RO'CKY MOUNTAIN JOURNAL OF MATHEMATICS

Vol. , No. , YEAR
https://doi.org/rmj.YEAR..PAGE

AN EXPLICIT SECTION OF THE LAUDENBACH EXACT SEQUENCE OF THE MAPPING CLASS GROUP OF CONNECT SUMS OF $S^{2} \times S^{1}$

Abstract

Laudenbach proved that the mapping class group of the connect sum of n copies of $S^{2} \times S^{1}$ is an extension of $\operatorname{Out}\left(F_{n}\right)$ by a finite group. Brendle-Broaddus-Putman proved that this exact sequence splits. We provide an explicit section s of this split exact sequence.

1. Introduction

Let M_{n} be the connect sum of n copies of $S^{2} \times S^{1}$ equipped with a basepoint $x_{0} . \operatorname{Mod}\left(M_{n}\right)$ is defined to be the group of isotopy classes of orientation-preserving diffeomorphisms of M_{n}. We fix an isomorphism $\pi_{1}\left(M_{n}, x_{0}\right) \cong F_{n}$, where F_{n} is the free group of rank n. In [1,2], Laudenbach proved that that there exists a short exact sequence

$$
1 \rightarrow \operatorname{Twist}\left(M_{n}\right) \rightarrow \operatorname{Mod}\left(M_{n}\right) \xrightarrow{\rho} \operatorname{Out}\left(F_{n}\right) \rightarrow 1,
$$

where T wist $\left(M_{n}\right) \cong(\mathbb{Z} / 2)^{n}$ is generated by the sphere twists about the core spheres $S^{2} \times *$. Brendle-Broaddus-Putman proved in [3] that this short exact sequence splits. In particular, they construct a crossed homomorphism $\mathfrak{T}: \operatorname{Mod}\left(M_{n}\right) \rightarrow T$ wist $\left(M_{n}\right)$ that restricts to the identity on T wist $\left(M_{n}\right)$. This determines a section $s: \operatorname{Out}\left(F_{n}\right) \rightarrow \operatorname{Mod}\left(M_{n}\right)$ of ρ, given by $s([\phi])=\mathfrak{T}\left(\left[f^{-1}\right]\right)[f]$, where f is a diffeomorphism of M_{n} with $\rho([f])=[\phi]$. The purpose of this paper is to provide a formula for the section s explicitly. In order to do that, we compute s for the Nielsen generators of $\operatorname{Out}\left(F_{n}\right)$ given in [4]. We first describe explicit diffeomorphisms for each of the elements of the Nielsen generating set for $\operatorname{Out}\left(F_{n}\right)$. Our computation shows that \mathfrak{T} is trivial for these lifts. Our main result is the following:

Theorem 1.1. The map $s: \operatorname{Out}\left(F_{n}\right) \rightarrow \operatorname{Mod}\left(M_{n}\right)$ that on the Nielsen generators $\left[R_{i, j}\right]$, and $\left[I_{j}\right]$, for $1 \leq i, j \leq n$ and $i \neq j$, given by:

$$
s\left(\left[R_{i, j}\right]\right)=\left[F_{i, j}\right], \text { and } s\left(\left[I_{j}\right]\right)=\left[G_{j}\right],
$$

is a section of ρ, where $F_{i, j}$, and G_{j} are diffeomorphisms of M_{n} defined in the section below.

2. Construction of the maps $F_{i, j}$, and G_{j}

For $1 \leq i \leq n$, choose loops a_{i} based at x_{0} that generate the fundamental group of M_{n}. In [4, proposition 4.1], it is shown that $\operatorname{Out}\left(F_{n}\right)$ is generated by the classes $\left[R_{i, j}\right]$, and $\left[I_{j}\right]$, for $1 \leq i, j \leq n$ and $i \neq j$, where:

Figure 1. a_{1}, a_{2}, and a_{3} are depicted in green, blue and red respectively. The neighborhood $N_{1,2}$ is depicted in light blue.

$$
R_{i, j}\left(a_{k}\right)=\left\{\begin{array}{ll}
a_{k} a_{j} & \text { if } k=i \\
a_{k} & \text { if } k \neq i
\end{array}, \text { and } I_{j}\left(a_{k}\right)= \begin{cases}a_{k}^{-1} & \text { if } k=j \\
a_{k} & \text { if } k \neq j\end{cases}\right.
$$

We want to obtain diffeomorphisms $F_{i, j}$, and G_{j} of M_{n} such that $\rho\left(\left[F_{i, j}\right]\right)=\left[R_{i, j}\right]$ and $\rho\left(\left[G_{j}\right]\right)=\left[I_{j}\right]$. M_{n} can be described by removing $2 n$ open balls of S^{3}, and then gluing the boundary spheres of these balls in pairs. The resulting boundary spheres correspond to the core spheres of the n summands of $S^{2} \times S^{1}$ in M_{n}. Let A_{i} denote the core sphere of the ith summand $S^{2} \times S^{1}$ of M_{n}. Let A_{i}^{-}and A_{i}^{+}denote the two boundary spheres that were identified in S^{3} minus $2 n$ open balls that give rise to the sphere A_{i} in M_{n}. Define a_{i} as the equivalence class of the curve starting at the base point that reaches A_{i}^{-} and comes back through A_{i}^{+}, and then reaches the base point, without intersecting the other boundary spheres. Then, $\left\{a_{1}, \ldots, a_{n}\right\}$ forms a basis for $\pi_{1}\left(M_{n}, x_{0}\right)$. Choose a subset $N_{i, j}$ of M_{n} diffeomorphic to $D^{2} \times S^{1}$ minus an open ball with boundary A_{i}, which is contained in $\left\{(x, y) \mid x^{2}+y^{2}<1 / 9\right\} \times S^{1}$, where $* \times S^{1}$ is freely homotopic to a_{j}, as depicted in Figure 1 for the case $n=3, i=1$, and $j=2$.

For the case of I_{j}, choose a subset P_{j}^{\prime} of S^{3} minus $2 n$-open balls diffeomorphic to $B^{3}=\left\{(x, y, z) \mid x^{2}+\right.$ $\left.y^{2}+z^{2} \leq 1\right\}$ minus the boundary spheres A_{j}^{+}and A_{j}^{-}, such that these spheres are contained in $\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}<1 / 9\right\}$, and they are symmetric with respect to a rotation by π around the z-axis. Denote by P_{j} the subset of M_{n} corresponding to P_{j}^{\prime} with A_{j}^{+}and A_{j}^{-}being identified.

2020 Mathematics Subject Classification. 57M07, 20F65, 20 E 36.
Key words and phrases. Laudenbach exact sequence, Outer automorphism group of a free group.

Parametrize a_{j} in such a way that $a_{j}(t) \in\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}<1 / 9\right\}$ for $1 / 3 \leq t \leq 2 / 3$, and $a_{j}(t) \in\left\{(x, y, z) \mid 1 / 9<x^{2}+y^{2}+z^{2}<1\right\}$ for $0 \leq t \leq 1 / 3$ and $2 / 3 \leq t \leq 1$. We also homotope a_{j} so that $a_{j}(t)$ lives in the z-axis for t as in the last case. Figure 2 depicts this for the case $j=1$.

Figure 2. a_{1} is depicted in red

Construct a smooth function $\psi:[0,1] \rightarrow[0,1]$ with $\psi(r)=1$ on $[0,1 / 3], \operatorname{supp}(\psi(r)) \subseteq[0,2 / 3)$, and decreasing, so that $\psi^{\prime}(r) \leq 0$.

Define $f_{i, j}: N_{i, j} \rightarrow N_{i, j}$ by

$$
f\left(x, y, e^{2 \pi \mathrm{i} \theta}\right)=\left(x, y, e^{2 \pi \mathrm{i}\left[\theta+\psi\left(\sqrt{x^{2}+y^{2}}\right)\right]}\right) .
$$

Then $f_{i, j}$ is a diffeomorphism of $N_{i, j}$.
Define $F_{i, j}$ by :

$$
F_{i, j}(p)= \begin{cases}f_{i, j}(p) & \text { if } p \in N_{i, j} \\ p & p \in M_{n}-N_{i, j}\end{cases}
$$

If $p \in P_{j}^{\prime}$ has spherical coordinates (θ, φ, r), define $g_{j}: P_{j}^{\prime} \rightarrow P_{j}^{\prime}$ by $g_{j}(p)=(\theta+\psi(r) \pi, \varphi, r)$.
As g_{j} respects the identification of A_{j}^{+}and A_{j}^{-}, it induces a diffeomorphism on P which we still denote by $g_{j}: P \rightarrow P$. Define G_{j} by:

$$
G_{j}(\theta, \varphi, r)= \begin{cases}g_{j}(p) & \text { if } p \in P_{j} \\ p & p \in M_{n}-P_{j} .\end{cases}
$$

To see that $F_{i, j}$ actually realizes $R_{i, j}$, consider what $F_{i, j}$ does to the $a_{k}^{\prime} s$, as depicted in figure 3 for the case $n=3, i=1$, and $j=2$.

Figure 3. The image of a_{1} under $F_{1,2}$ is depicted in green, and it is homotopic to $a_{1} a_{2}$.
Thus, $\left[F_{1,2}\left(a_{1}\right)\right]=\left[a_{1} a_{2}\right]$, and since $F_{1,2}$ fixes the homotopy classes of a_{2} and a_{3}, then F realizes $R_{1,2}$. To see that G_{j} actually realizes I_{j}, consider what G_{j} does to a_{j}, as depicted in figure 4 for the case $j=1$. Notice that G_{j} fixes the subpath of a_{j} that is in $P_{j} \cap\left\{(x, y, z) \mid 1 / 9 \leq x^{2}+y^{2}+z^{2} \leq 1\right\}$.

Hence, s defined on the Nielsen generators by $s\left(\left[R_{i, j}\right]\right)=\left[F_{i, j}\right]$, and $s\left(\left[I_{j}\right]\right)=G_{j}$ will be a section of ρ, provided that $\mathfrak{T}\left(\left[F_{i, j}\right]\right)=0$, and $\mathfrak{T}\left(\left[G_{j}\right]\right)=0$.

3. Calculation of $\mathfrak{T}\left(\left[F_{i, j}\right]\right)$

Denote $N_{i, j}$ by $N, F_{i, j}$ by F, and f by $f_{i, j}$. Consider the universal cover \widetilde{N} of N, which is given by:

$$
\left\{(x, y, z) \mid x^{2}+y^{2} \leq 1\right\}-\bigcup_{n \in \mathbb{Z}} C_{n} \subseteq \mathbb{R}^{3},
$$

where $C_{n}=\left\{(x, y, z) \mid x^{2}+y^{2}+(z-n)^{2}<1 / 9\right\}$.
Denote by π the projection map $\pi: \widetilde{N} \rightarrow N . \pi$ is given by $\pi(x, y, z)=\left(x, y, e^{2 \pi i z}\right)$, and is a local diffeomorphism. f lifts to a diffeomorphism \widetilde{f} given by $\widetilde{f}(x, y, z)=\left(x, y, z+\psi\left(\sqrt{x^{2}+y^{2}}\right)\right)$.

We have that $\pi_{1}\left(\mathrm{GL}^{+}(3, \mathbb{R}), i d\right) \cong \pi_{1}(S O(3), i d) \cong \mathbb{Z} / 2$ is generated by a loop $l:[0,1] \rightarrow S O(3)$ which can be chosen to be

$$
l(t)=\left[\begin{array}{ccc}
\cos (2 \pi t) & -\sin (2 \pi t) & 0 \\
\sin (2 \pi t) & \cos (2 \pi t) & 0 \\
0 & 0 & 1
\end{array}\right],
$$

for $t \in[0,1]$.
For M a closed oriented 3-manifold, let $T M$ be the tangent bundle of M and define $\operatorname{Fr}(T M)$ to be the principal $\mathrm{GL}_{3}^{+}(\mathbb{R})$-bundle of oriented frames of $T M$. That means, $\operatorname{Fr}(T M)_{x}$ is the space of linear isomorphisms $T: \mathbb{R}^{3} \rightarrow T_{x} M$. Fix a section σ_{0} of $\operatorname{Fr}(T M)$. We think of σ_{0} as describing a preferred basis $\left\{\sigma_{0}(p)\left(e_{1}\right), \sigma_{0}(p)\left(e_{2}\right), \sigma_{0}(p)\left(e_{3}\right)\right\}$ of the tangent space at each point p. Denote by $C\left(M, \mathrm{GL}^{+}(3, \mathbb{R})\right)$ the space of continuous functions from M to $\mathrm{GL}^{+}(3, \mathbb{R})$.

The derivative crossed homomorphism

$$
\mathscr{D}: \operatorname{Diff}^{+}(M) \rightarrow C\left(M, \mathrm{GL}^{+}(3, \mathbb{R})\right)
$$

will be defined now. Given a diffeomorphism F of M, the derivative crossed homomorphism evaluated at $[F], \mathscr{D}([F]): M \rightarrow \mathrm{GL}^{+}(3, \mathbb{R})$, gives for each p a linear transformation $\mathscr{D}([F])(p)$ in $\mathrm{GL}^{+}(3, \mathbb{R})$, defined as follows. It is the unique linear transformation that makes the following diagram commute:

Thus, $\mathscr{D}([F])(p)$ is the inverse of the linear transformation that represents the change of basis transformation from the basis
$\left\{\sigma_{0}(p)\left(e_{1}\right), \sigma_{0}(p)\left(e_{2}\right), \sigma_{0}(p)\left(e_{3}\right)\right\}$ of $T_{p} N$ to the basis
$\left\{D F^{-1}\left(\sigma_{0}(F(p))\left(e_{1}\right)\right), D F^{-1}\left(\sigma_{0}(F(p))\left(e_{2}\right)\right), D F^{-1}\left(\sigma_{0}(F(p))\left(e_{3}\right)\right)\right\}$ of $T_{p} N$, as depicted in figure 5.

Figure 5. The basis at $F(p)$ and p that are determined by σ_{0} are depicted black. The basis at $F(p)$ is sent to the basis in blue at p by $D F^{-1} . \mathscr{D}([F])^{-1}(p)$ is the change of basis between the blue and black basis at p

Thus, we get:

$$
\mathscr{D}([F])^{-1}(p)=\sigma_{0}^{-1}(p)\left[D F^{-1}\right]_{F(p)} \sigma_{0}(F(p)) .
$$

In the particular case of $M=M_{n}$, we study the derivative crossed homomorphism of F using a lift of it on the universal cover of N. This simplifies the computation of the derivative crossed homomorphism of F. Let q be in the interior of \widetilde{N}. There is an isomorphism of vector spaces $b_{q}: \mathbb{R}^{3} \rightarrow T_{q} \widetilde{N} \cong T_{q} \mathbb{R}^{3}$, defined by $b_{q}\left(e_{1}\right)=\left.\frac{\partial}{\partial x}\right|_{q}, b_{q}\left(e_{2}\right)=\left.\frac{\partial}{\partial y}\right|_{q}$, and,$b_{q}\left(e_{3}\right)=\left.\frac{\partial}{\partial z}\right|_{q}$, where $\left\{e_{1}, e_{2}, e_{3}\right\}$ is the standard basis of \mathbb{R}^{3}. Then, define $\sigma(q) \in \operatorname{Fr}(T \widetilde{N})$ by $\sigma(q)=b_{q}$. Since π is a local diffeomorphism, it induces an isomorphism of vector spaces $D \pi_{q}: T_{q} \widetilde{N} \rightarrow T_{\pi(q)} N$. Let p be in the interior of N. Select any q in the interior of \widetilde{N} such that $\pi(q)=p$. Then $\sigma_{0}: \mathbb{R}^{3} \rightarrow T_{p} N$ is defined by $\sigma_{0}(p):=D \pi_{q} \circ \sigma(q)$. We want to show that σ_{0} doesn't depend on the lift q of p. Let q^{\prime} be another lift of p. Consider the Deck transformation Γ of \widetilde{N} that sends q^{\prime} to q, and is given by $\Gamma(x, y, z)=(x, y, z+k)$, for some $k \in \mathbb{Z}$.

AN EXPLICIT SECTION OF THE LAUDENBACH EXACT SEQUENCE OF THE MAPPING CLASS GROUP OF CONNECT SUMS OF $S^{2} \times$
Then, $D \Gamma_{q^{\prime}}\left(\left.\frac{\partial}{\partial x_{i}}\right|_{q^{\prime}}\right)=\left.\frac{\partial}{\partial x_{i}}\right|_{q}$. Since Γ is a Deck transformation of \widetilde{N}, it satisfies $\pi \circ \Gamma=\pi$. Then, $D \pi_{q} \circ D \Gamma_{q^{\prime}}=D \pi_{q^{\prime}}$. Hence:

$$
\begin{gathered}
{\left[D \pi_{q^{\prime}} \circ \sigma\left(q^{\prime}\right)\right]\left(e_{i}\right)=\left[D \pi_{q^{\prime}}\right]\left(\sigma\left(q^{\prime}\right)\left(e_{i}\right)\right)=\left[D \pi_{q} \circ D \Gamma_{q^{\prime}}\right]\left(\left.\frac{\partial}{\partial x_{i}}\right|_{q^{\prime}}\right)=D \pi_{q}\left(\left.\frac{\partial}{\partial x_{i}}\right|_{q}\right)=} \\
{\left[D \pi_{q} \circ \sigma(q)\right]\left(e_{i}\right)}
\end{gathered}
$$

Thus, $D \pi_{q^{\prime}} \circ \sigma\left(q^{\prime}\right)=D \pi_{q} \circ \sigma(q)$, so $\sigma_{0}(p)$ doesn't depend on the lift q of p. Thus, σ_{0} is in fact a smooth section $\sigma_{0}: \operatorname{Int}(N) \rightarrow F r(T(\operatorname{Int}(N)))$ of the frame bundle of $\operatorname{Int}(N)$.

Lemma 3.1. Let $p \in \operatorname{Int}(N)$, and $q \in \widetilde{N}$ with $\pi(q)=p$. Then, $\mathscr{D}([F])_{k i}^{-1}(p)=\left.\frac{\partial \widetilde{f}_{k}^{-1}}{\partial x_{i}}\right|_{\tilde{f}(q)}$.
Proof. Since $\pi \circ \widetilde{f}=f \circ \pi$, then by the chain rule we get:

$$
D \pi_{\tilde{f}(q)} \circ D \widetilde{f}_{q}=D f_{\pi(q)} \circ D \pi_{q}
$$

Since $D \pi_{q}: T_{q} \widetilde{N} \rightarrow T_{p} N$ is a linear isomorphism for each q, then:

$$
D \pi_{\widetilde{f}(q)} \circ D \widetilde{f}_{q} \circ\left[D \pi_{q}\right]^{-1}=D f_{p}
$$

and thus:

$$
D \pi_{q} \circ D \tilde{f}_{\widetilde{f}(q)}^{-1} \circ\left[D \pi_{\widetilde{f}(q)}\right]^{-1}=D f_{f(p)}^{-1}
$$

Thus:
$\sigma_{0}^{-1}(p) D f_{f(p)}^{-1} \sigma_{0}(f(p))=\sigma_{0}^{-1}(p)\left[D \pi_{q} \circ D \widetilde{f}_{\widetilde{f}(q)}^{-1} \circ\left[D \pi_{\tilde{f}(q)}\right]^{-1}\right] \sigma_{0}(f(p))=\sigma^{-1}(q) D \widetilde{f}_{\widetilde{f}(q)}^{-1} \sigma(\widetilde{f}(q))$.
Therefore:

$$
\mathscr{D}([F])^{-1}(p)=\sigma^{-1}(q) D \widetilde{f}_{\widetilde{f}(q)}^{-1} \sigma(\widetilde{f}(q))
$$

For p in the interior of N, and q with $\pi(q)=p$, evaluation of e_{i} produces:

$$
\begin{gathered}
\sigma^{-1}(q) D \widetilde{f}_{\widetilde{f}(q)}^{-1} \sigma(\widetilde{f}(q))\left(e_{i}\right)=\sigma^{-1}(q) D \widetilde{f}_{\widetilde{f}(q)}^{-1}\left(\left.\frac{\partial}{\partial x_{i}}\right|_{\tilde{f}(q)}\right)=\sigma^{-1}(q)\left(\left.\frac{\partial \widetilde{f}^{-1}}{\partial x_{i}}\right|_{\tilde{f}(q)}\right)= \\
\sigma^{-1}(q)\left(\left.\sum_{k=1}^{3}\left(\left.\frac{\partial \widetilde{f}_{k}^{-1}}{\partial x_{i}}\right|_{\widetilde{f}(q)}\right) \frac{\partial}{\partial x_{k}}\right|_{q}\right)=\sum_{k=1}^{3}\left(\left.\frac{\partial \widetilde{f}_{k}^{-1}}{\partial x_{i}}\right|_{\widetilde{f}(q)}\right) \sigma^{-1}(q)\left(\left.\frac{\partial}{\partial x_{k}}\right|_{q}\right)= \\
\sum_{k=1}^{3}\left(\left.\frac{\partial \widetilde{f}_{k}^{-1}}{\partial x_{i}}\right|_{\widetilde{f}(q)}\right) e_{k}
\end{gathered}
$$

Thus: the hom the loop:

$$
[0,1] \xrightarrow{\gamma} M \xrightarrow{\mathscr{D}([F])} \mathrm{GL}^{+}(3, \mathbb{R})
$$

In other words, $\mathfrak{T}([F])$ is the map induced by $\mathscr{D}([F])$ on fundamental groups.
Because the derivative of F is the identity on a_{k} for $k \neq i$, we get that $\mathfrak{T}([F])\left[a_{k}\right]$ is trivial in $\pi_{1}\left(\mathrm{GL}^{+}(3, \mathbb{R}), i d\right)$ for every $k \neq i$.

Choose $\gamma \in\left[a_{i}\right]$, and one of its lifts $\widetilde{\gamma}$, such that $\widetilde{\gamma}$ intersects \widetilde{N} as $(\jmath, 0,0)$, for $s \in[0,1]$. For $t \in[0,1]$ satisfying that $\gamma(t) \notin \operatorname{Int}(N)$, we have that the derivative of F is trivial at $\gamma(t)$, thus $\mathscr{D}([F])(\gamma(t))$ is the trivial matrix for such t. Hence, we are only interested in the case $\gamma(t) \in \operatorname{Int}(N)$, and in this case $F=f$.

Notice that $\tilde{f}^{-1}(x, y, z)=\left(x, y, z-\psi\left(\sqrt{x^{2}+y^{2}}\right)\right)$. Then we obtain :

$$
\begin{gathered}
\mathscr{D}([F])^{-1}(\gamma(t))=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
\frac{-x}{\sqrt{x^{2}+y^{2}}} \frac{d \psi}{d r}\left(\sqrt{x^{2}+y^{2}}\right) & \frac{-y}{\sqrt{x^{2}+y^{2}}} \frac{d \psi}{d r}\left(\sqrt{x^{2}+y^{2}}\right) & 1
\end{array}\right](s, 0, \psi(s))= \\
{\left[\begin{array}{cccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-\frac{d \psi(s)}{d r} & 0 & 1
\end{array}\right] .}
\end{gathered}
$$

Hence,

$$
\mathscr{D}([F])^{-1}(\gamma(t))=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-\frac{d \psi(s)}{d r} & 0 & 1
\end{array}\right] .
$$

So,

$$
\mathscr{D}([F])(\gamma(t))=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
\frac{d \psi(\jmath)}{d r} & 0 & 1
\end{array}\right] .
$$

For $(\jmath, 0,0), 0 \leq 3 \leq 1$.
We have an homotopy from the trivial path to this path,

$$
H:[0,1] \times[0,1] \rightarrow \mathrm{GL}^{+}(3, \mathbb{R})
$$

given by:

$$
H(s, t)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
t \frac{d \psi(s)}{d r} & 0 & 1
\end{array}\right]
$$

Therefore, $[\mathscr{D}([F])(\gamma)]=1$ for every $t \in \operatorname{Dom}(\gamma)$.
Hence, $\mathfrak{T}([F])\left[a_{i}\right]$ is trivial in $\pi_{1}\left(\mathrm{GL}^{+}(3, \mathbb{R}), i d\right)$.
Therefore, the twisting crossed homomorphism \mathfrak{T} evaluated at $F, \mathfrak{T}([F])$, is trivial.

4. Calculation of $\mathfrak{T}\left(\left[G_{j}\right]\right)$

Now, we analyse the case of G_{j}. Denote G_{j} by G, and P_{j} by P. Given $\gamma \in\left[a_{j}\right]$, define $\gamma_{1}(t):=\gamma(t / 3)$, $\gamma_{2}(t):=\gamma(1 / 3+t / 3)$ and $\gamma_{3}(t):=\gamma(2 / 3+t / 3)$ for $0 \leq t \leq 1$. Then, $\gamma=\gamma_{1} * \gamma_{2} * \gamma_{3}$. Homotope γ such that $\gamma_{2} \subseteq\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq 1 / 9\right\}$, and that $\gamma_{1}(t)=(0,0, \varepsilon(t))$ and $\gamma_{3}(t)=(0,0, \varepsilon(1-t))$, for some smooth function $\varepsilon:[0,1] \rightarrow[0,1]$. For $(x, y, z) \in P_{j}, G$ is the diffeomorphism that sends (x, y, z) to

$$
\left[\begin{array}{ccc}
\cos \left(\psi\left(\sqrt{x^{2}+y^{2}+z^{2}}\right) \pi\right) & -\sin \left(\psi\left(\sqrt{x^{2}+y^{2}+z^{2}}\right) \pi\right) & 0 \\
\sin \left(\psi\left(\sqrt{x^{2}+y^{2}+z^{2}}\right) \pi\right) & \cos \left(\psi\left(\sqrt{x^{2}+y^{2}+z^{2}}\right) \pi\right) & 0 \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) .
$$

Evaluating G on γ_{1} we get:

$$
G\left(\gamma_{1}(t)\right)=\left[\begin{array}{ccc}
\cos (\psi(\varepsilon(t)) \pi) & -\sin (\psi(\varepsilon(t)) \pi) & 0 \\
\sin (\psi(\varepsilon(t)) \pi) & \cos (\psi(\varepsilon(t)) \pi) & 0 \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{c}
0 \\
0 \\
\varepsilon(t)
\end{array}\right)=(0,0, \varepsilon(t)),
$$

for $0 \leq t \leq 1$.
Evaluating G on γ_{2} we get:

$$
G\left(\gamma_{2}(t)\right)=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \gamma_{2}(t)=\overline{\gamma_{2}(t)},
$$

for $0 \leq t \leq 1$.
Evaluating G on γ_{3} we get:

$$
G\left(\gamma_{3}(t)\right)=\left[\begin{array}{ccc}
\cos (\psi(\varepsilon(1-t)) \pi) & -\sin (\psi(\varepsilon(1-t)) \pi) & 0 \\
\sin (\psi(\varepsilon(1-t)) \pi) & \cos (\psi(\varepsilon(1-t)) \pi) & 0 \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{c}
0 \\
0 \\
\varepsilon(1-t)
\end{array}\right)=(0,0, \varepsilon(1-t)),
$$

for $0 \leq t \leq 1$.

Denote $\mathscr{D}([G])^{-1}\left(\gamma_{1}(t)\right)$ by $w_{1}(t)$ and $\mathscr{D}([G])^{-1}\left(\gamma_{3}(t)\right)$ by $w_{3}(t)$, for $0 \leq t \leq 1$. The fact that $G\left(\gamma_{1}(t)\right)=\overline{G\left(\gamma_{3}(t)\right)}$, implies that $w_{1}(t)=\overline{w_{3}(t)}$ for $0 \leq t \leq 1$.

On the other hand, $\mathscr{D}([G])^{-1}\left(\gamma_{2}(t)\right)$ is the constant path:

$$
\mathscr{D}([G])^{-1}\left(\gamma_{2}(t)\right)=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]=: w_{2}(t),
$$

for $0 \leq t \leq 1$
Therefore, $\mathscr{D}([G])^{-1}(\gamma)=w_{1} * w_{2} * \overline{w_{1}}$, which implies that $\left[\mathscr{D}([G])^{-1}(\gamma)\right]$ is trivial for $t \in \operatorname{Dom}(\gamma)$, because $w_{2}(t)$ is a constant path. Therefore, the twisting crossed homomorphism \mathfrak{T} evaluated at G, $\mathfrak{T}([G])$, is trivial.

5. References

[1] F. Laudenbach, Sur les 2-sphres d'une variete de dimension 3, Ann. of Math. (2) 97 (1973), 57-81.
[2] F. Laudenbach, Topologie de la dimension trois: homotopie et isotopie, Societe Mathematique de France, Paris, 1974
[3] Brendle, T., Broaddus, N., \& Putman, A. (2023). The mapping class group of connect sums of $S^{2} \times S^{1}$. Transactions of the American Mathematical Society, 376(04), 2557-2572.
[4] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory. Berlin, Heidelberg, New York: Springer, 1977.

Department of Mathematical Sciences 850 West Dickson Street, Room 309 University of Arkansas, Fayetteville, AR 72701

Email address: jar064@uark.edu

