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Abstract

We proposed a discrete fractional order predator-prey model that takes into account mixed func-

tional responses of Holling type II and Ivlev in this study. The models fixed points are discovered, and

their stability is assessed. We show analytically that the discrete model may sustain both bifurcations

(Neimark-Sacker and Period doubling), which are key phenomena in discrete dynamical systems. We

present the stability of NS and PD bifurcations using the central manifold theory. According to the

modification of the control parameters, the dynamic behavior of this model is investigated. The key

features of numerical simulations including bifurcation diagrams, maximal Lyapunov exponents, frac-

tal dimensions (FD), and phase portraits are displayed to prove the accuracy of theoretical analysis

as well as complex dynamical behaviors and richer and more intricate dynamics. It has been found

that the parameter values significantly affect how the prey-predator model of fractional order behaves

dynamically. In addition, two chaos management techniques are used to get rid of the chaos that the

model objectively contains.

Keywords:Prey-predator model; Caputo fractional derivative; Period-Doubling(PD) and Neimark-

Sacker (NS) Bifurcations; Fractal dimensions; Chaos control.
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1 Introduction

In population dynamics, continuous and discrete-time models are the two most popular types of mathe-

matical frameworks. Numerous academics have recently argued that using difference equations to model

the population dynamics model makes it more relevant and realistic [6, 14, 26, 43]. Discrete-time systems

are more suitable for non-overlapping generations, such as annual plants or insect colonies with a single

generation every year. Compared to their continuous-time counterparts in lower-dimensional systems,

discrete models dynamics are richer and more complex. The more intricate patterns and chaotic behavior
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of nonlinear dynamics are best described by discrete systems.

Utilizing the forward Euler scheme with an integral step size is one method for discretizing a continu-

ous system. Many studies have utilized this discretization scheme and varied as a bifurcation parameter,

including Hadeler and Gerstmann [23], Salman et al. [43], Cheng and Cao [10], Hu and Cao [26], Liu and

Xiao [33], Rana and Kulsum [41], Ajaz et al. [6] and many others. Din [14], Ishaque et al. [27], Khan [29],

and the references therein used as an alternative discretization strategy for differential equations known

as piecewise constant arguments. All the discretized systems demonstrated the existence and uniqueness

of positive steady states, non-negativity and uniform boundedness of solution sets, and other properties

that are challenging to demonstrate when using Eulers discretization approach. Recently, some authors

have begun to employ the well-known Caputo fractional derivative in continuous models rather than con-

ventional derivatives (we refer [1, 2, 5, 20, 49]). Since the prey-predator model works like conventional

derivatives, fractional derivatives can be used. Because of this, the population’s rate of change might be

slower, which might result in a more accurate mathematical estimate. Differential and integral fractional

calculus is frequently used to study complex system modeling in many scientific and engineering domains

(see [13, 36, 37, 50, 51, 53]). In fractional calculus, the time domain is viewed as a memory effect in which

the current state depends on its past history and the fractional order acts as a memory effect index in

the time domain [45] or as a non-locality index in the space domain. In general, it is difficult to solve

fractional differential equations (FDEs) analytically but it is possible to resolve these issues connected to

FDEs numerically, as in [8, 17].

To comprehend the interactions between prey and predator, certain straightforward mathematical

models have been proposed. The well known Lotka-Volterra model [34, 52], have been employed by

population dynamics to comprehend the interaction between ecological species [4, 11, 12, 21, 32]. In a

natural environment, each population has a different method to search for food sources and defend itself,

such as rumination, grouping, etc. Numerous ecological features and elements are employed to build

more accurate mathematical models. When it comes to population dynamics, the functional response is

the ratio of a predator’s prey intake to the density of prey per unit of time, which must be taken into

consideration in every prey-predator contact. The Holling type IIs functional response is preferable to

the Holling types I, III, and IVs responses with regard to the bulk of arthropod populations [25]. The

Ivlev functional response which has a similar effect to Holling type IIs functional response was created

by Ivlev [28] in order to research how prey and predator species interact dynamically. A discrete-time

predator-prey system’s dynamics with a functional response of Holling type III are discussed in [3] and

in [31] Holling type-II response in a discrete-time phytoplankton-zooplankton model has been studied

analytically and numerically, respectively. An explicit criterion for bifurcation analysis is presented for

the 3D system in [42]. Modelling predator-prey interactions leveraging mixed functional responses studied

in [18, 19, 47]. In [19, 47] the authors considered Holling type I and II functional responses whereas in

[18] the authors considered mixed functional response to explore the complex dynamics in the system.

If system solutions are chaotic, then it means that the predator-prey system is unstable, that is, if the

prey is in chaotic, then the predator will ultimately tend to extinction, or tend to a chaotic. For chaotic
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dynamics and experimental results, we refer [24, 39]. The study in [48] thoroughly examines bifurcations,

chaos analysis, and control in a discrete predator-prey model with mixed functional responses of Holling-I

and Holling-II. Authors in [38] discussed several bifurcations of a discrete-time model of prey-predator

dynamics with mixed functional responses. In predator-prey models, the functional response explains

how the feeding rate of a predator varies with prey density. There are two primary forms of functional

responses: the variable functional response and the adaptive functional response. Both variable and adap-

tive functional responses are important in influencing the dynamics of predator-prey interactions. This

kind of functional response shown by a predator can affect the stability or instability of the predator-prey

system. Adaptable reactions can incorporate more practical and intricate patterns into models, enabling a

more accurate portrayal of how predators adapt their actions in response to variations in prey availability.

To sum up, the decision between a variable and an adaptive functional response in a prey-predator model

relies on the desired amount of detail and realism in the model. While variable responses record simple

interactions, adaptive responses provide a more detailed picture of how predators alter their feeding rates

based on their experiences and the current conditions in the environment.

This study attempts to explore the dynamics of a discrete fractional order prey-predator model with

mixed Holling type-II and Ivlev functional responses. We thoroughly examine the proposed models fixed

points local asymptotic stability. The bifurcation analysis at one of the control parameters for the model

has been presented. Any one of these control factors can be altered to see how the models long-term

behaviors change. In addition, we provide further numerical simulations to clarify and validate our ana-

lytical findings.

The rest of the paper is structured as follows. In Section 2, we present a discrete fractional order prey-

predator model with functional responses of both Ivlev and Holling II. In Section 3, we look at the fixed

point stability. In section 4, it is explored if Neimark-Sacker bifurcation exists around the coexistence fixed

point of the system. The possibility of a PD bifurcation is discussed in section 5 at the discrete systems

coexistence fixed point. In Section 6, we quantitatively depict model dynamics together with bifurcation

visualisation, phase pictures, and MLEs to justify our mathematical observations. In Section 7, the FD

predator and prey model uses the OGY and feedback technique to manage chaos. Short explanations are

provided in Section 8.

2 Model Formulation

We assume that the densities of the prey and predator populations are constant across time, have a

uniform distribution across space, and have no discernible stage structure for either the prey or the

predators. The suggested model, which incorporates Gompertz growth into a generalized prey-predator

model, is represented by the following differential equations:

dx

dt
= rx ln

k

x
− ηcφ(x)y (1)

dy

dt
= βcφ(x)y − δcy
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Where the populations of prey and predators are represented by x and y, respectively, at any time

t. All the parameters r, k, ηc, βc, and δc are positive constants and have biological meanings that are

consistent with this. The intrinsic growth rate of the prey population per person is r, the capacity of the

environment is k, predators’ highest rate of consumption per person is ηc, the efficiency at which prey is

turned into new predators is βc, and the per capita mortality rate of predators is δc. The expression φ(x)

denotes the predator population’s functional response and confirms the hypotheses φ(0) = 0, φ
′
(x) > 0

for x > 0.

To analyses the system (1), we assume Holling type II functional response φ(x) = ηcx
γc+x in the first

equation and the Ivlev functional resonse φ(x) = (1−e−ax) in the second equation respectively. Following

are the details of the predator-prey model with a mixed functional response.

dx

dt
= rx ln

k

x
− ηcx

γc + x
y

dy

dt
= βc(1− e−ax)y − δcy

(2)

Researchers can obtain a more thorough knowledge of the dynamics involved in a prey-predator system

by taking into account both Holling Type II and Ivlev Type functional responses. This is significant in

a number of ways: realism, flexibility, predictive power, management and conservation, and so on. In

addition, taking into account both Holling Type II and Ivlev type hybrid functional responses in a prey-

predator system makes it possible to represent interactions between predator and prey species in a more

accurate and nuanced way, taking into account the diverse behaviors and ecological traits of the various

species involved.

A function f(t)’s Caputo fractional time derivative of order τ is given in [7],

Dτf(t) =
1

Γ(1− τ)

∫ t

0

1

(t− ζ)τ
f(ζ) dζ, (3)

where, τ ∈ (0, 1]; Dτ =
dτ

dtτ
, and Γ(1− τ) is the gamma function. As a result, the model (2)’s fractional-

order form is provided as follows.

dτx

dtτ
= Dτx = rx ln

k

x
− ηcx

γc + x
y (4)

dτy

dtτ
= Dτy = βc(1− e−ax)y − δcy

Consider the initial approximations of system (4) are x(0) = x0, y(0) = y0. Then system (4) becomes:

dτx

dtτ
= Dτx = rx([

t

ρ
]ρ) ln

k

x([ tρ ]ρ)
−

ηcx([
t
ρ ]ρ)

γc + x([ tρ ]ρ)
y([

t

ρ
]ρ)

dτy

dtτ
= Dτy = βc(1− e−ax([ tρ ]ρ))y([

t

ρ
]ρ)− δcy([

t

ρ
]ρ)

When t ∈ [0, ρ), so t
ρ ∈ [0, 1). So,

dτx

dtτ
= Dτx = rx0 ln

k

x0
− ηcx0

γc + x0
y0
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dτy

dtτ
= Dτy = βc(1− e−ax0)y0 − δcy0

After n repetitions, we receive

xn+1(t) = xn(nρ) +
(t− nρ)τ

Γ(τ + 1)

(
rxn(nρ) ln

k

xn(nρ)
− ηcxn(nρ)

γc + xn(nρ)
yn(nρ)

)
,

yn+1(t) = yn(nρ) +
(t− nρ)τ

Γ(τ + 1)

(
βc(1− e−axn(nρ))yn(nρ)− δcyn(nρ)

)
.

where t ∈ [nρ, (n+ 1)ρ). For t −→ (n+ 1)ρ, system (2) becomes as in [50]

xn+1 = xn +
ρτ

Γ(τ + 1)

(
rxn ln

k

xn
− ηcxn

γc + xn
yn

)
,

yn+1 = yn +
ρτ

Γ(τ + 1)

(
βc(1− e−axn)yn − δcyn

)
.

(5)

The FD predator-prey system can be discretized using the Euler method is τ → 1 in (5). There are

disadvantages and benefits to the FD discrete prey-predator model compared to the classical form. As the

FD discrete prey-predator model is very new, there isn’t much empirical data to support its applicability

and accuracy. Analysis and solution of fractional-order difference equations are more difficult than with

conventional discrete models. Standard model parameters are easier to determine, whereas FD parameters

can be more unpredictable. Fractional order models can illuminate complicated systems with non-local

interactions and memory effects despite these shortcomings. The primary themes of fractional calculus

are derivatives and non-integer order integrals. Integer-order models are unable to capture complicated

dynamics; fractional-order differential equations can. The discrete-time fractional prey-predator model (5)

uses fractional calculus to offer a more adaptable and detailed portrayal of ecological dynamics. It takes

into account memory effects and long-range dependencies that are not easily captured by classic models

based on ordinary differential equations (ODEs). This method enables a more accurate representation of

the evolutionary processes occurring between the species that interact with one another. The relationship

between the time interval and ecological processes is crucial for comprehending the dynamics of prey-

predator interactions. The time interval in a discrete-time prey-predator model is an important parameter

that affects the temporal dynamics, accuracy, stability, and computational efficiency of the ecological

simulation. Choosing a suitable time interval is crucial for achieving accurate and dependable outcomes

when examining the dynamics of prey and predator populations across time.

3 Existence Conditions and the Stability Analysis of the Fixed

Point

3.1 Existence of the fixed points

We only have two fixed points at most, depending on the situation.

(i) The axial fixed point κ1(k, 0). Prey population approaches carrying capacity k when there are no

predators, according to biology.

(ii) The unique coexistence fixed point κ2(x
∗, y∗), where x∗ = − ln [1− δc

βc
]

a , y∗ =
r(x∗+γc) ln [ k

x∗ ]

ηc
exists if

δc < βc(1− e−ak).
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3.2 Local stability analysis of fixed points

At its designated fixed points, we evaluate the system (5)’s stability. Unaffected by the magnitude of the

expected eigenvalues at the fixed point κ(x, y), expected eigenvalues have an effect on the local stability

of the fixed point, which is an important issue to notice.

Vb (x, y) =

 ˜vb11 ˜vb12

˜vb21 ˜vb22

 (6)

where

˜vb11 = 1 +

(
r(x+ γc)

2 + yγcηc
(x+ γc)2

+ r ln [
k

x
]

)
ρτ

Γ(τ + 1)

˜vb12 =
(
−1 + e−ax

)
η

ρτ

Γ(τ + 1)

˜vb21 = aβye−ax ρτ

Γ(τ + 1)

˜vb22 = 1 +
(
−δ + β − γ − e−axβ

) ρτ

Γ(τ + 1)

The jacobian matrix changes when we reach κ1(k, 0)

Vb (κ1) =

 1− r ρτ

Γ(τ+1)
−kηc

k+γc

ρτ

Γ(τ+1)

0 1−
(
δc − βc(1− e−ak)

)
ρτ

Γ(τ+1)

 .

The eigenvalues of Vb (κ1) are λ1 = 1− r ρτ

Γ(τ+1) and λ2 = 1−
(
δc − βc(1− e−ak)

)
ρτ

Γ(τ+1) .

Lemma 1. The topological classification listed below is suitable for the axial fixed point κ1:

(i) if δc > βc(1− e−ak) holds then κ1 becomes

(i.i) sink if 0 < ρ < min{
(
2
rΓ(1 + τ)

) 1
τ ,
(

2
δc−βc(1−e−ak)

Γ(1 + τ)
) 1

τ },

(i.ii) source if ρ > max{
(
2
rΓ(1 + τ)

) 1
τ ,
(

2
δc−βc(1−e−ak)

Γ(1 + τ)
) 1

τ },

(i.iii) non-hyperbolic if ρ =
(
2
rΓ(1 + τ)

) 1
τ or ρ =

(
2

δc−βc(1−e−ak)
Γ(1 + τ)

) 1
τ

,

(ii) if δc < βc(1− e−ak) holds the fixed point κ1(k, 0) becomes

(ii.i) If ρ >
(
2
rΓ(1 + τ)

) 1
τ holds then κ1 is source,

(ii.ii) saddle if ρ <
(
2
rΓ(1 + τ)

) 1
τ ,

(ii.iii) non-hyperbolic if ρ =
(
2
rΓ(1 + τ)

) 1
τ ,

(iii) if δc = βc(1− e−ak) then the non-hyperbolic fixed point is κ1(k, 0).

It follows that Vb (κ1) has one eigenvalues is −1 as well as the alternative one not being equal to ±1

when ρ =
(
2
rΓ(1 + τ)

) 1
τ or ρ =

(
2

δc−βc(1−e−ak)
Γ(1 + τ)

) 1
τ

. Consequently, if parameters vary in a certain

region around F̂B
1

κ1
or F̂B

2

κ1
, a PD bifurcation may happen.

F̂B
1

κ1
=

{
(r, a, k, δc, ηc, βc, γc, ρ, τ) ∈ (0,+∞) : ρ =

(
2

r
Γ(1 + τ)

) 1
τ

, ρ ̸=
(

2

δc − βc(1− e−ak)
Γ(1 + τ)

) 1
τ

}
,

or

F̂B
2

κ1
=

{
(r, a, k, δc, ηc, βc, γc, ρ, τ) ∈ (0,+∞) : ρ =

(
2

δc − βc(1− e−ak)
Γ(1 + τ)

) 1
τ

, ρ ̸=
(
2

r
Γ(1 + τ)

) 1
τ

}
.
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The characteristic equation changes when we reach κ2(x
∗, y∗).

F22(λ) := λ2 − (2 + ∆̃3µ̃b)λ+ (1 + ∆̃3µ̃b + Ω̃3µ̃b
2) = 0 (7)

where

∆̃3 = −r + βc − e−ax∗
βc − δc +

rx∗ ln [ k
x∗ ]

x∗ + γc

Ω̃3 =
e−ax∗

r

(x∗ + γc)

[
−(x∗ + γc)

(
(−1 + eax

∗
)βc − eax

∗
δc + x∗(βc(−1 + eax

∗
+ a(x∗ + γc))− eax

∗
δc

)
ln [

k

x∗ ]

]
So F22(1) = Ω̃3µ̃b

2 > 0 and F22(−1) = 4+2∆̃3µ̃b+Ω̃3µ̃b
2. We derive the following lemma with respect

to the stability criterion of κ2(x
∗, y∗).

Lemma 2. The topological categorization provided below is suitable for the coexistence fixed point κ2:

(i) source when,

(i.i) ∆̃3
2 − 4Ω̃3 ≥ 0 and µ̃b >

−∆̃3+
√

∆̃3
2−4Ω̃3

Ω̃3

(i.ii) ∆̃3
2 − 4Ω̃3 < 0 and µ̃b >

−∆̃3

Ω̃3

(ii) sink if

(ii.i) ∆̃3
2 − 4Ω̃3 ≥ 0 and µ̃b <

−∆̃3−
√

∆̃3
2−4Ω̃3

Ω̃3

(ii.ii) ∆̃3
2 − 4Ω̃3 < 0 and µ̃b <

−∆̃3

Ω̃3

(iii) non-hyperbolic if

(iii.i) ∆̃3
2 − 4Ω̃3 ≥ 0 and µ̃b =

−∆̃3±
√

∆̃3
2−4Ω̃3

Ω̃3
; µ̃b ̸= −2

∆̃3
, −4
∆̃3

(iii.ii) ∆̃3
2 − 4Ω̃3 < 0 and µ̃b =

−4
∆̃3

.

(iv) saddle if otherwise

Let,

P̂DB
1,2

κ2
=

(r, a, k, δc, ηc, βc, γc, ρ, τ) : ρ =

−∆̃3 ±
√

∆̃3
2 − 4Ω̃3

Ω̃3

Γ(1 + τ)


1
τ

= ρ±,

 .

with ∆̃3
2 − 4Ω̃3 ≥ 0, µ̃b ̸= −2

∆̃3
, −4
∆̃3

The parameters (r, a, k, δc, ηc, βc, γc, ρ, τ) change within a constrained region of P̂DB
1,2

κ2
, causing the

system (5) at κ2(x
∗, y∗) to experience a PD bifurcation.

Also, let

N̂SBκ2
=

(r, a, k, δc, ηc, βc, γc, ρ, τ) : ρ =

(
Γ(1 + τ)

−∆̃3

Ω̃3

) 1
τ

= ρNS , ∆̃3
2 − 4Ω̃3 < 0

 .

If the parameters (r, a, k, δc, ηc, βc, γc, ρ, τ) vary around the set N̂SBκ2
, system (5) will suffer an NS

bifurcation at that point.

The topological classification of the positive fixed point of the model (5) for r = 2.5, ηc = 1.2, a =

0.25, βc = 1.1, δc = 0.1, γc = 0.5, τ = 0.6 in the (ρ,K, a)− space in the window [0, 5]× [0, 3.5]× [0.1, 0.55]

is displayed in Figure 1(a). The green color-shaded segment presents the stability regions at the positive

fixed point. For a = 0.25 the projection in 2D plane of the region in Figure 1(a) is decipted in Figure 1(b)

with the PD curve and NS curve respectively.
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(a) (b)

Figure 1: (a)Positive steady state of model (5) in 3D topological classification (b) Region of stability (2D) of the

model (5)’s positive steady state

4 Neimark Sacker Bifurcation Analysis at κ2(x
∗, y∗)

Here we investigate the NS bifurcation centered on the discrete model (5)’s sole positive stable situation.

For this type of bifurcation’s presence and direction, we have applied the conventional bifurcation the-

ory. Several mathematicians have recently studied the NS bifurcation connected to several discrete-time

mathematical systems [15, 16, 30]. Additionally, for specific considerations related to Hopf bifurcation

when mathematical models are in differential form, (see[15, 44, 46]). First, we establish that whenever a

specific parameter is selected as a bifurcation parameter, the positive equilibrium point κ2(x
∗, y∗) of the

system (5) undergoes the Neimark-Sacker bifurcation.

The parameter ρ is utilised to study the NS bifurcation, and ρ∗ represents the perturbation.

xn+1 = xn +
(ρ+ ρ∗)τ

Γ(τ + 1)

(
rxn ln

k

xn
− ηcxn

γc + xn
yn

)
≡ f(xn, yn, ρ

∗) (8)

yn+1 = yn +
(ρ+ ρ∗)τ

Γ(τ + 1)

(
βc(1− e−axn)yn − δcyn

)
≡ g(xn, yn, ρ

∗)

Where |ρ∗| ≪ 1.

If un = xn − x∗, vn = yn − y∗, then the fixed point κ2(x
∗, y∗) becomes the origin and the model (8)

becomes as the Taylor series at (un, vn) = (0, 0).

un+1 = θx1un + θx2vn + θx11u
2
n + θx12unvn + θx22v

2
n + θx111u

3
n + θx112u

2
nvn + (9)

θx122unv
2
n + θx222v

3
n +O((|un|+ |vn|)4)

vn+1 = ϑy1un + ϑy2vn + ϑy11u
2
n + ϑy12unvn + ϑy22v

2
n + ϑy111u

3
n + ϑy112u

2
nvn +

ϑy122unv
2
n + ϑy222v

3
n +O((|un|+ |vn|)4)
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where

θx1 = 1− r
ρτ

Γ(τ + 1)
+

rx∗ ρτ

Γ(τ+1) ln
[

k
x∗

]
x∗ + γc

,

θx2 = −
x∗ηc

ρτ

Γ(τ+1)

x∗ + γc
,

θx11 = −
r ρτ

Γ(τ+1)

(
(x∗ + γc)

2 − 2x∗γc ln
[

k
x∗

])
x∗(x∗ + γc)2

,

θx12 = −
γcηc

ρτ

Γ(τ+1)

(x∗ + γc)2
,

θx22 = 0,

θx111 = −
r ρτ

Γ(τ+1)

(
(x∗ + γc)

3 − 6x∗2γc ln
[

k
x∗

])
x∗2(x∗ + γc)3

,

θx112 =
2γcηc

ρτ

Γ(τ+1)

(x∗ + γc)3
,

θx122 = 0,

θx222 = 0,

ϑy1 =
ae−ax∗

rβc(x
∗ + γc)

ρτ

Γ(τ+1) ln
[

k
x∗

]
ηc

,

ϑy2 = 1− δc
ρτ

Γ(τ + 1)
+ βc

(
ρτ

Γ(τ + 1)
− e−ax∗ ρτ

Γ(τ + 1)

)
,

ϑy11 =
a2e−ax∗

rβc(x
∗ + γc)

ρτ

Γ(τ+1) ln
[

k
x∗

]
ηc

,

ϑy12 = ae−ax∗
βc

ρτ

Γ(τ + 1)
,

ϑy22 = 0,

ϑy111 =
a3e−ax∗

rβc(x
∗ + γc)

ρτ

Γ(τ+1) ln
[

k
x∗

]
ηc

,

ϑy112 = −a2e−ax∗
βc

ρτ

Γ(τ + 1)
,

ϑy122 = 0,

ϑy222 = 0.

(10)

When system (9)’s jacobian matrix is constructed at (0, 0), the following equation results:

λ2 + χ̃c(ρ
∗)λ+ χ̃d(ρ

∗) = 0

where

χ̃c(ρ
∗) =2 + ∆̃3µ̃b,

χ̃d(ρ
∗) =1 + ∆̃3µ̃b + Ω̃3µ̃b

2,

µ̃b =
(ρ+ ρ∗)τ

Γ(τ + 1)

Following that, the complex solutions are determined as follows:

λ1,2(ρ
∗) =

−χ̃c(ρ
∗)±i

√
4χ̃d(ρ∗)−(χ̃c(ρ∗))2

2 .
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The eigenvalues of κ2 are two complex conjugate numbers with modulus 1. We have |λ1,2(ρ
∗)| =

[χ̃d(ρ
∗)]

1
2 and

l =
[
d|λ1,2(ρ

∗)|
dρ∗

]
ρ∗=0

=
˜laa
˜lbb

̸= 0.

where

˜laa = e−ax∗
(
−(x∗ + γc)(βc − 2rβc

ρτ

Γ(τ + 1)
+ eax

∗
(r − βc + δc + (2rβc − 2rδc)

ρτ

Γ(τ + 1)
))

)
,

+ e−ax∗
(
rx∗(2βc(−1 + a(x∗ + γ))

ρτ

Γ(τ + 1)
) + eax

∗
(1 + 2(βc − δc)

ρτ

Γ(τ + 1)
) ln

[
k

x∗

])
,

˜lbb = 2(x∗ + γc)

√
e−ax∗(−(x∗ + γc)(−1 + r ρτ

Γ(τ+1) )(−βc
ρτ

Γ(τ+1) + eax∗(1 + (βc − δc)
ρτ

Γ(τ+1) )))

x∗ + γc
,

+ 2(x∗ + γc)

√
e−ax∗(rx∗ ρτ

Γ(τ+1) (βc(−1 + a(x∗ + γ)) ρτ

Γ(τ+1) + eax∗(1 + (βc − δc)
ρτ

Γ(τ+1) )) ln
[

k
x∗

]
)

x∗ + γc
,

Furthermore, it is crucial that when ρ∗ = 0, λj
1,2 ̸= 1, j = 1, 2, 3, 4, that is identical to χ̃c(0) ̸= ±2, 0, 1.

Set ϕ = Im(λ1,2) and φ = Re(λ1,2). We establish T =

 0 1

ϕ φ

 , and using

 un

vn

 = T

 xn

yn

 ,

the model (8) becomes

xn+1 = φxn − ϕyn + fx11(xn, yn) (11)

yn+1 = ϕxn + φyn + gy11(xn, yn),

where the terms in the model (11) for the variables (xn, yn) with the order at least two are denoted,

respectively, by the functions fx11 and gy11.

The following discriminating amount Ωll must be nonzero in order to pass through NSB:

Ωll = −Re
[
(1−2λ)λ

2

1−λ ξ11ξ20

]
− 1

2 |ξ11|
2 − |ξ02|2 +Re(λξ21),

where

ξ20 =
φ

8
(2ϑy22 − φθx22 − θx12 + 4ϕθx22 + i (4ϕθx22 − 2θx22 − 2φθx22)) +

ϕ

4
θx12

+ i
1

8

(
4ϕϑy22 + 2ϕ2θx22 − 2θx11

)
+

ϑy12

8
+

φθx11 − 2ϑy11 + φ3θx22 − φ2ϑy22 − φ2θx12 + φϑy12

4ϕ
,

ξ11 =
ϕ

2
(ϑy22 − φθx22) + i

1

2
(ϕ2θx22 + θx11 + φθx12 + φ2θx22)

+
ϑy11 − φθx11 + φϑy12 − φ2θx12 − 2φ2ϑy22 + 2φ3θx22

2ϕ
,

ξ02 =
1

4
ϕ(2φθx22 + θx12 + ϑy22) + i

1

4
(ϑy12 + 2φϑy22 − 2φθx12 − θx11)

− ϑy11 − φθx11 + φϑy12 − φ2θx12 + φ2ϑy22 − φ3θx22
4ϕ

+
1

4
θx22i(ϕ

2 − 3φ2),

ξ21 =
3

8
ϑy222(ϕ

2 + φ2) +
ϑy112

8
+

φ

4
θx112 +

φ

4
ϑy122 + θx122(

ϕ2

8
+

3φ2

8
− φ

4
)

+
3

8
θx111 + i

3

8
θx222(ϕ

2 + 2φ2) + i
3ϕφ

8
θx122 −

1

8
ϑy122ϕi− i

3ϕφ

8
ϑy222 − i

3ϑy111 − 3φθx111
8ϕ

− i
3φϑy112 − 3φ2αx112

8ϕ
− i

3φ2ϑy122 − 3φ3θx122
8ϕ

− i
3φ3ϑy222 − 3φ4θx222

8ϕ
.

As a result, we may prove the following theorem concerning Neimark-Sacker bifurcation’s presence at

the fixed point of the system (5) (see [[22, 44, 46, 54]]).
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Theorem 1. At the coexistence equilibrium point κ2(x
∗, y∗) if and only if Ωll = 0, system (5) experiences

a Neimark-Sacker bifurcation. Furthermore, an unique closed invariant curve bifurcating from κ2(x
∗, y∗)

exists and is asymptotically stable (respectively unstable) if Ωll < 0 (or Ωll > 0).

5 Period-doubling bifurcation at κ2(x
∗, y∗)

Here we investigate the PD bifurcation centered on the discrete model (5)’s sole positive stable situation.

After displaying the presence and direction of this type of bifurcation using normal forms, to investigate it,

the center manifold theorem is employed. Recent research has been done by several scientists on the PD

bifurcation in discrete-time models [22, 46, 54]. If the model’s parameters vary around the set P̂DB
1,2

κ2
,

then the positive steady state κ2 has strictly λ1 = −1 and λ2 is 1 or −1.

The parameter ρ is utilized to study the PD bifurcation, and ρ∗ represents the perturbation.

xn+1 = xn +
(ρ+ ρ∗)τ

Γ(τ + 1)

(
rxn ln

k

xn
− ηcxn

γc + xn
yn

)
≡ f(xn, yn, ρ

∗) (12)

yn+1 = yn +
(ρ+ ρ∗)τ

Γ(τ + 1)

(
βc(1− e−axn)yn − δcyn

)
≡ g(xn, yn, ρ

∗)

Where |ρ∗| ≪ 1.

If un = xn − x∗, vn = yn − y∗, then the fixed point κ2 becomes the origin and the model (12) becomes

as the Taylor series at (un, vn) = (0, 0).

un+1 = θx1un + θx2vn + θx11u
2
n + θx12unvn + θx13unρ

∗ + θx23vnρ
∗ + θx111u

3
n + (13)

θx112u
2
nvn + θx113u

2
nρ

∗ + θx123unvnρ
∗ +O((|un|+ |vn|+ |ρ∗|)4)

vn+1 = ϑy1un + ϑy2vn + ϑy11u
2
n + ϑy12unvn + ϑy22v

2
n + ϑy13unρ

∗ + ϑy23vnρ
∗ + ϑy111u

3
n +

ϑy112u
2
nvn + ϑy113u

2
nρ

∗ + ϑy123unvnρ
∗ + ϑy223v

2
nρ

∗ +O((|un|+ |vn|+ |ρ∗|)4),

where

α13 = r

(
−1 +

x∗ ln
[

k
x∗

]
x∗ + γc

)
τρτ−1

Γ(τ + 1)
,

α23 = − x∗ηc
x∗ + γc

τρτ−1

Γ(τ + 1)
,

α113 = −
r
(
(x∗ + γc)

2 − 2x∗γc ln
[

k
x∗

])
x∗(x∗ + γc)2

τρτ−1

Γ(τ + 1)
,

α123 = − γcηc
(x∗ + γc)2

τρτ−1

Γ(τ + 1)
,

β13 =
ae−ax∗

rβc(x
∗ + γc) ln

[
k
x∗

]
ηc

τρτ−1

Γ(τ + 1)
,

β23 = (βc(1− e−ax∗
)− δc)

τρτ−1

Γ(τ + 1)
,

β113 = −
a2e−ax∗

rβc(x
∗ + γc) ln

[
k
x∗

]
ηc

τρτ−1

Γ(τ + 1)
,

β123 = ae−ax∗
βc

τρτ−1

Γ(τ + 1)
,
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β223 = 0.

(14)

We assume T =

 θx2 θx2

−1− θx1 λ2 − θx1

 that can be flipped. Utilizing the transformation now un

vn

 = T

 xn

yn

, then (13) becomes

xn+1 = −xn + fx11(un, vn, ρ
∗) (15)

yn+1 = λ2yn + gy11(un, vn, ρ
∗),

where the terms in the model (15) for the variables (xn, yn) with the order at least two are denoted,

respectively, by the functions fx11 and gy11.

The dynamics of the fixed point κ2 at ρ∗ = 0 are then determined by applying the center manifold

theorem. A center manifold V c(0, 0, 0) of Map (15) exists. It can be stated this way:

V c(0, 0, 0) =
{
(xn, yn, ρ

∗) ϵR3 : yn+1 = θx1x
2
n + θx2xnρ

∗ +O((|xn|+ |ρ∗|)3)
}

where

θx1 =
θx2[(1 + θx1)θx11 + θx2ϑy11]

1− λ2
2

+
ϑy22(1 + θx1)

2

1− λ2
2

− (1 + θx1)[θx12(1 + θx1) + θx2ϑy12]

1− λ2
2

,

θx2 =
(1 + θx1)[θx23(1 + θx1) + θx2ϑy23]

θx2(1 + λ2)2
− (1 + θx1)[θx13 + θx2ϑy13]

(1 + λ2)2
.

The restrained center manifold V c(0, 0, 0) of the model (15) has the following structure:

xn+1 = −xn + h1x
2
n + h2xnρ

∗ + h3x
2
nρ

∗ + h4xnρ
∗2 + h5x

3
n +O((|xn|+ |ρ∗|)3) ≡ F (xn, ρ

∗)

where
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h1 =
θx2[(λ2 − θx1)θx11 − θx2ϑy11]

1 + λ2
− ϑx22(1 + θx1)

2

1 + λ2
− (1 + θx1)[(λ2 − θx1)θx12 − θx2ϑy12]

1 + λ2
,

h2 =
(λ2 − θx1)θx13 − θx2ϑy13

1 + λ2
− (1 + θx1)[(λ2 − θx1)θx23 − θx2ϑy23]

θx2 (1 + λ2)
,

h3 =
(λ2 − θx1)θx1θx13 − θx2ϑy13

1 + λ2
+

[(λ2 − θx1)θx23 − θx2ϑy23](λ2 − θx1)θx1
θx2 (1 + λ2)

− (1 + θx1)[(λ2 − θx1)θx123 − θx2ϑy123]

1 + λ2
+

θx2[(λ2 − θx1)θx113 − θx2ϑy113]

1 + λ2
,

− ϑy223(1 + θx1)
2

1 + λ2
+

2θx2θx2[(λ2 − θx1)θx11 − θx2ϑy11]

1 + λ2
,

− 2ϑy22θx2(1 + θx1)(λ2 − θx1)

1 + λ2
+

θx2[(λ2 − θx1)θx12 − θx2ϑy12](λ2 − 1− 2θx1)

1 + λ2
,

h4 =
θx2[(λ2 − θx1)θx13 − θx2ϑy13]

1 + λ2
+

[(λ2 − θx1)θx23 − θ2ϑx23](λ2 − θx1)θx2
θx2 (1 + λ2)

+
2θx2θx2[(λ2 − θx1)θx11 − θx2ϑy11]

1 + λ2
,

+
2ϑy22θx2(1 + θx1)(λ2 − θx1)

1 + λ2
+

θx2[(λ2 − θx1)θx12 − θx2ϑy12](λ2 − 1− 2θx1)

1 + λ2
,

h5 =
2θx2θx1[(λ2 − θx1)θx11 − θx2ϑy11]

1 + λ2
+

[(λ2 − θx1)θx11 − θx2ϑy11](λ2 − 1− 2θx1)θx1
1 + λ2

,

+
2ϑy22θx1(λ2 − θx1)(1 + θx1)

1 + λ2
+

θ
2

x2[(λ2 − θx1)θx111 − θx2ϑy111]

1 + λ2
,

− θx2(1 + θx1)[(λ2 − θx1)θx112 − θx2ϑy112]

1 + λ2
.

The next set of real numbers is as follows:

H11 =
(

∂2F
∂x∂ρ∗ + 1

2
∂F
∂ρ∗

∂2F
∂x2

)
|(0,0) and H12 =

(
1
6
∂3F
∂x3 +

(
1
2
∂2F
∂x2

)2)
|(0,0) .

As a result of the earlier-mentioned investigation, we may infer the following finding regarding the

existence and direction of period-doubling bifurcation for mathematical system (5).

Theorem 2. For different values of ρ in a constrained neighbourhood of P̂DB
1,2

κ2
, the model suffers

PD bifurcation at κ2(x
∗, y∗), if both H11 and H12 are not equal to zero. Furthermore, for (H12 > 0)

(H12 < 0),it is stable (unstable) for the period-two orbits to split apart from κ2(x
∗, y∗).

6 Quantitative Study

Numerical simulation work has been done to display bifurcation diagrams, phase portraits, maximal Lya-

punov exponents, and fractal dimension of the system (5) in order to validate our theoretical conclusions

and highlight some unexpected, complicated dynamical patterns that are intriguing, present in the system

(5). We take into account the bifurcation parameters in the following scenarios:

Scenario (i): The aforementioned parameter values were selected: r = 2.5, k = 0.5, ηc = 1.2, a =

0.25, βc = 1.1, δc = 0.1, γc = 0.5, τ = 0.6 and ρ varies between 0.6 ≤ ρ ≤ 0.99. We obtain a fixed

point κ2(x
∗, y∗) = (0.381241, 0.497859) and PD bifurcation point at ρ+ = 0.719636. The corresponding

eigenvalues are λ1,2 = −1, 0.972735. The model trajectory is shown in Figure 2 as changing how a steady

state goes to a chaotic scenario via a PD bifurcation. The estimated MLEs and FDs for Figure 2(a-b) are

shown in Figure 2(c-d). With regard to the bifurcation Figure 2, which essentially shows the bifurcation
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of a smooth, invariant closed curve into a chaotic attractor from a stable fixed point, the phase portraits

are illustrated in Figure 3.

(a) (b)

(c) (d)

Figure 2: Visualisation of PD Bifurcation, MLEs, and FDs of species for changing parameter ρ

Scenario (ii): It was decided to use the following parameter values: r = 2.5, k = 2.65, ηc = 1.2, a =

0.25, βc = 1.1, δc = 0.1, γc = 0.5, τ = 0.6 and ρ varies between 0.5 ≤ ρ ≤ 1.19. We obtain a fixed point

κ2(x
∗, y∗) = (0.381241, 3.55963) and bifurcation point at ρNS = 0.66015. The corresponding eigenvalues

are λ1,2 = 0.82422± 0.566269. The model trajectory is shown in Figure 4 as changing how a steady state

goes to a chaotic scenario via an NS bifurcation. The phase portrait, Maximum Lyapunov exponents,

and FD of Figure 4 (a-b) are depicted in Fig. 5 and Fig. 4 (c-d), consequently. There are three different

periodic windows in each of the bifurcation processes for both prey and predator.

Figure 6 provides the orbit diagram of the prey and predator populations, along with other fixed

parameter values: r = 2.5, k = 2.65, ηc = 1.2, ρ = 0.8, βc = 1.1, δc = 0.1, γc = 0.5, τ = 0.6 and

a varies between 0.1 ≤ a ≤ 0.5. We observe that the system passes through two NS bifurcation points

are aNS = 0.203603, 0.47917. Figure 6 shows the appropriate NS bifurcation visualisation, Maximum

Lyapunov exponents, and Fractal dimensions.

If other values change (for example, parameter τ, k), the discrete model in the NS visualization might

act more significantly. The values of the parameters are set to construct a new NS bifurcation diagram

as: r = 2.5, k = 2.65, ηc = 1.2, a = 0.25, βc = 1.1, δc = 0.1, γc = 0.5, ρ = 0.66015 and τ varies between

0 ≤ τ ≤ 0.99, as illustrated in Figure 7 (a-b). There is a Neimark-Sacker bifurcation in the model at

14

2 Jan 2024 08:51:36 PST
231108-MdJasim Version 2 - Submitted to Rocky Mountain J. Math.



Figure 3: The phase diagram for altering the input of ρ

τNS = 0.6. The MLEs and FDs corresponding to Figure 7 (a-b) are shown in Figure 7 (c-d). When the

parameter values are set as r = 2.5, τ = 0.6, ηc = 1.2, a = 0.25, βc = 1.1, δc = 0.1, γc = 0.5, ρ = 0.66015

and k varies between 0.352 ≤ τ ≤ 2.812, , another NS bifurcation diagram is created as well, as illustrated

in Figure (8) (a-b). Figure 9 (a) represents the two-parameter bifurcation diagrams in (k, ρ, x)-space.

Figure 9 (b) displays the plot of two control parameter’s maximal Lyapunov exponents onto the (k, ρ)

plane.

6.1 Biological Implications.

Bifurcations in discrete prey-predator models can have significant ecological consequences. These models

explain the relationships between a group of animals that are hunted and another group of animals that do

the hunting. In these models, the animals that are hunted are eaten by the animals who do the hunting.

Period-doubling bifurcations and Neimark-Sacker bifurcations are phenomena seen in dynamical sys-

tems, including ecological models. These divisions have significant biological consequences and can offer

an understanding of the stability and intricacy of ecological systems. Period-doubling bifurcations are

defined by the doubling of the oscillation period in population dynamics, which can have significant eco-

logical consequences. Period-doubling bifurcations frequently indicate the shift from consistent, recurring

patterns to unpredictable dynamics in a system. Within the framework of ecological models, this shift

could suggest a decrease in the ability to make accurate predictions and the appearance of intricate, unpre-

dictable changes in population levels. Period-doubling bifurcations are linked to the formation of periodic
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(a) (b)

(c) (d)

Figure 4: NS bifurcation visual depiction, MLEs and FDs diagram of species for changing parameter ρ

orbits, which include stable cycles of varying lengths. From an ecological perspective, this can be seen

as the fluctuation between different population cycles, like the regular oscillations of prey and predator

populations that have varying durations. By examining these models, we can acquire an understanding

of the fundamental mechanisms that influence population cycles and other ecological processes and create

more efficient approaches to enhance ecosystem stability and resilience.

Neimark-Sacker bifurcations are linked to the shift from periodic to quasi-periodic behaviour in dy-

namical systems. In ecological models, this could indicate a change from straightforward, consistent

population cycles to more complex, non-repetitive patterns. The presence of Neimark-Sacker bifurcations

leads to quasi-periodic oscillations in the ecological system. The oscillations do not repeat precisely, mak-

ing interacting species’ temporal dynamics more complex. In general, the Neimark-Sacker bifurcation in

discrete prey-predator models emphasizes the significance of comprehending the dynamics of populations

and their interactions in ecological systems. By studying these models, we can gain insight into the funda-

mental mechanisms that drive population cycles and other ecological processes and develop more effective

strategies to improve ecosystem stability and resilience.

To sum up, period-doubling and Neimark-Sacker bifurcations in ecological models indicate changes in

system behavior from straightforward and foreseeable to intricate and potentially disorderly dynamics.

These divisions provide an understanding into the stability, robustness, and adaptation of ecological

systems, highlighting the significance of addressing non-linear dynamics and bifurcation theory in the

examination of population interactions.
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Figure 5: The phase diagram for altering the input of ρ

6.2 Fractal Dimension.

The chaotic attractors of a model are identified by its fractal dimensions (FD), which is measured by [9]

F̂Dfd = k +

∑k
j=1 ttj

|ttk+1|
(16)

In which k is the largest integer number such that
∑k

j=1 ttj ≥ 0 and
∑k+1

j=1 ttj < 0 and tj ’s are Lyapunov

exponenets.

Now, the model (5) fractal dimensions structure is as follows:

F̂Dfd = 2 +
tt1
|tt2|

(17)

Given that the model (5)’s chaotic dynamics (ref. Figure5) are measured using the FD sign (ref.

Figure 4 (d)).

7 Chaos Management

In this section, we aim to apply Ott-Grebogi-Yorke (OGY) feedback control [40] and state feedback [35]

approach to system (5) for preventing chaos at the positive fixed point of system (5) under the influence of

Neimark-Sacker and Period-doubling bifurcation. In system (5), we write the OGY technique as follows:
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(a) (b)

(c) (d)

Figure 6: NS bifurcation visual depiction, MLEs and FDs diagram of species for changing parameter a

xn+1 = xn +
ρτ

Γ(τ + 1)

(
rxn ln

k

xn
− ηcxn

γc + xn
yn

)
= g̃b1(x, y, a),

yn+1 = yn +
ρτ

Γ(τ + 1)

(
βc(1− e−axn)yn − δcyn

)
= g̃b2(x, y, a),

(18)

where the chaos control parameter is taken to be a. Additionally, it is presummated that a ∈ (a0 −

δ1, a0+δ1) with δ1 > 0 and a0 denoting the nominal value of a. In the vicinity of the fixed point κ2(x
∗, y∗),

where x∗ = − ln [1− δc
βc
]

a , y∗ =
r(x∗+γc) ln [ k

x∗ ]

ηc
, one can then approximate system (18) as follows:

 xn+1 − x∗

yn+1 − y∗

 ≈ Ãcc

 xn − x∗

yn − y∗

+ B̃cc [a− a0] (19)

where

Ãcc =

 ∂ ˜gb1(x,y,a)
∂x

∂ ˜gb1(x,y,a)
∂y

∂ ˜gb2(x,y,a)
∂x

∂ ˜gb2(x,y,a)
∂y


=

 1− rµ̃b +
rx∗ ln [ k

x∗ ]
x∗+γc

−x∗ηcµ̃b

x∗+γc

ae−ax∗
rβc(x

∗+γc)µ̃b ln [ k
x∗ ]

ηc
1− δcµ̃b + βc(1− e−ax∗

)µ̃b


and

B̃cc =

 ∂ ˜gb1(x,y,a)
∂a

∂ ˜gb2(x,y,a)
∂a

 =

 0

e−ax∗
rx∗βc(x

∗+γc)µ̃b ln [ k
x∗ ]

ηc
.


Additionally, the system (18) is managed by the matrix shown below:
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(a) (b)

(c) (d)

Figure 7: NS bifurcation visual depiction, MLEs and FDs diagram of species for changing parameter τ

C̃cc =
[
B̃cc : ÃccB̃cc

]
=

 0 −e−ax∗
rx∗2βcµ̃b

2 ln
[

k
x∗

]
e−ax∗

rx∗βc(x
∗+γc)µ̃b ln [ k

x∗ ]
ηc

e−2ax∗
rx∗βc(x

∗+γc)µ̃b(−βc−µ̃b+eax∗
(1+(βc−δc)µ̃b)) ln [ k

x∗ ]
ηc

.



Therefore, it is simple to conclude that C̃cc has a rank of 2. We think that [a− a0] = −K̃cc

 xn − x∗

yn − y∗


where K̃cc = [σ̃c1 σ̃c2], then system (18) becomes

 xn+1 − x∗

yn+1 − y∗

 ≈ [Ãcc − B̃ccK̃cc]

 xn − x∗

yn − y∗.


Additionally, system (5) offers the appropriate controlled system.

xn+1 = xn +
ρτ

Γ(τ + 1)

(
rxn ln

k

xn
− ηcxn

γc + xn
yn

)
,

yn+1 = yn +
ρτ

Γ(τ + 1)

(
βc(1− e−(a0−σ̃c1(xn−x∗)−σ̃c2(yn−y∗))xn)yn − δcyn

)
.

(20)

If both eigenvalues of (Ãcc − B̃ccK̃cc) occupy a space inside a unit disk which is open, the fixed point

(x∗, y∗) is also locally asymptotically stable.

Also,
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(a) (b)

(c) (d)

Figure 8: NS bifurcation visual depiction, MLEs and FDs diagram of species for changing parameter k

Ãcc − B̃ccK̃cc =

 ˜b11 ˜b12

˜b21 ˜b22


where

˜b11 = 1 +

(
−r +

rx∗ ln [ k
x∗ ]

x∗ + γc

)
µ̃b

˜b12 = − x∗ηcµ̃b

x∗ + γc

˜b21 =
ae−ax∗

rβc(x
∗ + γc)µ̃b ln

[
k
x∗

]
ηc

−
e−ax∗

rx∗βc(x
∗ + γc)µ̃b ln

[
k
x∗

]
σ̃c1

ηc

˜b22 = 1 +
(
(1− e−ax∗

)βc − δc

)
µ̃b −

e−ax∗
rx∗βc(x

∗ + γc)µ̃b ln
[

k
x∗

]
σ̃c2

ηc

Furthermore,

λc
2 − Λ̃ccλc +𭟋cc = 0 (21)

where

Λ̃cc = ˜b11 + ˜b22

𭟋cc = ˜b11 ˜b22 − ˜b12 ˜b21

(22)

It is thus possible to solve the equations λc1 = ±1 and λc1λc2 = 1 to obtain the lines of marginal

stability. The open unit disc has both eigenvalues guarantee to these restrictions as well. We find the

following equations from (21), taking into account the cases λc1λc2 = 1, λc1 = −1 and λc1 = 1 successively.
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(a) (b)

(c)

Figure 9: (a) Diagram of bifurcation in (k, ρ, x) (b) 2D projection of 3DMLP (c) MLPs projected in two dimensions

onto the (k, ρ) plane

Lc1 = 𭟋cc − 1,

Lc2 = Λ̃cc −𭟋cc − 1,

Lc3 = 1 + Λ̃cc +𭟋cc.

Therefore, the stability zone for (18) is a triangle in the σ̃c1, σ̃c2-plane that is surrounded by Lc1, Lc2

and Lc3.

The unstable routes of the system (5) begin at this point, and chaos is stabilized using a technique

called state feedback control. It is possible to manipulate the system (5) to take on a specific form, using

the formula below and adding a feedback controlling force ucc.

xn+1 = xn +
ρτ

Γ(τ + 1)

(
rxn ln

k

xn
− ηcxn

γc + xn
yn

)
+ ucc

yn+1 = yn +
ρτ

Γ(τ + 1)

(
βc(1− e−axn)yn − δcyn

)
ucc = −k1(xn − x∗)− k2(yn − y∗)

(23)
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where the system (5)’s nonnegative equilibrium point is represented by (x∗, y∗). The feedback gains

are represented by the values k1 and k2.

Scenario (iii): To discuss the OGY feedback control mechanism of the system (5), we first set

(r, k, a0, η, β, δ, γ, τ, ρ) = (2.5, 2.65, 0.35, 1.2, 1.1, 0.1, 0.5, 0.6, 0.8). In this instance, the unstable system (5)

has a single non-negative fixed point (x∗, y∗) = (0.272315, 3.66102). Then, depending on these parametric

parameters, we give the controlled system below.

xn+1 = xn + 0.9789

(
2.5xn ln

2.65

xn
− 1.2xn

0.5 + xn
yn

)
,

yn+1 = yn + 0.9789
(
1.1(1− e−(0.35−σ̃c1(xn−x∗)−σ̃c2(yn−y∗))xn)yn − 0.1yn

)
,

.

(24)

where K̃ = [σ̃b1 σ̃b2]. We also get,

Ãcc =

 0.516131 −0.414187

1.25432 1

 ,

B̃cc =

 0

0.975915

 ,

C̃cc =

 0 −0.414187

0.975915 0.975915

 .

The rank of the C̃cc matrix being 2 may then be easily verified. As a result, the system (24) may be

controlled and give the Jacobian matrix of the managed system.

Ãcc − B̃ccK̃cc =

 0.516131 −0.414187

1.25432− 0.975915σ̃c1 10.975915σ̃c2

 .

The lines of marginal stability in this instance are provided by

Lc1 = 0.0356548− 0.404211σ̃c1 − 0.5037σ̃c2 = 0,

Lc2 = 0.519524− 0.404211σ̃c1 + 0.472215σ̃c2 = 0,

Lc3 = −3.55179 + 0.404211σ̃c1 + 1.47962σ̃c2 = 0.

The regulated system(24)’s stable triangular zone defined by the marginal lines Lc1, Lc2 and Lc3 is

thus depicted in Figure 10.

We ran numerical simulations to investigate how the SFC performs (see Figure 10). With the exception

of ρ = 1.19, the others will remain the same as in OGY method. The chosen feedback gains are k1 = 0.3

and k2 = −0.12 respectively.

8 Conclusions

The dynamics of a discrete prey-predator model with mixed functional response in fractional order are

investigated in this study. Under precise parametric conditions, two fixed points are found, also the paper

investigated the details about their stability. We also show numerically and theoretically that the system
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(i) (ii)

(iii) (iv)

Figure 10: (i-ii) OGY method and State feedback method’s stable region (iii-iv) Trajectories of a stable

system

can experience PD and NS bifurcations under specific circumstances. Notably, our results show that the

model exhibits chaotic behavior and that the system becomes unstable when the parameter ρ increases,

causing a change from an orderly state to a chaotic one. Also, we observe some more interesting bifurcation

diagrams when the parameters a, k increase. Additionally, numerical simulations using Matlab are carried

out to show the theoretical observations in the form of phase portraits, maximal Lyapunov exponents,

Fractal dimensions and bifurcation diagrams. We also show, numerically and analytically, how the OGY

and state feedback strategies can be used to manage chaotic behavior. Unique bifurcations from different

perspectives demonstrate the discrete model dynamics at different levels of complexity. As an illustration,

the Neimark-Sacker bifurcation sets off a chain reaction that eventually results in complicated dynamics,

by creating a dynamic transition from a stable fixed point to appealing cycles, such as periodic windows

and chaotic attractors, which are made more appealing. Environmental changes may cause populations

that have irregular oscillations to suddenly transition to regular oscillations. Important information about

the behavior of nonlinear dynamical systems nearing the critical point can be gleaned from the curve in

the supercritical NS bifurcation which is invariant. It is vital to comprehend the change from simple and

orderly dynamics to more complicated and chaotic dynamics because it demonstrates how the system

responds to changes in a parameter. Pairwise coexistence and self-reproduction between predator and

prey populations is suggested by a closed curve (invariant) for supercritical NS in ecology. There may be

periodic or quasi-periodic dynamics on the invariant curve. The bifurcation with a period-doubling is how
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the model depicts the evolution of species. The transformation of a steady periodic solution into chaotic

behavior is related to the period-doubling bifurcation. It serves as an example of the variety of irregular

behavior in a variety of inborn systems and phenomena.

Our key discovery is that the amount of memory represented by the parameter τ considerably influences

the system’s behavior. By our research, a feeble memory is represented by a τ value that tends to 1, which

leads to chaotic behavior, whereas a stiff memory denoted by a τ ≈ 0, freezes the system. These findings

show how memory is essential to the behavior of the model. This paper provides a thorough analysis

of the model’s dynamics and illustrates how bifurcations and chaos might develop in specific parametric

situations. We further emphasize the influence of memory on system behavior. Our research enlightens

the preface that memory works in the model dynamics and adds to our understanding of the dynamics of

the model.

Future Work

In the future, there are multiple potential areas for further research in this field. The dynamics of

predator-prey systems can be significantly influenced by additional factors such as spatial heterogeneity

and environmental stochasticity. These elements provide intricacy and authenticity to ecological models,

enabling a more precise portrayal of real-life ecosystems. Including these aspects in predator-prey models

necessitates more intricate mathematical formulations and computer methodologies. Scientists frequently

utilize models that incorporate spatial information or probabilistic equations to simulate the behavior

of ecological systems when affected by variations in space and random environmental factors. These

models assist in understanding the complex relationships that take place in actual ecosystems and offer

insights into the potential of predator and prey populations to recover and remain stable. Our conclusion

summarises the main findings of our research and suggests future research options. It highlights the

possibilities for further inquiry and application in the field of predator-prey dynamics by addressing the

significant outcomes of our study.
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