
Abstract

ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Vol. , No., YEAR https://doi.org/rmj.YEAR..PAGE

\title{ ON THE SIMULTANEOUS METRIC DIMENSION OF A GRAPH AND ITS COMPLEMENT }

CONG X. KANG, IZTOK PETERIN, AND EUNJEONG YI

Abstract. A set $S \subseteq V(G)$ is a resolving set of a graph G if, for any two distinct vertices x and y of G, there exists a vertex $z \in S$ such that $d(x, z) \neq d(y, z)$, where $d(u, v)$ denotes the length of a shortest path between vertices u and v in G. The metric dimension $\operatorname{dim}(G)$ of G is the minimum of the cardinalities of all resolving sets of G. Ramírez-Cruz, Oellermann and Rodríguez-Velázquez [Discrete Appl. Math. 198 (2016) 241-250] introduced the notion of a simultaneous resolving set and the simultaneous metric dimension of a graph family. A set $S \subseteq V$ is a simultaneous resolving set for a finite collection \mathscr{C} of graphs on a common vertex set V if S is a resolving set for every graph in \mathscr{C}; the minimum among the cardinalities of all such S is called the simultaneous metric dimension of \mathscr{C}, denoted by $\operatorname{Sd}(\mathscr{C})$. In this paper, we focus on the simultaneous metric dimension of a graph and its complement. We characterize graphs G satisfying $\operatorname{Sd}(G, \bar{G})=1$ and $\operatorname{Sd}(G, \bar{G})=|V(G)|-1$, respectively, where \bar{G} denotes the complement of G. We show that $\{\operatorname{diam}(G), \operatorname{diam}(\bar{G})\} \neq\{3\}$ implies $\operatorname{Sd}(G, \bar{G})=\max \{\operatorname{dim}(G), \operatorname{dim}(\bar{G})\}$. We construct a family of self-complementary split graphs G of diameter 3 satisfying $\operatorname{Sd}(G, \bar{G})>\max \{\operatorname{dim}(G), \operatorname{dim}(\bar{G})\}$. We determine $\operatorname{Sd}(G, \bar{G})$ when G is a tree or a unicyclic graph. We conclude the paper with some open problems.

1. Introduction

Let G be a finite, simple and undirected graph with vertex set $V(G)$ and edge set $E(G)$. The distance between two vertices $x, y \in V(G)$, denoted by $d_{G}(x, y)$, is the minimum number of edges on a path connecting x and y in G, should such a path exist; otherwise, we regard the distance as infinity and write $d_{G}(x, y)=\infty$. The diameter $\operatorname{diam}(G)$ of G is $\max \left\{d_{G}(x, y): x, y \in V(G)\right\}$. The open neighborhood of a vertex $v \in V(G)$ is $N_{G}(v)=\{u \in V(G): u v \in E(G)\}$. The degree $\operatorname{deg}_{G}(u)$ of a vertex u in G is $\left|N_{G}(u)\right|$, the cardinality of $N_{G}(u)$. An end vertex is a vertex of degree one; a support vertex is a vertex that is adjacent to an end vertex, and a major vertex is a vertex of degree at least three. The complement of G, denoted by \bar{G}, has vertex set $V(\bar{G})=V(G)$ and edge set $E(\bar{G})$ such that $x y \in E(\bar{G})$ if and only if $x y \notin E(G)$ for any distinct $x, y \in V(G)$. We denote by $P_{n}, C_{n}, K_{n}, K_{a, n-a}$, respectively, the path, the cycle, the complete graph, and the complete bi-partite graph on n vertices. Let $[k]=\{1,2, \ldots, k\}$ and $[k]_{0}=[k] \cup\{0\}$.

A vertex $z \in V(G)$ resolves a pair of vertices $x, y \in V(G)$ if $d_{G}(x, z) \neq d_{G}(y, z)$. For two distinct vertices $x, y \in V(G)$, let $R_{G}\{x, y\}=\left\{z \in V(G): d_{G}(x, z) \neq d_{G}(y, z)\right\}$. A set $S \subseteq V(G)$ is a resolving set of G if $\left|S \cap R_{G}\{x, y\}\right| \geq 1$ for every pair of distinct vertices x and y of G. The metric dimension $\operatorname{dim}(G)$ of G is the minimum of the cardinalities of all resolving sets of G, and a resolving set of G

[^0]$$
1
$$
1

,
42
43
44 s
having cardinality $\operatorname{dim}(G)$ is called a (metric) basis of G. Introduced by Slater [17] and by Harary and Melter [7], the metric dimension of graphs has been extensively studied. It is noted in [6] that determining the metric dimension of a graph is an NP-hard problem. One of the motivations for studying metric dimension is robot navigation (see [11]), where a robot determines its location in the network by landmarks or transmitters placed at nodes (vertices of the graph) in the network modeled by a graph; thus, metric dimension is the minimum number of landmarks or transmitters required for the robot to know its location at all nodes in the network.

In 1990, Brigham and Dutton [3] considered a family of spanning subgraphs $\left\{H_{1}, \ldots, H_{t}\right\}$, called factors, of a given graph; they studied the domination parameter for partitions $\{G, \bar{G}\}$ of K_{n}. In 2016, for a given family $\mathscr{C}=\left\{H_{1}, \ldots, H_{t}\right\}$ of connected graphs $H_{i}=\left(V, E_{i}\right)$ with common vertex set V, Ramírez-Cruz et al. [16] defined a simultaneous resolving set for \mathscr{C} to be a set $S \subseteq V$ such that S is a resolving set for every graph H_{i} for $i \in[t]$, where the edge sets of the graphs from \mathscr{C} are not necessarily disjoint. The simultaneous metric dimension of \mathscr{C}, denoted by $\operatorname{Sd}(\mathscr{C})$ or $\operatorname{Sd}\left(H_{1}, \ldots, H_{t}\right)$, is the minimum among the cardinalities of all simultaneous resolving sets of \mathscr{C}. For other articles on simultaneous metric dimension or its variations, see $[1,5,10,13,14,15]$.

In this paper, we investigate the simultaneous metric dimension for a pair of subgraphs $\{G, \bar{G}\}$ of K_{n}, where $n \geq 2$. The results in the next section will show that the study of $\operatorname{Sd}(G, \bar{G})$ naturally splits into three cases, according to $(\operatorname{diam}(G), \operatorname{diam}(\bar{G}))$: (i) $(\operatorname{diam}(G), \operatorname{diam}(\bar{G}))=(1, \infty)$; (ii) $(\operatorname{diam}(G), \operatorname{diam}(\bar{G}))=(2, k)$, where $k \geq 2$; (iii) $(\operatorname{diam}(G), \operatorname{diam}(\bar{G}))=(3,3)$. Case (i) is trivial, and any resolving set of G is a resolving set of \bar{G} in case (ii), leaving case (iii) to closer scrutiny.

The paper is organized as follows. In Section 2, we obtain some general results on $\operatorname{Sd}(G, \bar{G})$. Noting that $1 \leq \max \{\operatorname{dim}(G), \operatorname{dim}(\bar{G})\} \leq \operatorname{Sd}(G, \bar{G}) \leq \min \{\operatorname{dim}(G)+\operatorname{dim}(\bar{G}),|V(G)|-1\} \leq$ $|V(G)|-1$ for any non-trivial graph G, we characterize graphs G satisfying $\operatorname{Sd}(G, \bar{G})=1$ and $\operatorname{Sd}(G, \bar{G})=|V(G)|-1$, respectively. We also show that, if $\{\operatorname{diam}(G), \operatorname{diam}(\bar{G})\} \neq\{3\}$, then $\operatorname{Sd}(G, \bar{G})=\max \{\operatorname{dim}(G), \operatorname{dim}(\bar{G})\}$. In Section 3, we consider graphs G with $\operatorname{diam}(G)=3=$ $\operatorname{diam}(\bar{G})$. We determine $\operatorname{Sd}(G, \bar{G})$ when G is a tree or a unicyclic graph with $\operatorname{diam}(G)=3=$ $\operatorname{diam}(\bar{G})$. We construct a family of self-complementary split graphs G of diameter 3 with $\operatorname{Sd}(G, \bar{G})>\max \{\operatorname{dim}(G), \operatorname{dim}(\bar{G})\}$. In Section 4, we examine $\operatorname{Sd}(G, \bar{G})$ when G is a tree or a unicyclic graph. For any non-trivial tree $T \neq P_{4}$, we show that $\operatorname{Sd}(T, \bar{T})=\operatorname{dim}(\bar{T}) \geq \operatorname{dim}(T)$ and characterize tree T satisfying $\operatorname{Sd}(T, \bar{T})=\operatorname{dim}(T)$. We also show that, for any non-trivial tree T, $\operatorname{dim}(\bar{T}) \geq \sigma(T)-1$, where $\sigma(T)$ denotes the number of end vertices of T. For any unicyclic graph G of order $n \geq 3$, we show that $\operatorname{Sd}(G, \bar{G}) \in\{\operatorname{dim}(\bar{G}), 1+\operatorname{dim}(\bar{G})\}$; moreover, we show that $\operatorname{Sd}(G, \bar{G})=\operatorname{dim}(\bar{G})$ for $n \geq 7$. In Section 5, we state some interesting observations and conclude with some open problems.

2. General results on $\operatorname{Sd}(G, \bar{G})$

In this section, we obtain some general results on $\operatorname{Sd}(G, \bar{G})$. A result from [16] implies that, for any non-trivial graph $G, 1 \leq \max \{\operatorname{dim}(G), \operatorname{dim}(\bar{G})\} \leq \operatorname{Sd}(G, \bar{G}) \leq \min \{\operatorname{dim}(G)+\operatorname{dim}(\bar{G}),|V(G)|-$ $1\} \leq|V(G)|-1$. We characterize graphs G satisfying $\operatorname{Sd}(G, \bar{G})=1$ and $\operatorname{Sd}(G, \bar{G})=|V(G)|-1$, respectively. We also show that, if $\{\operatorname{diam}(G), \operatorname{diam}(\bar{G})\} \neq\{3\}$, then $\operatorname{Sd}(G, \bar{G})=\max \{\operatorname{dim}(G), \operatorname{dim}(\bar{G})\}$.

We begin with some useful observations. Two vertices $u, w \in V(G)$ are called twin vertices if $N_{G}(u)-\{w\}=N_{G}(w)-\{u\}$.

Observation 2.2. Graphs G and \bar{G} cannot both be disconnected.
Observation 2.3. [16] For any family $\mathscr{C}=\left\{H_{1}, \ldots, H_{t}\right\}$,

$$
\max _{1 \leq i \leq t}\left\{\operatorname{dim}\left(H_{i}\right)\right\} \leq \operatorname{Sd}(\mathscr{C}) \leq \min \left\{\sum_{i=1}^{t} \operatorname{dim}\left(H_{i}\right),|V(G)|-1\right\} .
$$

Observation 2.3 implies the following result.
Corollary 2.4. For any graph G of order $n \geq 2$,

$$
1 \leq \max \{\operatorname{dim}(G), \operatorname{dim}(\bar{G})\} \leq \operatorname{Sd}(G, \bar{G}) \leq \min \{\operatorname{dim}(G)+\operatorname{dim}(\bar{G}), n-1\} \leq n-1 .
$$

Next, we characterize graphs G satisfying $\operatorname{Sd}(G, \bar{G})$ equals 1 and $|V(G)|-1$, respectively. We begin by recalling some known results. In the following, $G+H$ denotes the join of graphs G and H, which is obtained from the disjoint union of G and H by adding an edge $x y$ for each $x \in V(G)$ and each $y \in V(H)$.

Theorem 2.5. [4] Let G be a connected graph of order $n \geq 2$. Then
(a) $\operatorname{dim}(G)=1$ if and only if $G=P_{n}$;
(b) for $n \geq 4, \operatorname{dim}(G)=n-2$ if and only if $G=K_{s, t}(s, t \geq 1), G=K_{s}+\overline{K_{t}}(s \geq 1, t \geq 2)$, or $G=K_{s}+\left(K_{1} \cup K_{t}\right)(s, t \geq 1) ;$
(c) $\operatorname{dim}(G)=n-1$ if and only if $G=K_{n}$.

Theorem 2.6. [16] Let \mathscr{C} be a family of connected graphs on a common vertex set. Then
(a) $\operatorname{Sd}(\mathscr{C})=1$ if and only if \mathscr{C} is a collection of paths that share a common end vertex.
(b) If \mathscr{C} is a collection of paths, then $\operatorname{Sd}(\mathscr{C}) \in\{1,2\}$.

Theorem 2.7. Let G be a graph of order $n \geq 2$. Then
(a) $\operatorname{Sd}(G, \bar{G})=1$ if and only if $G \in\left\{P_{2}, \bar{P}_{2}, P_{3}, \bar{P}_{3}\right\}$.
(b) $\operatorname{Sd}(G, \bar{G})=n-1$ if and only if $G \in\left\{K_{n}, \bar{K}_{n}\right\}$;

Proof. Let G be a graph of order $n \geq 2$.
(a) (\Leftarrow) If $G=P_{2}$ is given by $u_{1} u_{2}$, then $\left\{u_{1}\right\}$ forms a resolving set for both G and \bar{G}; notice that $d_{G}\left(u_{1}, u_{2}\right)=1$ and $d_{\bar{G}}\left(u_{1}, u_{2}\right)=\infty$. If $G=P_{3}$ is given by $u_{1} u_{2} u_{3}$, then $\bar{G}=K_{1} \cup K_{2}$ consists of two components, u_{2} and $u_{1} u_{3}$, and $\left\{u_{1}\right\}$ forms a resolving set for both G and \bar{G}; note that $d_{G}\left(u_{1}, u_{2}\right)=1<2=d_{G}\left(u_{1}, u_{3}\right)$ and $d_{\bar{G}}\left(u_{1}, u_{3}\right)=1<\infty=d_{\bar{G}}\left(u_{1}, u_{2}\right)$.
(\Rightarrow) Let $\operatorname{Sd}(G, \bar{G})=1$. We may, by Observation 2.2, assume G to be connected; then $G=P_{n}$ by Theorem 2.5(a). If $n \geq 4$, then \bar{G} is connected but not a path which shares a common end vertex with G. By Theorem 2.6(a), $\operatorname{Sd}(G, \bar{G}) \neq 1$.
(b) (\Leftrightarrow) Let $G=K_{n}$. Since any two vertices of G (and thus \bar{G}) are twin vertices, $\operatorname{Sd}(G, \bar{G}) \geq n-1$ by Observation 2.1. On the other hand, $\operatorname{Sd}(G, \bar{G}) \leq n-1$ by Corollary 2.4. Thus, $\operatorname{Sd}(G, \bar{G})=n-1$.
$(\Rightarrow) \operatorname{Let} \operatorname{Sd}(G, \bar{G})=n-1$. The case $n=2$ is subsumed by Part (a) of this proof. So, let $n \geq 3$ and assume, to the contrary, that $G \notin\left\{K_{n}, \bar{K}_{n}\right\}$. Then, there exist three distinct vertices, say $x, y, z \in V(G)$, such that $x y \in E(G)$ and $x z \notin E(G)$. Then $V(G)-\{y, z\}$ is a resolving set for both G and \bar{G}, since $d_{G}(x, y)=1<d_{G}(x, z)$ and $d_{\bar{G}}(x, z)=1<d_{\bar{G}}(x, y)$. So, $G \notin\left\{K_{n}, \bar{K}_{n}\right\}$ implies $\operatorname{Sd}(G, \bar{G}) \leq n-2$ for $n \geq 3$.

Proposition 2.9. [2] If G is a graph with $\operatorname{diam}(G) \geq 4$, then $\operatorname{diam}(\bar{G}) \leq 2$.
Theorem 2.10. Let G be a graph of order at least two. Suppose $\{\operatorname{diam}(G), \operatorname{diam}(\bar{G})\} \neq\{3\}$ and $\operatorname{diam}(G) \leq \operatorname{diam}(\bar{G}) ;$ then $\operatorname{Sd}(G, \bar{G})=\operatorname{dim}(G)$.
Proof. Let G be a graph of order $n \geq 2$. By hypotheses and Proposition 2.9 , we find $\operatorname{diam}(G) \leq 2$. If $\operatorname{diam}(G)=1$, then $G=K_{n}$ and $\operatorname{Sd}(G, \bar{G})=n-1=\operatorname{dim}(G)=\operatorname{dim}(\bar{G})$ by Theorem 2.7(b). If $\operatorname{diam}(G)=2$, then $\operatorname{Sd}(G, \bar{G})=\operatorname{dim}(G)=\max \{\operatorname{dim}(G), \operatorname{dim}(\bar{G})\}$ by Lemma 2.8.

We note that Theorem 2.10 implies that $\operatorname{Sd}(G, \bar{G})=\operatorname{dim}(G)$ when G is the Petersen graph, a complete multi-partite graph, a wheel graph $K_{1}+C_{n-1}, n \geq 4$, or a fan graph $K_{1}+P_{n-1}, n \geq 3$, since those graphs have diameter 2. Also note that if G and \bar{G} both have diameter 2, then $\operatorname{dim}(G)=\operatorname{dim}(\bar{G})$.

$$
\text { 3. } \operatorname{Sd}(G, \bar{G}) \text { with } \operatorname{diam}(G)=3=\operatorname{diam}(\bar{G})
$$

In this section, we consider graphs G with $\operatorname{diam}(G)=3=\operatorname{diam}(\bar{G})$. First, we determine $\operatorname{Sd}(T, \bar{T})$ for tress T with $\operatorname{diam}(T)=3=\operatorname{diam}(\bar{T})$.

We recall some terminology and notations. For an ordered set $S=\left\{u_{1}, \ldots, u_{k}\right\} \subseteq V(G)$ of distinct vertices, the (metric) code of $v \in V(G)$ with respect to S in G is the k-vector $\operatorname{code}_{G, S}(v)=$ $\left(d_{G}\left(v, u_{1}\right), \ldots, d_{G}\left(v, u_{k}\right)\right)$.

Fix a tree T. An end vertex ℓ is called a terminal vertex of a major vertex v if $d_{T}(\ell, v)<d_{T}(\ell, w)$ for every other major vertex w in T. The terminal degree, $\operatorname{ter}_{T}(v)$, of a major vertex v is the number of terminal vertices of v in T, and an exterior major vertex is a major vertex that has a positive terminal degree. We denote by $e x(T)$ the number of exterior major vertices of T, and $\sigma(T)$ the number of end vertices of T. Let $M(T)$ be the set of exterior major vertices of T. Let $M_{1}(T)=\left\{w \in M(T): \operatorname{ter}_{T}(w)=1\right\}$ and let $M_{2}(T)=\left\{w \in M(T): \operatorname{ter}_{T}(w) \geq 2\right\}$; note that $M(T)=M_{1}(T) \cup M_{2}(T)$. For each $v \in M(T)$, let T_{v} be the subtree of T induced by v and all vertices belonging to the paths joining v with its terminal vertices, and let $L_{v}(T)$ be the set of terminal vertices of v in T.

Theorem 3.1. $[4,11,12]$ For any tree T that is not a path, $\operatorname{dim}(T)=\sigma(T)-e x(T)$.
Theorem 3.2. [12] Let T be a tree with $e x(T)=k \geq 1$, and let $v_{1}, v_{2}, \ldots, v_{k}$ be the exterior major vertices of T. For each $i \in[k]$, let $\ell_{i, 1}, \ell_{i, 2}, \ldots, \ell_{i, \sigma_{i}}$ be the terminal vertices of v_{i} with $\operatorname{ter}_{T}\left(v_{i}\right)=\sigma_{i} \geq 1$, and let $P_{i, j}$ be the $v_{i}-\ell_{i, j}$ path, where $j \in\left[\sigma_{i}\right]$. Let $W \subseteq V(T)$. Then W is a basis of T if and only if W contains exactly one vertex from each of the paths $P_{i, j}-v_{i}$, where $j \in\left[\sigma_{i}\right]$ and $i \in[k]$, with exactly one exception for each $i \in[k]$ and W contains no other vertices of T.

1. Proposition 3.3. Let T be a tree of order n with $\operatorname{diam}(T)=3=\operatorname{diam}(\bar{T})$. Then T satisfies one of the following:
(a) $T=P_{4}$;
(b) $e x(T)=1$ and $\sigma(T)=n-2$;
(c) $e x(T)=2$ and $\sigma(T)=n-2$.

Moreover, $\operatorname{Sd}(T, \bar{T})= \begin{cases}2=\operatorname{dim}(T)+\operatorname{dim}(\bar{T}) & \text { if } T \text { satisfies }(a), \\ n-3=\operatorname{dim}(\bar{T})=\operatorname{dim}(T) & \text { if } T \text { satisfies }(b), \\ n-3=\operatorname{dim}(\bar{T})=\operatorname{dim}(T)+1 & \text { if } T \text { satisfies }(c) .\end{cases}$
Proof. Let T be a tree of order $n \geq 4$ with $\operatorname{diam}(T)=3$. Then $\operatorname{ex}(T) \in\{0,1,2\}$, since $e x(T) \geq 3$ implies $\operatorname{diam}(T) \geq 4$.

First, let $e x(T)=0$. Then $\operatorname{diam}(T)=3$ implies $T=P_{4}$ (see Figure 1 (a)), and $\bar{T}=P_{4}$. So, $\operatorname{Sd}\left(P_{4}, \overline{P_{4}}\right)=2$ by Theorem 2.6.

Second, let $e x(T)=1$. Let v be the exterior major vertex of T, and let $\ell_{1}, \ell_{2}, \ldots, \ell_{k}$ be the terminal vertices of v in T such that $d_{G}\left(v, \ell_{1}\right) \geq d_{G}\left(v, \ell_{2}\right) \geq \cdots \geq d_{G}\left(v, \ell_{k}\right)$, where $k \geq 3$. Note that $\operatorname{diam}(T)=3$ implies $d_{G}\left(v, \ell_{1}\right)=2=1+d_{G}\left(v, \ell_{2}\right)$; see Figure $1(\mathrm{~b})$. If s is the degree two vertex lying on the $v-\ell_{1}$ path in T, then $d_{\bar{T}}(v, s)=3$ and it is easy to see that $\operatorname{diam}(\bar{T})=3$. Since $S_{1}=\cup_{i=1}^{k-1}\left\{\ell_{i}\right\}$ forms a resolving set for both T and \bar{T} with $\left|S_{1}\right|=k-1=n-3, \operatorname{Sd}(T, \bar{T}) \leq$ $n-3$; we note that, if $S_{0}=\left\{\ell_{1}, \ell_{2}\right\} \subseteq S_{1}$, then $\operatorname{code}_{\bar{T}, S_{0}}(v)=(1,2), \operatorname{code}_{\bar{T}, S_{0}}(s)=(2,1)$ and $\operatorname{code}_{\bar{T}, S_{0}}\left(\ell_{k}\right)=(1,1)$. By Corollary 2.4 and Theorem 3.1, $\operatorname{Sd}(T, \bar{T}) \geq \operatorname{dim}(T)=k-1=n-3$; thus $\operatorname{Sd}(T, \bar{T})=n-3=\operatorname{dim}(T)=\operatorname{dim}(\bar{T})$.

Third, let $e x(T)=2$. Let v_{1} and v_{2} be distinct exterior major vertices of T, let $\ell_{1}, \ldots, \ell_{a}$ be the terminal vertices of v_{1} and let $\ell_{1}^{\prime}, \ldots, \ell_{b}^{\prime}$ be the terminal vertices of v_{2} in T, where $a, b \geq 2$. Note that the condition $\operatorname{diam}(T)=3$ implies that $d_{T}\left(v_{1}, v_{2}\right)=1$ and $d_{T}\left(v_{1}, \ell_{i}\right)=1=d_{T}\left(v_{2}, \ell_{j}^{\prime}\right)$, where $i \in[a]$ and $j \in[b]$ (see Figure 1(c)). Let S be any resolving set for \bar{T}. Then $\left|S \cap\left(\cup_{i=1}^{a}\left\{\ell_{i}\right\}\right)\right| \geq a-1$ and $\left|S \cap\left(\cup_{i=1}^{b}\left\{\ell_{i}^{\prime}\right\}\right)\right| \geq b-1$ by Observation 2.1. If $S_{2}=\left(\cup_{i=1}^{a-1}\left\{\ell_{1}\right\}\right) \cup\left(\cup_{i=1}^{b-1}\left\{\ell_{i}^{\prime}\right\}\right) \subseteq S$, then S_{2} forms a resolving set for T with $\left|S_{2}\right|=\operatorname{dim}(T)$ by Theorems 3.1 and 3.2, and $\operatorname{code}_{\bar{T}, S_{2}}\left(\ell_{a}\right)=\mathbf{1}=$ $\operatorname{code}_{\bar{T}, S_{2}}\left(\ell_{b}^{\prime}\right)$, where $\mathbf{1}$ is the all-one vector. So, $|S| \geq\left|S_{2}\right|+1=a+b-1=n-3=\operatorname{dim}(T)+1$. Note that $S_{2} \cup\left\{\ell_{a}\right\}$ forms a resolving set for both T and \bar{T}; if $S^{\prime}=\left\{\ell_{1}, \ell_{1}^{\prime}\right\} \subseteq S_{2} \cup\left\{\ell_{a}\right\}$, then $\operatorname{code}_{\bar{T}, S^{\prime}}\left(v_{1}\right)=(2,1), \operatorname{code}_{\bar{T}, S^{\prime}}\left(v_{2}\right)=(1,2)$ and $\operatorname{code}_{\bar{T}, S^{\prime}}\left(\ell_{b}^{\prime}\right)=(1,1) . \operatorname{So}, \operatorname{dim}(\bar{T}) \leq n-3$. Thus, $\operatorname{dim}(\bar{T})=n-3$ and $\operatorname{Sd}(T, \bar{T})=n-3=\operatorname{dim}(\bar{T})=\operatorname{dim}(T)+1$.

(a)

(b)

(c)

Figure 1. Trees T with $\operatorname{diam}(T)=3=\operatorname{diam}(\bar{T})$.

Second, we determine $\operatorname{Sd}(G, \bar{G})$ for unicyclic graphs G with $\operatorname{diam}(G)=3=\operatorname{diam}(\bar{G})$. We begin with the characterization of unicyclic grahs G satisfying $\operatorname{diam}(G)=3$.

Lemma 3.4. Let G be a unicyclic graph with $\operatorname{diam}(G)=3$. Then $G \in\left\{C_{6}, C_{7}\right\}$ or G is isomorphic to a graph represented in Figure 2.

(d)

(f)

(g)

Figure 2. Unicyclic graphs $G \notin\left\{C_{6}, C_{7}\right\}$ with $\operatorname{diam}(G)=3$, where $a, b, c \geq 1$.
Proof. Let G be a unicyclic graph with $\operatorname{diam}(G)=3$. Let $\mathscr{C}=C_{m}$ be the unique cycle of G given by $u_{1}, u_{2}, \ldots, u_{m}, u_{1}$, where $m \geq 3$. For $w \in V(\mathscr{C})$, let T_{w} denote the subtree rooted at w in G and let $\tau(G)=\left\{u_{i} \in V(\mathscr{C}): \operatorname{deg}_{G}\left(u_{i}\right) \geq 3\right\}$ and let $L_{i}(G)=\left\{\ell \in V\left(T_{u_{i}}\right): \operatorname{deg}_{G}(\ell)=1\right\}$.
Case 1: $\tau(G)=\emptyset$. In this case, G is a cycle and $\operatorname{diam}(G)=3$ implies $G \in\left\{C_{6}, C_{7}\right\}$.
Case 2: $\tau(G) \neq \emptyset$. In this case, $m \in\{3,4,5\}$; note that $m \geq 6$ implies $\operatorname{diam}(G) \geq 4$. By relabeling the vertices of \mathscr{C} in G if necessary, let $\operatorname{deg}_{G}\left(u_{1}\right) \geq 3$.

Subcase 2.1: $m=3$. First, suppose $\operatorname{deg}_{G}\left(u_{2}\right)=\operatorname{deg}\left(u_{3}\right)=2$. In this case, $d_{G}\left(\ell, u_{1}\right) \leq 2$ for each $\ell \in L_{1}(G)$, and there exists an end-vertex $\ell^{\prime} \in L_{1}(G)$ with $d_{G}\left(\ell^{\prime}, u_{1}\right)=2$. So, G is isomorphic to Figure 2(a), where $a \geq 1$ and $b \geq 1$.

Second, suppose $\operatorname{deg}_{G}\left(u_{2}\right) \geq 3$ or $\operatorname{deg}_{G}\left(u_{3}\right) \geq 3$. If $\operatorname{deg}_{G}\left(u_{i}\right) \geq 3$ and $\ell_{i} \in L_{i}(G)$, then $d_{G}\left(\ell_{i}, u_{i}\right)=1$, where $i \in[3]$. If $\operatorname{deg}_{G}\left(u_{2}\right) \geq 3=1+\operatorname{deg}_{G}\left(u_{3}\right)$ or $\operatorname{deg}_{G}\left(u_{3}\right) \geq 3=1+\operatorname{deg}_{G}\left(u_{2}\right)$, then G is isomorphic to Figure 2(b), where $a, b \geq 1$. If $\operatorname{deg}_{G}\left(u_{2}\right) \geq 3$ and $\operatorname{deg}_{G}\left(u_{3}\right) \geq 3$, then G is isomorphic to Figure 2(c), where $a, b, c \geq 1$.

Subcase 2.2: $m \in\{4,5\}$. We note the following: (i) for each end-vertex $\ell_{i} \in L_{i}(G), d_{G}\left(\ell_{i}, u_{i}\right)=$ 1 , where $i \in[m]$; (ii) $\operatorname{deg}_{G}\left(u_{3}\right)=2=\operatorname{deg}_{G}\left(u_{m-1}\right)$. If every vertex in $\left\{u_{1}, u_{2}, u_{m}\right\}$ has degree at least three in G, say ℓ_{j} is a terminal vertex of the major vertex u_{j} for each $j \in\{1,2, m\}$, then $d_{G}\left(\ell_{2}, \ell_{m}\right) \geq 4$, and thus $\operatorname{diam}(G) \geq 4$. So, $\operatorname{deg}_{G}\left(u_{1}\right) \geq 3$ and $\operatorname{diam}(G)=3$ implies that at most one vertex in $\left\{u_{2}, u_{m}\right\}$ has degree at least three in G. If $\operatorname{deg}_{G}\left(u_{2}\right)=2=\operatorname{deg}_{G}\left(u_{m}\right)$, then G is isomorphic to Figure 2(d) (when $m=4$) or G is isomorphic to Figure 2(f) (when $m=5$), where $a \geq 1$. If $\operatorname{deg}_{G}\left(u_{2}\right) \geq 3$ or $\operatorname{deg}_{G}\left(u_{m}\right) \geq 3$, but not both, then G is isomorphic to Figure 2(e) (when $m=4$) or G is isomorphic to Figure 2(g) (when $m=5$), where $a, b \geq 1$.
Proposition 3.5. Let G be a unicyclic graph of order n with $\operatorname{diam}(G)=3=\operatorname{diam}(\bar{G})$. Then G is isomorphic to Figure 2(a)-(b) or Figure 2(d)-(e). Moreover, $\operatorname{Sd}(G, \bar{G})$ equals
$\int \operatorname{dim}(\bar{G})+1=\operatorname{dim}(G)+1 \quad$ if G is isomorphic to Fig. 2(e) with $a=b=1$;
$\operatorname{dim}(\bar{G})=\operatorname{dim}(G) \quad$ if G is isomorphic to Fig. 2(a) with $a=1$ and $b \geq 1$,
or G is isomorphic to Fig. 2(b) with $a=b=1$,
or G is isomorphic to Fig. 2(d) with $a \geq 1$,
or G is isomorphic to Fig. 2(e) with $a \geq 2=1+b$ or $b \geq 2=1+a$;
$\operatorname{dim}(\bar{G})=\operatorname{dim}(G)+1 \quad$ if G is isomorphic to Fig. 2(a) with $a \geq 2$ and $b \geq 1$,
or G is isomorphic to Fig. 2(b) with $a \geq 2=1+b$ or $b \geq 2=1+a$, or G is isomorphic to Fig. 2(e) with $a, b \geq 2$; if G is isomorphic to Fig. 2(b) with $a, b \geq 2$.

Proof. Let G be a unicyclic graph of order n with $\operatorname{diam}(G)=3$. By Lemma 3.4, $G \in\left\{C_{6}, C_{7}\right\}$ or G is isomorphic to one of the graphs in Figure 2. If $G \in\left\{C_{6}, C_{7}\right\}$, then $\operatorname{diam}(\bar{G})=2$. If G is isomorphic to Figure 2(a), then $\operatorname{diam}(\bar{G})=3$; note that $d_{\bar{G}}\left(u_{1}, s_{1}\right)=3$. If G is isomorphic to

Figure 2(b) or Figure 2(d)-(e), then $\operatorname{diam}(\bar{G})=3$; note that $d_{\bar{G}}\left(u_{1}, u_{2}\right)=3$. If G is isomorphic to Figure 2(c) or Figure 2(f)-(g), one can easily check that $\operatorname{diam}(\bar{G})=2$.

Next, for unicyclic graphs G with $\operatorname{diam}(G)=3=\operatorname{diam}(\bar{G})$, we determine $\operatorname{Sd}(G, \bar{G})$. Suppose S and \bar{S} be bases for G and \bar{G} respectively so that $S_{0}=S \cap \bar{S}$ is as large as possible.

Case 1: G is isomorphic to Figure 2(a). By Observation 2.1, we have the following: (i) if $a \geq 2$, then $\left|S_{0} \cap\left(\cup_{i=1}^{a}\left\{\ell_{i}\right\}\right)\right| \geq a-1$; (ii) $\left|S_{0} \cap\left\{u_{2}, u_{3}\right\}\right| \geq 1$; (iii) if $b \geq 3$, then $\left|S_{0} \cap\left(\cup_{i=2}^{b}\left\{s_{i}\right\}\right)\right| \geq b-2$.

First, suppose $a=1$ and $b \in\{1,2\}$. Then $\left\{u_{2}, s_{1}\right\}$ forms a basis for G and \bar{G}, and thus $\operatorname{Sd}(G, \bar{G})=\operatorname{dim}(\bar{G})=2=\operatorname{dim}(G) ;$ note that $\operatorname{Sd}(G, \bar{G})=n-3$ if $a=b=1$, and $\operatorname{Sd}(G, \bar{G})=n-4$ if $a=1$ and $b=2$.

Second, suppose $a=1$ and $b \geq 3$. From (ii) and (iii), we may assume that $R_{0}=\left\{u_{2}\right\} \cup$ $\left(\cup_{i=3}^{b}\left\{s_{i}\right\}\right) \subseteq S_{0}$ with $\left|R_{0}\right|=b-1=n-5$. Since $\operatorname{code}_{G, R_{0}}\left(s_{1}\right)=\operatorname{code}_{G, R_{0}}\left(s_{2}\right)$ and $\operatorname{code}_{\bar{G}, R_{0}}\left(s_{1}\right)=$ $\operatorname{code}_{\bar{G}, R_{0}}\left(s_{2}\right),|S| \geq\left|R_{0}\right|+1$ and $|\bar{S}| \geq\left|R_{0}\right|+1$. On the other hand, $R_{0} \cup\left\{s_{1}\right\}$ forms a resolving set for G and \bar{G}, and hence $|S| \leq\left|R_{0}\right|+1$ and $|\bar{S}| \leq\left|R_{0}\right|+1$. Thus $\operatorname{Sd}(G, \bar{G})=\operatorname{dim}(\bar{G})=n-4=$ $\operatorname{dim}(G)$.
Third, suppose $a \geq 2$ and $b \in\{1,2\}$. From (i) and (ii), we may assume that $R_{1}=\left\{u_{2}\right\} \cup$ $\left(\cup_{i=2}^{a}\left\{\ell_{i}\right\}\right) \subseteq S_{0}$ with $\left|R_{1}\right|=a$. Then R_{1} forms a resolving set for G, but $\operatorname{code}_{\bar{G}, R_{1}}\left(u_{1}\right)=$ $\operatorname{code}_{\bar{G}, R_{1}}\left(u_{3}\right)$ and $R_{1} \cup\left\{s_{1}\right\}$ forms a resolving set for \bar{G}. Thus, $\operatorname{Sd}(G, \bar{G})=\operatorname{dim}(\bar{G})=a+1=$ $\operatorname{dim}(G)+1$; we note that $\operatorname{Sd}(G, \bar{G})=\operatorname{dim}(\bar{G})=n-3=\operatorname{dim}(G)+1$ if $a \geq 2$ and $b=1$, and $\operatorname{Sd}(G, \bar{G})=\operatorname{dim}(\bar{G})=n-4=\operatorname{dim}(G)+1$ if $a \geq 2$ and $b=2$.

Fourth, suppose $a \geq 2$ and $b \geq 3$. From (i), (ii) and (iii), we may assume that $R_{2}=\left\{u_{2}\right\} \cup$ $\left(\cup_{i=2}^{a}\left\{\ell_{i}\right\}\right) \cup\left(\cup_{i=3}^{b}\left\{s_{i}\right\}\right) \subseteq S_{0}$ with $\left|R_{2}\right|=a+b-2=n-5$. Then R_{2} forms a resolving set for G, but $\operatorname{code}_{\bar{G}, R_{2}}\left(\ell_{1}\right)=\operatorname{code}_{\bar{G}, R_{2}}\left(s_{2}\right)$ and $R_{2} \cup\left\{s_{1}\right\}$ forms a resolving set for \bar{G}; thus $\operatorname{Sd}(G, \bar{G})=$ $\operatorname{dim}(\bar{G})=n-4=\operatorname{dim}(G)+1$.

Case 2: G is isomorphic to Figure 2(b). First, suppose $a=b=1$. Then $\left\{\ell_{1}, \ell_{1}^{\prime}\right\}$ forms a basis for G and \bar{G}; thus $\operatorname{Sd}(G, \bar{G})=\operatorname{dim}(\bar{G})=\operatorname{dim}(G)=2=n-3$.

Second, suppose $a \geq 2$ and $b=1$, or $a=1$ and $b \geq 2$, say the former by relabeling the vertices of G if necessary; then $\left|S_{0} \cap\left(\cup_{i=1}^{a}\left\{\ell_{i}\right\}\right)\right| \geq a-1$ by Observation 2.1. We may assume that $W_{0}=$ $\cup_{i=2}^{a}\left\{\ell_{i}\right\} \subseteq S_{0}$ with $\left|W_{0}\right|=a-1=n-5$. Then $\operatorname{code}_{G, W_{0}}\left(\ell_{1}\right)=\operatorname{code}_{G, W_{0}}\left(u_{2}\right)=\operatorname{code}_{G, W_{0}}\left(u_{3}\right)$ and $\operatorname{code}_{\bar{G}, W_{0}}\left(\ell_{1}\right)=\operatorname{code}_{\bar{G}, W_{0}}\left(\ell_{1}^{\prime}\right)=\operatorname{code}_{\bar{G}, W_{0}}\left(u_{2}\right)=\operatorname{code}_{\bar{G}, W_{0}}\left(u_{3}\right) ;$ moreover, for any $v \in V(G)-W_{0}$, $W_{0} \cup\{v\}$ fails to be a resolving set for \bar{G}. $\operatorname{So}, \operatorname{dim}(G) \geq\left|W_{0}\right|+1$ and $\operatorname{dim}(\bar{G}) \geq\left|W_{0}\right|+2$. Since $W_{0} \cup\left\{u_{2}\right\}$ forms a resolving set for G and $W_{0} \cup\left\{u_{2}, u_{3}\right\}$ forms a resolving set for \bar{G} (as well as for $G), \operatorname{dim}(G) \leq\left|W_{0}\right|+1=n-4$ and $\operatorname{dim}(\bar{G}) \leq\left|W_{0}\right|+2=n-3$. Thus, $\operatorname{Sd}(G, \bar{G})=\operatorname{dim}(\bar{G})=$ $n-3=\operatorname{dim}(G)+1$.

Third, suppose $a \geq 2$ and $b \geq 2$; then $\left|S_{0} \cap\left(\cup_{i=1}^{a}\left\{\ell_{i}\right\}\right)\right| \geq a-1$ and $\left|S_{0} \cap\left(\cup_{i=1}^{b}\left\{\ell_{i}^{\prime}\right\}\right)\right| \geq b-1$ by Observation 2.1. We may assume that $W_{1}=\left(\cup_{i=2}^{a}\left\{\ell_{i}\right\}\right) \cup\left(\cup_{i=2}^{b}\left\{\ell_{i}^{\prime}\right\}\right) \subseteq S_{0}$ with $\left|W_{1}\right|=a+b-2=$ $n-5$. Then W_{1} is a resolving set for G, but $\operatorname{code}_{\bar{G}, W_{1}}\left(\ell_{1}\right)=\operatorname{code}_{\bar{G}, W_{1}}\left(\ell_{1}^{\prime}\right)=\operatorname{code}_{\bar{G}, W_{1}}\left(u_{3}\right)$ and $W_{1} \cup\{v\}$ fails to be a resolving set for \bar{G} for any $v \in V(G)-W_{1}$. So, $\operatorname{dim}(G)=\left|W_{1}\right|=n-5$ and $\operatorname{dim}(\bar{G}) \geq\left|W_{1}\right|+2$. Since $W_{1} \cup\left\{u_{2}, u_{3}\right\}$ forms a resolving set for $\bar{G}, \operatorname{dim}(\bar{G}) \leq\left|W_{1}\right|+2$. Thus, $\operatorname{Sd}(G, \bar{G})=\operatorname{dim}(\bar{G})=n-3=\operatorname{dim}(G)+2$.

Case 3: G is isomorphic to Figure 2(d). If $a=1$, then $\left\{u_{2}, u_{3}\right\}$ forms a basis for G and \bar{G}; thus, $\operatorname{Sd}(G, \bar{G})=\operatorname{dim}(\bar{G})=\operatorname{dim}(G)=2=n-3$. So, suppose $a \geq 2$; then $\left|S_{0} \cap\left(\cup_{i=1}^{a}\left\{\ell_{i}\right\}\right)\right| \geq a-1$ and $\left|S_{0} \cap\left\{u_{2}, u_{4}\right\}\right| \geq 1$ by Observation 2.1. We may assume that $R=\left\{u_{2}\right\} \cup\left(\cup_{i=2}^{a}\left\{\ell_{i}\right\}\right) \subseteq S_{0}$ with $|R|=a=n-4$. Then $\operatorname{code}_{G, R}\left(\ell_{1}\right)=\operatorname{code}_{G, R}\left(u_{4}\right)$ and $\operatorname{code}_{\bar{G}, R}\left(\ell_{1}\right)=\operatorname{code}_{\bar{G}, R}\left(u_{4}\right) ;$ thus,

2
13
14
172
8
19
20
21
25
26 s
$\frac{28}{29}$
${ }^{29}$ e

Proof. Let $k \geq 1$.

Figure 3. G_{3} satisfying $\operatorname{Sd}\left(G_{3}, \bar{G}_{3}\right)>3=\operatorname{dim}\left(G_{3}\right)=\operatorname{dim}\left(\bar{G}_{3}\right)$.
(a) First, we show that G_{k} is self-complementary. Let $\phi: V\left(G_{k}\right) \rightarrow V\left(\overline{G_{k}}\right)$ be a map such that $\phi\left(a_{i}\right)=b_{i}$ and $\phi\left(b_{i}\right)=a_{i+1}$, where the subscript is taken modulo $2 k$. It is easily checked that ϕ is a graph isomorphism. Second, we show that $\operatorname{diam}\left(G_{k}\right)=3=\operatorname{diam}\left(\bar{G}_{k}\right)$. Since G_{k} is selfcomplementary, it suffices to show that $\operatorname{diam}\left(G_{k}\right)=3$. We note the following: (i) $d_{G}\left(a_{i}, a_{j}\right)=1$ for any distinct $i, j \in[2 k-1]_{0}$; (ii) $d_{G}\left(a_{i}, b_{j}\right) \in\{1,2\}$ for any $i, j \in[2 k-1]_{0}$; (iii) $d_{G}\left(b_{i}, b_{j}\right) \in\{2,3\}$ for any distinct $i, j \in[2 k-1]_{0}$. Since $d_{G}\left(b_{0}, b_{k}\right)=3, \operatorname{diam}\left(G_{k}\right)=3$.
(b) Since G_{k} is isomorphic to \bar{G}_{k}, it suffices to show that $\operatorname{dim}\left(G_{k}\right)=k$. First, we show that $\operatorname{dim}\left(G_{k}\right) \leq k$. Let $S=\left\{b_{0}, b_{1}, \ldots, b_{k-1}\right\}$ with $|S|=k$. We note the following: (i) $\operatorname{code}_{G_{k}, S}\left(a_{0}\right)$ has 1 in all of its entries; (ii) for $i \in[k-1], \operatorname{code}_{G_{k}, S}\left(a_{i}\right)$ has 2 in the first i entries and 1 in the rest of its entries; (iii) $\operatorname{code}_{G_{k}, S}\left(a_{k}\right)$ has 2 in all of its entries; (iv) for $j \in[k-1]$, $\operatorname{code}_{G_{k}, S}\left(a_{k+j}\right)$ has 1 in the first j entries and 2 in the rest of its entries; (v) for $i \in[k-1]_{0}$, $\operatorname{code}_{G_{k}, S}\left(b_{k+i}\right)$ has 3 in the $(i+1)$ th entry and 2 in the rest of its entries; (vi) for $i \in[k-1]_{0}$, $\operatorname{code}_{G_{k}, S}\left(b_{i}\right)$ has 0 in the i th entry and 2 in the rest of its entries. Thus, S is a resolving set for G_{k}, and thus $\operatorname{dim}\left(G_{k}\right) \leq k$. Next, we show that $\operatorname{dim}\left(G_{k}\right) \geq k$. Let $g: V\left(G_{k}\right) \rightarrow[0,1]$ be a minimum resolving function of G_{k}. Since $R_{G_{k}}\left\{a_{i}, a_{i+1}\right\}=\left\{a_{i}, a_{i+1}, b_{i}, b_{i+k}\right\}$, we have $g\left(R_{G_{k}}\left\{a_{i}, a_{i+1}\right\}\right)=g\left(a_{i}\right)+g\left(a_{i+1}\right)+g\left(b_{i}\right)+g\left(b_{i+k}\right) \geq 1$ for each $i \in[2 k-1]_{0}$, where the subscript is taken modulo $2 k$. By summing over $2 k$ such inequalities, we have $2 \sum_{i=0}^{2 k-1}\left(g\left(a_{i}\right)+g\left(b_{i}\right)\right) \geq 2 k$, i.e., $g\left(V\left(G_{k}\right)\right) \geq k$. So, $\operatorname{dim}\left(G_{k}\right) \geq k$.
(c) Let $k \geq 2$ for this part. It is enough to show that $S=V_{1}-\left\{a_{2 k-1}\right\}$ resolves both G_{k} and \bar{G}_{k}. Clearly, S resolves \bar{G}_{k} by part (b). With respect to resolving G_{k}, notice (1) each pair of vertices of V_{1} is resolved by S; (2) each vertex $x \in V_{1}$ is resolved from any vertex $y \in V_{2}$ by S since $\operatorname{code}_{G_{k}, S}(x)$ does not contain 2 as a component, whereas $\operatorname{code}_{G_{k}, S}(y)$ does; (3) the map code ${ }_{G_{k}, S^{\prime}}$ is already injective on V_{2}, where $S^{\prime}=\left\{a_{0}, \ldots, a_{k-1}\right\} \subset S$.
(d) Since $G_{1}=P_{4}, \operatorname{Sd}\left(G_{1}, \bar{G}_{1}\right)=2>1$ by Theorem 2.6. Put $V=V\left(G_{k}\right)=V\left(\bar{G}_{k}\right)$. Let $k \geq 2$ and $S \subseteq V$ be a basis of G_{k} with $\left|S_{2}\right|=\left|S \cap V_{2}\right|=\beta \leq k$; we will show that $\beta=k$. Consider the partition \mathscr{P} of V_{1} given by the map $\operatorname{code}_{G_{k}, S_{2}}$; i.e, two vertices of V_{1} belong to the same cell of \mathscr{P} exactly when they are mapped to the same vector under $\operatorname{code}_{G_{k}, S_{2}}$. By the adjacency relation of $b_{i} \in V_{2}\left(G_{k}\right)$, it is easily seen that $|\mathscr{P}|=2 \beta$. Since the subgraph induced by V_{1} in G_{k} is a clique, all but one vertex in each cell C_{i} of \mathscr{P} must belong to S. Thus, we have the inequality
$\sum_{i=1}^{2 \beta}\left(\left|C_{i}\right|-1\right) \leq k-\beta$. Since the left side of the preceding inequality equals $2(k-\beta)$, we find $\beta=k$. It follows that a basis of G_{k} intersects trivially with V_{1} and thus does not resolve \bar{G}_{k}. By symmetry, a basis of \bar{G}_{k} contains no vertex of V_{2} and thus cannot resolve G_{k}. Therefore, $\operatorname{Sd}\left(G_{k}, \bar{G}_{k}\right) \geq k+1$ for $k \geq 1$.

Noting $\operatorname{Sd}\left(G_{1}, \bar{G}_{1}\right)=2$ and $\operatorname{Sd}\left(G_{2}, \bar{G}_{2}\right)=3$ (as is easily checked), there is some empirical evidence to suggest the following.

Conjecture 3.7. For $k \geq 3, \operatorname{Sd}\left(G_{k}, \bar{G}_{k}\right)=2 k-1$.
Towards Conjecture 3.7, the following is an improvement to part (d) of Theorem 3.6, and we thank an anonymous referee for providing both the statement and its proof.

Proposition 3.8. Let G_{k} be the family of split graphs defined in Theorem 3.6, where $k \geq 1$. Then $\operatorname{Sd}\left(G_{k}, \bar{G}_{k}\right) \geq \frac{4}{3} k$.

Proof. Note that $\operatorname{Sd}\left(G_{1}, \bar{G}_{1}\right)=2 \geq \frac{4}{3}$ and $\operatorname{Sd}\left(G_{2}, \bar{G}_{2}\right)=3 \geq \frac{8}{3}$. So, let $k \geq 3$ and S be a minimum simultaneous resolving set for both G_{k} and \bar{G}_{k}. Let $\alpha=\left|S \cap V_{1}\right|$ and $\beta=\left|S \cap V_{2}\right|$. Without loss of generality, assume $\alpha \leq \beta$; then $\alpha \leq k-1$ by Theorem 3.6(c). Based on the proof for the part (d) of Theorem 3.6, we observe that $\alpha \leq k$ implies $\beta \geq 2(k-\alpha)$. If $\alpha \geq \frac{2}{3} k$, then $|S|=\alpha+\beta \geq \frac{4}{3} k$. If $\alpha<\frac{2}{3} k$, then $|S|=\alpha+\beta \geq \alpha+2(k-\alpha) \geq 2 k-\frac{2}{3} k=\frac{4}{3} k$. In each case, $\operatorname{Sd}\left(G_{k}, \bar{G}_{k}\right) \geq \frac{4}{3} k$.

As an immediate consequence of Theorem 3.6(b) and Proposition 3.8, we have the following.
Remark 3.9. Let G_{k} be the family of split graphs defined in Theorem 3.6. Then $\operatorname{Sd}\left(G_{k}, \bar{G}_{k}\right)$ $\max \left\{\operatorname{dim}\left(G_{k}\right), \operatorname{dim}\left(\bar{G}_{k}\right)\right\} \geq \frac{4}{3} k-k=\frac{k}{3} \rightarrow \infty$ as $k \rightarrow \infty$.

4. $\operatorname{Sd}(G, \bar{G})$ when G is a tree or a unicyclic graph

In this section, we examine $\operatorname{Sd}(G, \bar{G})$ when G is a tree or a unicyclic graph.
Trees. For any tree $T \neq P_{4}$, we show that $\operatorname{Sd}(T, \bar{T})=\operatorname{dim}(\bar{T})=\max \{\operatorname{dim}(T), \operatorname{dim}(\bar{T})\}$ and characterize trees T satisfying $\operatorname{Sd}(T, \bar{T})=\operatorname{dim}(\bar{T})=\operatorname{dim}(T)$. We also show that, for any tree T that is not a path, $\operatorname{dim}(\bar{T}) \geq \operatorname{dim}(T)+e x(T)-1=\sigma(T)-1$.

We first consider $\operatorname{Sd}(T, \bar{T})$ for $T=P_{n}$, where $n \geq 2$. We recall the adjacency resolving set and adjacency dimension introduced by Jannesari and Omoomi in [9]. A set $W \subseteq V(G)$ is an adjacency resolving set of G if, for any distinct vertices x and y in G, there exists a vertex $z \in W$ such that z is adjacent to exactly one of the two vertices x and y in G. The adjacency dimension, $\operatorname{adim}(G)$, of G is the minimum of the cardinalities of all adjacency resolving sets of G.

Proposition 4.1. [9]
(a) For every graph $G, \operatorname{adim}(G)=\operatorname{adim}(\bar{G})$.
(b) If G is a graph with $\operatorname{diam}(G)=2$, then $\operatorname{dim}(G)=\operatorname{adim}(G)$.

Proposition 4.2. [9] For $n \geq 4, \operatorname{adim}\left(C_{n}\right)=\operatorname{adim}\left(P_{n}\right)=\left\lfloor\frac{2 n+2}{5}\right\rfloor$.
Corollary 4.3. For $n \geq 2$,

$$
\operatorname{Sd}\left(P_{n}, \bar{P}_{n}\right)=\left\lfloor\frac{2 n+2}{5}\right\rfloor= \begin{cases}2=\operatorname{dim}\left(P_{4}\right)+\operatorname{dim}\left(\bar{P}_{4}\right) & \text { if } n=4, \\ \operatorname{dim}\left(\bar{P}_{n}\right) & \text { otherwise } .\end{cases}
$$ following result.

Theorem 4.5. If T is a tree that is not a path, then $\operatorname{dim}(\bar{T}) \geq \operatorname{dim}(T)+e x(T)-1$. More generally, every non-trivial tree T satisfies the inequality

$$
\begin{equation*}
\operatorname{dim}(\bar{T}) \geq \sigma(T)-1 \tag{1}
\end{equation*}
$$

Proof. The inequality (1) trivially holds for a path T.
Next, consider a tree T with $e x(T) \geq 2$. Let A denote the set of all paths leading from each $v \in M_{1}(T)$ to its terminal vertex. Let $B=\bigcup B_{v}$, where B_{v} is the set of all paths leading from a major vertex $v \in M_{2}(T)$ to the terminal vertices associated with v. For each $v \in M_{2}(T)$, also let $B_{v}^{\prime}=\left\{P-\{v\}: P \in B_{v}\right\}$. Assume, for contradiction, that there is a resolving set S of \bar{T} with $|S| \leq \sigma(T)-2$.

If there exists $v \in S \cap M_{2}(T)$, then $\left|S \cap V\left(T_{v}\right)\right| \geq \operatorname{ter}_{T}(v)$. To see this, assume $\left|S \cap V\left(T_{v}\right)\right|<$ $\operatorname{ter}_{T}(v)$ and let x and y be two neighbors of v in two paths of B_{v}^{\prime} omitted by S. Note $d_{\bar{T}}(s, x)=$ $1=d_{\bar{T}}(s, y)$ for $v \neq s \in S$. Since $e x(T)>1$, there exists a vertex $z \notin N_{T}(v) \cup N_{T}(x) \cup N_{T}(y)$, and thus z is adjacent to all three vertices x, y, v in \bar{T}. Since $x, y \in N_{T}(v), d_{\bar{T}}(x, v)>1$ and $d_{\bar{T}}(y, v)>1$. It follows that $d_{\bar{T}}(x, v)=2=d_{\bar{T}}(y, v)$. Therefore, x and y are not resolved by S in \bar{T}.

Let the set of vertices $\{u, v, w\} \subseteq M(T)$ such that u is distinct from v and from w, whereas v may equal w, be given. We note the following observation:

No vertex of T_{u} can resolve vertices x and y in \bar{T} for $\{x, y\} \subseteq V\left(T_{v}\right) \cup V\left(T_{w}\right)-\{v, w\}$. Now, if S contains a vertex v_{1} with $\operatorname{ter}_{T}\left(v_{1}\right) \geq 2$, we will pass from the triple (S, B, A) to the triple $\left(S_{1}, B_{1}, A\right)$, where $S_{1}=S-\left(S \cap V\left(T_{v_{1}}\right)\right)$, with $\left|S_{1}\right| \leq \sigma(T)-2-\operatorname{ter}_{T}\left(v_{1}\right)$, and $B_{1}=B-B_{v_{1}}$. Through this "descent process", we reach the triple (S_{0}, B_{0}, A) where $\left|S_{0}\right| \leq\left|B_{0}\right|+|A|-2$ and $S_{0} \cap M_{2}(T)=\emptyset$.

Since S_{0} omits at least two paths from collection $B_{0} \cup A, S_{0}$ fails in \bar{T} to resolve u^{\prime} from v^{\prime}, neighbors of u and v along two omitted paths to their end vertices; note that u and v may denote the same major vertex. Now, by observation ($\boldsymbol{\rho}$), the failure of S_{0} to resolve u^{\prime} from v^{\prime} implies the failure of S to do the same.

1 Theorem 4.6. Let T be a non-trivial tree. Then $\operatorname{Sd}(T, \bar{T})=\operatorname{dim}(\bar{T})=\operatorname{dim}(T)$ if and only if T satisfies one of the following:
(a) $T \in\left\{P_{2}, P_{3}\right\}$;
(b) ex $(T)=1$ with $v \in M_{2}(T)$ such that $N_{T}(v) \cap L_{v}(T) \neq \emptyset$ and $d_{T}(v, \ell) \leq 2$ for each $\ell \in$ $L_{v}(T)$.

Proof. Let T be a tree of order $n \geq 2$. By Corollary 4.3 and Theorem 4.4, it suffices to characterize trees T satisfying $\operatorname{Sd}(T, \bar{T})=\operatorname{dim}(T)$.
(\Leftarrow) If $T \in\left\{P_{2}, P_{3}\right\}$, then $\operatorname{Sd}(T, \bar{T})=\operatorname{dim}(T)=1$ by Theorem 2.7(a). If T satisfies (b) of the current theorem such that $v \in M_{2}(T)$ and $d_{T}(v, \ell)=1$, where $\ell \in L_{v}(T)$, then $N_{T}(v)-\{\ell\}$ forms a basis for both T and \bar{T}; thus, $\operatorname{Sd}(T, \bar{T})=\operatorname{dim}(T)$.
(\Rightarrow) If $e x(T)=0$, then $T \cong P_{n}$ and $\operatorname{Sd}\left(P_{n}, \bar{P}_{n}\right)=\operatorname{dim}\left(P_{n}\right)$ implies $n \in\{2,3\}$ by Theorem 2.5(a) and Theorem 2.7(a). If $e x(T) \geq 2$, then $\operatorname{Sd}(T, \bar{T})=\operatorname{dim}(\bar{T})>\operatorname{dim}(T)$ by Theorem 4.4 and Theorem 4.5. So, suppose $\operatorname{ex}(T)=1$. Let v be the exterior major vertex of T with $\operatorname{ter}_{T}(v)=k \geq 3$, and let $L_{v}(T)=\left\{\ell_{1}, \ldots, \ell_{k}\right\}$; further, let $d_{T}\left(v, \ell_{1}\right) \geq d_{T}\left(v, \ell_{2}\right) \geq \cdots \geq d_{T}\left(v, \ell_{k}\right)$ by relabeling the vertices of T if necessary. For each $i \in[k]$, let $s_{i} \in N_{T}(v)$ such that s_{i} lies on the $v-\ell_{i}$ path in T, and let P^{i} denote the $s_{i}-\ell_{i}$ path in T. Let S be any basis for \bar{T}. Since $\operatorname{Sd}(T, \bar{T})=$ $\operatorname{dim}(T)$ by the hypothesis, there exists some $j \in[k]$ with $S \cap V\left(P^{j}\right)=\emptyset$ by Theorem 3.2 and $d_{T}\left(v, \ell_{j}\right)=1$; if $d_{T}\left(v, \ell_{j}\right) \geq 2$, then $\operatorname{code}_{\bar{T}, S}\left(s_{j}\right)=\operatorname{code}_{\bar{T}, S}\left(\ell_{j}\right)$, contradicting the assumption that S is a resolving set for \bar{T}. So, $N_{T}(v) \cap L_{v}(T) \neq \emptyset$ and $d_{T}\left(v, \ell_{k}\right)=1$. We may assume, without loss of generality, that $\left|S \cap V\left(P^{i}\right)\right|=1$ for each $i \in[k-1]$ and $S \cap V\left(P^{k}\right)=\emptyset$. It suffices to show that $d_{T}\left(v, \ell_{1}\right) \leq 2$. Assume, to the contrary, that $d_{T}\left(v, \ell_{1}\right)=d \geq 3$ and let $v-\ell_{1}$ path be given by $v=t_{0}, s_{1}=t_{1}, t_{2}, \ldots, t_{d}=\ell_{1}$. If $t_{1} \in S$, then $\operatorname{code}_{\bar{T}, S}\left(\ell_{1}\right)=\operatorname{code}_{\bar{T}, S}\left(\ell_{k}\right)$. If $t_{2} \in S$, then $\operatorname{code}_{\bar{T}, S}\left(t_{1}\right)=\operatorname{code}_{\bar{T}, S}\left(t_{3}\right)$. If $S \cap\left(\cup_{i=3}^{d}\left\{t_{i}\right\}\right) \neq \emptyset$, then $\operatorname{code}_{\bar{T}, S}\left(t_{1}\right)=\operatorname{code}_{\bar{T}, S}\left(\ell_{k}\right)$. So, $d_{T}\left(v, \ell_{1}\right) \leq$ 2.

Unicyclic graphs. For any unicyclic graph G of order $n \geq 3$, we show that $\operatorname{Sd}(G, \bar{G}) \in\{\operatorname{dim}(\bar{G}), 1+$ $\operatorname{dim}(\bar{G})\}$; moreover, we show that $\operatorname{Sd}(G, \bar{G})=\operatorname{dim}(\bar{G})$ for $n \geq 7$.

First, we determine $\operatorname{Sd}\left(C_{n}, \bar{C}_{n}\right)$ for $n \geq 3$. It is well known that $\operatorname{dim}\left(C_{n}\right)=2$, where $n \geq 3$.
Proposition 4.7. For $n \geq 3$,

$$
\operatorname{Sd}\left(C_{n}, \bar{C}_{n}\right)= \begin{cases}2 & \text { if } n=3 \\ \left\lfloor\frac{2 n+2}{5}\right\rfloor & \text { if } n \geq 4\end{cases}
$$

Proof. If $n=3$, then $\operatorname{Sd}\left(C_{3}, \bar{C}_{3}\right)=2$ by Theorem 2.7 (b). If $n \in\{4,5\}$, then $\operatorname{diam}\left(C_{n}\right)=2$; thus, $\operatorname{Sd}\left(C_{n}, \bar{C}_{n}\right)=\operatorname{dim}\left(C_{n}\right)=2$ by Theorem 2.10. If $n \geq 6$, then $\operatorname{diam}\left(\bar{C}_{n}\right)=2$, and thus

- $\operatorname{Sd}\left(C_{n}, \bar{C}_{n}\right)=\operatorname{dim}\left(\bar{C}_{n}\right)=\operatorname{adim}\left(\bar{C}_{n}\right)=\operatorname{adim}\left(C_{n}\right)=\left\lfloor\frac{2 n+2}{5}\right\rfloor$ by Theorem 2.10, Proposition 4.1 and Proposition 4.2.

Next, we consider $\operatorname{Sd}(G, \bar{G})$ for an arbitrary unicyclic graph G.
Lemma 4.8. Let G be a unicyclic graph of order $n \geq 4$ with $\operatorname{diam}(G)=2$. Then $G \in\left\{C_{4}, C_{5}\right\}$, or G is isomorphic to the graph H obtained from $K_{1, n-1}$ by joining two end vertices by an edge. Moreover,

$$
\operatorname{Sd}(G, \bar{G})=\operatorname{dim}(G)= \begin{cases}\operatorname{dim}(\bar{G}) & \text { if } G \in\left\{C_{4}, C_{5}\right\} \text { or } G=H \text { with } n \geq 5, \\ \operatorname{dim}(\bar{G})+1 & \text { if } G=H \text { with } n=4 .\end{cases}
$$

Proof. Let G be a unicyclic graph of order $n \geq 4$ with $\operatorname{diam}(G)=2$, and let $\mathscr{C}=C_{m}$ be the unique cycle of a unicyclic graph G given by $u_{1}, u_{2}, \ldots, u_{m}, u_{1}$, where $m \geq 3$. Then $m \in\{3,4,5\}$, since $m \geq 6$ implies $\operatorname{diam}(G) \geq 3$.

First, suppose $m=3$. Since $\operatorname{diam}(G)=2, \mathscr{C}$ must contain exactly one major vertex with all its terminal vertices adjacent to it (note that G is isomorphic to H); let $\ell_{1}, \ell_{2}, \ldots, \ell_{n-3}$ be the terminal vertices of its major vertex, say u_{1}, in G with $d_{G}\left(u_{1}, \ell_{i}\right)=1$, where $i \in[n-3]$. If $n=4$, then $\left\{u_{2}, u_{3}\right\}$ forms a basis for G, wherase $\left\{u_{2}\right\}$ forms a basis for \bar{G}; thus $\operatorname{Sd}(G, \bar{G})=\operatorname{dim}(G)=$ $2=1+\operatorname{dim}(\bar{G})$. If $n \geq 5$, then $\operatorname{Sd}(G, \bar{G})=\operatorname{dim}(G)=n-3=\operatorname{dim}(\bar{G})$: (i) for any resolving set S of either G or $\bar{G},\left|S \cap\left\{u_{2}, u_{3}\right\}\right| \geq 1$ and $\left|S \cap\left(\cup_{i=1}^{n-3}\left\{\ell_{i}\right\}\right)\right| \geq n-4$ by Observation 2.1; (ii) $\left\{u_{2}\right\} \cup\left(\cup_{i=2}^{n-3}\left\{\ell_{i}\right\}\right)$ forms a resolving set for both G and \bar{G}.

Next, suppose $m \in\{4,5\}$. Since $\operatorname{diam}(G)=2, G=\mathscr{C}$; thus $G \in\left\{C_{4}, C_{5}\right\}$. Since any two adjacent vertices of G form a resolving set for both G and $\bar{G}, \operatorname{Sd}(G, \bar{G})=\operatorname{dim}(G)=2=\operatorname{dim}(\bar{G})$.

Proposition 4.9. Let G be a unicyclic graph of order at least three. Let H_{1} be the graph obtained from $K_{1,3}$ by joining two end vertices by an edge, and let H_{2} be the graph obtained from P_{6} by adding an edge between the two support vertices. Then

$$
\operatorname{Sd}(G, \bar{G})= \begin{cases}\operatorname{dim}(G)=\operatorname{dim}(\bar{G})+1=2 & \text { if } G=H_{1}, \\ \operatorname{dim}(\boldsymbol{G})+1=\operatorname{dim}(\bar{G})+1 & \text { if } G=H_{2}, \\ \operatorname{dim}(\bar{G}) & \text { otherwise. }\end{cases}
$$

Proof. Let G be a unicyclic graph. We consider three cases as follow: (i) $\operatorname{diam}(G)=1$, (ii) $\operatorname{diam}(G)=2$ or $\operatorname{diam}(\bar{G})=2$, and (iii) $\operatorname{diam}(G)=3=\operatorname{diam}(\bar{G})$.

First, suppose $\operatorname{diam}(G)=1$; then $G=C_{3}$ and $\operatorname{Sd}\left(C_{3}, \bar{C}_{3}\right)=2=\operatorname{dim}\left(\bar{C}_{3}\right)=\operatorname{dim}\left(C_{3}\right)$ by Theorem 2.7(b).

Second, suppose $\operatorname{diam}(G)=2$ or $\operatorname{diam}(\bar{G})=2$. If $\operatorname{diam}(G)=2$, then $\operatorname{Sd}\left(H_{1}, \bar{H}_{1}\right)=2=$ $\operatorname{dim}\left(H_{1}\right)=1+\operatorname{dim}\left(\bar{H}_{1}\right)$ and $\operatorname{Sd}(G, \bar{G})=\operatorname{dim}(\bar{G})=\operatorname{dim}(G)$ for $G \neq H$ by Lemma 4.8. If $\operatorname{diam}(\bar{G})=2$, then $\operatorname{Sd}(G, \bar{G})=\operatorname{dim}(\bar{G})$ by Theorem 2.10.

Third, suppose $\operatorname{diam}(G)=3=\operatorname{diam}(\bar{G})$. Then $\operatorname{Sd}\left(H_{2}, \bar{H}_{2}\right)=\operatorname{dim}\left(\bar{H}_{2}\right)+1=\operatorname{dim}\left(H_{2}\right)+1$ and $\operatorname{Sd}(G, \bar{G})=\operatorname{dim}(\bar{G})$ for $G \neq H_{2}$ by Proposition 3.5.

5. Some remarks and open problems

In this section, we provide a realization result for $\operatorname{Sd}(G, \bar{G})$. In view of Corollary 2.4, we provide examples showing that $\min \{\operatorname{dim}(G)+\operatorname{dim}(\bar{G}),|V(G)|-1\}-\operatorname{Sd}(G, \bar{G})$ can be arbitrarily large. We conclude this paper with some open problems.

Theorem 5.1. For integers n, k with $\frac{n}{2}-1 \leq k \leq n-1$, there exists a connected graph G of order n with $\operatorname{Sd}(G, \bar{G})=k$.

Proof. The case $k=n-1$ is addressed by part (b) of Theorem 2.7. Let a pair of integers (n, k) with $n \geq 5$ and $\frac{n}{2}-1 \leq k \leq n-2$ be given. If G is the tree in Figure 4(a), then all but one vertex in $N_{G}(v)$ forms a basis for both G and \bar{G}, and thus $k=n-2$. Now, suppose G is the tree in Figure 4(b) with $e x(T)=2, \operatorname{ter}_{G}\left(v_{1}\right)=a \geq 2$ and $\operatorname{ter}_{G}\left(v_{2}\right)=b \geq 2$, where $0 \leq x \leq a-1$ and $0 \leq y \leq b-1$. If $x=1$, let $S_{1}=N_{G}\left(v_{1}\right) \cup N_{G}\left(v_{2}\right)-\left\{v_{2}, \ell_{a}, m_{b}\right\}$; if $x \neq 1$, let $S_{2}=N_{G}\left(v_{1}\right) \cup N_{G}\left(v_{2}\right)-\left\{v_{1}, v_{2}, \ell_{a}\right\}$. Note that $\left|S_{1}\right|=\left|S_{2}\right|=\sigma(G)-1$. Then $k=\operatorname{dim}(\bar{G})=\sigma(G)-1$, where $\frac{n}{2}-1 \leq k=n-(x+y+3) \leq n-3$, by Theorem 4.4, Theorem 4.5, and the fact that S_{1} (when $x=1$) or S_{2} (when $x \neq 1$) is a resolving set for \bar{G}.

(a) $k=n-2$

(b) $\frac{n}{2}-1 \leq k \leq n-3$

FIGURE 4. Realization graphs G such that $|V(G)|=n$ and $\operatorname{Sd}(G, \bar{G})=k$, where $\frac{n}{2}-1 \leq k \leq n-2$.

Proposition 5.2. There is a family of graphs G such that $\min \{\operatorname{dim}(G)+\operatorname{dim}(\bar{G}),|V(G)|-1\}-$ $\operatorname{Sd}(G, \bar{G})$ can be arbitrarily large.

Proof. Let G be the tree in Figure 5 with $k \geq 2$ exterior major vertices v_{1}, \ldots, v_{k} such that $\operatorname{ter}_{G}\left(v_{i}\right)=2$ for each $i \in[k]$. Then $\operatorname{dim}(G)=k$ by Theorem 3.1 and $\operatorname{Sd}(G, \bar{G})=\operatorname{dim}(\bar{G})=2 k-1$ by Theorem 4.4, Theorem 4.5 and the fact that $\left(\cup_{i=1}^{k-1} L_{v_{i}}(G)\right) \cup\left\{\ell_{k}\right\}$ forms a resolving set for \bar{G}. So, $\operatorname{dim}(G)+\operatorname{dim}(\bar{G})=3 k-1=|V(G)|-1$ and $\min \{\operatorname{dim}(G)+\operatorname{dim}(\bar{G}),|V(G)|-1\}-\operatorname{Sd}(G, \bar{G})=$ $3 k-1-(2 k-1)=k$ can be arbitrarily large, as $k \rightarrow \infty$.

FIGURE 5. A graph G such that $\min \{\operatorname{dim}(G)+\operatorname{dim}(\bar{G}),|V(G)|-1\}-\operatorname{Sd}(G, \bar{G})$ can be arbitrarily large, where $k \geq 2$.

We conclude this paper with some open problems.
Question 1. Let G and \bar{G} be connected graphs of order $n \geq 4$. Then $2 \leq \operatorname{Sd}(G, \bar{G}) \leq n-2$ by Corollary 2.4 and Theorem 2.7. Can we characterize graphs G satisfying $\operatorname{Sd}(G, \bar{G})$ equals 2 and $n-2$, respectively? valuable comments and helpful suggestions which improved the paper. In particular, the authors thank the referee for pointing out Proposition 3.8, along with its proof.

References

[1] G.A. Barragán-Ramírez, A. Estrada-Moreno, Y. Ramírez-Cruz and J.A. Rodríguez-Velázquez, The simultaneous local metric dimension of graph families. Symmetry 9 (2017) \#132.
[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications. North-Holland, 1976.
[3] R.C. Brigham and R.D. Dutton, Factor domination in graphs. Discrete Math. 86 (1990) 127-136.
[4] G. Chartrand, L. Eroh, M.A. Johnson and O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math. 105 (2000) 99-113.
[5] A. Estrada-Moreno, C. García-Gómez, Y. Ramírez-Cruz and J.A. Rodríguez-Velázquez, The simultaneous strong metric dimension of graph families. Bull. Malays. Math. Sci. Soc. 39 (2016) 175-192.
[6] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York, 1979.
[7] F. Harary and R.A. Melter, On the metric dimension of a graph. Ars Combin. 2 (1976) 191-195.
[8] C. Hernando, M. Mora, I.M. Pelayo, C. Seara and D.R. Wood, Extremal graph theory for metric dimension and diameter. Electron. J. Combin. (2010) \#R30.
[9] M. Jannesari and B. Omoomi, The metric dimension of the lexicographic product of graphs. Discrete Math. 312 (2012) 3349-3356.
[10] C.X. Kang, I. Peterin and E. Yi, The simultaneous fractional dimension of graph families. Acta Math. Sin. (Engl. Ser.) (2023) https://doi.org/10.1007/s10114-023-1205-z.
[11] S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs. Discrete Appl. Math. 70 (1996) 217-229.
[12] C. Poisson and P. Zhang, The metric dimension of unicyclic graphs. J. Combin. Math. Combin. Comput. 40 (2002) 17-32.
[13] Y. Ramírez-Cruz, A. Estrada-Moreno and J. A. Rodríguez-Velázquez, Simultaneous resolvability in families of corona product graphs. Bull. Malays. Math. Sci. Soc. 41 (2018) 1541-1560.
[14] Y. Ramírez-Cruz, A. Estrada-Moreno and J. A. Rodríguez-Velázquez, The simultaneous metric dimension of families composed by lexicographic product graphs. Graphs Combin. 32 (2016) 2093-2120.
[15] Y. Ramírez-Cruz, O.R. Oellermann and J.A. Rodríguez-Velázquez, Simultaneous resolvability in graph families. Electron. Notes Discrete Math. 46 (2014) 241-248.
[16] Y. Ramírez-Cruz, O.R. Oellermann and J.A. Rodríguez-Velázquez, The simultaneous metric dimension of graph families. Discrete Appl. Math. 198 (2016) 241-250.
[17] P.J. Slater, Leaves of trees. Congr. Numer. 14 (1975) 549-559.
Texas A\&M University at Galveston, Galveston, TX 77553, USA
Email address: kangc@tamug. edu
University of Maribor, FEECS Koroška c. 46, 2000 Maribor, Slovenia
Email address: iztok.peterin@um.si
Texas A\&M University at Galveston, Galveston, TX 77553, USA
Email address: yie@tamug.edu

[^0]: This research was partially supported by US-Slovenia Bilateral Collaboration Grant (BI-US/19-21-077).
 The second author is also with IMFM, Jadranska 19, Ljubljana, Slovenia.
 2020 Mathematics Subject Classification. 05C12, 05C69.
 Key words and phrases. diameter, metric dimension, simultaneous resolving set, simultaneous metric dimension, complement of a graph, trees, unicyclic graphs.

