STOCHASTIC CONTROLLABILITY FOR A NON-AUTONOMOUS
FRACTIONAL NEUTRAL DIFFERENTIAL EQUATION WITH INFINITE
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ABSTRACT. This paper deals with the controllability for a class of non-autonomous neutral
differential equations of fractional order with infinite delay in an abstract space. The semi-
group theory of bounded linear operators, fractional calculus, and stochastic analysis techniques
have been implemented to achieve the result. We prove the existence of mild solution and
controllability of the system by using the theory of measure of non-compactness, fixed point
theorems, and k-set contractive mapping. An example is given to demonstrate the effectiveness
of the abstract result.

1. Introduction

The idea of fractional derivatives was first introduced in Leibniz’s letter to L’Hospital on 30th
September 1695 [12], when he raised the meaning of derivative of order % The issue raised
by Leibniz attracted many well-known mathematicians, including Liouville, Griinwald, Riemann,
Euler, Lagrange, Heaviside, Fourier, Abel, Letnikov, and many others. Since the 19th century,
the theory of fractional calculus originated rapidly and was the beginning of many disciplines,
including fractional differential equations, non-integer order geometry, and fractional dynamics.
Nowadays, there are numerous applications in various branches, such as optimal control, porous
media, fractional filters, signal and image processing, soft matter mechanics, fractals etc.The main
reason for the application of fractional calculus becoming more popular is that the non-integer
order model describes a more accurate model than the integer-order. For the basics of fractional
calculus and its applications, we refer to [10} B2} B3] 36].

A stochastic differential equation is one in which one or more of the terms are random variables.
Stochastic differential equations are used to describe various phenomena, notably unstable stock
prices and physical devices with thermal fluctuations, population dynamics, biology, weather pre-
diction model, molecular dynamics, and the textile industry. A brief summary of stochastic theory
can be seen in [I1], 21].

In 1960, Kalman [30], proposed the idea of controllability. Controllability theory aims the ability
to control a specific system to the desired state by providing appropriate input functions during
a finite time interval. Controllability theory is a vital concept in the dynamical control system
and plays a significant role in examining various dynamical control processes. Several papers on
the controllability of systems represented by differential equations in abstract spaces have been
published.

In the setting of integer order systems, Balachandran et al. [I§], gave a survey paper for
controllability of nonlinear control systems in Banach spaces in 2001. In [24, 25], Mammudov
et al. used fixed point theorems to obtain the necessary requirements for the controllability of
linear and nonlinear stochastic systems. Using sequential approach, Shukla et al. [5], established
some sufficient conditions for approximate controllability of semilinear systems in 2015. In 2020,
Kumar et al. [6], investigated the approximate controllability of second-order nonlinear differential
equations with finite delay using Schauder’s fixed-point theorem.
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In the setting of a fractional-order system, Tai and Wang [35], studied the controllability result
for a fractional impulsive neutral differential equation in a Banach space using the Krasnoselskii’s
fixed point theorem in 2009. In 2020, Chen et al. [28], used Schauder’s fixed point theorem
to investigate the existence of mild solutions and approximate controllability for the fractional
evolution equation. In 2022, Raheem and Kumar [§] proved the existence and uniqueness of the
mild solution of the fractional system with a deviated argument. They used the measure of non-
compactness and the Monch fixed point theorem to investigate the controllability result.

We observe that all previous works have mainly focused on the case when differential operators
in the main parts are independent of time ¢, implying that the differential system is autonomous
[1, 4, [9] 19, 22]. However, when treating some parabolic equations, where the differential operators
depend on time ¢t or a non-autonomous system appears frequently in the application, see the
papers [6], 8, 37, 38, [39]. There are only a few papers dealing with the controllability of fractional
non-autonomous system.

More precisely, in 2017, Chen et al. [40] investigated the existence of mild solutions for initial
value problem to the following nonlinear time fractional non-autonomous evolution equations with
delay in Banach space

CD&u(t) + At)u(t) = f (t,u(ti(t)), ..., ultm(t)), t €[0,T],
u(0) = uo,

where © D¢ is the standard Caputo’s fractional time derivative of order 0 < a < 1.
In 2018, Chen et al. [26] considered the following nonlinear time fractional non-autonomous
evolution equation with nonlocal conditions

{ CDgu(t) + A(t)yu(t) = f (t,u(t), t € [0,T],
u(0) = A= (0)g(u),

and investigated the existence of mild solutions by using measure of noncompactness and fixed
point theorem.

In 2020, Kumar et al. [7] considered the non-autonomous fractional differential equations with
integral impulse condition and proved the existence of mild solutions by using measure of non-
compactness, fixed point theorems, and k-set contraction.

Motivated by the works of [7, 8] and [31], we study the controllability to non-autonomous sto-
chastic system of order 0 < 7 < 1. We consider the following non-autonomous fractional stochastic
neutral differential equation of order 0 < v < 1 in a separable Hilbert space (X, || - ||):

D7 |9(t) = F(t,00)] + AW [0(8) — F(.91)| = Bu®) + g(t 9, 90) + h(t,9(1)) d%(f),
tes=[0,g, @1
do(t) = A7H0)$(t) € La(Q, ), t € Jo = (—00,0],

where © D7 denotes the Caputo fractional derivative of order 0 < v < 1. Let X,Y be separable
Hilbert spaces and the notation || - || denotes the norm of the spaces X,Y, and L(Y, X). A(¢) is
a densely defined closed linear operator on X and 9 : J — X is the state function. The function
Y 1 (—00,0] = X, P(s) = ¥(t + s) belongs to the abstract phase space p. The control function v
takes value in a separable Hilbert space U and the linear operator B € L(U, X) is bounded. The
functions f, g and h satisfy some conditions.

This paper is planned as follows. Section 1 contains the introduction and considered problem.
Section 2 includes several important definitions, assumptions, and lemmas. The main result for
the controllability of a non-autonomous fractional system is established in Section 3. In the last
section, an example is provided as an application.
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2. Preliminaries and Assumptions

Let (2,7, P) be a complete probability space. T;, ¢ € J is a normal filtration, which is
a right continuous increasing family and Yo contains all P-null sets. Assume that {e,}>2 is
a complete orthonormal basis in Y. {w(t)};>0 denotes @Q-Wiener process on (2,Y, P) with a
bounded nuclear covariance operator @ such that Tr(Q) = 372, \; such that Qe, = A\,e,, n =
1,2,..., where )\, denotes the bounded sequence of non-negative real numbers. Thus we get
w(t) = > 07 VApwn(t)e,, where w,(t), n =1,2,... are mutually independent one-dimensional
standard Wiener motions over the probability space (Q, T, P). For all ¢ € L(Y, X ), we define

19113 = TrwQu™) = [V Antben|*.
n=1

If the value of |[1)]|? is finite, then 1 is said to be @-Hilbert Schmidt operator. Let the space of
all Q-Hilbert-Schmidt operators 1 : Y — X be denoted as L3(Y, X). The completion L3(Y, X) of
L(Y, X) with respect to the norm | - ||g, where ||L/JH2Q =< 1,1 > forms a Hilbert space with the
above norm.

We will use an axiomatic formulation of the phase space p described by Hale and Kato [14].
The axioms of the phase space p are demonstrated for Yy measurable functions from J into X
endowed with the seminorm defined as || - [|,. We assume that o satisfies the following axioms:

(A1) If ¥ : (—o0,¢) = X, ¢ > 0 is continuous on [0,c) and ¥y € p, then for every t € [0, c), the

following conditions hold:

(i) ¥ is in p.

(i) [90)]) < K 16,

(iii) [|04]lp < Ko(t)sup {||9(s)]| : 0 < s < t} + K3(t)||9o]|p, where Ky > 0 is a constant,
Ky, K3 :[0,00) = [0,00), K3(-) is continuous and K3(-) is locally bounded.

(A2) For () in (Al), ¥4 is p-valued functions in [0, ¢).

(A3) The phase space p is complete.

The stochastic process ¥ : Q@ — g, where ¢ € [0, 00) is defined as ¥y = {¥(t+s)(w) : s € (—00,0]}.

Let L?(9, X) be defined as the collection of all strongly measurable, square integrable, X-valued

random variables, with the norm ||19()HL2 = (EH(,w)H2> i , where the expectation F is defined

as E(h) = / h(w)dP. Let Jy = (—00,¢) and C(Jy, L?>(Q, X)) denotes the Banach space of all T,
Q

adapted measurable, X-valued stochastic process that are continuous from J to L?(£, X) with the
condition sup EH19(15)H2 < 00.
teJo

Let Z be the closed subspace of all continuous processes 9 that belongs to space C(Jo, L (€2, p))
consisting of measurable and T, adapted processes such that A=1(0)¢ € p. The space Z forms a
Banach space with the norm defined by

191z = (sup 2]

where [|04]|, < K3E||A~1(0)6||,+ Ko sup {E|9(s) : 0 < s < b}, Ks = SU?K?,(T,), Ky = sug)Kg(t).
te te

1
2
)

Let L?(Y, X) denotes the Banach space of all square integrable, T-measurable random variables.
The control function v(-) € L3-([0, ¢],U), where L3-([0,¢],U) is a Banach space with the norm

¢ 3
s = (2 [ Toofiar)

¢
satisfying E/ HU(t)HZUdt < 00.
0
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We assume that the linear operator —A(t) fulfills the following conditions:
(B1) For every § with Re(d) < 0, the operator 61 + A(t) is invertible in L(X) and

Jisr+ a0 <

where C' is a positive constant.
(B2) For each s,7,t € I, there exists a constant v € (0, 1] such that

[[A(s) = AN A@®) 7| < Cls — 77,
where the constants v and C' > 0 are independent of both s, 7 and ¢.

Remark 2.1. From (B1), if we substitute § = 0 and t = 0, then ||[A=1(0)|| < C, where C is a
constant defined as in (B1).

Lemma 2.2. ([24]) For any 9, € LP(Y,X) and p > 2, there exists a function r € L%(]0,¢], L9)
such that

¢
9¢ = Evy +/0 K(s)dw(s).

4
Lemma 2.3. ([17]) Let V be LS-valued predictable process with p > 2 such that E (/ IV(s) ||p0d5> <
0

L2
P P
< ¢, sup E(‘ )
s€[0,t]

G ([ V@lzgde) . e 0.0,

P P &
B (N (217 (2
where ¢, = (p— 1) and C) (2(p 1)) (p— 1) .

Definition 2.4. ([23]) The stochastic process ¥ : (—oo, ] — X is said to be a mild solution of the
problem if 9o = A7H(0)¢ € p satisfying ||A~1(0)¢]|Z < oo, the restriction I(-) to the interval
[0,£) is a continuous and satisfy the following integral equation:

oo, then

AN

[ viaue

[ vigaue

E| sup
s€[0,t]

IN

o) = AN0)6(0) — F(0, AN (0)8(0)) + F(t.9y) + / W(t — 0, U(2)5(0)do
+ / (t — 0.0)[Bu(e) + 9 (0.9,,9(0)) | do + / W (t — 0. 0)h(0.9(0))du(o)
0 0

+ /0 /ng — 0,0)9(0,5)[Bu(s) + g (5,95, 0(s)) | dsdo

t ro
+ [ [ - 00000 9)n(s. 905))du(s)de (21)
0o Jo
where ¥(t, 0), (t,0) and U(t) are given by the following equations [29]
Utg) = [ ATIE e MO (2.2)
0
k=1
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and
t
Ut = ~A®A0) - [ (k0044 (0)de, (24)
0
&, denotes the probability density function on [0, c0) and it’s Laplace transform is given by

- —  (—z)
e" ¢, (0)do = —— 0<~v<1, z>0,
/0 ! jZ::OF(lJer)

where I'(+) is the Euler-Gamma function and
¢
D(te) = [ BBl oo k=123
)

Lemma 2.5. ([23]) The operators ¥(t — o, 0) and A(t)
operator topology in variables t and o, wheret € J and 0
following inequalities:

U(t — 0,0) are continuous in the uniform
< o <t—e¢ for each € > 0 and satisfy the

@t o0l < Clt—0)"", (2.5)
where C' > 0 is a constant independent of both t and p. Furthermore,
IB(t, o) < C(t—o)" ", (2.6)
and
U@l < ca+t), (27)

where C 1s a constant.

We obtain the following result by Lemma [2.5]

¢
Lemma 2.6. ([20]) For any t € J, the integral / U(t — o, 0)U(p)do is uniformly continuous in
0
the operator norm L(X) and

t
‘/W@—@@W@@Hsﬁﬂ<i+ﬁBmﬁ+D)
0

where
1
B(s.) = [ ¢ -0t
0
is the Beta function.

Lemma 2.7. ([26]) For each t € J and u € L'[0,/], we have

/ / Q(t—9)7_1(9—S)ﬁ_lu(s)deQZB(ﬁﬁ) / (t — o)’ u(o)do.
0 0 0

Definition 2.8. ([2]) The fractional integral of a function y € L*([0,0),R) is defined as

mmw:f%iéafﬁ%w@ma

where v > 0.

Definition 2.9. ([2]) The Caputo fractional derivative of a function y € L*([0,00),R) which can
be defined as

Yy _ 1 ! — g1 (n)s s — "7
DYYO) = oy [ (=" 5)ds = ),

where n — 1 <y <n, n €N and y is at least n-times differentiable .
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Definition 2.10. ([I5]) The Kuratowski measure of non-compactness u(-) defined on bounded set
S of a Banach space X is

w(S) —inf{5>0:8— U Sk and diam(Sy) < § for k = 1,2,...,71}.
k=1
Lemma 2.11. ([I6, 27]) Let X be a Banach space and M,N C X be bounded. The following
properties are satisfied:
(1) p(M) < p(N) if M C N;

) u(M U N) = max{u(M), p(N)};

) p(M + N) < pu(M)+ p(N), where M+ N={x=y+z:yecM,z€ N};

) w(AM) = |A|u(M), where X is a real number;

) Foranyz € X, up(M + ) = p(M);

) u(M) =0 if and only if M is compact, where M means the closure hull of M ;

) u(M) = pu(M) = p(convM), where convM means the convex hull of M ;

) If the function L : D(L) C X — H is a Lipschitz continuous, then p(L(S)) < ku(M),
where M C D(L) is a bounded subset, H is another Banach space and k is Lipschitz
constant.

(2
(3
(4
(5
(6
(7
(8

In this article, (-) and pc(-) denote the Kuratowski measure of noncompactness on the bounded
set of X and C(J, X) respectively. For any subset P of C(J, X), define the set P(t) = {¥(t) | ¥ €
P, t € J} C X. If the set P is bounded in C(J, X), then P(t) is bounded in X and u(P(t)) <
pe(P). We refer to the monographs [15] and [16] for more details about the Kuratowski measure
of noncompactness.

Lemma 2.12. ([15]) Let X be a Banach space, and P be the subset of C(J, X) which is bounded
and equicontinuous. Then p(P(t)) is continuous on J, and puc(P) = I?aj(u(P(t)).

€
Lemma 2.13. ([27]) Let P be the bounded subset of a Banach space X. Then there ezists a
countable set Py C P, such that u(P) < 2u(Po).

Lemma 2.14. ([13]) Let X be a Banach space. If Q = {9"},2 | C C(J, X) is a countable set and
there exists a function o € L*(J,R*") such that for each n € N

9] < alt), a.e. t e
Then p(Q(t)) is Lebesgue integrable on J, and

14 £
I ({/0 " (0)do:n € N}) < 2/0 1(Q(e))do.

We need the following Lemma to deal with the measure of stochastic integral term.

Lemma 2.15. ([20]) If W C LP(J; L3(Y, X)) and w(t) is a Q-Wiener process. For every p > 2,
the Hausdorff measure of non-compactness p satisfies

14
1 ( / W(g)dw<g>> <\ B - Du(m (o)),
L 14
/ W(o)dw(p) = {/ I(o)dw(p) for all ¥ € W, t € J} .
0 0

Remark 2.16. When p =2 in Lemma[2.15, then

4
#(/ W(@)dw(@)> < VAETrQu(W (o).
0

where

20 Jun 2023 03:39:38 PDT
221124-Areefa Version 2 - Submitted to Rocky Mountain J. Math.



STOCHASTIC CONTROLLABILITY OF FRACTIONAL SYSTEM 7

Definition 2.17. ([15]) Let Q be a nonempty subset of a Banach space X. A continuous mapping
o:Q — X is said to be k-set-contractive if there exists a constant k € [0,1) such that, for every
bounded set P C O,

(o (P)) < ku(P).
Lemma 2.18. ([I6]) Let Q be a bounded closed and convexr subset of a Banach space X, the

operator o : Q@ — Q is k-set-contractive. Then o has at least one fixed point in Q.

Definition 2.19. ([34]) The control problem is called controllable on J if for each continuous
stochastic process A=1(0)¢ € @ defined on Jy, there exists a control function v € L?(J,U) such
that the mild solution 9 of satisfies ¥(¢) = 91, where ¥1 and € are predefined final state and
time respectively.

3. Main Result

(C1) The linear operator B is bounded, i.e., ||B|| < m; for some constant m; > 0.
(C2) The linear operator Q : L3 (J,U) — L*(T, X) defined by

(Qu)(t) = / W(t — 0.0)Bo(o)do + / / Wt — 0, 0)P(0. 5)Bo(s)dsdo,

has an invertible operator Q! and there exists a positive constant ms such that HQ‘l H <
mao.
(C3) The continuous function f : J x p — X satisfies the following conditions:
(i) For each t1,t2 € J and 9,9, € g, there exists a constant Ly > 0 such that

1 (b1, 90) = F(t2, 91 < Ly (Jtn = t2| + 19 — s[)-
(ii) For each t € J and ¥; € g, there exists a constant L; > 0 such that
IF(E0IP < Ly (1 + [19:]1%).

(iii) For every bounded and countable subset P of X, there exists a positive constant L ¥
such that

w(f(t,P)) < Lyu(P), t e J.

(C4) The continuous function ¢ : J x p x X — X fulfills the following conditions:
(i) g(-, ¥, v) is strongly measurable for each U, € p, J € X.
(ii) For each tq,t2 € J, 94,95 € p and 9,9 € X, there exists a constant Ly > 0 such that

~ 2 ~
g (t1, 96, 9(t)) — g(t2,95,9(1))||” < Lg (lt1 — to| + (19 — Oul?, + [10(t) — 19(t>\|2) :
(iii) For each r > 0, there exists a non-zero function G, € L& (J,R*) such that

sup ||g(t,19t,19(t))||2 < G.(t), for a.e. t € J,
9:112, 019112 <r

and

([
lim inf — =108 _ 5
r—00 ’
where 2v; < min{~, 5}.
(iv) For any bounded and countable subsets P, Q of X, there exists a positive constant

f/g such that
p(g(t, P, Q) < Ly max{u(P), u(Q)}, t € J.

(C5) The continuous function h : J x X — LY satisfies the following conditions:
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(i) For each t1,t2 € J, and 9, Y € X, there exists a constant Ly > 0 such that
17 (e, 9(2)) = h(t, 9@, < Lallo(t) — ()]
(ii) For each t € J and 9; € g, there exists a constant L, > 0 such that
1t 0)]5, < La(1 + [9()]2).

(iii) For any bounded and countable subset P of X, there exists a positive constant Ly
such that

pu(h(t,P)) < Lupu(P), t € J.
For simplicity, we take the following notations

1 1—m 2(1—y) ) ( — )2(171)
M=(-+¢B Ao = 2% (B T
' <’Y+ (%BJFI))’ ’ ((W’—’Yl) T O BE) B+y—m ’

(L e o (1 25 C? (B(1, )
0= (5 + @O G ) e <27—1+”<25+27—1>>’

1 0?8 -
s = <7 +2C0°PB(y, ﬂ)7> , 1y = 10m2C2 02077 )y, I3 = 10m2C?TrQLu 0% As,

B8+

¢
b = 10m3 [Ewl? +7Q [ El(@)lPde+ C* [+ Ly + £ BIGO) + Ly 2+ E|oi|P)|.

0
Let Z ={9:9 € C((—00,,X),9(0) = A71(0)$(0)} be the space of continuous functions. For
r > 0, we define the set ©, = {0 € Z: E||9(¢)||*> <r}. For any ¥ € O, and 0 < ¢ < 4,

[Dille < sup |[[du(s) < sup [[9(s)]| <7
—00<s<0 —oco<s<l

Lemma 3.1. There exist constants ly,la,l3 > 0 such that for every ¢ € C(J, X) satisfying ,
E < I 1L+ E||9)?).
[oO1F < b +allGol o+ a1+ EJ9])

Proof. In view of assumption (C2) for an arbitrary function 9(-), the control function is defined as

follows:
o) = QB0+ / k(s)duw(s) — A7 (0)6(0) + £(0, A1 (0)p(0)) — F(r,9,)
- / Wt~ 0. 0U(0)$(0)do — / Ut — 0,0)9 (0,00, 9(0)) do
- [we-eoneieme - [ [ "Wt — 0, 0)P(0, 5)g (595, 9(s)) dsdo
0 0 0
- / /Qwg,g)@(g,s)h(sﬁ(s))dw(s)dg]. (3.1)
0 0
2 ¢ ? 2
Elo@l? = 10[/Q7Y|* |Elo.)? + E / w(s)du(s)| + E[|A~10)6(0)]

2

£
+E |0, A1 (0)6(0)||” + E|| £(¢,90)||* + E /O!P(K—Q,Q)U(Q)cb(o)dg
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2

¥/
B /0 (£ — 0, 0)h(0,9(0))dw(0)

2

¢
‘B /0 U (C— 0,0)9 (0,00, 9(0)) do

L ro
LB /0 /0 (0 — 0,0)(0,5)g (5,0, 9(s)) dsdo

2
£ ro
8| [ 0= 0,000 )h(s, 0(5))du(s)de ] (3.2)
o Jo
Combining with Remark Lemmas and assumptions (C2)-(C3) in equation (3.2), we
get

é ~
Blo@®IF < 10m3| Bl +T0(Q) | Ellsts)|*ds+ 2Bl + Ly (1+ CCE[o(0))

¢ 2
Ly (14 B0f]) + ( / Ellw (e — o, @>U<g>¢<o>|dg)
Y 2
n ( / B~ 0,009 (0.9.9(0))] dg>

; 2
+7r(Q) (/0 E @ (€~ o,0)h(0,9(0)) d@)
4 0 2
o Jo
14 0 2
+Tr(Q) ( | [ e oo ns00) ||dsdg> ] . (33)
o Jo

Using the Lemmas and assumptions (C4)-(C5) in equation , we get

£
Elu®)|* < 10m3 PJIIﬂlIIQJrT?“(Q)/O E |i(s)|]* ds + C*(1 + Ly) B[ ¢(0)]|*

~ ¢ ’
Ly (24 B 0:°) + CE 0] ( [e—eras g%)

2

+C? (/OE(E -0t (E g (o, ﬁg,ﬂ(g))l\Q)% d@)

) 2
+C*T7(Q) (/0 (€ =0 E[h(e,9(0))llq d@)

+C! </04/09(€_ 0 o9 (E||9(S,195,19(s))|\2)% dsdg)

4 ) 2
+OTHQ) ( / / (e_g)v1(g_s>ﬁ1E|h<5,19(5>)||Qd5d9> ]

£
< 10mj E||191||2+T7“(Q)/0 E|(s)|* ds + C*(1 + Ly) B[ ¢(0)|
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10 A. KHATOON, A. RAHEEM & A. AFREEN

T 14 2
+Ly (2+E||?9£||2> +CUE | g(0)])? (/0 (g_Q)y-l(HQﬁ)dQ)

¢ L 2
+C? (/O (t—0)"""(Gr(0))? d@)

£
+C*T7(Q) (/0 (t=0)7 -(t—0)7 Ellh(g,ﬁ(g))llQ@)

2

+C*(B(7,5))* (/O (¢~ )71 (Gul0))* d@)

Bty—1
2

(0—0)

) 2
+C'Tr(Q)(B(v, 8)) (/O (£—0) (@719(9))@) ] (3-4)

Using Holder inequality, Cauchy-Schwarz inequality and Lemma in equation (3.4)), we get

4
Elo@|* < 10m3 E\WleJrTT(Q)/O E|ls(s)|* ds + C2(1 + Ly) B[ ¢(0)|

2
+Ly (24 B10d) + CE 0O @ (2 + B+ 1)

y) » 2(1=71) ¢ L 271
+< / w—g)wdg) ( / ()dg>
27y ‘ _yr—1 ‘ _ \r—1 2
+OTH(Q) (/ (— o) dg> (/ (t— o) Enh(g,mngd@)
A 5 L B [1-%-'1/11 (=) 271
+CY(B(v, 8)) ( / (¢ o) dg> ( / G )

¢
+C4T7”(Q)(B(%5))2 </0 (= Q)B'M_ldQ) X

L
</0 (¢ = 0)" " E (e, 9(0))lIg d@) 1

L
E|91* + TT(Q)/O E ||s(s)|* ds + C2(1 + Ly) B[ ¢(0)|

< 10m3

2
4Ly (24 BIl?) + CEOI 2 (1 + BG4 1)

o f1—m 2(17%) ) ) _ 2 ,
_ V Y1 - e T L ] E 19
e (’Y—’Yl) 19 HLZV [01’]+C r(Q) h,y2 (1+ El9]z)

L271 [0,€]

1 _ 2(1* 1)
+C*(B(y,8))° (M%%> BTG, |

02(B+7)
(B+7)?

L
E:]* + Tr(Q) /0 E|la(s)|* ds + C*(1 + L) E[|¢(0)

LCTHO) B, B E 1+ Ewu%)}

= 10m3
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STOCHASTIC CONTROLLABILITY OF FRACTIONAL SYSTEM 11
~ 1 2
+Ly (2+ E107) + CE 0O @ (2 + B+

2(1-71) 2(1-71)
<1—71> K +C2£26(B(’y,5))2( 1—m ) K 1 «

+O2p20-m) | [ L
Y—m B+v—m

LT (Q LW [1 LB } (1 + B|9|2 >]
] 72 (B4 )? 7

161

271 [0,¢

¥4
10m3 | B9, |2 + Tr(Q) / E s(s)| ds + C*(1 + L) E||6(0)

Ly (24 BI0dP) + CB o) 4103 + G306,

AT Q)L N (1 + E||19||ZZ>}

= L+b|G| o s+ B,

271 [0,4]
([l
Theorem 3.2. If the assumptions (C1)-(C5) hold, then the system is controllable if
0C2EC D EALET )y 35)
1—10L; — 10C2627 (m2als — Tr(Q)Lphs)
and
Ly + CON(2Cmimadsl? + 1) (2£g + ﬁh«/fTT(Q)) <1. (3.6)
Proof. Define the operator F : O, — O,. given by
(FOE) = ATH0)e(t), te (—o0,0],
t
(FOE) = ATH0)¢(0) _f(O7A_1(O)¢(O))+f(t719t)+/() U(t — 0,0)U(0)¢(0)do
t t
+ [0t 00 [Bole) + 9 (0.0, e Jdo+ | 90t~ 0. 0)b(e, ()i
ot ; 0
s [ [0t 0020, 5) [BoGs) + 9 (5,0.,9(5) dsde
0o Jo
t ro
[ [t . 0pe. (s ()duts)de, ¢ e (0.0 (37)
0o Jo

where the control function v is given by the equation .

We will show that the operator F has a fixed point. We prove this result in four steps.

Step 1: In this step, we show that F(©,) C ©,. Suppose that our claim is not true, then there
exist to € J and ¥ € O, such that E||(.7-'1§) (tO)H2 > r for every r > 0.

From equation , we see that

r < E|(F0) )|

< 10[E[[ A7 06| + EIlF 0. A7 (0 + Elf (10,51,
<8 [Tt - a.ou@o0)da| + 5| [ w0 - 0.0 Bu(00
0 0
to . 2 to - 2
+E‘ | 7t = 0.0 (0.3,.9(0)) do +E‘ | 7t = 0. ohte I ute)
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12 A. KHATOON, A. RAHEEM & A. AFREEN

to o
8| [ [0 - 0.00(e.s)Bus)isde
o Jo
to o -~
+E/ /W(to—979)@(9,3)9(5,195,19(3)>dsdg
o Jo

2

2

to reo N 2
48| [T [ it - 0,086, 5)h(s, 9)dus)do ] (3.5
o Jo
Combining with Remark Lemmas and assumptions (C1)-(C5) in equation
(3.8), we get

ro< 10|C2E[6O)| + Ly (14+ C?E o)) + Ly (1+ B[ |°)

2

Bl ([— o aﬁ>d9)2 w0t ([ to- o7 Blu(o)1ae)
w0t ([0 07 (Blote @) de)
w1 ([0 0 Bl T )

e ([ [ ta= 0o s>ﬂ-1E||v<s>||dsd@)2
ot ([ [ (= or o= (Blloto. 906 ) dse)
sorrn@) (| ’ JACEE RS s)ﬁ1E||h<s,é<s>>|stdg)2]

C2(1+ Ly)E|¢0)||° + Ly (2 + B||9y, ||2) + C*E ||¢(0)|? (/O O(to -0 (1 + gﬁ)dy)

2 2

w0t ([0 —orBlolde) -+ ([ t0 o~ 0 o)

2

N|=

2
< 10

to B 2
+C?Tr(Q) </0 (to—0)"T - (to— 0)™ EHh(g, )||Q )
O3 (B(, B)) ( [ - g)mw—le(g)ndg)

2

B0 </0 (to— )" (Gl d@>

o) od )2] (3.9)

Using Holder inequality, Cauchy-Schwarz inequality and Lemma in the equation (3.9)), we get

LOMTHQ)(B(, B) ( [ 0= -0

2
P o< 10[C+ B + Ly (24 B3 ) + CEISOIE (2 + Bl s+ 1)

t() t(]
+m3C? (/O (to — Q)Q(V_I)dg) ( i E||v(9)||2d9>
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STOCHASTIC CONTROLLABILITY OF FRACTIONAL SYSTEM 13

([0 ([ )
oo ([ n-a) ([ -0 bt
+Ctmi B8 ([t 070 Vo) ( [ Eleto e

+0i @00 ([ -0 dg)( (/ 67 (o )

+CTHQ)(B(, 5))° (/Om(to—g)fﬁﬂldg) ( / (to — 0" E|[h(e,9(0)) |2 )]

2(1-m)

2
m2C? j|I?

+27 (ll+l2|gr| R (1+ 59 ))g%

o2 1—m (1_71) 200-m)||G,. +C*T (Q)L al (1+E||19H )
e G 191227 0 4 NQLn—

Cimi(B(7, )’ j|I*) ) 2o
+CAB A (14l o (14 B )) o
+C'(B(, 8))? (“71)2(171)@2(6*” Gl

v, ﬂ+’)/*’}/1 L2w1 [0,€]

A o~ (20B+7) -
QB0 8) I g (1+E||ﬂ||z)]

0|C2 (14 L)+ C2**03) E|6(0)* + Ly (2 +7)

L s 2B B8)
2

2022
T 51 2y 1281

(14121l 0 140))

[0,4]

2 2( ) 1— v 2(1-1) 228 9 1— o 2(1-m)
c22-m) | (221 C20% (B(y, -
e |(35) 0 orEant (FEE) T I,

(2

L OTHQ) En ™ [712 +CBOH) G

}(1—}—7")

0|C2 (14 Ly) + C*03) E|l6(0) > + Ly (2 + )

+m%C2£27/\4 (Zl + 12”gr”Lﬁ + I3 (]_ + ’l"))

[0,4]

+C220mm) ), IG:11, o + C?Tr(Q) Lt As(1 4 1) |.

Dividing by 7 and taking liminf as r — oo, we get

1 < 10 [i F A mICPIN (196, + 13) + C2P0"M)\951 + C*Tr(Q) Lipt® N3 |
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14 A. KHATOON, A. RAHEEM & A. AFREEN

or

100262(7_71)(777/%)\4[2[271 + )\2)51
1 —10Ls — 1002027 (m3M\l3 — Tr(Q)Ln)s)’

which contradicts to our assumption. Therefore, EH (.7-'15) (tO)H2 <rforty e J, r>0. Itis also
true for ¢y € (—o0,0]. Hence F(©,) C O,.

Step 2: F is continuous on ©,. For ¢t € (—00,0], it is trivial. We consider a sequence {9}, ¢n in
O, such that lim,, . E||9" —9||? = 0 in ©,.. By the continuity of the nonlinear functions f, g and
h, we get that

() Tm Bf(t95) = £(t0,)]]" =0,
(i) lim B|lg(t,07,0" () — g(t, 0, 00)) |* = 0,
(ifi) lim E[h(t,9"()) - h(t,91) ]|, =0.
From the equation and Lemma we get,

E||(F9m)(t) — (FO)(@®)I1?

2

< 5|E|f(t97) —f(t,ﬁt)HQJFEH/O U(t— o,0) [9(9,192719”(9)) —g(gvﬁg,ﬂ(g))}dg

+E /OW(t*@,e)[h(g,ﬁ”(g))*h(p,ﬁ(e))}dg

+E /Ot /ng(t—g, 0)®(0, s) [9(8,19?,19”(8)) —g(s,ﬁs,ﬁ(s))}dsdg i

|

t
LE|07 — 04| + C? (/ (t—0)'E||lg(o,92,9™(0)) — g(0,7,,9(0))|| dg)
0

+E /Ot /Ogu'/(t —0,0)9(0,s) {h(s,ﬂ”(s)) — h(s, ﬁ(s))}dw(s)dg

2
< 5

+C2Tr(Q) ( /O (t =) E||h(0,9"(0) = h(e,9(0)) |, d@)

+ct (/Ot /Og(t —0) Yo— ) E||g(s, 07,9 (s)) — g(s,95,9(s)) | dsdg)

t ] 2
+CATr(Q) (/0 /0 (t—0) " (o —5)" ' E||h(0,9"(0)) —h(gﬁ(g))Hstdg) 1

2

t
< 5|LyE|joy — 0, + C? (/0 (tg)”lEHg(g,ﬁZ,ﬁ"(Q))9(9,19@»19(9))”(19)

+C?T7(Q) (/0 (t— 0" E (2.9 (0)) — h(e.9(2)) | dg)
t 2
+C4 </0 (t - 9)5+7—1E Hg(g’ 1927197L(Q)) _ 9(97 199719(6)))”2(19)

+C'Tr(Q) (/O (t— o)’ E|h(0,9"(0)) — h(@ﬁ(@))llcﬂ@) 1
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STOCHASTIC CONTROLLABILITY OF FRACTIONAL SYSTEM 15

<

514mw?—0m2+<4%ﬁ—mwyU@)(ZfEmﬂgﬂgﬁw@)—g@ﬁmﬁ )Hd@

e ([ (- oo i) ([ B (0,97 (0)) - b2, 0) [ o)
+C* (/Ot(tg)z“”””d@) (/OtEHg(Qﬂ?Z,ﬁ”(@))9(9,199,19 )] d@)

+CTr(Q) (/Ot(t - g)“ﬁﬂ_l)dg) (/Ot E|[h(0,9™(0)) — h(0,9(0)) HZ d@) 1 :

Taking limit as n — oo, we get

E||F9" — FI|> -0 as n — oo,

which implies that F is continuous on O, for t € J.

Step 3: F(©,) is equicontinuous. It is trivial to show that F(©,.) is equicontinuous for ¢ € (—o0, 0].
Next, we show that F(©,) is equicontinuous on J. So, for every ¥ € F(©,) and t1,t2 € J such
that 0 < t; <ty < ¢, we have

E||[(F9)(t2) — (FO) ()2

2
<

5 Ef<t2,19t2>—f<t1,ﬂt1>||2+E]

/ " Wit - 0, U(2)0(0)do

t 2

+E

o~ 0.0~ w0 — 0. 0u(e)0(0)de

2 2

/Otl [W(tz —0,0) —¥(t1 — o, 9)} Bu(e)de

2

+Ew/ (ts — 0, 0)Bv(o)do

+E‘

+E‘ / W(ts — 0, 0)9 (0, Vg, U(0)) de

t1
t1

+E

Wit — 0,0) — W(ts — 0,0)| 9 (0,9,,9(0)) do

2

+E W (t2 — 0, 0)h (0,9(0)) dw (o)

2

+E " [!I/ ty — 0,0) — W(t — o, Q)}h(gyﬂ(g))dw(g)

2

+E / U(ta — 0, 0)P(0, s)Bu(s)dsdp

2

~

48| [ [ [~ 0.0~ 000~ 0.0)|#(0.5)Bots)dsie

(=)

2
+E

(=)

2

Q
+E / t2 — 0,0 _W(tl -0, Q>:|¢<Q75>g (‘97198’19(8)) deQ

(=)

2

]

/ W(ts — 0, 0)B(0, )9 (5, 95, 0(s)) dsdo
)
]

+E

\c\\c\g\c\w\c\

/ W(ts — 0, 0)®(0, ) (5,0(s)) dw(s)do

(=)
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16 A. KHATOON, A. RAHEEM & A. AFREEN

+E\ (12— 0.0) ~ U{t:  0.0)| (0. 5)h (5,9(s)) du(s)dg ]
<3
where "~
Bo= B~ f)P = ([ B - 0o <>¢<o>||dg)2,
o= ([ Bl - oo v - eojut Hdﬂ))’
o= ([ B - eome >||dg)2,
o= ([ 00w - e0]Buo)ar)
I = ( E (2 - o, )g(g,ﬁg,m@))ndg)Q,
b= ([ e 0wt eos ot a)
o= 1@ ([ B 1 - non o) dg)Q,
b= 1@ ([ B |[#e - 0.0 - ¥ - 0.0 oo de)
o = ([ [ - a0 me) o).
mo= ([ B|[eta- 00 -0t - 0.0 )50 dsdg)27
e = ([ [ 1wt - 000090 0001 dsd@)2 ,
e = ([ B[ 00 0t~ 0.0 00519 (02,9000 dsdg)Q,

2

Ly = Tr(Q) ( / /OQEnxv(tzg,m@(g,s)h(s,ﬂ(s))ndsdg) ,
e = @[ /OQEH[M—g,m—wm—g,g>]¢<@,s>h<svﬂ<s>>Hdsdg)Z.

Therefore, we only need to prove that I; — 0 independent of ¥ € ©, as t; —ty — 0 for j =

1,2,...,15.
For I, using the assumption (C3), we have
Il < Ll(‘t27t1|+E||’(9t27l9t1||2) — 0 as t1 — to.

For I,, using the Lemma we have
2

ta
L < C*E|¢0)| (/ (tg—g)71(1+gﬁ)d9> — 0as t — to.
ty
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STOCHASTIC CONTROLLABILITY OF FRACTIONAL SYSTEM 17

For t; = 0 and 0 < 5 < /¢, we can easily show that I3 = 0. For ¢; > 0 and € > 0, by Lemma [2.5]
and using the continuity of the operator ¥ (¢t — o, ¢) in the uniform topology with respect to the
variables t and g, where 0 <t < /{and 0 < o <t — ¢, we have

2

t1—e€
I; < sup [T (ta — 0,0) — ¥(t1 — 0, 0)||” C2E[¢(0)[|? (/O (1+ Qﬁ)d9>

0€[0,t1—€]
t 2
+C1E|6(0)]? ( / [(ta—0) "+ (i —0) '] (1 + g%dg)
tl—e
— 0as t; —>ty and € — 0.

For I, using the assumption (C1), Lemma and Holder inequality, we have

to 2
Lo< w2 (/ <t2—g>v-1Env<g>|dg)

t1

to to
< m2c? (/ <t2—@>2<“>dg) (/ E||v<@>2dg)
t1 t1

m3C? ) )
< — 2l
< 27 1 (ll + lQHgT”Lﬁ[O,Z] + 13 (1 + E||19|| )) (tQ tl)

— 0Qas t; —ta — 0.

For t; = 0 and 0 < t5 < £, we can easily show that Is = 0. For ¢; > 0 and € > 0, by Lemma [2.5]
assumption (C1), and using the continuity of the operator ¥ (¢ — g, ¢) in the uniform topology with
respect to the variables ¢ and g, where 0 <t </ and 0 < p <t — ¢, we have

2

t1—e
L o< sw ||w<t2—g,g>—w<t1—g,@>|2m$(/ E||v<@>||dg)
0€[0,t1—€] 0

+C? (/ttl [(ta =0+ (1 —0) '] EIIU(@)II@)2

1—€

— 0as t; -ty and e — 0.
For Ig, using the assumption (C4), Lemma and Holder inequality, we find that
ta R 2
s ([0 (Ble e 00)I) de)

t1

< ([ -G d9)2

ty

to . 2(1-71) ta 1 271
2 T—= 271
< C (t2 — o)1 do » ' (0)do
tl tl

1— 20 2y—1)
< 2 _ TN
= ¢ (7 - ’Y1> (tz = ta) ||gT”Lﬁ[o,é]

— 0O as tz*tlg)o.

For t; =0 and 0 < t5 < ¢, we can easily show that I; = 0. For ¢t; > 0 and € > 0, by Lemma [2.5
assumption (C4), and the continuity of the operator ¥(t — g, ) in uniform topology with respect
to the variables ¢ and g, where 0 < ¢t </ and 0 < p <t — ¢, we get

t1—€

I < s ||¢(t2_g,g)_¢<t1_g,g>||2(/0 (Eng(g,ﬁg,ﬂ(g)nﬁfd9)2

0€[0,t1—¢]
2

N|=

12 </tt16 [(t2—0)" "+ (t1 — 0) '] (E ||g(g,199,19(g))\|2> d@)
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18 A. KHATOON, A. RAHEEM & A. AFREEN

— 0as t1 >ty and e — 0.

For Ig, by using the assumption (C5), Lemma and Cauchy-Schwarz inequality, we find that
2

L < C*TrQ) ( [ - g>v-1E||h<g,ﬂ<g>>||ng)

to 2
< Q) ( [0 =0T Bl e 00 dg)
< CTHQ) ( / (ts - g)wdg) < / (t2— 0 E |0 (0,9, d@)

(tg — 1)

< C°Tr(Q)Ly = 1+ E|9]%)

— 0as tag—t; — 0.

For t; = 0 and 0 < t5 < £, we can easily show that Iy = 0. For ¢t; > 0 and € > 0, by Lemma [2.5]
assumption (C5), and using the continuity of operator ¥ (¢ — g, ) in uniform topology with respect
to the variables ¢ and o, where 0 <t </ and 0 < p <t — ¢, we have

2

I < s ||av<t2—@,g>—w<t1—g,g>|2w<@>(/0 16E|h<g,ﬂ<@>>ng)

0€[0,t1—€]

tq 2
LOTHQ) ( [ L=+ - 0 Bl e 900D dg)

1—€

— 0as to —t; and e — 0.
For I, by using the assumption (C1), Lemma and since the function ¢ — (t2—0)" ' IZE|lv(o) |
is Lebesgue integrable, we have

to 4
Lo < Clm? (/ / (tZ—gw1<g—s>51E|v<s>||dsdg)
t1 0

2

to 2

< ORI ( / (ts — gwlffEnv(g)ndg)
t1

— 0as to—t; — 0.

For t; = 0 and 0 < t5 < ¥, we can easily show that I; = 0. For ¢; > 0 and ¢ > 0, using
the assumption (C1), Lemma and since the functions o0 — (t; — 0)" ' IJE|[v(0)|| and o —
(ta — 9)7*115E||U(Q)H are Lebesgue integrable, as well as the continuity of the operator ¥ (¢t — o, o)
in the uniform topology with respect to the variables ¢ and g, where 0 <t < /Zand 0 < o <t —,
we have

t1—e€ 0 2
L < swp ||av<t2—g,g>—av<t1—g,g>||202(/ / <@—s>ﬁ1E|u<s>||stdg)
0 0

oe [O,tl 76]

el ( / / a0+ (1 - 071 (0 9P E Ju(@)lg dsd9)2

t1—€ o 2
< swp ||W<t2—g7g>—w<t1—g,a>||2c2m%(/ / <e—s>5-1E|v<s>||stdg)

0€[0,¢1 —¢] 0 0
2

LOAT())? ( / " [t — 0 IPE0(@)] + (- 0 IPE]u(o)l] dg)

1—€

— 0as t; >ty and € — 0.
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STOCHASTIC CONTROLLABILITY OF FRACTIONAL SYSTEM 19

For I2, by using the assumption (C4), Lemma and since the function ¢ — (t3 — Q)V’llggr(g)
is Lebesgue integrable, we find that
2
dsdg)

e o< ([ [0 -9 (Ble o o))
< 04(/:/ to—0)" (o —5)"" 1(9())5d8d9)2

< CUr(p)? (/tl (t2 = 0)" 17 (Gr (o ))2dg)2

— 0 as tg—tl—)O.

[N

For t7 = 0 and 0 < t2 < /¢, we can easily prove that I[13 = 0. For t; > 0 and ¢ > 0, by
using the assumption (C4), Lemma and since the functions o — (t1 — 0)7"*15G,(0) and
0— (ta—o0)" 711 g G, (0) are Lebesgue integrable, as well as the continuity of the operator ¥(t— g, o)
in uniform topology about the variables ¢t and g, where 0 <t </ and 0 < p <t — €, we get

tl € . 2
Ly < sup |¥(ta—0,0) = ¥(ti — 0, 0) IC2(/ /Q—sﬁl ())2d8d9>
0€[0,t1—€]
2
e (/ / (tr =)'+ (= 0)"7] (9—5)51(97«(@))%3(1@)
t1—e
9 t1—e o L 2
< s W00 w000l ([ o9 @ )! dsa)
Qe[ovtl—s] 0 0

w0 0@ ([ - 07 1 @00+ (- o0 6102 de)

— 0as t; >ty and € — 0.

For I14, using the assumption (C5), Lemmaand since the function o — (t2—0)7~ 1I*BEHh(g, )l
is Lebesgue integrable, we get

to 0 2
o< Q) (/ / (tz—g)’y-l(g—s>ﬁ-1E||h<g,19<g>>|dsdg)

to 2
< CHTE) ( [ ta- gw-lIfEnh(g,ﬁ(g»dg)
— 0O as to — 11 *)1 0.

For t; = 0 and 0 < t; < {, we can easily prove that I15 = 0. For t; > 0 and ¢ > 0, by
assumption (C5), Lemma and since the functions ¢ — (t; — 0)? IS E||h(0,9(0))| and o —
(ta— g)“”lIgEHh(g, 9(0))|| are Lebesgue integrable, as well as the continuity of operator ¥ (¢t — g, o)
in uniform topology with respect to the variables ¢ and g, where 0 <t < /Zand 0 < p <t —¢, we

have
ho < s 0= 00) =0 - 0.0)]" C? ( / [ s Bl o) asae )
0 2
(/t /O [(t2 = 0) "+ (t1 =) '] (0 - S)B_1E||h(9ﬂ9(9))||d5dQ)
su 2—0,0) — 1— 0, 22 e S s, V(s S 2
< w00 - ¥h - el C ([" [ = plnow)1asie)
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20 A. KHATOON, A. RAHEEM & A. AFREEN

2

+CH(I(8))? </t 1 [(t2 = 0)" HIFE|h(e,9(2))| + (tr — 0)7 I, E|| (o, 0(0))] d@)

1—€

— 0as t; >ty and € — 0.

Hence E||(F9)(t2) — (F9)(t1)||> — 0 as t; — to. Therefore F(O,) is equicontinuous. The proof
of the equicontinuity for the cases t; < to < 0 and t; < 0 < to is omitted as they are both quite
straightforward. As a result, 7(©,.) is equicontinuous.

Step 5: Let Q = convF(0©,), where conv means the closure of convex hull. We can easily verify
that the function F maps Q into itself and the set @ C C(J, X) is equicontinuous. Now, we can
prove that function F : Q@ — Q is a k-set-contractive operator. From Lemma [2.13] we know that
for each subset P of Q, there exists a countable subset Py = {9} of P such that

o (F(P)) < 2uc(F(Po). (3.10)
The set Py C Q is also equicontinuous as the set Q is equicontinuous. Therefore by equation ([3.7)),

Lemmas and the assumptions (C3)-(C5), we have
p(F")}) = 1 (A7 (0)6(0) = f(0, A7H0)$(0)) + f (£, {07 (1)}))

o ([ - 0 ou@00de) 4 [ w0 0.0Bu(0ae)

([ 0= 0.0 0. (9301 (970 do)

b ([ - 00000 07 (@0

s [ [ sove i)

s ([ [0 00000019 . 0200} 10700 e )
(

™ / [wt-00 7s>h<s,w"<s>}>dw<s>d9)

< Lypuc(P) +2miC ; (t—g)”’luc(v(e))d9+20ﬁg/o (t =) 'uc(P)do
+CEn T (O) /0 (t = o) e (P)do
mq C? e — o) (o —s)P! v(s))ds
i [ [ 077 0= 9" e (wts)dsde
+402ﬁg/0 /0 (t—0)" o —s)"tuc(P)dsdo

+26’21ih\/€Tr(Q)/O /Og(t —0) " Yo —5)"Luc(P)dsdo. (3.11)

From the equation (3.1]), we have

0
p(o(t) < mop E191+/0 K(s)dw(s) — A7H(0)6(0) + f(0, A7H(0)¢(0)) — f(£, {07})

¥/ l

- / Wl — o, 0)U(0)(0)dg — / (0 — 0, 0)g (0. {97(1)}. (9" (0)}) do
¥/

- / (0. 0)h (0. {0"(2)}) du(o)
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L ro

- / / (0 — 0, 0)P(0,5)g (5, (97 (1)}, (9" (s)}) dsd
0 0

L ro
- [ e o0 (5, 10751 dus)de

IN

ma

20L, / (t — 0)" e (P)do + CLu\/ITr(Q) /O (t—0)" " uc(P)do

0
A t g
ML, [ [t 07 e 9% ue(Psde
0 0

R2CLVETQ) [ [t 07 o= 9" o (Phasde

. . . . B
< mz[(ug + Ly fTT(Q)) % +2 (2Lg + L ETr(Q)) CW]MC(P)
= muCl (}y + W@ﬁ> (2ﬁg + Ly zTr(Q)) 1ic(P)
= maC0Ns (2ﬁg + I eTr(Q)) pc(P). (3.12)

Form equations (3.11)) and (3.12) and Lemma[2.7, we have
n - ce - R
p(FO"®}1) < Lipc(P)+ 2m17 x maClT A5 (2Lg + L fTT(@) pic(P)
. O N ce
+2LgTMC(7D) +Lp ETT(Q)?NC(,P)
t
HmCB(.9) [ (t= 0" ole(e)de
0
t
+4CQB(%ﬁ)Lg/ (t—0)"" uc(P)do
0
t
$ACBOALTQ) [ (- 07 e(Pde
0
N 9 V2l N R
< Lync(P)+20%mima—2s (2Ly + Ln /7T (@) e(P)

S 2
+C (2L + Li/IT1(Q)) —he(P)

0B+
B+

F4C2m, B X maCO A5 (2£g Ly zTr(Q)) 1o (P)
08+

B+
+202B(v, §) (Qﬁg T+ in ETT(Q))

+4C*B(v, B) L, pc(P)

08+
T 7,UC(P)

< |:j;f + C€7A5(2Cm1m2)\5[’ + 1) (QIA/g + ﬁh eTT(Q)) :|,uc(,P) (313)

From Lemma and since the set F(Py) C P is bounded and equicontinuous, we find that

pe(F(Po)) = max u(F(Po))(t). (3.14)
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Therefore, from (3.10), (3.13]) and (3.14)), we have

pe(F(P)) < | Ly + CONs(2Cmimadsl? + 1) (2ig +in ETT(Q)) }MC(P). (3.15)

Hence, from , and the deﬁnition we conclude that F : @ — Q is a k-set contractive
operator. The operator F defined by has at least one fixed point ¥ € Q from Lemma m
which is just a mild solution of time fractional non-autonomous system on interval J. Hence
the system is controllable. O

4. Application
Consider the following non-autonomous fractional partial differential equation
op} [19(93, £) — f(t,9(x,t — h))} = k(z, O)A [9(a, 1) — f(t It — h))] Iz, t) + av(z, t)
+g(t, (.t — ), (1)) + h(t, 9z, 1)) — -
90,t) =0, ¥(m,t) =0 =z €]0,n],
3(z,0) = (x(-,0)) " o(2),

where D} denotes the partial Caputo derivative of order 0 < v < 1, J = [0,1], A is the Laplace
operator, k(z,t) is continuous function on [0, 7] x [0, 1] which is the coefficient of heat conductivity
and it is also Holder continuous in ¢, that is for any ¢;, to € J, there exist constants 0 < o < 1
and C' > 0 independent of ¢; and t¢5, such that

|k(x,t1) — Kz, t2)| < Clty — to|®, =z €]0,7],

dt h>0, z€l0,n], t€[0,1], (4.1)

and ¢ € L%([0, 7], R).

Let X =Y = U = L?([0,7],R) be a Banach space defined with the L? norm || - ||2. Define
a linear operator A(t) in a Banach space X by A(t) = —x(x,t)Ad with the domain D(A) =
H?(0,7) N H(0,m), where H?(0,7) is the completion of the space C?(0,n) with the norm

1/2
u||H2<oﬂ_(/ > D)

0,71 ,1<2

C?(0,7) is the set of all continuous functions defined on [0, 7] which have continuous partial
derivatives of order less than or equal to 2. H} (0, 7) represents the completion of C1(0,7) with the
norm ||u|| g1 (o, and C§(0,7) is the set of all functions where u € C*(0,7) with compact support
on the domain [0, 7). From [3], we know that —A(t) generates an analytic semigroup e~ *4® in X
satisfying (B1) and (B2).

For any ¢ € [0,1], and ¢ € C((—o0,], X), we set ¥(t)(z) = ¥(x,t) and v(t)(z) = v(x,t), then
(1)) = Dol ), £ € (—00,0), F(t,9)(@) = Flt,o(@ 1)), glt, 0, 9(0)(@) = §(t, w(a, 1), Dz, 1),
h(t, 9(1)(x) = f(t,9(x,t)), A71(0) = (k(-,0))7".

Define the bounded linear operator B : U — X by Buv(t)(xz) = av(z,t). We assume that the
functions f, g, and h satisfy the required assumptions. Then the problem can be written in
an abstract form which satisfies all the assumptions Theorem Therefore applying Theorem
we can conclude that system is controllable.

5. Conclusion

This paper is concerned with the controllability of a non-autonomous stochastic neutral differ-
ential equation of order 0 < v < 1 with infinite delay in an abstract space. We defined the mild
solution using the probability density function, and then we examined the existence of mild solution
and controllability of fractional stochastic system using the measure of non-compactness and the
k-set contractive mapping. This work can be extended for the fractional-order non-autonomous
system with variable orders.
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