it follows from (2.21) that

$$
\begin{equation*}
\sum_{l=1}^{t} e_{l} h_{1}(z)=i \text { and } \sum_{l=1}^{t} e_{l} h_{2}(z)=-i \tag{2.22}
\end{equation*}
$$

In view of the form of $h_{1}(z)$ and $h_{2}(z)$, we conclude from (2.22) that $\frac{\partial p}{\partial z_{\lambda}}$ must be a non-zero constant in \mathbb{C}, say α_{λ}. This implies that

$$
p(z)=\alpha_{\lambda} z_{\lambda}+\Phi\left(z_{1}, z_{2}, \ldots, z_{\lambda-1}, z_{\lambda+1}, \ldots, z_{n}\right)
$$

$\Phi\left(z_{1}, z_{2}, \ldots, z_{\lambda-1}, z_{\lambda+1}, \ldots, z_{n}\right)$ is a polynomial in $z_{1}, z_{2}, \ldots, z_{\lambda-1}, z_{\lambda+1}, \ldots, z_{n}$
Therefore, from (2.22), we obtain

$$
\sum_{l=1}^{t} e_{l} \alpha_{\lambda}^{l}=i \text { and } \sum_{l=1}^{t}(-1)^{l} e_{l} \alpha_{\lambda}^{l}=-i
$$

Hence, it follows from (2.20) that

$$
f(z)=-i \sinh \left(\alpha_{\lambda} z_{\lambda}+\Phi\left(z_{1}, z_{2}, \ldots, z_{\lambda-1}, z_{\lambda+1}, \ldots, z_{n}\right)\right)
$$

Proof of Theorem 1.16. Let f be a transcendental entire solution of (1.10). Then by similar arguments as in Theorem 1.2, we obtain

$$
\begin{equation*}
L_{2}^{r}(f)+L_{3}(f)=\frac{e^{p(z)}+e^{-p(z)}}{2}, \quad f(z+c)=\frac{e^{p(z)}-e^{-p(z)}}{2 i} \tag{2.23}
\end{equation*}
$$

where $p(z)$ is a non-constant polynomial in \mathbb{C}^{3}.

In view of (2.7) and (2.23), we obtain

$$
\begin{align*}
& \sum_{m=1}^{s} b_{m} h_{1}(z+m c-c) e^{p(z+m c-c)+p(z)}+\sum_{l=1}^{t} e_{l} h_{1}(z-c) e^{p(z-c)+p(z)} \\
& -\sum_{m=1}^{s} b_{m} h_{2}(z+m c-c) e^{-p(z+m c-c)+p(z)}-\sum_{l=1}^{t} e_{l} h_{2}(z-c) e^{-p(z-c)+p(z)} \\
& -i e^{2 p(z)}=i \tag{2.24}
\end{align*}
$$

Now, we consider two possible cases.
Case 1. Let $p(z-c)-p(z)=\eta$, a constant in \mathbb{C}.
Since $p(z)$ is a polynomial, the form of the polynomial $p(z)$ is the same as in (2.3). This implies that $p(z-c)-p(z)=-L(c)$ and $p(z+j c-c)-p(z)=$ $j L(c)-L(c)$ for all $j=1,2, \ldots, s$.

Therefore, (2.24) reduces to

$$
\begin{align*}
& \sum_{m=1}^{s} b_{m} h_{1}(z+m c-c) e^{p(z+m c-c)+p(z)}+\sum_{l=1}^{t} e_{l} h_{1}(z-c) e^{p(z-c)+p(z)}-i e^{2 p(z)} \\
& =\sum_{m=1}^{s} b_{m} h_{2}(z+m c-c) e^{-m L(c)+L(c)}+\sum_{l=1}^{t} e_{l} h_{2}(z-c) e^{L(c)}+i \tag{2.25}
\end{align*}
$$

Now, we discuss the possible two subcases.
Subcase 1.1. Let

$$
\begin{equation*}
\sum_{m=1}^{s} b_{m} h_{2}(z+m c-c) e^{-m L(c)+L(c)}+\sum_{l=1}^{t} e_{l} h_{2}(z-c) e^{L(c)}+i \equiv 0 \tag{2.26}
\end{equation*}
$$

Then, it follows from (2.25) and (2.26) that

$$
\begin{equation*}
\sum_{m=1}^{s} b_{m} h_{1}(z+m c-c) e^{m L(c)-L(c)}+\sum_{l=1}^{t} e_{l} h_{1}(z-c) e^{-L(c)}-i \equiv 0 \tag{2.27}
\end{equation*}
$$

In view of (2.8) and (2.27), we conclude that $\frac{\partial p}{\partial z_{1}}$ is a constant, say α in \mathbb{C}. Therefore, in view of (2.3), we obtain (2.13).

Hence, in a similar manner as done in Subcase 2.1 of Theorem 1.2, we can characterize the form of the polynomials $H_{1}\left(s_{1}\right), H_{3}\left(s_{3}\right)$ and $H_{4}\left(s_{4}\right)$.

Thus, we obtain from (2.26) and (2.27) that

$$
\left\{\begin{array}{l}
\sum_{m=1}^{s}(-1)^{m} b_{m} \alpha^{m} e^{-m L(c)+L(c)}+\sum_{l=1}^{t}(-1)^{l} e_{l} \alpha^{l} e^{L(c)}=-i \\
\sum_{m=1}^{s} b_{m} \alpha^{m} e^{m L(c)-L(c)}+\sum_{l=1}^{t} e_{l} \alpha^{l} e^{-L(c)}=i
\end{array}\right.
$$

Hence, it follows from (2.23) that

$$
f(z)=-i \sinh \left(L(z)+\sum_{j=1}^{4} H_{j}\left(s_{j}\right)-L(c)+\xi\right) .
$$

Subcase 1.2. Let

$$
\sum_{m=1}^{s} b_{m} h_{2}(z+m c-c) e^{-m L(c)+L(c)}+\sum_{l=1}^{t} e_{l} h_{2}(z-c) e^{L(c)}+i \not \equiv 0 .
$$

Then it follows from (2.25) that

$$
\begin{aligned}
& {\left[\sum_{m=1}^{s} b_{m} h_{2}(z+m c-c) e^{-m L(c)+L(c)}+\sum_{l=1}^{t} e_{l} h_{2}(z-c) e^{L(c)}+i\right] e^{-2 p(z)}} \\
& =\sum_{m=1}^{s} b_{m} h_{1}(z+m c-c) e^{m L(c)-L(c)}+\sum_{l=1}^{t} e_{l} h_{1}(z-c) e^{-L(c)}-i
\end{aligned}
$$

This implies that $p(z)$ is constant, which is a contradiction.
Subcase 2. Let $p(z-c)-p(z)$ be non-constant. This implies that $p(z+$ $j c-c)-p(z)$ is also non-constant for all $j \in \mathbb{N}$.

Therefore, by Lemma 2.3, it follows from (2.24) that $i=0$, which is a contradiction.

This completes the proof of the theorem.

3. Concluding remark and an open question

Observe that we have been able to exhaustively determine the form of the finite order transcendental entire solutions of equations (1.3) and (1.10) for $L_{1}^{r}(f)+L_{2}^{r}(f)$ and $L_{2}^{r}(f)$, respectively. It is therefore natural to ask the following open question.

Question 3.1. What could be the form of finite order transcendental entire solutions when we replace $L_{1}^{r}(f)+L_{2}^{r}(f)$ by $L_{1}(f)+L_{2}(f)$ in (1.3) and $L_{2}^{r}(f)$ by $L_{2}(f)$ in (1.10)?

References

[1] Banerjee, A, Biswas, T.: On the transcendental solutions of Fermat type delaydifferential and c-shift equations with some analogous results. Sib. lektron. Math. Izv. 18(1), 479-494 (2021)
[2] Cao, T.B., Korhonen, R.J.: A new version of the second main theorem for meromorphic mappings intersecting hyperplanes in several complex variables. J. Math. Anal. Appl. 444, 1114-1132 (2016)
[3] Cao, T.B., Xu, L.: Logarithmic difference lemma in several complex variables and partial difference equations. Ann. Math. Pure Appl. 199, 767-794 (2020)
[4] Chen, Y.X., Xu, H.Y.: Exact form of entire solutions for Fermat-type partial differential equations in \mathbb{C}^{2}. Electron. J. Differ. Equ. 2021(18), 1-11 (2021)
[5] Chiang, Y.M., Feng, S.J.: On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane. Ramanujan J. 16, 105-129 (2008)
[6] Garabedian, P.R.: Partial Differential Equations. Wiley, New York, (1964)
[7] Gross, F.: On the equation $f^{n}(z)+g^{n}(z)=1$. Bull. Amer. Math. Soc. 72, 86-88 (1966)
[8] Gundersen, G.G.: Research Questions on Meromorphic Functions and Complex Differential Equations. Comput. Methods Funct. Theory. 17, 195-209 (2017)
[9] Halburd, R.G., Korhonen, R.J.: Difference analogue of the lemma on the logarithmic derivative with applications to difference equations. J. Math. Anal. Appl. 314, 477-487 (2006)
[10] Halburd, R.G., Korhonen, R.J.: Nevanlinna theory for the difference operator. Ann. Acad. Sci. Fenn. Math. 31, 463-478 (2006)
[11] Hayman, W.K.: Meromorphic Functions. The Clarendon Press, Oxford (1964).
[12] Hu, P.C., Li, P., Yang, C.C.: Unicity of Meromorphic Mappings, Advances in Complex Analysis and its Applications. vol. 1. Kluwer Academic Publishers, Dordrecht, Boston, London (2003)
[13] Iyer, G.: On certain functional equations. J. Indian. Math. Soc. 3, 312-315 (1939)
[14] Khavinson, D.: A note on entire solutions of the eiconal equation. Amer. Math. Mon. 102, 159-161 (1995)
[15] Korhonen, R.J.: A difference Picard theorem for meromorphic functions of several variables. Comput. Methods Funct. Theory. 12, 343-361 (2012)
[16] Laine, I.: Nevanlinna Theory and Complex Differential Equations. Walter de Gruyter Berlin/Newyork (1993)
[17] Lelong, P.: Fonctionnelles Analytiques et Fonctions Enti‘eres (n variables). Presses de LUniversite de Montreal (1968)
[18] Li, B.Q.: On entire solutions of Fermat type partial differential equations. Int. J. Math. 15, 473-485 (2004)
[19] Li, B.Q.: Entire solutions of $\left(u_{z_{1}}\right)^{m}+\left(u_{z_{2}}\right)^{n}=e^{g}$. Nagoya Math. J. 178, 151162 (2005)
[20] Li, B.Q.: Entire solutions of eiconal type equations. Arch. Math. 89, 350-357 (2007)
[21] Liu, M.L., Gao, L.Y.: Transcendental solutions of systems of complex differential-difference equations. Sci. Sin. Math. 49, 1-22 (2019)
[22] Liu, K., Cao, T.B., Cao, H.Z.: Entire solutions of Fermat type differentialdifference equations. Arch. Math. 99, 147-155 (2012)
[23] Liu, K., Yang, L.Z.: A note on meromorphic solutions of Fermat types equations. An. Stiint. Univ. Al. I. Cuza Lasi Mat. (N. S.). 1, 317-325 (2016)
[24] Lü, F., Lü, W.R., Li, C.P., Xu, J.F.: Growth and uniqueness related to complex differential and difference equations. Results Math. 4, 30: 18 pp. (2019)
[25] Montel, P.: Lecons sur les familles de nomales fonctions analytiques et leurs applications. Gauthier-Viuars Paris, 135-136 (1927)
[26] Polya, G.: On an integral function of an integral function. J. Lond. Math. Soc. 1, 12-15 (1926)
[27] Rauch, J.: Partial Differential Equations. Springer-Verlag, New York (1991)
[28] Ronkin, L.I.: Introduction to the Theory of Entire Functions of Several Variables. Moscow: Nauka. 1971 (Russian), American Mathematical Society, Providence (1974)
[29] Saleeby, E.G.: Entire and meromorphic solutions of Fermat type partial differential equations. Analysis (Munich). 19, 369-376 (1999)
[30] Saleeby, E.G.: On entire and meromorphic solutions of $\lambda u^{k}+\sum_{i=1}^{n} u_{z_{i}}^{m}=1$. Complex Var. Theory Appl. 49, 101-107 (2004)
[31] Stoll, W.: Holomorphic Functions of Finite Order in Several Complex Variables. American Mathematical Society. Providence (1974)
[32] Tang, J.F., Liao, L.W.: The transcendental meromorphic solutions of a certain type of non-linear differential equations. J. Math. Anal. Appl. 334, 517-527 (2007)
[33] Taylor, R., Wiles, A.: Ring-theoretic properties of certain Hecke algebra. Ann. Math. 141, 553-572 (1995)
[34] Wiles, A.: Modular elliptic curves and Fermats last theorem. Ann. Math. 141, 443-551 (1995)
[35] Xu, L., Cao, T.B.: Solutions of complex Fermat-type partial difference and differential-difference equations. Mediterr. J. Math. 15, 1-14 (2018)
[36] Xu, L., Cao, T.B.: Correction to: Solutions of Complex Fermat-Type Partial Difference and Differential-Difference Equations. Mediterr. J. Math. 17, 1-4 (2020)
[37] Xu, H.Y., Liu, S.Y., Li, Q.P.: Entire solutions for several systems of nonlinear difference and partial differential-difference equations of Fermat-type. J. Math. Anal. Appl. 483, 123-141 (2020)
[38] Yang, C.C.: A generalization of a theorem of P.Montel on entire functions. Proc. Amer. Math. Soc. 26, 332-334 (1970)
[39] Yang, C.C., Li, P.: On the transcendental solutions of a certain type of nonlinear differential equations. Arch. Math. 82, 442-448 (2004)
[40] Zheng, X. M., Xu, X.Y.: Entire solutions of some Fermat type functional equations concerning difference and partial differential in \mathbb{C}^{2}. Anal. Math. 48, 199226 (2022)

Abhijit Banerjee and Goutam Haldar*
Abhijit Banerjee, Department of Mathematics, University of Kalyani, West Bengal 741235, India.
e-mail: abanerjee kal@yahoo.co.in, abanerjeekal@gmail.com
Goutam Haldar, Department of Mathematics, Malda College, Malda - 732101
West Bengal, India.
e-mail: goutamiit1986@gmail.com, goutamiitm@gmail.com

[^0]: *Corresponding author
 This work was completed with the support of our $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-pert.

