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Abstract. In this article, we discuss the notion of a Murasugi sum of relative
trisections as well as a Murasugi sum of bounded achiral Lefschetz fibrations

of compact oriented 4–manifolds with connected boundary. We give another

proof of a result of Castro, et al., using a schematic approach, which states
that the compact oriented 4−manifold associated to a Murasugi sum of relative

trisections of two compact oriented 4–manifolds X and X′ with connected

boundary is the boundary connected sum of X and X′. We also prove the
same result for a Murasugi sum of bounded achiral Lefschetz fibrations. As

a corollary to the above results, we prove Gabai’s theorem which states that

the closed oriented 3−manifold associated to a Murasugi sum of open book of
two closed oriented 3–manifolds M and M ′ is the connected sum of M and

M ′. Finally, we make some remarks on a Murasugi sum of bounded achiral
Lefschetz fibrations and associated relative trisections.

1. Introduction

The notion of a trisection of a closed oriented smooth 4−manifold and the notion
of a relative trisection of a compact 4−manifold with connected boundary is intro-
duced by Gay and Kirby [3] as an analog of Heegaard splittings of 3−manifold. They
also showed the existence of a trisection on a closed oriented smooth 4−manifold
as well as a relative trisection on a compact oriented smooth 4−manifold with
connected boundary.

In this article, we discuss the notion of a Murasugi sum of relative trisections.
This notion is introduced in [2] by Castro, et al. They showed that given relative
trisections T and T ′ of the compact oriented 4–manifolds X and X ′ with connected
boundaries, respectively and given a Murasugi sum OB∗OB′ of the open books OB
and OB′ on ∂X and ∂X ′ induced by T and T ′, respectively, there exists a relative
trisection TX♮X′ of X♮X ′ such that the open book on ∂(X♮X ′) is the Murasugi
sum OB ∗ OB′, see [[2]; Theorem 3.22]. The relative trisection TX♮X′ is obtained
by plumbing T and T ′ by a Murasugi sum. Their proof uses Gabai’s theorem [6]
which states that the closed oriented 3−manifold associated to a Murasugi sum of
open books of two closed oriented 3–manifolds M and M ′ is the connected sum of
M and M ′. Here, we give another proof of the above result of Castro, et al., using
a different and a schematic approach. In the proof, we do not use Gabai’s theorem
for a Murasugi sum of open books of 3–manifolds. In fact, we prove Gabai’s result
for a Murasugi sum of open books of closed 3–manifolds as a corollary to this result.
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Now, we give an outline of the article. In Section 2, we discuss the notions of
a relative trisection of a compact oriented 4–manifold with connected boundary, a
relative trisection diagram and an open book of a closed oriented 3–manifold. In
Section 3, we recall the construction of a compact oriented 4–manifold with con-
nected boundary from a relative trisection diagram as it is required for the article.
In Section 4, we explicitly define the notion of a Murasugi sum of two relative
trisection diagrams along rectangles and give another proof of the above result of
Castro, et al., [[2]; Theorem 3.22], using a different and a schematic approach, see
Theorem 4.4. As a corollary to Theorem 4.4, we prove a special case of Gabai’s
result for a Murasugi sum along rectangles of open books of closed 3–manifolds, see
Corollary 4.5. Theorem 4.4 and Corollary 4.5 can be extended to Murasugi sum
along polygons, see Subsection 4.1. In order to avoid the complexity of notations
in Murasugi sum along polygons and to increase the clarity of our arguments, we
have given only the proofs of Theorem 4.4 and Corollary 4.5 for the Murasugi sum
along rectangles in detail. In Section 5, we recall the notions of a bounded achiral
Lefschetz fibration of a compact oriented 4–manifold, an abstract bounded achi-
ral Lefschetz fibration and define a Murasugi sum of two abstract bounded achiral
Lefschetz fibrations. We show that the compact oriented 4−manifold associated to
a Murasugi sum of bounded achiral Lefschetz fibrations of two compact oriented
4–manifolds X and X ′ with connected boundary is the boundary connected sum
of X and X ′, see Theorem 5.5. This result is probably known to the experts in
the field, but as it is not available in the literature to the best of our knowledge,
we write the proof here. In [1], Castro et al. associated a relative trisection to a
bounded achiral Lefschetz fibration. In Subsection 5.5, we discuss a few connections
between a Murasugi sum of bounded achiral Lefschetz fibrations and associated rel-
ative trisections.

2. Preliminaries

In this section, we recall the necessary notions needed for this article.

2.1. Relative trisections of 4−manifolds. In this subsection, we recall the no-
tion of a relative trisection of a compact 4–manifold with connected boundary. Let
us begin with the following definition.

Definition 2.1. A genus p cut system α on a compact oriented surface Σ = Σg,b of
genus g with b boundary components is a collection of g− p disjoint non-separating
simple closed curves on Σ which cut Σ into a surface P of genus p.

In Figure 1, the collection of red curves is a genus p cut system on the compact
oriented surface Σ of genus g with non-empty boundary. Similarly, the collection
of blue curves shown in Figure 1 is also a genus p cut system on Σ.

Definition 2.2. Let α = {α1, α2, . . . , αg−p} be a genus p cut system on a compact
oriented surface Σ = Σg,b. A relative compression body Cα over Σ is the com-
pact oriented 3−manifold obtained by attaching (g − p) copies of 3−dimensional
2−handles Hαi

= (D2 ×D1)i to [1, 2]× Σ along curves in α ⊂ {2} × Σ, i.e.,

Cα = ([1, 2]× Σ)
⋃

αi∈α

Hαi

In other words, a relative compression body Cα is a relative cobordism from Σ
to Σα, where Σα is the surface obtained from Σ by performing surgery along α.
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Note that

∂Cα = ∂1Cα ∪ ([1, 2]× ∂Σ) ∪ ∂2Cα,

where ∂1Cα = {1} × Σ and ∂2Cα = ({2} × Σ)α = Σα.
Next, we recall the notion of a relative trisection of a compact 4–manifold with

connected boundary. In order to do that we briefly recall the following decomposi-
tion of Zk = ♮kS

1 ×D3 and a decomposition of ∂Zk from [1].
Let D = {reiθ | 0 ≤ r ≤ 1 and− π

3 ≤ θ ≤ π
3 } be a one-third of the unit disc with

∂D = ∂−D ∪ ∂0D ∪ ∂+D, where ∂−D = {re−iπ
3 | 0 ≤ r ≤ 1}, ∂0D = {e iπ

3 | − π
3 ≤

θ ≤ π
3 } and ∂+D = {re iπ

3 | 0 ≤ r ≤ 1}. Let g, k, p ≥ 0, b ≥ 1 be the integers such
that g+ p+ b− 1 ≥ k ≥ 2p+ b− 1 and g ≥ p . Let P be a compact oriented surface
of genus p with b boundary components. Let U = D× P ∼= ♮2p+b−1S

1 ×D3. Then
∂U = ∂−U ∪∂0U ∪∂+U, where ∂±U = ∂±D×P and ∂0U = (∂0D×P )∪ (D×∂P ).
For n = k − (2p+ b− 1), let #nS

1 × S2 = V + ∪ V − be the genus g − p Heegaard
splitting of #nS

1 × S2 which is obtained by g − k + p+ b− 1 stabilizations of the
standard genus n Heegaard splitting of #nS

1 × S2.
Now, consider Zk = (♮nS

1 ×D3)♮(D × P ) which is diffeomorphic to ♮kS
1 ×D3,

where the boundary connected sum of ♮nS
1 × D3 and D × P is taken along a

point on the Heegaard surface of the genus g − p Heegaard splitting V + ∪ V − of
∂(♮nS

1 × D3) = #nS
1 × S2 and a point in the interior of {0} × P ⊂ ∂(D × P ).

From the above discussion, the boundary Yk = ∂Zk of Zk decomposes as follows:

∂Zk = Yk = Y +
g,k,p,b ∪ Y

0
g,k,p,b ∪ Y −

g,k,p,b,

where Y ±
g,k,p,b = ∂±U♮V ± and Y 0

g,k,p,b = ∂0U .
Now, we are ready to define the notion of a relative trisection of a compact

4–manifold with connected boundary.

Definition 2.3. Consider the non-negative integers g, k, p, b with b > 0 and g +
p + b − 1 ≥ k ≥ 2p + b − 1. A (g, k; p, b)−relative trisection of a smooth compact
connected oriented 4−manifold W with connected boundary is a decomposition of
W into three co-dimension 0 submanifolds W1,W2 and W3 such that

(1) For each 1 ≤ i ≤ 3, there is a diffeomorphism ψi :Wi → Zk = ♮kS
1 ×D3,

(2) taking indices mod 3, ψi(Wi∩Wi−1) = Y −
g,k,p,b and ψi(Wi∩Wi+1) = Y +

g,k,p,b.

Remark 2.4.

(1) A relative trisection on W induces an open book on the boundary ∂W of
W .

(2) The manifold M = Y +
g,k,p,b ∪ Y −

g,k,p,b is a sutured manifold with ∂M =

({e−iπ
3 }×P∪∂−D×∂P )

⋃
({e iπ

3 }×P∪∂+D×∂P ) and the sutures {0}×∂P.
(3) The standard sutured Heegaard diagram associated to the above sutured Hee-

gaard splitting of the sutured manifold M is given by the standard model
(Σ, θ, η) as shown in Figure 1, where the collection of blue curves depicts
the genus p cut system θ and the collection of red curves depicts the genus
p cut system η on compact oriented surface Σ of genus g with b boundary
components.

Recall that an open book decomposition structure of a manifold M is a pair
(B, π), where B is a co-dimension 2 submanifold with a trivial normal bundle in
M and π : M \ B → S1 is a locally trivial fibration such that the fibration in
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︸ ︷︷ ︸
︸ ︷︷ ︸ ︸ ︷︷ ︸

g + p+ b− 1− k k − 2p− b+ 1 p

Figure 1. The standard model (Σ, θ, η)
.

a neighborhood of B looks like the trivial fibration of (D2 × B) \ {0} × B → S1

sending (r, θ, x) to θ, where x ∈ B and (r, θ) are polar coordinates on D2. For each
θ ∈ S1, the closure of π−1(θ) is called a page and the monodromy of the fibration is
called the monodromy of the open book. We also denote the open book (B, π) by
OB(P, ϕ), where P is the page and ϕ is the monodromy of the open book (B, π).

As π :M \N (B) → S1 is a locally trivial fiber bundle over S1, we can construct
M up to diffeomorphism by filling the boundary of the fiber bundle using D2 ×B.
Hence, the manifold M is completely determined by the locally trivial fiber bundle
π over S1 in the complement of a tubular neighborhood N (B) = D2 × B of B in
M . But, any locally trivial fiber bundle over S1 with fiber P , a compact manifold
with non-empty boundary, is canonically isomorphic to the fiber bundle

[0, 1]× P

(1, x) ∼ (0, ϕ(x))
=: MT (P, ϕ),

for some diffeomorphism ϕ of P . The manifold MT (P, ϕ) is called the mapping
torus associated to P and ϕ. Hence, we have a natural way of constructing the
manifold M using P and ϕ. This leads to the notion of an abstract open book.

An abstract open book associated with a manifold M is a pair (P, ϕ), where P is
a compact surface with non-empty boundary and ϕ is a diffeomorphism of P which
is the identity near the boundary such that M is diffeomorphic to

M(P,ϕ) = MT (P, ϕ) ∪id D
2 × ∂P,

where id denotes the identity map of S1 × ∂P.
The map ϕ in the above definition is called the monodromy of the abstract open

book. For more details, refer [4].
Throughout this article, by an open book on the boundary of a relatively trisected

4–manifold, we mean the open book induced by the relative trisection.

2.2. Relative trisection diagrams. In this subsection, we recall the notion of a
relative trisection diagram. We begin with the following definition.

Definition 2.5. Let αi, βi, i = 1, 2 be genus p cut systems on a compact oriented
surface Σ. We say that two triples (Σ, α1, β1) and (Σ, α2, β2) are diffeomorphism
and handle slide equivalent if there exists a diffeomorphism f : Σ → Σ such that

• f(α1) and α2 are related by a sequence of handle slides.
• f(β1) and β2 are related by a sequence of handle slides.

Definition 2.6. Consider the non-negative integers g, k, p, b with b > 0 and g +
p + b − 1 ≥ k ≥ 2p + b − 1. A (g, k; p, b)–relative trisection diagram is a 4–tuple
(Σ, α, β, γ), where
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Figure 2. The above picture describes various parts of the disc
D2 of radius 2.

(1) Σ is a compact oriented surface of genus g with b boundary components,
(2) each of α, β and γ is a genus p cut system on the surface Σ,
(3) each triple (Σ, α, β), (Σ, β, γ) and (Σ, α, γ) is diffeomorphism and handle

slide equivalent to the standard triple (Σ, θ, η) shown in Figure 1.

In [1], Castro, Gay and Pinzón-Caicedo showed that there is a one-to-one corre-
spondence between the relative trisections on a smooth compact oriented 4−manifold
X with connected boundary up to diffeomorphism and the relative trisection dia-
grams associated to X up to diffeomorphism and handle slide equivalence of relative
trisection diagrams. Moreover, an explicit algorithm is given to determine the page
and the monodromy of the open book on the boundary from a relative trisection
diagram.

3. Construction of a compact 4−manifold from a relative trisection

In this section, we recall the construction of a compact 4−manifold YD us-
ing a given (g, k; p, b)–relative trisection diagram D = (Σ, α, β, γ) from [1]. Let
D2 = {reiθ : 0 ≤ r ≤ 2; θ ∈ [0, 2π]} ⊂ R2 be the disc of radius 2. Let
I1α, I

1
β , I

1
γ , I

2
α, I

2
β , I

2
γ , I

1
αβ , I

1
βγ , I

1
γα, I

2
αβ , I

2
βγ , I

2
γα, Fα, Fβ , Fγ , Dαβ , Dβγ , Dγα andD1 be

as labelled in Figure 2. Now, we describe the steps of the construction.

Step 1.

Consider M1 = F × Σ, where F = D1 ∪ Fα ∪ Fβ ∪ Fγ , refer Figure 2.

Step 2.

For each i, attach (I2α×(3–dimensional 2–handle Hαi
)) along I2α×αi ⊂ I2α×Σ ⊂

∂M1. Here, {t}×Hαi
is attached along {t}×αi ⊂ {t}×Σ. Similarly, for each i, at-

tach (I2β×(3–dimensional 2–handle Hβi)) and (I2γ×(3–dimensional 2–handle Hγi))
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({2} × Σ)
⋃

αi∈α

Hαi

1 t 2
Cα :

({2} × Σ)
⋃

βi∈β

Hβi

1 t 2
Cβ :

({2} × Σ)
⋃

γi∈γ

Hγi

1 t 2
Cγ :

[1, 2]× Σ :
{1} × Σ

1 t 2

{t} × Σ {2} × Σ

{1} × Σ {t} × Σ

{1} × Σ {t} × Σ

{1} × Σ {t} × Σ

Figure 3. In the above figure, the horizontal line in black at the
top depicts Σ× [1, 2] and the horizontal black line with the red dot
depicts the compression body Cα. Similarly, the horizontal lines
with blue and green dots depict the compression bodies Cβ and
Cγ , respectively.

along I2β × βi ⊂ I2β × Σ ⊂ ∂M1 and I2γ × γi ⊂ I2γ × Σ ⊂ ∂M1, respectively. We
denote the resulting manifold by M2, refer to Figure 4.

Recall that for η ∈ {α, β, γ}, the relative compression body Cη = ([1, 2] ×
Σ)

⋃
ηi∈η

Hηi
, is obtained by attaching the 2–handles Hηi

’s along ηi’s in η ⊂ {2}×Σ,

with ∂Cη = ∂1Cη ∪ ([1, 2] × ∂Σ) ∪ ∂2Cη, where ∂1Cη = {1} × Σ = Σ and ∂2Cη =
({2} × Σ)η = Ση.

A schematic diagram of the manifold M2 is shown in Figure 4, in which

• the grey disc D1 represents the manifold D1 × Σ,
• for each 0 ≤ θ ≤ π

3 , the line segment lθ = {reiθ : 1 ≤ r ≤ 2} with the red

vertex {2eiθ} represents the relative compression body Cθ
α
∼= Cα. For the

schematic diagram of Cα, refer Figure 3,
• for each 2π

3 ≤ θ ≤ 3π
3 , the line segment lθ = {reiθ : 1 ≤ r ≤ 2} with the

blue vertex {2eiθ} represents the relative compression body Cθ
β
∼= Cβ ,

• for each 4π
3 ≤ θ ≤ 5π

3 , the line segment lθ = {reiθ : 1 ≤ r ≤ 2} with the

green vertex {2eiθ} represents the relative compression body Cθ
γ
∼= Cγ .

Let Nαβ = C
π
3
α ∪ (I1αβ × Σ) ∪ C

2π
3

β , Nβγ = C
3π
3

β ∪ (I1βγ × Σ) ∪ C
4π
3

γ and Nγα =

C
5π
3

γ ∪ (I1γα × Σ) ∪ C
6π
3

α .

Step 3.

Consider M3 =M2 ∪ (Dαβ ×N (∂Σ))∪ (Dβγ ×N (∂Σ))∪ (Dγα×N (∂Σ)), where
N (∂Σ) is a collar of ∂Σ in Σ.

Step 4.

By [[1]; Lemma 13 and Corollary 14, ], there exist unique diffeomorphisms fαβ :
Σα → Σβ , fβγ : Σβ → Σγ and fγα : Σγ → Σα such that if we glue I2αβ×Σα toM3 by

identifying 2e
πi
3 ×Σα to ∂2(C

π
3
α ) = 2e

πi
3 ×Σα using the identity map, I2αβ×N (∂Σα)
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Figure 4. Schematic of step-by-step construction of a compact
4−manifold from a relative trisection diagram.
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to I2αβ × N (∂Σ) using the identity map and 2e
2πi
3 × Σα to ∂2(C

π
3

β ) = 2e
πi
3 × Σβ

using the map fαβ and thicken, then we get a 4–manifold with the interior boundary
component –up to diffeomorphism– Nαβ ∪ (Dαβ × ∂Σ) ∪ I2αβ × Σα diffeomorphic

to #kS
1 × S2. By the same way, we can glue I2βγ × Σβ and I2γα × Σγ to M3 by

using the maps fβγ and fγα, respectively to get a compact 4–manifold M4 with
four boundary components among which three interior boundary components are
diffeomorphic to #kS

1 ×S2 and the exterior boundary component admits an open
book with page Σα.

Step 5.

In [8], Laudenbach-Poénaru showed that any diffeomorphism of #kS
1×S2 can be

extended to a diffeomorphism of ♮kS
1×D3. Hence, by filling the interior boundary

components ofM4 by ♮kS
1×D3’s, we get a unique –up to diffeomorphism– compact

oriented 4−manifold YD with boundary ∂YD such that YD admits a (g, k; p, b)−relative
trisection induced by the (g, k; p, b)−relative trisection diagram (Σ, α, β, γ) and has
the induced open book structure on ∂Y .

Now, we describe the open book decomposition OB on ∂YD.

∂YD = MT (Σα, ϕ)
⊔
Id

D2 × ∂Σα,

where

MT (Σα, ϕ) =
(I2α ∪ I2αβ)× Σα ⊔ (I2β ∪ I2βγ)× Σβ ⊔ (I2γ ∪ I2γα)× Σγ

(fαβ , fβγ , fγα)
,

with the maps

(1) fαβ : {2e 2πi
3 } × Σα → {2e 2πi

3 } × Σβ ,

(2) fβγ : {2e 4πi
3 } × Σβ → {2e 4πi

3 } × Σγ ,
(3) fγα : {2e2πi} × Σγ → {2e2πi} × Σα,

are as described in Step 4 as well as in Figure 4. Therefore, one can easily see that
the monodromy of the open book OB is ϕ = fγα ◦ fβγ ◦ fαβ .

4. Murasugi sum of relative trisections

In this section, we begin by recalling the notion of a Murasugi sum of two relative
trisection diagrams along rectangles and related results. The Murasugi sum along
polygons will be discussed later in Subsection 4.1

Definition 4.1. Let Σ and Σ′ be two compact surfaces with boundary. Suppose
that c and c′ are the properly embedded arcs in Σ and Σ′. Let R = c × [−1, 1]
and R′ = c′ × [−1, 1] be the rectangular neighborhoods of c and c′ in Σ and Σ′,
respectively. A Murasugi sum of Σ and Σ′ along c and c′ is a compact surface

Σ ∗ Σ′ = Σ
⋃

R=R′

Σ′,

where R and R′ are identified by the map g : R → R′ so that g(c × {−1, 1}) =
∂c′ × [−1, 1].
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∂vR ∂vR

∂vR
′

∂vR
′

Σ Σ
′ Σ ∗ Σ

′

c c
′

c
′

c

∂vR̄ ∂vR̄

∂hR̄

∂hR̄

R̄

Figure 5. Local picture of the Murasugi sum of Σ and Σ′ along
c ⊂ Σ and c′ ⊂ Σ′, respectively.

Note that there is a natural embedding of each Σ and Σ′ in Σ ∗ Σ′.

Recall that a Murasugi sum of two open books (Σ, ϕ) and (Σ′, ϕ′) is an open book
(Σ ∗ Σ′, ϕ ∗ ϕ′), where Σ ∗ Σ′ is a Murasugi sum of Σ and Σ′ and the monodromy

ϕ ∗ϕ′ : Σ ∗Σ′ → Σ ∗Σ′ is given by ϕ ∗ϕ′ = ϕ̃ ◦ ϕ̃′. Here, the map ϕ̃ : Σ ∗Σ′ → Σ ∗Σ′

is the extension of ϕ : Σ → Σ by the identity map in the complement of Σ in Σ ∗Σ′

and the map ϕ̃′ : Σ ∗ Σ′ → Σ ∗ Σ′ is the extension of ϕ′ : Σ′ → Σ′ by the identity
map in the complement of Σ′ in Σ ∗ Σ′.

Let D = (Σ, α, β, γ) and D′ = (Σ′, α′, β′, γ′) be two relative trisection diagrams.
Let α = {α1, ..., αk}, β = {β1, ..., βk} and γ = {γ1, ..., γk}. Let fαβ : Σα → Σβ ,
fβγ : Σβ → Σγ and fγα : Σγ → Σα be the maps corresponding to the relative
trisection diagram D as described in Step 4 in Section 3 (see also [[1]; Lemma 13
and Corollary 14,]). Let Aα = {a1, . . . , al}, Aβ = {b1 = fαβ(a1), . . . , bl = fαβ(al)}
and Aγ = {c1 = fβγ(b1), . . . , cl = fβγ(bl)} be the arc systems of Σα, Σβ and
Σγ , respectively. By an arc system Aα = {a1, . . . , al}, we mean a collection of
disjoint properly embedded arcs a1, . . . , al in Σα such that cutting Σα along ai’s
yields a disc. Let Fαβ : Σ → Σ be a diffeomorphism such that Fαβ(αi) = βi and
Fαβ(ai) = bi. Let Fβγ : Σ → Σ be a diffeomorphism such that Fβγ(βi) = γi and
Fβγ(bi) = ci.

Let c and c′ be properly embedded arcs in Σ and Σ′ with rectangular neighbor-
hoods R = c× [−1, 1] and R′ = c′ × [−1, 1] of c and c′ in Σ and Σ′ disjoint from α
and α′, respectively. Let Σ ∗ Σ′ be the Murasugi sum of Σ and Σ′ along c and c′.
Let F̄αβ : Σ ∗Σ′ → Σ ∗Σ′ and F̄βγ : Σ ∗Σ′ → Σ ∗Σ′ be the extensions of the maps
Fβγ and Fβγ by the identity map in the complement of Σ in Σ ∗ Σ′.

Definition 4.2. A Murasugi sum of the relative trisection diagrams D = (Σ, α, β, γ)
and D′ = (Σ′, α′, β′, γ′) along the properly embedded arcs c ⊂ Σ and c′ ⊂ Σ′ disjoint
from α and α′ respectively, is a relative trisection diagram

D ∗ D′ = (Σ ∗ Σ′, α ∗ α′, β ∗ β′, γ ∗ γ′),

where

(1) α ∗ α′ = α ∪ α′,
(2) β ∗ β′ = β ∪ β∗, where β∗ = F̄αβ(β

′),
(3) γ ∗ γ′ = γ ∪ γ∗, where γ∗ = (F̄βγ ◦ F̄αβ)(γ

′).

Remark 4.3.
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10 ABHIJEET GHANWAT, SUHAS PANDIT, AND SELVAKUMAR A

(1) Our proof of Theorem 4.4 establishes the fact that the Murasugi sum dia-
gram D ∗ D′ is indeed a relative trisection diagram.

(2) In case α′ = β′ = γ′ = ∅, it is easy to see that the Murasugi sum diagram
D ∗ D′ = (Σ ∗ Σ′, α, β, γ) is a relative trisection diagram of the relatively

trisected manifold X = YD ∪ (D2 ×Σ′ \ R̊′) which is obtained by gluing the
relatively trisected manifold YD associated to D and the trivially trisected
manifold D2×(Σ′\R̊′) along D2×(∂c×[−1, 1]) ⊂ ∂YD and D2×(c×{±1}) ⊂
∂(D2 × (Σ′ \ R̊′)) induced by the map g as given in Definition 4.1, where
the relative trisection of X is the natural relative trisection of X induced
by the relative trisections of YD and D2 × Σ′.

For a detailed example of Murasugi sum of relative trisection discussed by Castro,
et al., we refer to [2].

Theorem 4.4. Let D = (Σ, α, β, γ) and D′ = (Σ′, α′, β′, γ′) be (g, k; p, b)− and
(g′, k′; p′, b′)–relative trisection diagrams of the relative trisections T and T ′ of the
4–manifolds X and X ′, respectively. Let OB(Σα ∗ Σ′

α′ , ϕα ∗ ϕα′) be a Murasugi
sum of OB(Σα, ϕα) and OB(Σ′

α′ , ϕα′) along the properly embedded arcs c ⊂ Σα and
c′ ⊂ Σ′

α′ , where OB(Σα, ϕα) and OB(Σ′
α′ , ϕα′) are the induced open books on ∂X

and ∂X ′, respectively. Then there exists a relative trisection TX♮X′ of the compact
4–manifold X♮X ′ such that

(1) the relative trisection diagram of the relative trisection TX♮X′ is the Mura-
sugi sum D ∗ D′ of the relative trisection diagrams D and D′ along c and
c′,

(2) the induced open book on ∂(X♮X ′) is the Murasugi sum OB(Σα ∗Σ′
α′ , ϕα ∗

ϕα′) of OB(Σα, ϕα) and OB(Σ′
α′ , ϕα′).

Proof. In order to prove the theorem, it is enough to establish the following three
steps:
Step a: There exists a compact 4–manifold W with a relative trisection TW such
that its relative trisection diagram is the Murasugi sum D ∗ D′ of the relative
trisection diagrams D and D′ along c and c′.
Step b: The induced open book on ∂W is the Murasugi sum OB(Σα∗Σ′

α′ , ϕα∗ϕα′)
of OB(Σα, ϕα) and OB(Σ′

α′ , ϕα′).
Step c: The 4–manifold W is diffeomorphic to the boundary connected sum X♮X ′

of X and X ′.

Let us establish Step a: We construct the 4–manifold W by appropriate gluing
of the 4–manifolds X2 and X ′

2, where the 4–manifold X2 is obtained by performing
sequence of operations on the 4–manifold from X = XD and 4–manifold X ′

2 is
obtained by performing sequence of operations on the 4–manifold X ′ = XD′ , refer
Figure 6 and Figure 7. For the construction of the 4–manifolds X = XD and
X ′ = XD′ from the trisection diagrams D and D′, respectively refer Section 3. For
the pictorial description of the 4–manifolds X = XD and X ′ = XD′ , refer Figure 6
(A) and (A′).

We can regard the arcs c ⊂ Σα and c′ ⊂ Σ′
α′ as the arcs c ⊂ Σ and c′ ⊂ Σ′

disjoint from α ⊂ Σ and α′ ⊂ Σ′, respectively. Let Σ ∗Σ′ be the Murasugi sums of
Σ and Σ′, along c ⊂ Σ and c′ ⊂ Σ′ and Σα ∗ Σ′ be the Murasugi sum of Σα and
Σ′ along c ⊂ Σα and c′ ⊂ Σ′. Let X1 and X ′

1 be the 4–manifolds constructed from
the relative trisection diagrams D1 = (Σ ∗Σ′, α, β, γ) and D′

1 = (Σα ∗Σ′, α′, β′, γ′),
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respectively, refer Figure 6 (A1) and (A′
1). Here, D1 and D′

1 are indeed relative
trisection diagrams, see Remark 4.3(2). Now, we redraw the schematic diagrams

of the relatively trisected 4–manifolds X1 and X ′
1 as shown in Figure 6 (Ã1) and

(Ã′
1).
We construct a new compact oriented 4–manifold X2 from X1 by attaching

(I2α × (3–dimensional 2–handle Hα′
i
)) along I2α × α′

i ⊂ I2α × Σα ∗ Σ′ ⊂ ∂X1. Here,

{t} ×Hα′
i
is attached along {t} × α′

i ⊂ {t} × Σα ∗ Σ′, for t ∈ I2α. For a schematic

of X2, refer Figure 7 (A2).
By recalling Step 2 of the construction ofX ′

1 from the relative trisection diagram
D′

1 = (Σα ∗ Σ′, α′, β′, γ′) as described in Section 3, we construct a 4–manifold X ′
2

from X ′
1 by removing (I̊2α′ × (3–dimensional 2–handles Hα′

i
’s)), where I̊2α′ is the

interior of I2α′ , i.e.,

X ′
2 = X ′

1 \

 ⋃
α′

i∈α′

I̊2α′ × (3–dimensional 2–handle Hα′
i
)

 .

For a schematic of X ′
2, refer Figure 7 (A′

2). Note that the schematic of both
the 4–manifolds X2 and X ′

2 as shown in Figure 7(A2) and (A′
2) do not represent a

relative trisection.
Now, we construct the desired 4–manifold W by gluing X2 and X ′

2 as follows:
Let Σα ∗ Σ′,Σβ ∗ Σ′ and Σγ ∗ Σ′ are the Murasugi sums of Σα and Σ′, Σβ and Σ′,
Σγ and Σ′ along c and c′, fαβ(c) and c

′, (fβγ ◦ fαβ)(c) and c′, respectively. First,
we describe the gluing regions M ⊂ ∂X2 and M ′ ⊂ ∂X ′

2 depicted in Figure 7. The
gluing region M ⊂ ∂X2 is

M =

Mαβ

⊔
fαβ∗IdΣ′

Mβ

⊔
Idβ

Mβγ

⊔
fβγ∗IdΣ′

Mγ

⊔
Idγ

Mγα

 ⋃
α′

i∈α′

(
H0

α′
i
∪H

π
3

α′
i

)
,

where

(1) Mαβ = I2αβ × (Σα ∗ Σ′),

(2) Mβ = I2β × (Σβ ∗ Σ′) and Mβγ = I2βγ × (Σβ ∗ Σ′),

(3) Mγ = I2γ × (Σγ ∗ Σ′) and Mγα = I2γα × (Σγ ∗ Σ′),
(4) Idα : Σα ∗Σ′ → Σα ∗Σ′, Idβ : Σβ ∗Σ′ → Σβ ∗Σ′ and Idγ : Σγ ∗Σ′ → Σγ ∗Σ′

are the identity maps,
(5) fαβ ∗ IdΣ′ : Σα ∗ Σ′ → Σβ ∗ Σ′ and fβγ ∗ IdΣ′ : Σβ ∗ Σ′ → Σγ ∗ Σ′,

(6) H0
α′

i
and H

π
3

α′
i
are the 3−dimensional 2–handles attached along α′

i ⊂ ei0 ×
Σα ∗ Σ′ and α′

i ⊂ e
iπ
3 × Σα ∗ Σ′, respectively.

The gluing region M ′ ⊂ ∂X ′
2 is

M ′ = I2α′ × (Σα ∗ Σ′)
⋃

α′
i∈α′

(
H0

α′
i
∪H

π
3

α′
i

)
,

where H0
α′

i
and H

π
3

α′
i
are the 3−dimensional 2–handles attached along α′

i ⊂ ei0 ×
Σα ∗ Σ′ and α′

i ⊂ e
iπ
3 × Σα ∗ Σ′, respectively.
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CαCβ

Cγ

D1 × Σ

αβ

γ

Cα′Cβ′

Cγ′

D′

1 × Σ
′

α′β′

γ′

X ↔ D = (Σ,α,β, γ) X ′
↔ D

′ = (Σ′,α′,β′, γ′)

(A) (A′)

CαCβ

Cγ

D1 × Σ ∗ Σ
′

αβ

γ

Cα′Cβ′

Cγ′

D′

1
× Σα ∗ Σ

′

α′β′

γ′

X1 ↔ D1 = (Σ ∗ Σ
′,α,β, γ) X ′

1
↔ D

′

1
= (Σα ∗ Σ

′,α′,β′, γ′)

(A1) (A′

1
)

α

X1 ↔ D1 = (Σ ∗ Σ
′,α,β, γ) X ′

1
↔ D

′

1
= (Σα ∗ Σ

′,α′,β′, γ′)

( ˜
A1)

β′

α′

β

γ

( ˜
A′

1
)

γ′

∼= ∼=

D1 × Σ ∗

D
′ 1
×
Σ
α
∗
Σ
′

I2αI2β

I2αβ

I2γαI2βγ

D2

Fγ

FαFβ

Dβγ
Dγα

Dαβ

I2α′
I2β′

I2α′β′

I2γ′α′

I2β′γ′

D′

2

Fγ′

Fα′Fβ′

Dβ′γ′ Dγ′α′

Dα′β′

I2γ′I2γ

D1
D′

1

Figure 6. The above figure depicts a schematics of the construc-
tion of the 4–manifolds X,X1, X

′ and X ′
1.
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4πi
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πi

3

2e2πi

2e(2π−
π

3
)i

2e(2π−
2π

3
)i

2e(2π−
3π

3
)i

2e(2π−
4π

3
)i

2e
πi

3

⋃

α′

i
∈α′

H0
α′

i

Id

(2e(2π−5θ)i, y) ← (2eiθ, y)

(2e(2π−5θ)i, fαβ(y)) ← (2eiθ, y)

(2e(2π−5θ)i, fβγ ◦ fαβ(y)) ← (2eiθ, y)

(2e(2π−5θ)i, fαβ(y)) ← (2eiθ, y)

(2e(2π−5θ)i, fβγ ◦ fαβ(y)) ← (2eiθ, y)

M M ′

X2 X ′

2

β′

γ′

D1 × Σ ∗

D
′ 1
×

Σ
α
∗
Σ

′

β ∪ β∗

γ ∪ γ∗

The manifold W with the desired relative trisection TW

α ∪ α′

α ∪ α′

Id

F

(W, TW ) ↔ D ∗D′ = (Σ ∗ Σ
′,α ∗ α′, β ∗ β′, γ ∗ γ′)

cα∪α′

c
β

p

Σ ∗ Σ
′

cγ∪
γ

b

c

=

F

α ∪ α′

X2 X ′

2

β′

(A′

2)

γ′

D1 × Σ ∗

(A2)

D
′ 1
×

Σ
α
∗
Σ

′

α′

α′

I2α
I2β

I2αβ

I2γα

I2βγ
I2α′

I2β′

I2α′β′

I2γ′α′

I2β′γ′

I2γ′

I2γ

︷
︸
︸

︷

M

︸
︷
︷

︸

M ′

(B)
(C)

︸
︷
︷

︸

M

︷
︸
︸

︷

M ′

a

⋃

α′

i
∈α′

H0
α′

i

⋃

α′

i
∈α′

H
π
3

α′

i

⋃

α′

i
∈α′

H
π
3

α′

i

Figure 7. The above figure (A2) and (A′
2) depict the schematics

of the construction of the 4–manifolds X2 and X ′
2, respectively.

The middle figure describes the gluing map F between the glu-
ing regions M ⊂ ∂X2 and M ′ ⊂ ∂X ′

2. The figure (C) depicts a
schematic of the desired trisected 4–manifold W with the relative
trisection TW .
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We define the gluing map F :M ′ →M as follows: Let w ∈M ′. If w = (2eiθ, y) ∈
I2α′ × (Σα ∗ Σ′) then

F (w) =



(2e(2π−5θ)i, fβγ ◦ fαβ(y)) ∈Mγα, if 0 ≤ θ ≤ π
15

(2e(2π−5θ)i, fβγ ◦ fαβ(y)) ∈Mγ , if π
15 ≤ θ ≤ 2π

15

(2e(2π−5θ)i, fαβ(y)) ∈Mβγ , if 2π
15 ≤ θ ≤ 3π

15

(2e(2π−5θ)i, fαβ(y)) ∈Mβ , if 3π
15 ≤ θ ≤ 4π

15

(2e(2π−5θ)i, y) ∈Mαβ , if 4π
15 ≤ θ ≤ π

3

and if w ∈ H0
α′

i
∪H

π
3

α′
i
, α′

i ∈ α then F (w) = w.

Now, by following the gluing map F and the schematic of the 4–manifold W
as shown in Figure 7, one can observe that W admits the desired trisection TW in
which

(1) the core of TW is Σ ∗Σ′ which is represented by the point p in Figure 7(C),
(2) the three line segments joining the point p to the points a, b, c in Figure 7(C)

represents the three compression bodies Cα∪α′ , Cβ∪β∗ , Cγ∪γ∗ , respectively,
(3) the three pink regions in Figure 7(C) represent the three sectors which are

diffeomorphic to ♮k+k′S1 ×D3 = (♮kS
1 ×D3)♮(♮k′S1 ×D3).

This completes the argument for Step a.
Step b: Let fαβ : Σα → Σβ , fβγ : Σβ → Σγ and fγα : Σγ → Σα be the maps

described in Step 4 of the construction of the 4–manifold X in Section 3. Note that
the monodromy of the open book OB(Σα, ϕα) on ∂X is ϕα = fγα ◦ fβγ ◦ fαβ . Let
fα′β′ : Σ′

α′ → Σ′
β′ , fβ′γ′ : Σ′

β′ → Σ′
γ′ and fγ′α′ : Σ′

γ′ → Σ′
α′ be the maps described

in Step 4 of the construction of the 4–manifold X ′ in Section 3. Note that the
monodromy of the open book OB(Σ′

α′ , ϕα′) on ∂X ′ is ϕα′ = fγ′α′ ◦ fβ′γ′ ◦ fα′β′ .
Let Pαα′ = Σα ∗ Σ′

α′ , Pαβ′ = Σα ∗ Σ′
β′ , Pαγ′ = Σα ∗ Σ′

γ′ be the Murasugi

sums of Σα and Σ′
α′ , Σα and Σ′

β′ , Σα and Σ′
γ′ along c and c′, c and fα′β′(c′), c and

(fβ′γ′ ◦fα′β′)(c′), respectively. Let Pαα′ = Σα∗Σ′
α′ ,Pβα′ = Σβ∗Σ′

α′ , Pγα′ = Σγ∗Σ′
α′

be the Murasugi sums of Σα and Σ′
α′ , Σβ and Σ′

α′ , Σγ and Σ′
α′ along c and c′, fαβ(c)

and c′, (fβγ ◦ fαβ)(c) and c′, respectively.
Now, we describe the induced open book decomposition OB on ∂W as follows:

∂W = MT (Σα ∗ Σ′
α′ , ϕ)

⊔
Id

D̃ × ∂(Σα ∗ Σ′
α′),

where D̃ is a 2 disc obtained by gluing the discs D2 and D′
2 along the boundary

arcs (I2αβ ∪ I2β ∪ I2βγ ∪ I2γ ∪ I2γα) ⊂ ∂D2 and I2α′ ⊂ ∂D′
2. Here,

MT (Pαα′ , ϕ) =
(J1 × Pαα′) ⊔ (J2 × Pαβ′) ⊔ (J3 × Pαγ′) ⊔ ({2e2πi} × Pαα′) ⊔ ({2e2πi} × Pγα′)

(G1, G2, G3, G4, G5)
,

where,

(1) J1 = I2α ∪ I2α′β′ , J2 = I2β′ ∪ I2β′γ′ and J3 = I2γ′ ∪ I2γ′α′ ,

(2) G1 = IdΣα
∗ fα′β′ : {2e 2πi

3 } × Σα ∗ Σ′
α′ → {2e 2πi

3 } × Σα ∗ Σ′
β′ ,

(3) G2 = IdΣα ∗ fβ′γ′ : {2e 4πi
3 } × Σα ∗ Σ′

β′ → {2e 4πi
3 } × Σα ∗ Σ′

γ′ ,

(4) G3 = IdΣα
∗ fγ′α′ : {2e2πi} × Σα ∗ Σ′

γ′ → {2e2πi} × Σα ∗ Σ′
α′ ,

(5) G4 = (fβγ ◦ fαβ) ∗ IdΣ′
α′

: {2e2πi} × Σα ∗ Σ′
α′ → {2e2πi} × Σγ ∗ Σ′

α′ ,

(6) G5 = fγα ∗ IdΣ′
α′

: {2e2πi} × Σγ ∗ Σ′
α′ → {2e2πi} × Σα ∗ Σ′

α′ .
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Figure 8. Tracing the monodromy of the open book OB on ∂W .

For the above decomposition of MT (Pαα′ , ϕ), refer Figure 8. Now, from the above
description of the open book OB of ∂W , one can easily see that the monodromy of
the open book OB is

ϕ = G5 ◦G4 ◦G3 ◦G2 ◦G1

= (fγα ∗ IdΣ′
α′
) ◦ ((fβγ ◦ fαβ) ∗ IdΣ′

α′
) ◦ (IdΣα ∗ fγ′α′) ◦ (IdΣα ∗ fβ′γ′) ◦ (IdΣα ∗ fα′β′)

= ((fγα ◦ fβγ ◦ fαβ) ∗ IdΣ′
α′
) ◦ (IdΣα ∗ (fγ′α′ ◦ fβ′γ′ ◦ fα′β′))

= ϕα ∗ IdΣ′
α′

◦ IdΣα
∗ ϕα′

= ϕα ∗ ϕα′

Hence, the induced open book OB on ∂W is the Murasugi sum OB(Σα∗Σ′
α′ , ϕα∗

ϕα′) of OB(Σα, ϕα) and OB(Σ′
α′ , ϕα′).

Step c: In order to establish Step c, we show that there is a properly embedded
3–disc D3 in W such that

W \ D3 =W1 ⊔W2,

where

(1) W1 ∪ D3 is diffeomorphic to X,
(2) W2 ∪ D3 is diffeomorphic to X ′.

In order to construct the desired disc D3 ⊂W , we need to recall the following:
Let R = c × [−1, 1] and R′ = c′ × [−1, 1] be the rectangular neighborhoods of

c and c′ in Σ and Σ′, respectively. Let R̄ be the rectangle in Σ ∗ Σ′ obtained by
identifying R ⊂ Σ and R′ ⊂ Σ′ by the map g as in Definition 4.1. We regard R̄ as
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16 ABHIJEET GHANWAT, SUHAS PANDIT, AND SELVAKUMAR A

[−1, 1]× [−1, 1] with c×{0} = [−1, 1]×{0} and c′×{0} = {0}× [−1, 1]. We denote
the vertical boundary {±1} × [−1, 1] of R̄ by ∂±v R̄ and the horizontal boundary
[−1, 1]× {±1} of R̄ by ∂±h R̄. Note that the rectangular regions R and R′ can also
be regarded as rectangular neighborhoods of c and c′ in Σα and Σ′

α′ , respectively.
The disc D3 which we are going to construct is the union of five 3–dimensional

discs D3
+,D3

−,D
3,D′3

+ and D′3
−, i.e.,

D3 = D3
+ ∪ D3

− ∪D3 ∪ D′3
+ ∪ D′3

−,

where

(1) the disc D3 = I2α′ × R̄ ⊂M ′ ⊂ ∂X ′
2 ⊂W ,

(2) D3
+ and D3

− are the discs in W which are naturally carried over W from
the properly embedded discs D3

v+ and D3
v− in X1, respectively,

(3) D′3
+ and D′3

− are the discs in W which are naturally carried over W from

the properly embedded discs D′3
h+

and D′3
h−

in X ′
1, respectively.

Now, we describe the properly embedded discs D3
v+ and D3

v− in X1 and the

properly embedded discs D′3
h+

and D′3
h−

in X ′
1 as follows: Recall that X1 and

X ′
1 are the 4–manifolds constructed from the relative trisection diagrams D1 =

(Σ ∗ Σ′, α, β, γ) and D′
1 = (Σα ∗ Σ′, α′, β′, γ′), respectively, refer Figure 6 (A1) and

(A′
1). Now, one can easily see that X1 and X ′

1 can be decomposed as follows:

X1 = X
⊔

(Id×g)

(D2 × (Σ′ \ R̊′))

X ′
1 = X ′

⊔
(Id×g−1)

(D′
2 × (Σα \ R̊)),

where

(1) g : R → R′ is the map as in Definition 4.1 used to identify the rectangular
neighborhoods R and R′ to get R̄,

(2) the map (Id × g) : D2 × (∂c × [−1, 1]) ⊂ ∂X → D2 × (c′ × {±1}) is given
by (Id× g)(x, y) = (x, g(y)).

(3) the map (Id× g−1) : D′
2× (∂c′× [−1, 1]) ⊂ ∂X ′ → D′

2× (c×{±1}) is given
by (Id× g−1)(x, y) = (x, g−1(y)).

In the above decomposition of X1 and X ′
1, consider the properly embedded discs

D3
v+ ,D

3
v− ⊂ X1 and D′3

h+
,D′3

h−
⊂ X ′

1, respectively as follows:

(1) D3
v+ = D2 × (∂+c× [−1, 1]) = D2 × ∂+v R̄,

(2) D3
v− = D2 × (∂−c× [−1, 1]) = D2 × ∂−v R̄, where ∂c = ∂+c ∪ ∂−c,

(3) D′3
h+

= D′
2 × (∂+c′ × [−1, 1]) = D′

2 × ∂+h R̄,

(4) D′3
h−

= D′
2 × (∂−c′ × [−1, 1]) = D′

2 × ∂−h R̄, where ∂c
′ = ∂+c′ ∪ ∂−c′.

Now, by following the step by step construction of W from X1 and X ′
1, one can

easily see that the properly embedded discs D3
v+ ,D

3
v− ⊂ X1 and D′3

h+
,D′3

h−
⊂ X ′

1

canonically embeds into W and we denote these discs in W as D3
+,D3

−,D′3
+ and

D′3
−, respectively. Note that the gluing map F :M →M ′ is the identity map when
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R̄

D2 × ∂+
v R̄D2 × ∂−

v R̄

D
′

2 × ∂
−

h
R̄

I
2
α′ × R̄

I2
α

′ × ∂
+

h
R̄

I
2 α
′
×
∂
+ v
R̄

I2
α

′ × ∂
−

h
R̄

I
2 α
′
×
∂
− v
R̄

D2 × ∂−

v R̄

D
′

2 × ∂
−

h
R̄

D2 × ∂+
v R̄

R̄

D
′

2 × ∂
+

h
R̄

D
3

D
′

2 × ∂
+

h
R̄

Figure 9. The desired disc D3.

restricted to {t} × ∂vR̄ for each t ∈ I2α′ . Therefore,

D3 = D3
+ ∪ D3

− ∪D3 ∪ D′3
+ ∪ D′3

−

=
(
D2 × ∂+v R̄ ∪D2 × ∂−v R̄

) ⋃
Idv

(
I2α′ × R̄

) ⋃
Idh

(
D′

2 × ∂+h R̄ ∪D′
2 × ∂−h R̄

)

is a properly embedded 3–dimensional disc in W , where Idv : I2α′ × ∂±v R̄ → M ′ is
the restriction of the map F to I2α′ × ∂±v R̄ and Idh : I2α′ × ∂±h R̄→ I2α′ × ∂±h R̄ is the
identity map, see Figure 9. Now, by the construction of the disc D3, one can easily
see that D3 divides W into W1 and W2, i.e.

W \ D3 =W1 ⊔W2,

where

(1) W1 = X
⋃
(D′

2 × (Σα \R))
(2) W2 =

(
D2 × (Σ′ \ R′)

⋃
(X ′ \ (I̊2α′ × Hα′))

)⋃
(I2α × Hα′), where Hα′ =⋃

α′
i∈α′

Hα′
i
.

From the above description of W1 and W2 and the gluing maps involved in the
construction of W , we can see that W1 ∪D3 is diffeomorphic to X and W2 ∪D3 is
diffeomorphic to X ′. This completes the proof of the theorem.

□

Now, we obtain the following Gabai’s result from [6] as a corollary to Theo-
rem 4.4.

Corollary 4.5. Let (P, ϕ) and (P ′, ϕ′) be two abstract open books. Then,M(P,ϕ)∗(P ′,ϕ′)

is diffeomorphic to M(P,ϕ)#M(P ′,ϕ′).
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18 ABHIJEET GHANWAT, SUHAS PANDIT, AND SELVAKUMAR A

Proof. Let OB(P, ϕ) and OB(P ′, ϕ′) be the open books on M(P,ϕ) and M(P ′,ϕ′),
respectively. Let X and X ′ be the compact oriented 4–manifolds with ∂X =M(P,ϕ)

and ∂X ′ = M(P ′,ϕ′), respectively. By [3], there exist relative trisections T and T ′

on X and X ′ such that the open books OB and OB′ on ∂X and ∂X ′ induced by
T and T ′ coincide with the open books OB(P, ϕ) and OB(P ′, ϕ′), respectively. By
Theorem 4.4, there exists a relative trisection TX♮X′ on X♮X ′ such that the open
book on ∂(X♮X ′) induced by TX♮X′ is the Murasugi sum OB(P ∗ P ′, ϕ ∗ ϕ′) of
OB(P, ϕ) and OB(P ′, ϕ′). Now, the proof of the Corollary follows as ∂(X♮X ′) =
∂X#∂X ′ =M(P,ϕ)#M(P ′,ϕ′). □

4.1. Remarks on general Murasugi sum of relative trisections. Recall that
in Definition 4.1, we have defined the notion of a Murasugi sum of compact surfaces
along embedded rectangles R and R′ in the surfaces. We would like to point out
that this notion is a particular case of the notion of a Murasugi sum of compact
surfaces along embedded discs P and P ′ as 2n–gons in the surfaces.

Definition 4.6. Let Σ and Σ′ be two compact surfaces with boundary. Suppose
that P and P ′ are the embedded discs in Σ and Σ′ as 2n–gons with the consec-
utive edges e1, e2, . . . , e2n and e′1, e

′
2, . . . , e

′
2n, respectively such that the alternat-

ing edges e2, e4, e6, . . . , e2n of P are contained in ∂Σ and the alternating edges
e′1, e

′
3, e

′
5, . . . , e

′
2n−1 of P ′ are contained in ∂Σ′. A Murasugi sum of Σ and Σ′ along

P ⊂ Σ and P ′ ⊂ Σ′ is a compact surface

Σ ∗P Σ′ = Σ
⋃

P=P ′

Σ′

obtained by identifying Σ and Σ′ along the polygonal discs P and P ′ by a diffeo-
morphism g : P → P ′ so that g(ei) = e′i.

Σ Σ
′

P P
′

P

Σ ∗P Σ
′

P̄

e1

e2

e3

e4

e5

e6

e7

e8

e
′

1

e
′

2

e
′

3

e
′

4

e
′

5

e
′

6

e
′

7

e
′

8

e1 = e
′

1 e
2
=

e ′
2
e
3
=

e
′3

e 4
=

e
′
4

e5 = e
′

5

e
6
=

e ′
6

e
7
=

e
′ 7
e 8
=

e
′

8

∂1

h
P̄

∂3

h
P̄

∂5

h
P̄

∂7

h
P̄

∂
2

v
P̄

∂ 4
v P̄

∂
6
v

¯P

∂ 8
v P̄

Figure 10. Local picture of the Murasugi sum of Σ and Σ′ along
the 8–gons P ⊂ Σ and P ′ ⊂ Σ′.

Now, it is easy to see that the notion of a general Murasugi sum of two abstract
open books (Σ, ϕ) and (Σ′, ϕ′) along embedded polygonal discs P and P ′ in Σ and
Σ′ with the alternating edges of P and P ′ in ∂Σ and ∂Σ′ can be defined analogously
as described at the beginning of this section.

We also observe that given two relative trisection diagrams (Σ, α, β, γ) and
(Σ′, α′, β′, γ′) and given the embedded discs P and P ′ in Σ and Σ′ as 2n–gons
with the alternating edges of P and P ′ in ∂Σ and ∂Σ′, respectively such that P
is away from α curves in Σ and P ′ is away from α′ curves in Σ′, we can define a
Murasugi sum of the given relative trisection diagrams in the same way defined in
Definition 4.2.
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MURASUGI SUMS OF RELATIVE TRISECTIONS AND BALFS 19

Theorem 4.4 and Corollary 4.5 can be generalized for the general Murasugi sum
of trisections and the general Murasugi sum of open books. The proofs follow the
same line of arguments in the proof of Theorem 4.4 and Corollary 4.5 by replacing

(1) R,R′ and R̄ by P, P ′ and P̄ , respectively,
(2) ∂±h R̄ by ∂1hP̄ , ∂

3
hP̄ , ∂

5
hP̄ , . . . , ∂

2n−1
h P̄ and ∂±v R̄ by ∂2v P̄ , ∂

4
v P̄ , ∂

6
v P̄ , . . . , ∂

2n
v P̄ ,

and
(3) the disc D3 as shown in Figure 9 by the disc D3 obtained by appropriate

gluing as shown in Figure 11.
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D
′2
×
∂
3h
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D
′

2
× ∂5
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D
′2
×
∂
7h
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D
2
×

∂ 2
v P̄

D
2
×

∂
4

v
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2
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∂ 6
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D
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∂
8
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I
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α
′
×

∂ 2
v P̄

I
2α
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α
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×

∂
8
v

¯P
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Figure 11. The desired disc D3 in case of Murasugi sum of rela-
tive trisections diagrams along 8-gons

4.2. Stabilizations of relative trisections. Now, we discuss the notion of the
stabilization of a relative trisection on a compact 4−manifold with connected bound-
ary.

Recall that the 4−dimensional disc D4 admits the relative trisection diagrams
D+ = (Σ1,2, α

+, β+, γ+) and D− = (Σ1,2, α
−, β−, γ−) as shown in Figure 12

with induced open books of S3 = ∂D4 with page an annulus and the monodromies
the positive and negative Dehn twists, respectively. For more details, refer to
Figure 15.

Definition 4.7. A stabilization of a relative trisection diagram D = (Σ, α, β, γ)
is a relative trisection diagram D±

st = D ∗ D±, where D± are the relative trisection
diagrams of the 4–disc D4 as described above.

Definition 4.8. A ±ve stabilization of an abstract open book (Σ, ϕ) is an abstract
open book S±(Σ, ϕ) = (Σst, ϕ ◦ d±γ ) with Σst = Σ ∪ 1−handle, where d±γ the ±ve
Dehn twists along a simple closed curve γ in Σst, respectively such that γ intersects
the co-core of the 1–handle exactly once.
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α+

γ+
β+

α−

γ−β−

D
+ = (Σ1,2, α+

, β+
, γ+) D

− = (Σ1,2, α−

, β−

, γ−)

Figure 12. Relative trisection diagrams D+ and D− of the 4–disc
D4 with induced open books of S3 with page an annulus and the
monodromies the positive and negative Dehn twists, respectively.

One can easily see the following proposition:

Proposition 4.9. Let D be a relative trisection diagram. Then,

(1) XD±
st
= XD,

(2) the induced open book of ∂XD±
st

is a ±ve stabilization of the induced open

book of ∂XD.

Proof. By Theorem 4.4, we can see that

XD±
st
= XD♮XD± = XD♮D

4 = XD.

□

5. Murasugi sum of bounded achiral Lefschetz fibrations

In this section, we discuss the notion of a Murasugi sum of two abstract bounded
achiral Lefschetz fibrations.

5.1. Bounded achiral Lefschetz fibration. Let us discuss the notion of bounded
achiral Lefschetz fibrations on 4–manifolds.

Definition 5.1. Let X be a compact, connected, oriented smooth 4–manifold with
non-empty boundary. A smooth surjective map π : X → D2 is said to be a bounded
achiral Lefschetz fibration (BALF) if

(1) the map π has finitely many critical (or singular) points qi’s, all lie in the
interior of X with the critical (or singular) values f(qi) = pi and pi ̸= pj,
for i ̸= j,

(2) for each critical point qi and its corresponding critical value pi, there exist
coordinate charts Uqi = C2 around qi = (0, 0) and Vpi

= C around pi = 0
in X and D2, which agree with the orientations of X and D2, respectively
such that the restriction of π on Uqi is the map π : Uqi → Vpi

defined as
π(z1, z2) = z21 + z22 or π(z1, z2) = z21 + z̄22 ,

(3) for a regular value p, the fiber is a compact, connected, oriented surface
with non-empty boundary.
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The fiber of π over a singular value is called a singular fiber and the fiber of π
over a regular value is called a regular fiber. If a singularity is locally modeled by
the complex map π(z1, z2) = z21 + z22 , we call the singularity a Lefschetz singularity
and if a singularity is locally modeled by the complex map π(z1, z2) = z21 + z̄22 , we
call the singularity an achiral Lefschetz singularity.

5.2. Topology of a bounded achiral Lefschetz fibration. The following de-
scription is from [7] and [10]. Consider a BALF π : X → D2 on a compact oriented
4–manifold X with non–empty boundary ∂X. Let q1, q2, ..., qk be the critical points
of π and let π(qi) = pi be the critical value corresponding to the critical point qi.
Fix a regular value p in the interior of D2 and an identification of the fiber π−1(p)
with a compact oriented surface Σ = Σg,n of genus g with n boundary components.
For each i, choose an arc αi in D

2 connecting the point p and the singular value pi
such that αi and αj intersect only at p, when i ̸= j. The labels pi’s for the singular
values and the arcs αi’s can be chosen in the anticlockwise sense with respect to a
small circle around p.

pi
p

p1

p2

pk

Dpi

Dp2

Dp1

Dpk

Dp

D2

α1

α2

αi

αk

α1

α2

Figure 13. The critical values of the Lefschetz fibration π in D2.

For each critical value pi, choose a disc Dpi centered at pi and for the regular
value p, choose a disc Dp centered at p such that the discs Dp and Dpi

’s are disjoint
from each other in D2, see Figure 13.

In the complement of the critical values, the map

π|X\(∪k
i=1π

−1(pi)) : X \ (∪k
i=1π

−1(pi)) → D2 \ {p1, p2, ..., pk}

is a locally trivial fiber bundle. As every fiber bundle over a disc is trivial, π−1(Dp) =
Dp × Σ. Let ν(αi) denote a regular neighborhood of the arc αi in D

2.
Note that X0 = π−1(Dp ∪ (∪k

i=1ν(αi)) ∪ (∪k
i=1Dpi

)) is diffeomorphic to Dp × Σ
with the 2–handles Hpi

’s attached along the simple closed curves γi’s in the fibers
xi × Σ ⊂ ∂D2 × Σ, where xi is the intersection of ∂Dp and αi. The 2–handle
Hpi corresponds to the singularity qi and the framing of the handle attachment
is −1 with respect to the surface framing if qi is a Lefschetz singularity and is
+1 with respect to the surface framing if qi is an achiral Lefschetz singularity.
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We call the curve γi the vanishing cycle corresponding to the singularity qi. The
monodromy of the fibration π around each singular value pi is given by a positive
(negative) handed Dehn twist about the simple closed curve γi in Σ. Recall that by
a positive (negative) Dehn twist on an embedded circle c in a surface Σ, we mean a
diffeomorphism obtained by cutting Σ along c and twisting 360◦ to the right (left)
and re-gluing it back. The Dehn twist dγi

is positive if qi is a Lefschetz singularity
and negative if qi is an achiral Lefschetz singularity. The vanishing cycle γi collapses
to the critical point qi on a singular fiber as one gets near the critical point qi. The
boundary monodromy of the Lefschetz fibration π : X0 = π−1(D) → D is the
product dγ1

dγ2
. . . dγk

(we will write compositions of Dehn twists in a monodromy
as words from left-to-right) of Dehn twists dγi

’s along the vanishing cycles γi’s,
where

D = Dp ∪ (∪k
i=1ν(αi)) ∪ (∪k

i=1Dpi
).

Since there are no critical values of the Lefschetz fibration π outside the disc D
and the disc D2 is isotopic to the disc D, we can assume D2 = D and X4 = X0.
From the above discussion, we can associate a pair (Σ,Γ) to the BALF π : X → D2,
where Σ is a compact oriented surface of genus g with non-empty boundary and
Γ = (dγ1

, dγ2
, . . . , dγk

) is an ordered k–tuple of Dehn twists along the curves γi’s in
Σ.

Remark 5.2. This association is not unique as it depends on an identification of
a regular fiber with Σ and a choice of the arcs αi’s joining the regular value p and
the singular values pi’s, once we fix a regular value p.

Note that the BALF π : X → D2 induces the open book OB(Σ, ϕ) on the
boundary ∂X with page Σ and the monodromy the product ϕ = dγ1

dγ2
. . . dγk

of
Dehn twists dγ1

, dγ2
, . . . , dγk

along the curves γ1, γ2, . . . , γk in Σ, respectively. The
open book OB(Σ, ϕ) on ∂X has the following decomposition:

∂X = π−1(∂D2) ∪D2 × ∂Σ.

Definition 5.3. An abstract bounded achiral Lefschetz fibration (BALF) is a pair
(Σ,Γ), where Σ is a compact oriented surface with non–empty boundary and Γ =
(dγ1 , dγ2 , ..., dγk

) is an ordered collection of Dehn twists along the simple closed
curves γ1, γ2, ..., γk on Σ.

Given an ordered collection of Dehn twists Γ = (dγ1
, dγ2

, ..., dγk
) along the simple

closed curves γ1, γ2, ..., γk on a compact oriented surface Σ with non-empty bound-
ary, we can construct a BALF over D2 as follows: First, consider the trivial bundle
π : D2 × Σ → D2. Let p1, p2, ..., pk be distinct points in ∂D2 = S1 ordered in the
anticlockwise sense. For each i, consider the curve γi in the fiber pi×Σ ⊂ ∂D2×Σ.
Attach a 4–dimensional 2–handle Hi along γi to D2 × Σ with framing −1 (re-
spectively, +1) with respect to the fiber framing if the Dehn twist dγi

is positive
(respectively, negative). The resulting manifold X = (D2 ×Σ)∪H1 ∪H2 ∪ ...∪Hk

admits an achiral Lefschetz fibration π : X → D2 with the regular fiber Σ and the
vanishing cycles γ1, γ2, ..., γk. We denote the manifold X associated to the abstract
BALF by X(Σ,Γ). We say that the pair (Σ,Γ) is an abstract BALF of a compact
4–manifold X if X is diffeomorphic to the 4–manifold X(Σ,Γ).

One can see that there is a one-to-one correspondence between the equivalence
classes of BALFs π : X → D2 having the regular fibers, a surface Σg,n of genus g
with n boundary components and the equivalence classes of abstract BALF (Σ,Γ),
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where Γ is an ordered k–tuples of Dehn twists (dγ1
, dγ2

, ..., dγk
) on the surface Σg,n,

up to cyclic permutations, the Hurwitz equivalence and the global conjugations by
orientation preserving diffeomorphisms of Σ. For the notions of cyclic permutations,
the Hurwitz equivalence and the global conjugations refer [5].

5.3. Murasugi sum of bounded achiral Lefschetz fibrations. In this subsec-
tion, we define the notion of a Murasugi sum of two abstract BALFs.

Definition 5.4. Let (Σ,Γ) and (Σ′,Γ′) be two BALFs, where Γ = (dγ1
, dγ2

, ..., dγk
)

and Γ′ = (dγ′
1
, dγ′

2
, ..., dγ′

k′
) are the ordered collection of Dehn twists along the simple

closed curves γ1, γ2, ..., γk and γ′1, γ
′
2, ..., γ

′
k′ on the compact oriented surfaces Σ and

Σ′, respectively. A Murasugi sum (Σ,Γ) ∗ (Σ′,Γ′) of (Σ,Γ) and (Σ′,Γ′) is a BALF
(Σ ∗ Σ′,Γ ∗ Γ′), where

(1) Σ ∗ Σ′ is a Murasugi sum of Σ and Σ′,
(2) Γ ∗ Γ′ = (dγ1

, dγ2
, ..., dγk

, dγ′
1
, dγ′

2
, ..., dγ′

k′
).

Theorem 5.5. Let (Σ,Γ) and (Σ′,Γ′) be two BALFs, where Γ = (dγ1 , dγ2 , ..., dγk
)

and Γ′ = (dγ′
1
, dγ′

2
, ..., dγ′

k′
) are the ordered collection of Dehn twists along the simple

closed curves γ1, γ2, ..., γk and γ′1, γ
′
2, ..., γ

′
k′ on the compact oriented surfaces Σ and

Σ′, respectively. Let (Σ ∗ Σ′,Γ ∗ Γ′) be a Murasugi sum of (Σ,Γ) and (Σ′,Γ′).
Then, the 4–manifold X(Σ,Γ)∗(Σ′,Γ′) is diffeomorphic to the boundary connected sum
X(Σ,Γ)♮X(Σ′,Γ′) of X(Σ,Γ) and X(Σ′,Γ′). Moreover, the open book on the boundary of
X(Σ,Γ)♮X(Σ′,Γ′) is a Murasugi sum of the open books on the boundaries of X(Σ,Γ)

and X(Σ′,Γ′).

Proof. Let Σ ∗ Σ′ be the Murasugi sum of Σ and Σ′ along the properly embedded
arcs c ⊂ Σ and c′ ⊂ Σ′. Let R̄ be the rectangle in Σ ∗ Σ′ obtained by identifying
R ⊂ Σ and R′ ⊂ Σ′ as in Definition 4.1. We regard R̄ as [−1, 1] × [−1, 1] with
c × {0} = [−1, 1] × {0} and c′ × {0} = {0} × [−1, 1]. We denote the vertical
boundary {±1} × [−1, 1] of R̄ by ∂±v R̄ and the horizontal boundary [−1, 1]× {±1}
of R̄ by ∂±h R̄.

In order to prove the theorem, we show that there is a properly embedded 3–disc
D3 in X(Σ,Γ)∗(Σ′,Γ′) such that

X(Σ,Γ)∗(Σ′,Γ′) \ D3 = X ⊔X ′,

where

(1) X ∪ D3 is diffeomorphic to X(Σ,Γ),

(2) X ′ ∪ D3 is diffeomorphic to X(Σ′,Γ′).

In order to construct the required disc D3, we recall the construction of 4–
manifold X(Σ,Γ)∗(Σ′,Γ′) as follows: Let D2 be the 2–disc together with the points

p1, p2, . . . pk appearing in the anticlockwise sense on the upper semicircle of ∂D2

and the points p′1, p
′
2, . . . , p

′
k′ appearing in the anticlockwise sense on the lower

semicircle of ∂D2 as shown in Figure 14. Now, the 4–manifold X(Σ,Γ)∗(Σ′,Γ′) can

be obtained from D2 × (Σ ∗ Σ′) by attaching the 2–handles Hγi ’s and Hγ′
j
’s along

γi ⊂ {pi}×Σ ∗Σ′ and γ′j ⊂ {p′j}×Σ ∗Σ′ for each i = 1, 2, . . . k and j = 1, 2, . . . , k′,
respectively. The 2–handle Hγi

is attached with framing −1 (respectively, +1)
with respect to the fiber farming if the Dehn twist dγ is positive (respectively,
negative) and The 2–handle Hγ′

j
is attached with the framing −1 (respectively,
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+1) with respect to the fiber farming if the Dehn twist dγ′
j
is positive (respectively,

negative).

p1

p2

p3

pk

p′
1

p′
2

p′
3

p′
k′

D2

I

∆

∆
′

Figure 14. The various parts of the Disc D2 = ∆ ∪∆′.

Now, we use the above construction of X(Σ,Γ)∗(Σ′,Γ′) to describe the desired

properly embedded disc D3 as follows: Let ∆ and ∆′ be the upper and the lower
half 2–discs in D2 as shown in Figure 14. Let I = ∆∩∆′. Let D3 be the subset of
X(Σ,Γ)∗(Σ′,Γ′) as given below:

D3 =
(
∆× ∂+v R̄ ∪∆× ∂−v R̄

)⋃(
I × R̄

)⋃(
∆′ × ∂+h R̄ ∪∆′ × ∂−h R̄

)
.

One can easily see that D3 is a properly embedded disc in X(Σ,Γ)∗(Σ′,Γ′). Observe
that

X(Σ,Γ)∗(Σ′,Γ′) \ D3 = X ⊔X ′,

where

(1) X =

(
k⋃

i=1

Hγi
∪ (∆× Σ)

)
∪ (∆′ × (Σ \R),

(2) X ′ = (∆× (Σ′ \R′)) ∪

(
(∆′ × Σ)

k′⋃
i=1

Hγ′
i

)
.

By recalling the construction of X(Σ,Γ) and X(Σ′,Γ′) from D2 × Σ and D2 × Σ′,

respectively, we observe that the 4–manifolds X ∪D3 = X(Σ,Γ) \ ˚(∆′ ×R) which is

diffeomorphic to the 4–manifolds X(Σ,Γ) and X
′∪D3 = X(Σ′,Γ′) \ ˚(∆×R′) which is

diffeomorphic to the 4–manifold X(Σ′,Γ′). This completes the proof of the theorem.
□

Another argument for Gabai’s result from [6] (refer Corollary 4.5) is as follows:
Let (Σ, ϕ) and (Σ′, ϕ′) be two abstract open books. By Lickorish [9], we can write
–up to isotopy– ϕ = dγ1

dγ2
. . . dγk

and ϕ′ = dγ′
1
dγ′

2
. . . dγ′

k′
, where dγi

’s and dγ′
j
’s

are the Dehn twists along the simple closed curves γi’s and γ
′
j ’s in Σ and Σ′, respec-

tively. Consider the compact oriented 4–manifolds X(Σ,Γ) and X(Σ′,Γ′) associated to
the abstract BALFs (Σ,Γ) and (Σ′,Γ′), respectively, where Γ = (dγ1 , dγ2 , . . . , dγk

)
and Γ′ = (dγ′

1
, dγ′

2
, . . . , dγ′

k′
). Note that ∂X(Σ′,Γ′) = M(Σ,ϕ) and ∂X(Σ′,Γ′) =

M(Σ′,ϕ′). By Theorem 5.5, the open book on the boundary ∂(X(Σ,γ)♮X(Σ′,Γ′)) is
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the Murasugi sum OB(Σ ∗ Σ′, ϕ ∗ ϕ′). Now, the proof of the Corollary follows as
∂(X(Σ,Γ)♮X(Σ′,Γ′)) = ∂X(Σ,Γ)#∂X(Σ′,Γ′) =M(Σ,ϕ)#M(Σ′,ϕ′).

5.4. Stabilizations of Lefschetz fibrations. Now, we discuss the notion of the
stabilization of a BALF on a compact 4−manifold.

Note that the 4−disc D4 admits a bounded Lefschetz fibration (A,Γ+ = (d+c )),
where A is an annulus and d+c is the positive Dehn twist along the central curve c
of A. The 4−disc D4 also admits a bounded achiral Lefschetz fibration (A,Γ− =
(d−c )), where d

−
c is the negative Dehn twist along the central curve c of the annulus

A.

Definition 5.6. A stabilization of an abstract BALF (Σ,Γ) is an abstract BALF
S±(Σ,Γ) = (Σst,Γ

±
st) with Σst = Σ ∪ 1−handle and Γ±

st = (Γ, d±γ ), where d
+
γ and

d−γ are the positive and the negative Dehn twists along a simple closed curve γ in
Σst, respectively such that γ intersects the co-core of the 1–handle exactly once.

One can easily see the following proposition:

Proposition 5.7. Let (Σ,Γ) be an abstract BALF. Let (A,Γ± = (d±c )) be the
BALFs of D4. Then,

S±(Σ,Γ) = (Σ,Γ) ∗ (A,Γ±).

Hence,

XS±(Σ,Γ) = X(Σ,Γ)∗(A,Γ±).

As an application of the above proposition, we have the following proposition:

Proposition 5.8. Let (Σ,Γ) be an abstract BALF. Then,

XS±(Σ,Γ) = X(Σ,Γ).

Proof. From Proposition 5.7, we have XS±(Σ,Γ) = X(Σ,Γ)∗(A,Γ±).

Hence by Theorem 5.5, we can see that XS±(Σ,Γ) = X(Σ,Γ)♮D
4 = X(Σ,Γ). □

5.5. Remarks on a Murasugi sum of relative trisections and a Murasugi
sum of BALFs. In this subsection, we discuss some remarks on a Murasugi sum
of relative trisections and a Murasugi sum of bounded achiral Lefschetz fibrations
using results in the previous sections.

Let π : X → D2 be a BALF of a compact oriented 4–manifold X associated to
an abstract BALF (Σ,Γ). One can use an algorithm given in [1] to get a relative
trisection T of X obtained from the BALF π such that the open books on ∂X
induced by T and the BALF π coincide, see [[1]; Corollary 18]. This algorithm also
allows us to get a relative trisection diagram D of the relative trisected 4–manifold
X from the abstract BALF (Σ,Γ). We denote the relative trisection diagram D
associated to the BALF (Σ,Γ) by D(Σ,Γ). More precisely, we state the result as
follows:

Theorem 5.9 (Castro, Gay and Pinzón-Caicedo [1]). Let π : X → D2 be a BALF
with regular fiber a compact surface P of genus p with b boundary components, and
with n vanishing cycles. Then, the manifold X admits a (p + n, 2p + b − 1; p, b)–
relative trisection T such that the induced open books on ∂X by the trisection T
and the BALF π coincide.

The proof of this result follows from the following lemma.
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α

γβ

α

γβ

C

A(C)

If th
e fra

ming
of C

is +
1

If the framing of C is -1

⊂ Σ
+

⊂ Σ
−

β, γ

Figure 15. The above figure shows how to get Σ± from Σ by
replacing an annular neighborhood A(C)–depicted on the left– of
the simple closed curve C in Σ by twice punctured torus–depicted
on the right– with new α, β, γ curves according to the framing ∓1
of C.

Lemma 5.10 (Castro, Gay and Pinzón-Caicedo [1]). Let (Σ, α, β, γ) be a relative
trisection diagram of a compact oriented 4–manifold X. Consider a simple closed
curve C ⊂ Σ disjoint from α and transverse to β and γ. Let (Σ±, α±, β±, γ±) be
the result of removing an annular neighborhood A(C)of C together with the β and γ
arcs running across this neighborhood and replacing it with a twice-punctured torus
as in Figure 15 with β and γ arcs as drawn, and with one new α, β and γ curve
as drawn. Then (Σ±, α±, β±, γ±) is a relative trisection diagram for a trisected
4–manifold X ′ = X ′

1 ∪ X ′
2 ∪ X ′

3, where X
′ is obtained by attaching a 2–handle to

X along C ⊂ P with framing ∓1 relative to P such that the open book on ∂X ′ has
page P with monodromy d±1

C ◦ µ. Here, dC is a right-handed Dehn twist about C.

Now, we have the following theorem.

Theorem 5.11. Let D(Σ1,Γ1) and D(Σ2,Γ2) are the relative trisection diagrams asso-
ciated to the abstract BALFs (Σ1,Γ1) and (Σ2,Γ2), respectively. Let (Σ,Γ) = (Σ1 ∗
Σ2,Γ1 ∗Γ2) be a Murasugi sum of the abstract BALFs (Σ1,Γ1) and (Σ2,Γ2). Then,
the relative trisection diagram D(Σ,Γ) associated to the abstract BALF (Σ,Γ) is (dif-
feomorphism and handle slide equivalent to) a Murasugi sum D(Σ1,Γ1) ∗ D(Σ2,Γ2) of
D(Σ1,Γ1) and D(Σ2,Γ2).

Proof. The proof of the theorem follows by the definitions of the Murasugi sum of
relative trisections and the Murasugi sum of BALFs and by the algorithm provided
in [1] to get a relative trisection diagram associated to a given abstract BALF. □

One can easily see the following corollary of the above theorem.
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Corollary 5.12. Let (Σ,Γ) be an abstract BALF. Then a relative trisection asso-
ciated to a stabilisation S±(Σ,Γ) of the abstract BALF (Σ,Γ) is a stabilisation D±

st

of a relative trisection D = D(Σ,Γ) associated to the abstract BALF (Σ,Γ).
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