everylanguage=1,loadkernel=1,loadpatterns=1,loadexceptions=1,adddialect=2,patterns=2,defaultcommands= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ROCKY MOUNTAIN JOURNAL OF MATHEMATICS

https://doi.org/rmj.YEAR..PAGE

17

22

35

36

37 38

39

AN EXPLICIT SECTION OF THE LAUDENBACH EXACT SEQUENCE OF THE MAPPING CLASS GROUP OF CONNECT SUMS OF $S^2 \times S^1$

ABSTRACT. Laudenbach proved that the mapping class group of the connect sum of n copies of $S^2 \times S^1$ is an extension of $Out(F_n)$ by a finite group. Brendle-Broaddus-Putman proved that this exact sequence splits. We provide an explicit section s of this split exact sequence.

1. Introduction

Let M_n be the connect sum of n copies of $S^2 \times S^1$ equipped with a basepoint x_0 . $Mod(M_n)$ is defined to be the group of isotopy classes of orientation-preserving diffeomorphisms of M_n . We fix an isomorphism $\pi_1(M_n, x_0) \cong F_n$, where F_n is the free group of rank n. In [1,2], Laudenbach proved that that there exists a short exact sequence

$$1 \to Twist(M_n) \to Mod(M_n) \xrightarrow{\rho} Out(F_n) \to 1,$$

where $Twist(M_n) \cong (\mathbb{Z}/2)^n$ is generated by the sphere twists about the core spheres $S^2 \times *$. Brendle-25 Broaddus-Putman proved in [3] that this short exact sequence splits. In particular, they construct a crossed homomorphism $\mathfrak{T}: Mod(M_n) \to Twist(M_n)$ that restricts to the identity on $Twist(M_n)$. This 27 determines a section $s: Out(F_n) \to Mod(M_n)$ of ρ , given by $s([\phi]) = \mathfrak{T}([f^{-1}])[f]$, where f is a diffeomorphism of M_n with $\rho([f]) = [\phi]$. The purpose of this paper is to provide a formula for the section s explicitly. In order to do that, we compute s for the Nielsen generators of $Out(F_n)$ given in 30 [4]. We first describe explicit diffeomorphisms for each of the elements of the Nielsen generating set for $Out(F_n)$. Our computation shows that \mathfrak{T} is trivial for these lifts. Our main result is the following:

Theorem 1.1. The map $s: Out(F_n) \to Mod(M_n)$ that on the Nielsen generators $[R_{i,j}]$, and $[I_j]$, for $1 \le i, j \le n$ and $i \ne j$, given by:

$$s([R_{i,j}]) = [F_{i,j}], \text{ and } s([I_j]) = [G_j],$$

is a section of ρ , where $F_{i,j}$, and G_i are diffeomorphisms of M_n defined in the section below.

2. Construction of the maps $F_{i,j}$, and G_i

For $1 \le i \le n$, choose loops a_i based at x_0 that generate the fundamental group of M_n . In [4, proposition 41 4.1], it is shown that $Out(F_n)$ is generated by the classes $[R_{i,j}]$, and $[I_j]$, for $1 \le i, j \le n$ and $i \ne j$, 42 where:

FIGURE 1. a_1, a_2 , and a_3 are depicted in green, blue and red respectively. The neighborhood $N_{1,2}$ is depicted in light blue.

$$R_{i,j}(a_k) = \begin{cases} a_k a_j & \text{if } k = i \\ a_k & \text{if } k \neq i \end{cases}, \text{ and } I_j(a_k) = \begin{cases} a_k^{-1} & \text{if } k = j \\ a_k & \text{if } k \neq j. \end{cases}$$

We want to obtain diffeomorphisms $F_{i,j}$, and G_j of M_n such that $\rho([F_{i,j}]) = [R_{i,j}]$ and $\rho([G_j]) = [I_j]$. M_n can be described by removing 2n open balls of S^3 , and then gluing the boundary spheres of these balls in pairs. The resulting boundary spheres correspond to the core spheres of the n summands of $S^2 \times S^1$ in M_n . Let A_i denote the core sphere of the ith summand $S^2 \times S^1$ of M_n . Let A_i^- and A_i^+ denote the two boundary spheres that were identified in S^3 minus 2n open balls that give rise to the sphere S^1 and comes back through S^1 , and then reaches the base point, without intersecting the other boundary spheres. Then, S^1 minus an open ball with boundary S^1 , which is contained in S^1 minus an open ball with boundary S^1 , which is contained in S^1 minus an S^2 minus S^3 minus an open ball with boundary S^3 minus S^3 minus S^3 minus an open ball with boundary S^3 minus S^3 minus S^3 minus S^3 minus S^3 minus diffeomorphic to S^3 minus S^3 minus S^3 minus S^3 minus diffeomorphic to S^3 minus S^3 minus S^3 minus S^3 minus diffeomorphic to S^3 minus S^3 minus S^3 minus S^3 minus diffeomorphic to S^3 minus S^3 minus

For the case of I_j , choose a subset P'_j of S^3 minus 2n-open balls diffeomorphic to $B^3 = \{(x,y,z)|x^2 + y^2 + z^2 \le 1\}$ minus the boundary spheres A_j^+ and A_j^- , such that these spheres are contained in $\{(x,y,z)|x^2+y^2+z^2<1/9\}$, and they are symmetric with respect to a rotation by π around the z-axis. Denote by P_j the subset of M_n corresponding to P'_j with A_j^+ and A_j^- being identified.

²⁰²⁰ Mathematics Subject Classification. 57M07, 20F65, 20E36.

Key words and phrases. Laudenbach exact sequence, Outer automorphism group of a free group.

AN EXPLICIT SECTION OF THE LAUDENBACH EXACT SEQUENCE OF THE MAPPING CLASS GROUP OF CONNECT SUMS OF $S^2 \times S^2 = S^2 + S$

Parametrize a_j in such a way that $a_j(t) \in \{(x,y,z)|x^2+y^2+z^2<1/9\}$ for $1/3 \le t \le 2/3$, and $a_j(t) \in \{(x,y,z)|1/9 < x^2+y^2+z^2<1\}$ for $0 \le t \le 1/3$ and $2/3 \le t \le 1$. We also homotope a_j 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 so that $a_i(t)$ lives in the z-axis for t as in the last case. Figure 2 depicts this for the case j=1.

FIGURE 2. a_1 is depicted in red

Construct a smooth function $\psi: [0,1] \to [0,1]$ with $\psi(r) = 1$ on [0,1/3], $supp(\psi(r)) \subseteq [0,2/3)$, and decreasing, so that $\psi'(r) \leq 0$.

Define $f_{i,j}: N_{i,j} \to N_{i,j}$ by

$$f(x, y, e^{2\pi i\theta}) = (x, y, e^{2\pi i \left[\theta + \psi\left(\sqrt{x^2 + y^2}\right)\right]}).$$

Then $f_{i,j}$ is a diffeomorphism of $N_{i,j}$.

Define $F_{i,j}$ by :

26 27

28

30 31

32

33

38

39 40

$$F_{i,j}(p) = \begin{cases} f_{i,j}(p) & \text{if } p \in N_{i,j} \\ p & p \in M_n - N_{i,j}. \end{cases}$$

If $p \in P'_j$ has spherical coordinates (θ, φ, r) , define $g_j : P'_j \to P'_j$ by $g_j(p) = (\theta + \psi(r)\pi, \varphi, r)$.

As g_j respects the identification of A_i^+ and A_i^- , it induces a diffeomorphism on P which we still denote by $g_j: P \to P$. Define G_j by :

$$G_j(\theta, \varphi, r) = \begin{cases} g_j(p) & \text{if } p \in P_j \\ p & p \in M_n - P_i. \end{cases}$$

To see that $F_{i,j}$ actually realizes $R_{i,j}$, consider what $F_{i,j}$ does to the $a'_k s$, as depicted in figure 3 for 42 the case n = 3, i = 1, and j = 2.

FIGURE 3. The image of a_1 under $F_{1,2}$ is depicted in green, and it is homotopic to a_1a_2 .

Thus, $[F_{1,2}(a_1)] = [a_1a_2]$, and since $F_{1,2}$ fixes the homotopy classes of a_2 and a_3 , then F realizes $R_{1,2}$. To see that G_j actually realizes I_j , consider what G_j does to a_j , as depicted in figure 4 for the case j = 1. Notice that G_j fixes the subpath of a_j that is in $P_j \cap \{(x, y, z) | 1/9 \le x^2 + y^2 + z^2 \le 1\}$.

30

33 34

37

18 19

22

24 25 26

27

FIGURE 4. The image of a_1 under G_1 is depicted in red, and it is homotopic to a_1^{-1}

Hence, s defined on the Nielsen generators by $s([R_{i,j}]) = [F_{i,j}]$, and $s([I_j]) = G_j$ will be a section of ρ , provided that $\mathfrak{T}([F_{i,j}]) = 0$, and $\mathfrak{T}([G_j]) = 0$.

3. Calculation of $\mathfrak{T}([F_{i,j}])$

Denote $N_{i,j}$ by N, $F_{i,j}$ by F, and f by $f_{i,j}$. Consider the universal cover \widetilde{N} of N, which is given by:

$$\{(x,y,z)|x^2+y^2\leq 1\}-\bigcup_{n\in\mathbb{Z}}C_n\subseteq\mathbb{R}^3,$$

where $C_n = \{(x, y, z) | x^2 + y^2 + (z - n)^2 < 1/9 \}.$

Denote by π the projection map $\pi: \widetilde{N} \to N$. π is given by $\pi(x,y,z) = (x,y,e^{2\pi iz})$, and is a local diffeomorphism. f lifts to a diffeomorphism \widetilde{f} given by $\widetilde{f}(x,y,z) = (x,y,z+\psi\left(\sqrt{x^2+y^2}\right))$.

We have that $\pi_1(GL^+(3,\mathbb{R}),id) \cong \pi_1(SO(3),id) \cong \mathbb{Z}/2$ is generated by a loop $l:[0,1] \to SO(3)$ which can be chosen to be

$$l(t) = \begin{bmatrix} \cos(2\pi t) & -\sin(2\pi t) & 0\\ \sin(2\pi t) & \cos(2\pi t) & 0\\ 0 & 0 & 1 \end{bmatrix},$$

for $t \in [0, 1]$.

For M a closed oriented 3-manifold, let TM be the tangent bundle of M and define Fr(TM) to be the principal $GL_3^+(\mathbb{R})$ -bundle of oriented frames of TM. That means, $Fr(TM)_x$ is the space of linear isomorphisms $T: \mathbb{R}^3 \to T_x M$. Fix a section σ_0 of Fr(TM). We think of σ_0 as describing a preferred basis $\{\sigma_0(p)(e_1), \sigma_0(p)(e_2), \sigma_0(p)(e_3)\}$ of the tangent space at each point p. Denote by $C(M, GL^+(3, \mathbb{R}))$ the space of continuous functions from M to $GL^+(3, \mathbb{R})$.

AN EXPLICIT SECTION OF THE LAUDENBACH EXACT SEQUENCE OF THE MAPPING CLASS GROUP OF CONNECT SUMS OF $S^2 \times S^2 = S^2 + S$

The derivative crossed homomorphism

$$\mathscr{D}: \mathrm{Diff}^+(M) \to C(M, \mathrm{GL}^+(3,\mathbb{R}))$$

will be defined now. Given a diffeomorphism F of M, the derivative crossed homomorphism evaluated at [F], $\mathcal{D}([F]): M \to \mathrm{GL}^+(3,\mathbb{R})$, gives for each p a linear transformation $\mathcal{D}([F])(p)$ in $\mathrm{GL}^+(3,\mathbb{R})$, 5 6 7 8 9 10 11 12 defined as follows. It is the unique linear transformation that makes the following diagram commute:

$$\mathbb{R}^{3} \xrightarrow{\sigma_{0}(p)} T_{p}N$$

$$\mathscr{D}([F])(p) \downarrow \qquad \qquad \uparrow [DF^{-1}]_{F(p)}$$

$$\mathbb{R}^{3} \xrightarrow{\sigma_{0}(F(p))} T_{F(p)}N$$

Thus, $\mathcal{D}([F])(p)$ is the inverse of the linear transformation that represents the change of basis transformation from the basis

 $\{\sigma_0(p)(e_1), \sigma_0(p)(e_2), \sigma_0(p)(e_3)\}\$ of T_pN to the basis

 $\{DF^{-1}(\sigma_0(F(p))(e_1)), DF^{-1}(\sigma_0(F(p))(e_2)), DF^{-1}(\sigma_0(F(p))(e_3))\}\$ of T_pN , as depicted in figure

FIGURE 5. The basis at F(p) and p that are determined by σ_0 are depicted black. The basis at F(p) is sent to the basis in blue at p by DF^{-1} . $\mathcal{D}([F])^{-1}(p)$ is the change of basis between the blue and black basis at p

Thus, we get:

13

14

17

18 19 20

22 23 24

25 26 27

28 29 30

31

32

$$\mathcal{D}([F])^{-1}(p) = \sigma_0^{-1}(p)[DF^{-1}]_{F(p)}\sigma_0(F(p)).$$

In the particular case of $M = M_n$, we study the derivative crossed homomorphism of F using a lift of it on the universal cover of N. This simplifies the computation of the derivative crossed homomorphism of F. Let q be in the interior of \widetilde{N} . There is an isomorphism of vector spaces $b_q: \mathbb{R}^3 \to T_q \widetilde{N} \cong T_q \mathbb{R}^3$, defined by $b_q(e_1) = \frac{\partial}{\partial z}\Big|_q$, $b_q(e_2) = \frac{\partial}{\partial z}\Big|_q$, and $b_q(e_3) = \frac{\partial}{\partial z}\Big|_q$, where $\{e_1, e_2, e_3\}$ is the standard basis of \mathbb{R}^3 . Then, define $\sigma(q) \in Fr(T\widetilde{N})$ by $\sigma(q) = b_q$. Since π is a local diffeomorphism, it induces an isomorphism of vector spaces $D\pi_q: T_q\widetilde{N} \to T_{\pi(q)}N$. Let p be in the interior of N. Select any q in the interior of \widetilde{N} such that $\pi(q) = p$. Then $\sigma_0 : \mathbb{R}^3 \to T_p N$ is defined by $\sigma_0(p) := D\pi_q \circ \sigma(q)$. We want to show that σ_0 doesn't depend on the lift q of p. Let q' be another lift of p. Consider the Deck transformation Γ of N that sends q' to q, and is given by $\Gamma(x,y,z)=(x,y,z+k)$, for some $k\in\mathbb{Z}$.

AN EXPLICIT SECTION OF THE LAUDENBACH EXACT SEQUENCE OF THE MAPPING CLASS GROUP OF CONNECT SUMS OF $S^2 \times S^2 = S^2 + S$

Then, $D\Gamma_{q'}\left(\frac{\partial}{\partial x_i}\Big|_{q'}\right) = \frac{\partial}{\partial x_i}\Big|_{q}$. Since Γ is a Deck transformation of \widetilde{N} , it satisfies $\pi \circ \Gamma = \pi$. Then,

$$\left[D\pi_{q'}\circ\sigma(q')\right](e_i) = \left[D\pi_{q'}\right](\sigma(q')(e_i)) = \left[D\pi_q\circ D\Gamma_{q'}\right]\left(\frac{\partial}{\partial x_i}\Big|_{q'}\right) = D\pi_q\left(\frac{\partial}{\partial x_i}\Big|_{q}\right) =$$

$$[D\pi_q \circ \sigma(q)](e_i).$$

Thus, $D\pi_{q'}\circ\sigma(q')=D\pi_q\circ\sigma(q)$, so $\sigma_0(p)$ doesn't depend on the lift q of p. Thus, σ_0 is in fact a smooth section $\sigma_0: Int(N) \to Fr(T(Int(N)))$ of the frame bundle of Int(N).

Lemma 3.1. Let
$$p \in Int(N)$$
, and $q \in \widetilde{N}$ with $\pi(q) = p$. Then, $\mathfrak{D}([F])_{ki}^{-1}(p) = \frac{\partial \widetilde{f}_k^{-1}}{\partial x_i} \Big|_{\widetilde{f}(q)}$.

Proof. Since $\pi \circ \widetilde{f} = f \circ \pi$, then by the chain rule we get:

$$D\pi_{\widetilde{f}(q)} \circ D\widetilde{f}_q = Df_{\pi(q)} \circ D\pi_q.$$

Since $D\pi_q: T_q\widetilde{N} \to T_pN$ is a linear isomorphism for each q, then:

$$D\pi_{\widetilde{f}(q)} \circ D\widetilde{f}_q \circ [D\pi_q]^{-1} = Df_p,$$

and thus:

$$D\pi_q \circ D\widetilde{f}_{\widetilde{f}(q)}^{-1} \circ \left[D\pi_{\widetilde{f}(q)}\right]^{-1} = Df_{f(p)}^{-1}.$$

30

31 32

33

35

41 42

$$\sigma_0^{-1}(p)Df_{f(p)}^{-1}\sigma_0(f(p)) = \sigma_0^{-1}(p)\left[D\pi_q \circ D\widetilde{f}_{\widetilde{f}(q)}^{-1} \circ \left[D\pi_{\widetilde{f}(q)}\right]^{-1}\right]\sigma_0(f(p)) = \sigma^{-1}(q)D\widetilde{f}_{\widetilde{f}(q)}^{-1}\sigma(\widetilde{f}(q)).$$

Therefore:

$$\mathscr{D}([F])^{-1}(p) = \sigma^{-1}(q)D\widetilde{f}_{\widetilde{f}(q)}^{-1}\sigma(\widetilde{f}(q)).$$

For p in the interior of N, and q with $\pi(q) = p$, evaluation of e_i produces:

$$\sigma^{-1}(q)D\widetilde{f}_{\widetilde{f}(q)}^{-1}\sigma(\widetilde{f}(q))(e_{i}) = \sigma^{-1}(q)D\widetilde{f}_{\widetilde{f}(q)}^{-1}\left(\frac{\partial}{\partial x_{i}}\Big|_{\widetilde{f}(q)}\right) = \sigma^{-1}(q)\left(\frac{\partial \widetilde{f}^{-1}}{\partial x_{i}}\Big|_{\widetilde{f}(q)}\right) = \sigma^{-1}(q)\left(\sum_{k=1}^{3}\left(\frac{\partial \widetilde{f}_{k}^{-1}}{\partial x_{i}}\Big|_{\widetilde{f}(q)}\right)\frac{\partial}{\partial x_{k}}\Big|_{q}\right) = \sum_{k=1}^{3}\left(\frac{\partial \widetilde{f}_{k}^{-1}}{\partial x_{i}}\Big|_{\widetilde{f}(q)}\right)\sigma^{-1}(q)\left(\frac{\partial}{\partial x_{k}}\Big|_{q}\right) = \sum_{k=1}^{3}\left(\frac{\partial \widetilde{f}_{k}^{-1}}{\partial x_{i}}\Big|_{\widetilde{f}(q)}\right)e_{k}.$$

Thus:

AN EXPLICIT SECTION OF THE LAUDENBACH EXACT SEQUENCE OF THE MAPPING CLASS GROUP OF CONNECT SUMS OF $S^2 \times S^2$

$$\mathscr{D}([F])_{ki}^{-1}(p) = \frac{\partial \widetilde{f_k}^{-1}}{\partial x_i} \Big|_{\widetilde{f}(q)}$$

13 14

15

23 24

26 27

33

35

This lemma permits the calculation of $\mathcal{D}([F])$ in terms of \widetilde{f} as we mentioned.

Now, we define the twisting crossed homomorphism

$$\mathfrak{T}: Mod(M) \to Hom(\pi_1(M, x_0), \pi_1(\operatorname{GL}^+(3, \mathbb{R}), id)) = H^1(M; \mathbb{Z}/2).$$

The twisting crossed homomorphism evaluated at [F], $\mathfrak{T}([F]): \pi_1(M, x_0) \to \pi_1(\mathrm{GL}^+(3, \mathbb{R}), id)$, is the homomorphism that sends $[\gamma] \in \pi_1(M, x_0)$ to the class $\mathfrak{T}(F)[\gamma] = [\mathfrak{D}([F])(\gamma)]$, where $\mathfrak{D}([F])(\gamma)$ is the loop:

$$[0,1] \xrightarrow{\gamma} M \xrightarrow{\mathscr{D}([F])} \mathrm{GL}^+(3,\mathbb{R}).$$

In other words, $\mathfrak{T}([F])$ is the map induced by $\mathfrak{D}([F])$ on fundamental groups.

Because the derivative of F is the identity on a_k for $k \neq i$, we get that $\mathfrak{T}([F])[a_k]$ is trivial in $\pi_1(\operatorname{GL}^+(3,\mathbb{R}),id)$ for every $k \neq i$.

Choose $\gamma \in [a_i]$, and one of its lifts $\widetilde{\gamma}$, such that $\widetilde{\gamma}$ intersects \widetilde{N} as (s,0,0), for $s \in [0,1]$. For $t \in [0,1]$ satisfying that $\gamma(t) \notin Int(N)$, we have that the derivative of F is trivial at $\gamma(t)$, thus $\mathcal{D}([F])(\gamma(t))$ is the trivial matrix for such t. Hence, we are only interested in the case $\gamma(t) \in Int(N)$, and in this case

Notice that $\widetilde{f}^{-1}(x, y, z) = (x, y, z - \psi(\sqrt{x^2 + y^2}))$. Then we obtain :

$$\mathscr{D}([F])^{-1}(\gamma(t)) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{-x}{\sqrt{x^2 + y^2}} \frac{d\psi}{dr} (\sqrt{x^2 + y^2}) & \frac{-y}{\sqrt{x^2 + y^2}} \frac{d\psi}{dr} (\sqrt{x^2 + y^2}) & 1 \end{bmatrix} (s, 0, \psi(s)) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -\frac{d\psi(s)}{dr} & 0 & 1 \end{bmatrix}.$$

Hence,

$$\mathscr{D}([F])^{-1}(\gamma(t)) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -\frac{d\psi(s)}{dr} & 0 & 1 \end{bmatrix}.$$

So,

$$\mathscr{D}([F])(\gamma(t)) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{d\psi(\mathfrak{z})}{dr} & 0 & 1 \end{bmatrix}.$$

For (3,0,0), $0 \le 3 \le 1$.

We have an homotopy from the trivial path to this path,

$$H: [0,1] \times [0,1] \to \mathrm{GL}^+(3,\mathbb{R}),$$

given by:

$$H(s,t) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ t \frac{d\psi(s)}{dr} & 0 & 1 \end{bmatrix}.$$

Therefore, $[\mathcal{D}([F])(\gamma)] = 1$ for every $t \in Dom(\gamma)$.

Hence, $\mathfrak{T}([F])[a_i]$ is trivial in $\pi_1(\mathrm{GL}^+(3,\mathbb{R}),id)$.

Therefore, the twisting crossed homomorphism \mathfrak{T} evaluated at F, $\mathfrak{T}([F])$, is trivial.

4. Calculation of $\mathfrak{T}([G_j])$

Now, we analyse the case of G_j . Denote G_j by G, and P_j by P. Given $\gamma \in [a_j]$, define $\gamma_1(t) := \gamma(t/3)$ τ , $\gamma_2(t) := \gamma(1/3 + t/3)$ and $\gamma_3(t) := \gamma(2/3 + t/3)$ for $0 \le t \le 1$. Then, $\gamma = \gamma_1 * \gamma_2 * \gamma_3$. Homotope γ such that $\gamma_2 \subseteq \{(x,y,z)|x^2+y^2+z^2 \le 1/9\}$, and that $\gamma_1(t) = (0,0,\varepsilon(t))$ and $\gamma_3(t) = (0,0,\varepsilon(1-t))$, for $\gamma_3(t) = (0,0,\varepsilon(1-t))$. For $\gamma_3(t) = (0,0,\varepsilon(1-t))$ is some smooth function $\gamma_3(t) = (0,0,\varepsilon(1-t))$. For $\gamma_3(t) = (0,0,\varepsilon(1-t))$ is the diffeomorphism that sends $\gamma_3(t) = (0,0,\varepsilon(1-t))$.

$$\begin{bmatrix} \cos(\psi(\sqrt{x^2+y^2+z^2})\pi) & -\sin(\psi(\sqrt{x^2+y^2+z^2})\pi) & 0\\ \sin(\psi(\sqrt{x^2+y^2+z^2})\pi) & \cos(\psi(\sqrt{x^2+y^2+z^2})\pi) & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x\\y\\z \end{pmatrix}.$$

Evaluating G on γ_1 we get:

$$G(\gamma_1(t)) = \begin{bmatrix} \cos(\psi(\varepsilon(t))\pi) & -\sin(\psi(\varepsilon(t))\pi) & 0\\ \sin(\psi(\varepsilon(t))\pi) & \cos(\psi(\varepsilon(t))\pi) & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} 0\\ 0\\ \varepsilon(t) \end{pmatrix} = (0,0,\varepsilon(t)),$$

for $0 \le t \le 1$.

Evaluating G on γ_2 we get:

$$G(\gamma_2(t)) = egin{bmatrix} -1 & 0 & 0 \ 0 & -1 & 0 \ 0 & 0 & 1 \end{bmatrix} \gamma_2(t) = \overline{\gamma_2(t)},$$

for $0 \le t \le 1$.

Evaluating G on γ_3 we get:

$$G(\gamma_3(t)) = \begin{bmatrix} \cos(\psi(\varepsilon(1-t))\pi) & -\sin(\psi(\varepsilon(1-t))\pi) & 0\\ \sin(\psi(\varepsilon(1-t))\pi) & \cos(\psi(\varepsilon(1-t))\pi) & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} 0\\ 0\\ \varepsilon(1-t) \end{pmatrix} = (0,0,\varepsilon(1-t)),$$

for 0 < t < 1.

Denote $\mathcal{D}([G])^{-1}(\gamma_1(t))$ by $w_1(t)$ and $\mathcal{D}([G])^{-1}(\gamma_3(t))$ by $w_3(t)$, for $0 \le t \le 1$. The fact that $G(\gamma_1(t)) = \overline{G(\gamma_3(t))}$, implies that $w_1(t) = \overline{w_3(t)}$ for $0 \le t \le 1$.

On the other hand, $\mathcal{D}([G])^{-1}(\gamma_2(t))$ is the constant path:

$$\mathscr{D}([G])^{-1}(\gamma_2(t)) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} =: w_2(t),$$

for $0 \le t \le 1$

12

13 14

27 28

31

35

38

Therefore, $\mathcal{D}([G])^{-1}(\gamma) = w_1 * w_2 * \overline{w_1}$, which implies that $[\mathcal{D}([G])^{-1}(\gamma)]$ is trivial for $t \in Dom(\gamma)$, because $w_2(t)$ is a constant path. Therefore, the twisting crossed homomorphism \mathfrak{T} evaluated at G, $\mathfrak{T}([G])$, is trivial.

5. References

- [1] F. Laudenbach, Sur les 2-sphres d'une variete de dimension 3, Ann. of Math. (2) 97 (1973), 57–81.
- [2] F. Laudenbach, Topologie de la dimension trois: homotopie et isotopie, Societe Mathematique de France, Paris, 1974
- [3] Brendle, T., Broaddus, N., & Putman, A. (2023). The mapping class group of connect sums of $S^2 \times S^1$. Transactions of the American Mathematical Society, 376(04), 2557-2572.
- [4] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory. Berlin, Heidelberg, New York: Springer, 1977.

Department of Mathematical Sciences 850 West Dickson Street, Room 309 University of Arkansas, Fayetteville, AR 72701

Email address: jar064@uark.edu