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A NUMERICAL APPROACH BASED ON VIETA-FIBONACCI POLYNOMIALS TO
SOLVE FRACTIONAL ORDER ADVECTION-REACTION DIFFUSION PROBLEM

RASHMI SHARMA AND RAJEEV

ABSTRACT. In this article, we attempt to provide the numerical solution for a non-linear reaction-
advection diffusion equation with fractional-order space-time derivatives in a finite domain. In the
proposed scheme, time fractional derivative in Caputo sense is approximated by using the non-standard
finite difference method and the fractional space derivative is specifically approximated by using Vieta-
Fibonacci polynomials. These approximations generate a system of ordinary differential equations which
is converted into an equivalent system of algebraic equations by using collocation method. Finally,
the obtained system of algebraic equations is solved to find the dependent variables (unknowns) of the
considered problem. The stability and convergence related to the time discreatization of this approach are
also discussed. In this study, the effectiveness and precision of the proposed scheme are analyzed with
the help of examples, and it is observed that the proposed scheme is sufficiently accurate and efficient
technique. Also, the effects of fractional-order derivatives on concentration profiles are discussed.

1. Introduction

Groundwater is one of the essential needs of the living species and the quality of groundwater
directly affects the human’s life. An undesirable change in the quality of groundwater due to human
activities is called groundwater contamination/pollution. Generally, groundwater contains several
minerals in limited quantity, and the amount of minerals ions in water is measured in terms of the
total dissolved solids (TDS) concentration. Nowadays groundwaters are getting polluted (water with
high TDS concentration) due to the presence of a high concentration of some trace elements such
as Arsenic and chronic. Groundwater pollution have different sources such as, fertilizers, pesticides,
road salt, industrial wastes, etc,. It is also observed that the surface water is transported to the
groundwater via caverns and open fissures without passing through a filter. All these substances diffuse
into the groundwater through the existing natural porous media. In the literature, the mathematical
formulations of solute transport in groundwater was presented by Bear and Verruijt [1], Fried [2],
Gomez-Aguilar et al. [3] etc,. The phenomenon of transferring various physical quantities, such as
particles, energy, or other quantities, into a physical system due to diffusion and advection processes
are governed by advection-diffusion equations. Concentration gradients cause diffusion in the soil
column, and advection will also contribute to the flow of chemical species if bulk fluid motion is
present. Determining the combined effect of diffusion and advection along with the reaction term on the
solution profile is a challenging task. The reaction-advection-diffusion equations arise in a wide range
of scientific disciplines, such as biology, industrial, aerospace sciences, astrophysics and environmental
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problems. The application of reaction-advection-diffusion equations can also be seen in the prediction
of weather, various chemical reactions, transport of water vapor in the Earth’s atmosphere, the process
of energy and mass transfer, etc,.

In the last decade, the differential equations with fractional order have been attracted by many
researchers because these equations are widely used for describing a variety of phenomena in the
various fields, for example, medical and biological sciences, geological science, diffusion processes,
heat and mass transfer, etc,. A brief introduction of fractional calculus can be seen in [4], and some
recent works related to fractional derivative can also be found in [5], [6], [7], [8], [9], [10], [11]. The
notion of a variable-order differential operator is an improvement, and its applications are rapidly
growing due to its potential for describing many practical problems in different fields, such as problems
of porous media [12], thermoelasticity [13], petroleum engineering [14], and many more branches of
engineering and science.

The fractional reaction-advection-diffusion equation derives from the classic reaction-advection-
diffusion equations and can be more properly model complicated physical phenomena like anomalous
diffusion and sub/super diffusion and have features of temporal heredity and spatial global dependence.
Compared with integer-order model, the fractional-order reaction-advection-diffusion model has a
benefits of more describing complex processes, like heat conduction, seepage, convection diffusion,
viscoelasticity, anomalous diffusion, and turbulence compared to its integer-order equivalent.

The variable-order fractional reaction advection-diffusion equation (RADEs) have a stronger ability
to describe the diffusion process as compare to the fractional-order RADEs. From the literature survey,
it is found that the variable-order fractional differential operator has become promising approach for
describing the non-local properties. In the literature of variable-order RADEs, several methematical
models have been presented by many authors, for example Heydari et al. [15] presented a model of
coupled non-linear RADEs with variable-order (VO) fractional Caputo-Fabrizio derivative. Zhuang et
al. [16] presented advection-diffusion equation (ADEs) with VO fractional derivative and a non-linear
source term. They discussed Euler’s scheme to solve the problem with stability and convergency of that
method. Chen et al. [17] discussed a model of transport dynamics that involves a multi-term space-time
VO fractional ADEs and they presented its solution with implicit numerical scheme. Kheirkhah et
al. [18] presented a class of mathematical models of subdiffusion equations with VO time-fractional
derivative, and they discussed a numerical solution for the problem. Owolabi [19] modeled the
space-time fractional reaction-diffusion equation with the Caputo and Riesz operators. Agarwal et
al. [20] formulated a numerical method based on Vieta-Fibonacci operational matrices to present an
approximate solution to integro-diiferential equations with fractional VO derivative. Some more papers
related to variable-order fractional derivative can be seen in [21], [22], [23], [24], [25], [26], [27].

Since the exact solution of several variable-order fractional ARDEs is very tough to find so in the
literature, many numerical methods have been proposed. Dai et al. [28] introduced a new approach
based on Legendre polynomials to find the approximate solution of ARDEs with time VO fractional
derivative. An efficient approximate scheme is developed by Hosseininia et al. [29] to solve 2D
ARDEs. This scheme is based on radial basis function and Bernoulli polynomials in shifted form. Qu
et al. [30] presented a neural network method to solve the space-time VO fractional ADEs including
a non-linear source term. In order to solve the VO fractional RADEs, Sharma and Rajeev [26], [27]
discussed an operational matrix method based on different polynomials.
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Due to the physical relevance, there is a lot of scope for researchers to explore variable-order ARDEs.
In the present article, the authors consider the following VO time-space ARDEs in the Caputo sense:

C
0 Dα(w,ρ)

ρ ζ (w,ρ) =ϑ(ζ ,w,ρ)C0 D1+β (w,ρ)
w ζ (w,ρ)−δ (ζ ,w,ρ)C0 Dγ(w,ρ)

w ζ (w,ρ)

+λζ (ζ −1)(1−ζ )+ f (w,ρ),(1)

0 < α(w,ρ)≤ 1, 0 < β (w,ρ)≤ 1, 0 < γ(w,ρ)≤ 1,

with the following conditions:

ζ (w,0) = g1(w),

ζ (0,ρ) = g2(ρ),

ζ (1,ρ) = g3(ρ),(2)

where 0 ≤ ρ ≤ 1, 0 ≤ w ≤ 1, α(w,ρ) and β (w,ρ) are respectively time and space VO fractional
derivatives in the Caputo sense, γ(w,ρ) is the space fractional order derivative, f (w,ρ) is the forced
term. The solute concentration is denoted by ζ (w,ρ), the initial solute concentration is denoted by
g1(w), g2(ρ) and g3(ρ) are describe the concentration at boundary points. In the reaction term, if
λ=0, then the system is called conservative otherwise non-conservative. In the present model, we
have consider the nonlinear diffusion and advection terms with nonlinear reaction term. From [31],
it is clear that the nonlinear diffusive term increases the solute concentration in comparison to the
linear diffusion case. In this study, our aim is to discuss the effect of nonlinear diffusion and advection
terms on the solute transportations in the fluid flow of porous media. The physical phenomena like
fast diffusion or slow diffusion is very much relevant for the porous media, and thus, the presence of
nonlinear term plays an important role from the physical point of view as compared to a linear model.
This has motivated the authors to solve a such type of porous media problem.

Here is a summary of the paper’s organization. In section 2 we define an important tools and
characteristics of the shifted Vieta-Fibonacci polynomials (SVFPs) to aid in the development of our
proposed scheme. Section 3 discuss about approximation of an arbitrary function and the operational
matrices for the takenpolynomials. Section 4 presents a brief overview of the developed scheme.
Section 5 conclude about discussion of error analysis. Section 6 describes the numerical computations
of the study, and the conclusion is presented in section 7.

2. Preliminary

This section provides some important definitions and properties of the SVFPs which are needed in the
remaining part ot the article.

2.1. Basic Definitions. Assume a continuous function ξ : [0,1]× [0,T ]−→ (q−1,q]. For any arbi-
trary function ν(w,ρ), the VO fractional temporal partial differentiation of order ξ (w,ρ) in the Caputo
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sense ([21], [22]) is given by

C
0 Dξ (w,ρ)

ρ ν(w,ρ) =


1

Γ(q−ξ (w,ρ))

∫
ρ

0
(ρ−η)q−(ξ (w,ρ)+1) ∂ qν(w,η)

∂ηq dη , q−1 < ξ (w,ρ)≤ q

∂ qν(w,ρ)
∂ρq , ξ (w,ρ) = q ∈ N.

(3)

2.2. SVFPs. The well-known Vieta-Fibonacci polynomials are defined on the interval [-2,2] and
satisfy the following recurrence relation

VFk(w) = yVFk−1(w)−VFk−2(w), k = 2,3, ...,

where

VF0(w) = 0, VF1(w) = 1.

The weight function
√

4−w2 and the Vieta-Fibonacci polynomials VFk(w) are orthogonal on [-2,2] in
the following way:

〈VFk1(w),VFk2(w)〉 =
∫ 2
−2

√
4−w2VFk1(w)VFk2(w)dw =

{
0, k1 6= k2,

2π, k1 = k2.

To use Vieta-Fibonacci polynomials on the interval [0,1], let us define the SVFPs by taking w=4w−2.
Let the SVFPs VFi(4w−2) be denoted by VF∗i (w). Then VF∗i (w) can be obtained as follows:

VF∗k(w) = (4w−2)VF∗k−1(w)−VF∗k−2(w), k = 2,3, ...,

where VF∗0(w)=0 and VF∗1(w)=1. The analytic form of the SVFPs VF∗i (w) is given below:

(4) VF∗k(w) =
k

∑
i=0

(−1)i 22k−2i−2Γ(2k− i)
Γ(i+1)Γ(2k−2i)

wk−i−1, k ∈ Z+

or

(5) VF∗k(w) =
k

∑
i=0

(−1)k−i−1 22iΓ(k+ i+1)
Γ(k− i)Γ(2i+2)

wi, k ∈ Z+

By considering the weight function χ(w) =
√

w−w2 the polynomials VF∗k(w) are orthogonal in the
following manner:

〈VF∗k1(w),VF∗k2(w)〉=
∫ 1

0

√
w−w2VF∗k1(w)VF∗k2(w)dw,

=


0, k1 6= k2,
π

8
, k1 = k2 6= 0.

(6)
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3. Aproximation of an Arbitrary Function

Suppose `(ρ) =
[
VF∗1(ρ), ...,VF∗(k+1)(ρ)

]T
∈ L2[0,1] is the set of SVFPs. Then a function ζ (ρ) ∈

L2[0,1] can be written in terms of SVFPs as:

ζ (ρ) =
∞

∑
i=1

ciVF∗i (ρ),(7)

the following formula is used to determine the coefficients ci as follow

ci =
8
π

∫ 1

0
ζ (ρ)VF∗i (ρ)χ(ρ)dρ.(8)

An endeavour can truncate the above series as follows:

ζk(ρ)'
n+1

∑
i=1

ciVF∗i (ρ) =CT `(ρ),(9)

where notation T means transposition and

C = [c1,c2, ...,ck+1]
T ,(10)

`(ρ) =
[
VF∗1(ρ),VF∗2(ρ), ...,VF∗k+1(ρ)

]T
.(11)

Similiarly, an arbitrary function ζ (w,ρ) ∈ L2[0,1]×L2[0,1] can be written in terms of SVFPs as:

ζk(w,ρ)'
k+1

∑
i=1

k+1

∑
j=1

ci jVF∗i (w)VF∗j(ρ) = `T (w)C`(ρ),(12)

where the entries of the matrix C=[ci j] can be calculated as

ci j =
64
π2

∫ 1

0

∫ 1

0
ζ (w,ρ)VF∗i (w)VF∗j(ρ)χ(w)χ(ρ)dwdρ.(13)

The definition of the first-order derivative for shifted Vieta-Fibonacci vector `(ρ) is given as:

d`(ρ)
dρ

= D`(ρ)(14)

where `(.) is defined in Eq. (11) and D is the (k + 1)×(k + 1) operational matrix of the shifted
Vieta-Fibonacci vector `(ρ) for first-order derivative with the following entries:

D =

{
4 j, i = 2,3, ...(k+1), j = 1,2, ..., i−1, i+ j is odd,

0, otherwise.
(15)
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3.1. The Operational Matrix for Fractional Differentiation.

Lemma 1. Let VF∗i (w) be a SVFPs then
C
0 Dξ (w,ρ)

w VF∗i (w) = 0, i = 1, ..., p−1, p−1 < µ(w,ρ)≤ p, p ∈ N.(16)

In the following theorem, we generalise the operational matrix of SVFPs for fractional derivative of
variable order.

Theorem 2. Let `(w) be shifted Vieta-Fibonacci vector defined as Eq. (11) and also suppose ξ (w,ρ)>
0 then

C
0 Dξ (w,ρ)

w `(w) = Ψ
ξ (w,ρ)
w `(w),(17)

where Ψ
ξ (w,ρ)
w is the operational matrix of order (k + 1)×(k + 1) for fractional differentiation of

variable order ξ (w,ρ), which is described as below:

(18) Ψ
ξ (w,ρ)
w = w−ξ (w,ρ)



0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

∑
p
i=p Π

ξ (w,ρ)
p,z,i,1 ∑

p
i=p Π

ξ (w,ρ)
p,z,i,2 · · · ∑

p
i=p Π

ξ (w,ρ)
p,z,i,k+1

...
... · · ·

...

∑
k
i=p Π

ξ (w,ρ)
k,z,i,1 ∑

k
i=p Π

ξ (w,ρ)
k,z,i,2 · · · ∑

k
i=p Π

ξ (w,ρ)
k,z,i,k+1

...
... · · ·

...

∑
k+1
i=p Π

ξ (w,ρ)
k+1,z,i,1 ∑

k+1
i=p Π

ξ (w,ρ)
k+1,z,i,2 · · · ∑

k+1
i=p Π

ξ (w,ρ)
k+1,z,i,k+1


,

where

Π
ξ (w,ρ)
k,z,i. j =

8
π

j

∑
z=0

(−1)(k+ j−z−i−2)(2)2(z+i)Γ(k+ j+ z+ i+2)Γ(i+1)
Γ(k− i)Γ( j− z)Γ(2z+2)Γ(2i+2)Γ(i+1−ξ (w,ρ))

(√
π

2
Γ(i+ z+3/2)

i+ z+3

)
.(19)

Proof. The proof is done in [26]. �

4. Discription of the Present Method

In this section we use operational matrix scheme which is based on SVFPs to find the approximate
solution of following nonlinear variable-order fractional ARDEs:

C
0 Dα(w,ρ)

ρ ζ (w,ρ) =ϑ(ζ ,w,ρ)C0 D1+β (w,ρ)
w ζ (w,ρ)−δ (ζ ,w,ρ)C0 Dγ(w,ρ)

w ζ (w,ρ)

+λζ (ζ −1)(1−ζ )+ f (w,ρ),(20)

0 < α(w,ρ)≤ 1, 0 < β (w,ρ)≤ 1, 0 < γ(w,ρ)≤ 1.

with following conditions:

ζ (w,0) = g1(w),

ζ (0,ρ) = g2(ρ),

ζ (1,ρ) = g3(ρ).(21)
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where 0 ≤ w ≤ 1, 0 ≤ ρ ≤ 1. We shall approximate ζ (w,ρ) by SVFPs as

ζk(w,ρ)'
k+1

∑
i=1

k+1

∑
j=1

ci jVF∗i (w)VF∗j(ρ),(22)

where ci j are the unknown coefficients for i = 1, ...,(k+1), and j = 1, ...,(k+1).
Now, we write

ζk(w,ρ) = (`(w))T C`(ρ),(23)

where matrix C = [ci j](k+1)×(k+1) is of unknowns and `(ρ) = [VF∗1(ρ),VF∗2(ρ), ...,VF∗k+1(ρ)]
T is a

column vector. Now, substituting
C
0 Dα(w,ρ)

ρ ζ (w,ρ) = (`(w))T .C.(C0 D
α(w,ρ)
ρ

`(ρ)) = (`(w))T .C.(Ψα(w,ρ)
ρ `(ρ)),(24)

C
0 Dγ(w,ρ)

w ζ (w,ρ) = (C0 D
γ(w,ρ)
w `(w))T .C.`(ρ) = (Ψ

γ(w,ρ)
w `(w))T .C.`(ρ),(25)

C
0 D1+β (w,ρ)

w ζ (w,ρ) = (C0 D
1+β (w,ρ)
w `(w))T .C.`(ρ) = (Ψ

1+β (w,ρ)
w `(w))T .C.`(ρ),(26)

in the Eq.(20), we get

(`(w))T .C.(Ψα(w,ρ)
ρ `(ρ)) =ϑ(((`(w))T .C.`(ρ)),w,ρ).(Ψ1+β (w,ρ)

w `(w))T .C.`(ρ)

−δ (((`(w))T .C.`(ρ)),w,ρ).(Ψγ(w,ρ)
w `(w))T .C.`(ρ)

+λ (((`(w))T .C.`(ρ)).((`(w))T .C.`(ρ)−1).(1− (`(w))T .C.`(ρ))

+ f (w,ρ).(27)

from the conditions (2) and the Eq. (23), we get

(`(w))T C`(0) = g1(w), (`(0))T C`(ρ) = g2(ρ), (`(1))T C`(ρ) = g3(ρ).(28)

Now, we collocate Eq. (27) with the aid of Eq. (28) at points wi =
i
k for i=1,2,..,N and ρi =

i
k where

i = 1,2, ...,k. A set of nonlinear algebraic equations is generated in this stage which yields the solution
for coefficients of the matrix C. Using this method, we can obtain the numerical solution for our
suggested VO fractional ARDEs, (1)(2).

5. Convergence and Error Analysis

Theorem 3. Assume that ζk(w,ρ) be the approximation of ζ (w,ρ) in the terms of shifted Vieta-
Fibonacci polynomials. If the function ζ (w,ρ) has continuous bounded derivatives of fourth partial
order, i.e. ζ

′′′′
k (w,ρ) ≤ K, then the numerical solution series ζk(w,ρ) converges uniformly to the

function ζ (w,ρ). In addition, the coefficients υi j is bounded, i.e.∣∣υi j
∣∣≤ K

4(i−2)2( j−2)2 i > 2, j > 2.

Proof. The proof of this theorem is given in [10], and one can conclude that the series ∑
∞
i=1 ∑

∞
j=1 υi j is

absolutely and uniformly convergent and hence the approximate solution series uniform converges to
the function ζ (w,ρ). �
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Theorem 4. Assume that the approximate solution ζk(w,ρ) is the best approximation to the ζ (w,ρ)
as stated in Eq. (12). Suppose that the function ζ (w,ρ) is continuously differentiable k times on [0,1]
and M is any number such that for all w′ between 0 and 1 and all ρ ′ between 0 and 1,∣∣∣∣∣k+1

∑
i=0

∂ k+1

∂wi∂ρk+1−i ζ (w
′,ρ ′)

∣∣∣∣∣≤M,

then

||ζ (w,ρ)−ζk(w,ρ)||L2 ≤


M

∣∣∣∣∣ (k+2)
k+1

2 ! k+1
2 !

∣∣∣∣∣ π

8
, k = odd,

M

∣∣∣∣∣(k+2)
k
2 ! k+1

2 !

∣∣∣∣∣ π

8
, k = even.

(29)

Proof. By using Taylor’s theorem, expanding ζ (w,ρ) about the point (w0,ρ0), we get

ζ (w,ρ) =ζ (w0,ρ0)+ζw(w0,ρ0)(w−w0)+ζρ(w0,ρ0)(ρ−ρ0)+
ζww(w0,ρ0)

2
(w−w0)

2

+ζwρ(w0,ρ0)(w−w0)(ρ−ρ0)+
ζρρ(w0,ρ0)

2
(ρ−ρ0)

2 + ...

+
k+1

∑
i=0

k+1−i

∑
j=0

d(i+ j)ζ
∂wi∂ρ j (κ,θ)

i! j!
(w−κ)i(ρ−θ) j +

∂ k+1

∂wk+1 ζ (κ,θ)

k+1!
(w−w0)

k+1

+

∂ k

∂wk
∂

∂ρ
ζ (κ,θ)

k!1!
(w−w0)

k(ρ−ρ0)+

∂ k−1

∂wk−1
∂ 2

∂ρ2 ζ (κ,θ)

(k−1)!2!
(w−w0)

(k−1)(ρ−ρ0)
2 + ...

+

∂ k+1

∂ρk+1 ζ (κ,θ)

k+1!
(ρ−ρ0)

k+1,(30)

where the point (w0,ρ0) ∈ [0,1]× [0,1] and (κ,θ) ∈ (w0,w)× (ρ0,ρ). Suppose k+ 1 terms of the
series (37) is the approximation (ζ̃k(w,ρ)) of ζ (w,ρ), i.e.

ζ̃k(w,ρ) =
k

∑
r=0

k−r

∑
s=0

∂ r

∂wr
∂ s

∂ρs ζ (w0,ρ0)

r!s!
(w−w0)

r(ρ−ρ0)
s,(31)

then the absolute error is defined as follows:

||ζ (w,ρ)− ζ̃k(w,ρ)||

=

∣∣∣∣∣∣
∂ k+1

∂wk+1 ζ (κ,θ)

k+1!
(w−w0)

k+1 +

∂ k

∂wk
∂

∂ρ
ζ (κ,θ)

k!1!
(w−w0)

k(ρ−ρ0)+ ...+

∂ k+1

∂ρk+1 ζ (κ,θ)

k+1!
(ρ−ρ0)

k+1

∣∣∣∣∣∣ .
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A NUMERICAL TECHNIQUE FOR SOLVING ARDE 9

Since, ζk(w,ρ), is the best square approximation of ζ (w,ρ), then the following inequality holds:

||ζ (w,ρ)−ζk(w,ρ)||2 ≤ ||ζ (w,ρ)− ζ̃k(w,ρ)||2

=
∫ 1

0

∫ 1

0
χ(w)χ(ρ)

[
ζ (w,ρ)− ζ̃k(w,ρ)

]2
dwdρ,

where χ(w) =
√

w−w2 and χ(ρ) =
√

ρ−ρ2.
After some mathematical calculations, we get

||ζ (w,ρ)−ζk(w,ρ)||2 ≤


M2

∣∣∣∣∣ (k+2)
k+1

2 ! k+1
2 !

∣∣∣∣∣
2 ∫ 1

0

∫ 1

0
χ(w)χ(ρ)dwdρ, k = odd,

M2

∣∣∣∣∣(k+2)
k
2 ! k

2 !

∣∣∣∣∣
2 ∫ 1

0

∫ 1

0
χ(w)χ(ρ)dwdρ, k = even.

(32)

Then Eq. (32) can be rewitten as:

||ζ (w,ρ)−ζk(w,ρ)||2 ≤


M2

∣∣∣∣∣ (k+2)
k+1

2 ! k+1
2 !

∣∣∣∣∣
2

π2

64
, k = odd,

M2

∣∣∣∣∣(k+2)
k
2 ! k

2 !

∣∣∣∣∣
2

π2

64
, k = even.

(33)

After some mathematical manipulation to the square root of Eq.(34), we achive an upper bound and
subsequently ||ζ (w,ρ)− ζk(w,ρ)|| → 0 tends to zero with the order of O

(1
k

)
when k→ ∞, which

establishes that the approximate solution becomes nearly equal to the exact solution if k is high enough.
The proof is finished. �

6. Numerical Experiments

Now, we take the following two examples to show the accuracy of the suggested approach:
Example 6.1. Let us consider the following VO time fractional diffusion equation [23]:

∂ α(w,ρ)ζ (w,ρ)
∂ρα(w,ρ)

=
∂ 2ζ (w,ρ)

∂w2 + f (w,ρ),(34)

with initial and boundary conditions

ζ (w,0) = 0, w ∈ [0,1],(35)

ζ (0,ρ) = ρ
ρ , ζ (1,ρ) = ρ

ρe, t ∈ [0,1],(36)

where f (w,ρ) = ρρew
(

Γ(ρ+1)
Γ(ρ+1−α(w,ρ))ρ

−α(w,ρ)−1
)

, ρ ∈ R+.

As given by [24], [25], we define experimental convergence order (ECO) as

(37) ECO =
log
(

Rk1 (ρ)

Rk2 (ρ)

)
log
(

k2
k1

) ,
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A NUMERICAL TECHNIQUE FOR SOLVING ARDE 10

where Rk1(ρ) and Rk2(ρ) are the maximum absolute error arisen in the k1 and k2 simulations at time ρ .
The exact solution of the problem (34)-(36) is ζ (w,ρ) = ρρew. This problem has been solved by

accurate discretization technique [23] for different derivative orders α(w,ρ) and ρ=5. The L∞ errors
of obtained approximated solution by proposed method are compared with results of [23] and these
errors are depicted in Table (1). From this table, it is clear that the accuracy of our proposed approach
is better than the technique discussed by Hajipour et al. [23]. Table (2) demonstrates the effect of k on
the convergence of the solutions. It can be realised that by increasing the degree of SVFPs (k), the
solutions converge with higher precision. It is evident that ECO≈1 with respect to k. It is notice from
the table that as the value of k increases, the maximum absolute error (MAE) reduces and eventually
the solutions converges to exact value. Table (1) and (2) confirm that the solution is convergent with
high accuracy and an acceptable convergence rate that demonstrates the validity and usefulness of our
proposed numerical approach.

TABLE 1. Comparison of L∞ error for different functions with asending order of
polynomial degree k.

α(w,ρ) k error [23] k proposed MAE
4 3.0923×10−6 3 4.3527×10−9

8 1.9362×10−7 5 8.7953×10−10

e−w

300 16 1.2190×10−8 8 3.5663×10−11

32 7.6231×10−10 11 2.0175×10−12

64 4.7680×10−11 15 2.9906×10−13

4 3.0899×10−6 3 4.3457×10−9

8 1.9347×10−7 5 8.7562×10−10

2w+1
300 16 1.2181×10−8 8 3.5659×10−11

32 7.6171×10−10 11 1.9968×10−12

64 4.7645×10−11 15 2.9857×10−13

4 2.8766×10−6 3 3.9785×10−9

8 1.8012×10−7 5 7.1658×10−10

20e
w
2 −12

20e
w
2 −10

16 1.1242×10−8 8 3.1589×10−11

32 7.0088×10−10 11 1.2382×10−12

64 4.3802×10−11 15 1.1253×10−13

TABLE 2. Table of maximum absolute error and ECO for example 6.1.

k 11 12 13 14 15
MAE 1.091425×10−12 6.18592×10−13 3.98012×10−13 2.77169×10−13 2.03905×10−13

ECO - 0.98684 0.98807 0.99235 0.99569
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0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

w

ζ
(w
,0
.5
)

α(w,ϱ)=1

α(w,ϱ)=0.9+0.01 w2ϱ2

α(w,ϱ)=0.7+0.01 w2ϱ2

α(w,ϱ)=0.5+0.01 w2ϱ2

FIGURE 1. Plot of solute concentration ζ (w,ρ) vs. w for nonconservative system
when α(w,ρ) = x+0.01w2ρ2.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

w

ζ
(w
,0
.5
)

α(w,ϱ)=1

α(w,ϱ)=0.9+0.01 w2ϱ2

α(w,ϱ)=0.7+0.01 w2ϱ2

α(w,ϱ)=0.5+0.01 w2ϱ2

FIGURE 2. Plot of solute concentration ζ (w,ρ) vs. w for conservative system when
α(w,ρ) = x+0.01w2ρ2.

Example 6.2. Let us take ϑ(w,ρ) = −Γ(2.6)w0.4ρ1.4

Γ(2.4) , δ (ζ ,w,ρ) = −5Γ(1.4)w1.6ρ1.4

Γ(2.4) and λ=0 then we
have the following non-linear fractional-order ADE :

Dα(w,ρ)
ρ ζ (w,ρ) =

−Γ(2.6)w0.4ρ1.4

Γ(2.4)
D1+β (w,ρ)

w ζ (w,ρ)

+
5Γ(1.4)w1.6ρ1.4

Γ(2.4)
Dγ(w,ρ)

w ζ (w,ρ)+ f (w,ρ),(38)
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0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

w

ζ
(w
,0
.5
)

β(w,ϱ)=0.35-0.25Exp[-wϱ]

β(w,ϱ)=0.55-0.25Exp[-wϱ]

β(w,ϱ)=0.75-0.25Exp[-wϱ]

β(w,ϱ)=1

FIGURE 3. Plot of solute concentration ζ (w,ρ) vs. w for nonconservative system
when β (w,ρ) = x−0.25exp[−wρ].

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

w

ζ
(w
,0
.5
)

β(w,ϱ)=0.35-0.25Exp[-wϱ]

β(w,ϱ)=0.55-0.25Exp[-wϱ]

β(w,ϱ)=0.75-0.25Exp[-wϱ]

β(w,ϱ)=1

FIGURE 4. Plot of solute concentration ζ (w,ρ) vs. w for conservative system when
β (w,ρ) = x−0.25exp[−wρ].

subject to the given conditions:

ζ (w,0) = w2, 0≤ w≤ 1,(39)

ζ (0,ρ) = 0,(40)

ζ (1,ρ) = 1+4ρ
2,(41)
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0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

w

ζ
(w
,0
.5
)

γ(w,ϱ)=0.65+0.35Cos[3πwϱ]

γ(w,ϱ)=0.65+0.35Cos[2πwϱ]

γ(w,ϱ)=0.65+0.35Cos[πwϱ]

γ(w,ϱ)=1

FIGURE 5. Plot of solute concentration ζ (w,ρ) vs. w for nonconservative system
when γ(w,ρ) = 0.65−0.35cos[xwρ].

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

w

ζ
(w
,0
.5
)

γ(w,ϱ)=0.65+0.35Cos[3πwϱ]

γ(w,ϱ)=0.65+0.35Cos[2πwϱ]

γ(w,ϱ)=0.65+0.35Cos[πwϱ]

γ(w,ϱ)=1

FIGURE 6. Plot of solute concentration ζ (w,ρ) vs. w for conservative system when
γ(w,ρ) = 0.65−0.35cos[xwρ].

where

α(w,ρ) = 0.6, β (w,ρ) = 1.6, γ(w,ρ) = 0.6, f (w,ρ) =
−32 w2ρ3.4

Γ(2.4)
.

The exact solution to the problem (38)-(41) is given by,

ζ (w,ρ) = (1+4ρ
2)w2.(42)
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0.2

0.3
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0.5

0.6

w

ζ
(w
,0
.5
)

τ=5

τ=4

τ=3

τ=2

FIGURE 7. Plot of solute concentration ζ (w,ρ) vs. w for nonconservative system at
various value of τ .
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FIGURE 8. Plot of solute concentration ζ (w,ρ) vs. w for conservative system at
various value of τ .
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0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

w

ζ
(w
,0
.5
)

λ=-1

λ=0

λ=1

FIGURE 9. Plot of solute concentration ζ (w,ρ) vs. w at different value of λ .
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FIGURE 10. Plot of solute concentration ζ (w,ρ) vs. w at different value of λ .
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A comparison of absolute errors obtained by proposed technique and Liu et al.,[11] is shown in
Table (3). Table (3) clearly depicts that the accuracy of our proposed scheme is higher as compared to
the numerical method proposed by Liu et al.,[11] .

TABLE 3. Comparison of absolute errors for our proposed method and the method
given in Liu et al.,[11].

w Proposed Method IDM [11]
0.2 2.132×10−4 3.948×10−2

0.4 9.787×10−5 1.990×10−2

0.6 5.156×10−4 7.940×10−3

0.8 6.223×10−4 3.941×10−3

After the validation of precision and effectiveness of our numerical method, an endeavor has been
taken to find the solution of the considered nonlinear space-time variable-order ARDEs (1) to exhibit
the behaviour of solute concentration for conservative system (CS) and non-conservative system (NCS)
under the following conditions:

ζ (w,0) = w2(1−w2),(43)

ζ (0,ρ) = 0, ζ (1,ρ) = 0.(44)

Figs (1)-(10) are plotted to show the dependence of the solute concentration profiles on various
parameters by using the proposed operational matrix along with the collocation approach for the
variable-order ADREs (1) for ρ = 0.5, f (w,ρ) = w−wρ2, ϑ(ζ ,w,ρ) = ζ τ , δ (ζ ,w,ρ) = ζ . Figs. (1)
and (2) show the concave downward solute concentration profiles for various polynomial functions
of the type α(w,ρ) = x+ 0.01w2ρ2 in the case of NCS and CS respectively at the fixed value of
β (w,ρ) = 0.55 + 0.25sin[πρ] and γ(w,ρ) = 0.55− 0.25cos[ρ]. These figures depict the similar
behavior of the solute concentration profiles for the non-conservative and conservative systems. In
Figures (1) and (2), it is seen that the solute concentration profiles first increase to its maximum value
then continuously decreses to 0 at the end point. Figs. (3) and (4) present the solute concentration
profiles for different exponential functions β (w,ρ) = x− 0.25exp[−wρ] at α(w,ρ) = 20−exp(wρ)

600 ,
γ(w,ρ) = 2+sin(wρ)

4 in the case of NCS and CS, respectively. Figs. (3)-(4) reveal that the solute
concentration profiles grow as the value x increases for both the NCS and CS. Figs. (5) and (6) depict
the effect of oscillatory function γ(w,ρ) = 0.65+0.35cos[xwρ] on the solute concentration profiles
at α(w,ρ) = 0.45−0.25exp[−wρ], β (w,ρ) = 0.65+0.25sin[πwρ] for the NCS and CS, respectively.
These figures demonstrate that the diffusion becomes fast for the CS and NCS when the angle of the
function γ(w,ρ) grows. In Figs. (1)-(6), it is seen that the peaks of the solute concentration profiles are
higher for CS than the NCS in all the cases, and diffusion is faster for CS than the NCS. Figs. (7) and
(8) are plotted at α(w,ρ) = 0.55+0.45sin[πρ], β (w,ρ) = 15+cos(wρ)

450 , γ(w,ρ) = 0.45−0.25exp[−wρ]
to demonstrate the effect of τ (nonlinearity in diffusion term) on the solute concentration profiles for
the NCS and CS, respectively. It is seen from these figures that the diffusion process becomes fast
for the CS and NCS as the value of τ grows. Figs. (9) and (10) are shown to present the effect of λ
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on the diffusion process with the advection term and without advection term, respectively. Fig. (9)
is plotted for α(w,ρ) = 20−exp(wρ)

600 , β (w,ρ) = 0.8+0.01w2ρ2, γ(w,ρ) = 0.45+0.25sin[2ρ] and Fig.
(10) is drawn for α(w,ρ) = 20−exp(wρ)

600 and β (w,ρ) = 0.8+ 0.01w2ρ2. Figs. (9)-(10) show that the
diffusion process becomes slow in presence of source term (λ = 1) as compared to the CS (λ = 0) and
sink term (λ =−1).

7. Conclusions

The goal of this paper is to present a numerical approach for solving nonlinear variable-order ARDE
by using Vieta-Fibonacci operational matrix method and collocation technique. It is analytically found
that the obtained approximate solution converges rapidly to exact solution with the convergence order
O
(1

k

)
as degree of approximation (k) increases and the accuracy of the scheme is verified by two

examples. Therefore, this study shows that the proposed scheme is sufficiently accurate and effective to
solve variable-order non-linear differential equations. The effect of various parameters of the proposed
model on the concentration profiles are also analyzed, and it is found that the diffusion process becomes
fast for conservative system than the non-conservative system, the presence of advection term in the
equation results faster diffusion process, the diffusion process enhances as the value of τ grows and
variable-order β (w,ρ) and γ(w,ρ) are more effective on the diffusion process than the α(w,ρ). Finally,
it is our believe that the researchers who are working on non-linear diffusion equations will be benefited
by this contribution.
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[12] Prashant Pandey, Sachin Kumar, JF Gómez-Aguilar, and Dumitru Baleanu. An efficient technique for solving the
space-time fractional reaction-diffusion equation in porous media. Chinese Journal of Physics, 68:483–492, 2020.

[13] Taghreed A Assiri. Time-space variable-order fractional nonlinear system of thermoelasticity: numerical treatment.
Advances in Difference Equations, 2020(1):1–27, 2020.

[14] Abiola D Obembe, M Enamul Hossain, and Sidqi A Abu-Khamsin. Variable-order derivative time fractional diffusion
model for heterogeneous porous media. Journal of Petroleum Science and Engineering, 152:391–405, 2017.

[15] MH Heydari, Z Avazzadeh, and A Atangana. Orthonormal shifted discrete legendre polynomials for solving a
coupled system of nonlinear variable-order time fractional reaction-advection-diffusion equations. Applied Numerical
Mathematics, 161:425–436, 2021.

[16] Pinghui Zhuang, Fawang Liu, Vo Anh, and Ian Turner. Numerical methods for the variable-order fractional advection-
diffusion equation with a nonlinear source term. SIAM Journal on Numerical Analysis, 47(3):1760–1781, 2009.

[17] Ruige Chen, Fawang Liu, and Vo Anh. Numerical methods and analysis for a multi-term time–space variable-order
fractional advection–diffusion equations and applications. Journal of Computational and Applied Mathematics, 352:437–
452, 2019.

[18] Farnaz Kheirkhah, Mojtaba Hajipour, and Dumitru Baleanu. The performance of a numerical scheme on the variable-
order time-fractional advection-reaction-subdiffusion equations. Applied Numerical Mathematics, 178:25–40, 2022.

[19] Kolade M Owolabi. Numerical simulation of fractional-order reaction–diffusion equations with the riesz and caputo
derivatives. Neural Computing and Applications, 32(8):4093–4104, 2020.

[20] Praveen Agarwal, AA El-Sayed, and Jessada Tariboon. Vieta–fibonacci operational matrices for spectral solutions
of variable-order fractional integro-differential equations. Journal of Computational and Applied Mathematics,
382:113063, 2021.

[21] Mohammad Hossein Heydari and Zakieh Avazzadeh. Legendre wavelets optimization method for variable-order
fractional poisson equation. Chaos, Solitons & Fractals, 112:180–190, 2018.

[22] Sachin Kumar, Prashant Pandey, and Subir Das. Gegenbauer wavelet operational matrix method for solving variable-
order non-linear reaction–diffusion and galilei invariant advection–diffusion equations. Computational and Applied
Mathematics, 38(4):1–22, 2019.

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

22 May 2024 06:35:40 PDT
240124-RashmiSharma Version 2 - Submitted to Rocky Mountain J. Math.



A NUMERICAL TECHNIQUE FOR SOLVING ARDE 19

[23] Mojtaba Hajipour, Amin Jajarmi, Dumitru Baleanu, and HongGuang Sun. On an accurate discretization of a variable-
order fractional reaction-diffusion equation. Communications in Nonlinear Science and Numerical Simulation, 69:119–
133, 2019.

[24] MH Heydari and A Atangana. An optimization method based on the generalized lucas polynomials for variable-order
space-time fractional mobile-immobile advection-dispersion equation involving derivatives with non-singular kernels.
Chaos, Solitons & Fractals, 132:109588, 2020.

[25] Mohammad Hossein Heydari and Zakieh Avazzadeh. Numerical study of non-singular variable-order time fractional
coupled burgers equations by using the hahn polynomials. Engineering with Computers, 38:101–110, 2020.

[26] Rashmi Sharma, Rajeev. An operational matrix approach to solve a 2d variable-order reaction advection diffusion
equation with vieta–fibonacci polynomials. Special Topics & Reviews in Porous Media: An International Journal,
14(5), 2023.

[27] Rashmi Sharma, Rajeev. A numerical approach to solve 2d fractional rade of variable-order with vieta–lucas polynomials.
Chinese Journal of Physics, 86:433–446, 2023.

[28] Dan-Dan Dai, Ting-Ting Ban, Yu-Lan Wang, and Wei Zhang. The piecewise reproducing kernel method for the time
variable fractional order advection-reaction-diffusion equations. Thermal Science, 25(2B):1261–1268, 2021.

[29] M Hosseininia, MH Heydari, Z Avazzadeh, and FM Maalek Ghaini. A hybrid method based on the orthogonal bernoulli
polynomials and radial basis functions for variable order fractional reaction-advection-diffusion equation. Engineering
Analysis with Boundary Elements, 127:18–28, 2021.

[30] Hai-Dong Qu, Xuan Liu, Xin Lu, Mati ur Rahman, and Zi-Hang She. Neural network method for solving nonlinear
fractional advection-diffusion equation with spatiotemporal variable-order. Chaos, Solitons & Fractals, 156:111856,
2022.

[31] Kushal Dhar Dwivedi, Rajeev, Subir Das, and Dumitru Baleanu. Numerical solution of nonlinear space–time fractional-
order advection–reaction–diffusion equation. Journal of Computational and Nonlinear Dynamics, 15(6):061005,
2020.

DEPARTMENT OF MATHEMATICAL SCIENCES, INDIAN INSTITUTE OF TECHNOLOGY, VARANASI, 221005, UTTAR

PRADESH, INDIA

E-mail address: rashmi.sharma.rs.mat18@itbhu.ac.in(R. Sharma)

E-mail address: rajeev.apm@iitbhu.ac.in(Rajeev)

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

22 May 2024 06:35:40 PDT
240124-RashmiSharma Version 2 - Submitted to Rocky Mountain J. Math.


	1. Introduction
	2. Preliminary
	2.1. Basic Definitions
	2.2. SVFPs

	3. Aproximation of an Arbitrary Function
	3.1. The Operational Matrix for Fractional Differentiation

	4. Discription of the Present Method
	5. Convergence and Error Analysis
	6. Numerical Experiments
	7. Conclusions
	Funding
	Author Statement
	Competing interests
	Availability of data and materials:
	References

