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QUALITATIVE BEHAVIOR OF A CHEMICAL REACTION SYSTEM WITH
FRACTIONAL DERIVATIVES

MESSAOUD BERKAL AND JUAN F. NAVARRO

ABSTRACT. Chemical reactions can be successfully investigated using fractional differential equations.
This work aims to explore new outcomes such as fixed points, local stability, types of bifurcations, limit
cycles for a fractional-order chemical reaction system which arises in chemical reactions. The equilibrium
point of this system is presented and method of linearization is successfully implemented to analyse the
asymptotic behavior of solutions about the positive equilibrium point. Taking advantage of the bifurcation
theory, we examine the existence of a period-doubling bifurcation and a Neimark-Sacker bifurcation. We
find that this system undergoes period-doubling and Neimark-Sacker bifurcations under some specific
values of bifurcation parameter. Furthermore, the maximum Lyapunov characteristic exponents are
shown. We present some 2D diagrams for the phase portraits, local stability, closed invariant curves, types
of bifurcations, and the maximum Lyapunov exponents to ensure the chaotic behavior of the considered
model. The used techniques can be applied to deal with other high-order models.

1. Introduction

A chemical reaction is defined as a chemical process in which one or more chemical substances produce
new chemical substances. Chemical reactions occur in biology, chemistry, nature, etc. Lighting a match,
smelting iron, taking medications, burning fuels, brewing beer, making glass and pottery, and cooking
are useful examples for chemical reactions that have been well known and utilized for hundreds of
years. Moreover, one of the most common chemical reactions occur in plants is called photosynthesis
which works on converting carbon dioxide and water into food and oxygen. The oxidation reaction can
be clearly seen in iron when it is converted into rust. Electrochemical or redox reactions are used in
batteries to produce electrical energy. Furthermore, enzymes in our bodies react with other substances
to achieve a specific duty such as digestion. In particular, a certain type of enzyme called amylase
starts by breaking down sugars we eat into simpler forms.
Mathematics science is widely used in investigating many chemical models. Several nonlinear
phenomena such as stability, bifurcation, chaos, periodic oscillation, boundedness, etc., which emerge
in chemical reaction systems have attracted many researchers in recent years. We may efficiently
examine various chemical reaction models and expose the relationship between various chemical
variables by using certain useful mathematical techniques. Then, we can better understand the intrinsic
relationship between many chemical factors and serving humanity. In particular, fractional order
differential equations are a vital tool to investigate the dynamical behavior of chemical phenomena. For
instance, Xu et al. [29] investigated the existence and uniquencess of the solution of a new fractional
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order delayed Brusselator chemical reaction model. The stability and Hopf bifurcation of this system
were also analysed. In [30], Xu et al. analysed the stability, the existence of limit cycle and the
existence of Hopf bifurcation for the fractional-order delayed Oregonator system. They found that
the stability is controlled by time delay. Din [12] obtained the solutions of a 3-dimensional chaotic
system and discussed the global stability using Lyapunov function. The authors in [14] explored the
discretization, stability, flip and Hopf bifurcation, and chaos control for Schnakenberg system. A model
of three independent intermediate substances was discussed in [19] to investigate chaotic oscillations.
Kol’tsov [19] used analytically and numerically methods to study the chaotic behavior of this reaction.
Furthermore, Monwanou et al. [22] studied the fixed points of a nonlinear dynamical system of
reactions between four molecules. The stability of the equilibrium points, bifurcations structures,
Lyapunov exponent, and phase portraits were nicely presented. Bodale and Oancea [7] investigated
the dynamics of the dynamics of Willamowski-Rössler model and obtained chaos control in chemical
reactions. The steady state multiplicity, limit cycles, power spectra, time series and phase portraits,
quasi-periodic and chaotic behaviors, the time-delay reconstruction diagrams, Hopf bifurcation and
bifurcation figures of four problems emerged from chemical and biochemical engineering were
successfully presented in [6]. Finally, Olabodé et al. [24] analysed chemical systems governing by a
forced modified Van der Pol-Duffing oscillator.
The Caputo derivative fro a function f is defined as follows:

Definition 1.1. [25] Let f : (0,∞) → R be a continuous function. Then, The Caputo fractional
derivative of order 0 < α ≤ 1 is given by

(1) DαF(t) =
1

Γ(1−α)

∫ t

0
(t − τ)−αF(τ)dτ.

Here, Γ represents Euler’s Gamma function. This derivative has been applied by many researchers
[1, 16, 32, 31].
We now discuss the originality of the considered system as shown in [8, 15]. Consider a two-species
chemical reaction described by X and Y as follows:

(2) Z
a1−→ Y , X

a2−→ Z , Y
a3−→ X , 2X

a4−→ Y , 2X +Y
a5−→ 3X ,

where X ,Y are chemical species and Z represents the environment. The parameters a1, a2,· · · , a5
are positive numbers representing reaction rate coefficients.
The motivation of this paper comes from various aspects shown as follows. First, the lack in the
analyses of types of bifurcations in the literature review. Second, most chemical reactions can be
extensively investigated using fractional differential equations. The main purpose of this work is to
analyse the equilibrium point, local stability, the period-doubling bifurcation and the Neimark-Sacker
bifurcation of the following system:

(3)

{
Dαx(t) =−Ax(t)−2x(t)2 +By(t)+ x(t)2y(t),

Dαy(t) =C+ x(t)2 −By(t)− x(t)2y(t),

where x and y are concentrations of species X and Y , respectively. Here, α represents the fractional-
order parameter and Dα is the fractional derivative.
We use some stability theorems to examine the stability conditions. We also present some numerical
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examples to verify the constructed theoretical outcomes. Some 2D figures for the period-doubling and
the Neimark-Sacker bifurcations, phase portraits, limit cycles and the maximum Lyapunov exponent
are successfully illustrated. As a results, the novelty of this work is to present new outcomes in terms
of types of bifurcations, limit cycles, phase portraits, and Lyapunov exponents for the considered
dynamical system.
This paper is outlined as follows. Section 2 is devoted to discretize the considered model. In Section
3, we study the local stability of the fixed point of system (6). Moreover, Section 4 presents the
period-doubling bifurcation while Section 5 shows the Neimark-Sacker bifurcation. In Section 6, some
numerical simulations are extensively explained. Finally, Section 7 concludes this work.

2. Discretization process

There are several studies showing that discrete-time systems exhibit much more interesting dynamical
behaviors such as bifurcations and chaos, much better than its counterpart in the continuous-time
system. In this work, we aim to discretize the fractional-order chemical reaction system (3) using the
piecewise constant argument method [17, 20, 27, 3] as follows.

(4)

 Dα
h x(t) =−Ax

([ t
h

]
h
)
−2x

([ t
h

]
h
)2

+By
([ t

h

]
h
)
+ x
([ t

h

]
h
)2 y
([ t

h

]
h
)
,

Dα
h y(t) =C+ x

([ t
h

]
h
)2 −By

([ t
h

]
h
)
− x
([ t

h

]
h
)2 y
([ t

h

]
h
)
,

where h > 0 is the discretization parameter and [t] denotes the integer part t ∈ [nh,(n+ 1)h), for
n = 0,1,2, · · · . The n-th iterative solution of system (4) is given by

(5)


xn+1(t) = xn(nh)+

hα

Γ(α +1)
(
−Axn(nh)−2x2

n(nh)+Byn(nh)+ x2
n(nh)yn(nh)

)
,

yn+1(t) = yn(nh)+
hα

Γ(α +1)
(
C+ x2

n(nh)−Byn(nh)− x2
n(nh)yn(nh)

)
,

where t ∈ [nh,(n+1)h). When t → (n+1)h, system (5) is transformed to

(6)


xn+1 = xn +

hα

Γ(α +1)
(
−Axn −2x2

n +Byn + x2
nyn
)
,

yn+1 = yn +
hα

Γ(α +1)
(
C+ x2

n −Byn − x2
nyn
)
,

which is the discretized version of system (3).

3. Local stability of the fixed point of system (6)

In this section, we discuss the existence of a positive fixed point of the discrete chemical reaction
system (6). We also present a clear analysis for the local stability of the positive fixed point. In order to
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find the fixed points of the system (6), we solve the following algebraic system
x = x+

hα

Γ(α +1)
(
−Ax−2x2 +By+ x2y

)
,

y = y+
hα

Γ(α +1)
(
C+ x2 −By− x2y

)
.

Therefore, {
0 =−Ax−2x2 +By+ x2y,

0 =C+ x2 −By− x2y.

Hence, the unique positive fixed point is E+ = (x∗,y∗), where

x∗ =

(
−C+

√
A2 +4C

2

)
, y∗ =

C+ x2

B+ x2 =

(
4C+A2 −A

√
A2 +4C

2(B+C)+A2 −A
√

A2 +4C

)
.

Now, we will analyze the stability of the fixed point E+, with the help of the following definition and
Lemma [2, 3, 4, 20].

Definition 3.1. The following situations are valid for the fixed point (x,y) of any system.

(1) If |µ1|< 1 and |µ2|< 1, it is a sink point and locally asymptotically stable,
(2) If |µ1|> 1 and |µ2|> 1, it is a source point and locally unstable,
(3) If |µ1|< 1 and |µ2|> 1 or (|µ1|> 1 and |µ2|< 1), it is a saddle point,
(4) If |µ1|= 1 or |µ2|= 1, it is non-hyperbolic.

Lemma 3.2. Consider the polynomial ρ(µ) = µ2 −T µ +D , where ρ(1)> 0, and µ1 and µ2 are the
two roots of ρ(µ) = 0. Then,

(1) |µ1|< 1 and |µ2|< 1 if and only if ρ(−1)> 0 and ρ(0)< 1.
(2) |µ1|> 1 and |µ2|> 1 if and only if ρ(−1)> 0 and ρ(0)> 1.
(3) |µ1|< 1 and |µ2|> 1 (or |µ1|> 1 and |µ2|< 1) if and only if ρ(−1)< 0.
(4) µ1 =−1 and µ2 ̸= 1 if and only if ρ(−1) = 0 and T ̸= 0,2.
(5) µ1 and µ2 are complex numbers and |µ1|= |µ2|= 1 if and only if |T |< 2 and ρ(0) = 1.

The Jacobian matrix at the fixed E+ of the linearization of system (6) is given as

(7) J (E+) =


1+

hα(−A+2x∗(y∗−2))
Γ(α +1)

hα(B+(x∗)2)

Γ(α +1)

2x∗hα(1− y∗)
Γ(α +1)

1− hα(B+(x∗)2

Γ(α +1)

 ,

where its characteristic polynomial is

(8) ρ(µ) = µ
2 −T µ +D ,
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where

T = 2+
hα(2x∗y∗− (x∗)2 −4x∗− (A+B))

Γ(α +1)
,

D = 1+
hα(2x∗y∗− (x∗)2 −4x∗− (A+B))

Γ(α +1)
+

h2α(AB+2Bx∗+A(x∗)2 +2(x∗)3)

(Γ(α +1))2 .

Hence,

ρ(0) = 1+
hα(2x∗y∗− (x∗)2 −4x∗− (A+B))

Γ(α +1)
+

h2α(AB+2Bx∗+A(x∗)2 +2(x∗)3)

(Γ(α +1))2 ,

ρ(−1) = 4+
2hα(2x∗y∗− (x∗)2 −4x∗− (A+B))

Γ(α +1)
+

h2α(AB+2Bx∗+A(x∗)2 +2(x∗)3)

(Γ(α +1))2 ,

ρ(1) =
h2α(AB+2Bx∗+A(x∗)2 +2(x∗)3)

(Γ(α +1))2 > 0.

Since ρ(1)> 0, we can apply Lemma 3.2 and Definition 3.1 to state the following result.

Lemma 3.3. For the unique positive fixed point E+ of system (6), let

∆ = ((x∗)2 +4x∗+A+B−2x∗y∗)2 −4(AB+2Bx∗+A(x∗)2 +2(x∗)3),

h1 =

[
Γ(α +1)((x∗)2 +4x∗+A+B−2x∗y∗−

√
∆)

AB+2Bx∗+A(x∗)2 +2(x∗)3

] 1
α

,

h2 =

[
Γ(α +1)((x∗)2 +4x∗+A+B−2x∗y∗+

√
∆)

AB+2Bx∗+A(x∗)2 +2(x∗)3

] 1
α

,h∗ =
[

Γ(α +1)((x∗)2 +4x∗+A+B−2x∗y∗)
AB+2Bx∗+A(x∗)2 +2(x∗)3

] 1
α

.

Then, the following statements are true.

(1) If one set of the following conditions is true, then E+ is locally asymptotically stable (sink):
i- ((x∗)2 +4x∗+A+B−2x∗y∗)2 ≥ 4(AB+2Bx∗+A(x∗)2 +2(x∗)3) and 0 < h < h1.

ii- ((x∗)2 +4x∗+A+B−2x∗y∗)2 < 4(AB+2Bx∗+A(x∗)2 +2(x∗)3) and 0 < h < h∗.
(2) If one set of the following conditions is true, then P+ is unstable (source):

i- ((x∗)2 +4x∗+A+B−2x∗y∗)2 ≥ 4(AB+2Bx∗+A(x∗)2 +2(x∗)3) and h > h1.
ii- ((x∗)2 +4x∗+A+B−2x∗y∗)2 < 4(AB+2Bx∗+A(x∗)2 +2(x∗)3) and h > h∗.

(3) The fixed point E+ is unstable (saddle) if

((x∗)2 +4x∗+A+B−2x∗y∗)2 ≥ 4(AB+2Bx∗+A(x∗)2 +2(x∗)3), and h1 < h < h2.

(4) P is non-hyperbolic and the roots of polynomial (8) are µ1 =−1 and |µ2| ̸= 1 if

((x∗)2 +4x∗+A+B−2x∗y∗)2 ≥ 4(AB+2Bx∗+A(x∗)2 +2(x∗)3), h = h1,2,

and h ̸=
[

2Γ(α +1)
(x∗)2 +4x∗+A+B−2x∗y∗

]
.
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(5) P is non-hyperbolic and the roots of polynomial (8) are complex numbers with modulus one if

((x∗)2 +4x∗+A+B−2x∗y∗)2 < 4(AB+2Bx∗+A(x∗)2 +2(x∗)3), h = h∗.

Theorem 3.4. The unique positive fixed point E+ of system (6) loses its stability

i- via a period-doubling bifurcation if

∆ ≥ 0 and h = h1,2 =

[
Γ(α +1)((x∗)2 +4x∗+A+B−2x∗y∗∓

√
∆)

AB+2Bx∗+A(x∗)2 +2(x∗)3

] 1
α

,

i- via a Neimark-Sacker bifurcation if

∆ < 0 and h = h∗ =
[

Γ(α +1)((x∗)2 +4x∗+A+B−2x∗y∗)
AB+2Bx∗+A(x∗)2 +2(x∗)3

] 1
α

,

with
∆ = ((x∗)2 +4x∗+A+B−2x∗y∗)2 −4(AB+2Bx∗+A(x∗)2 +2(x∗)3).

Proof. From [3, 2, 4, 10, 13], a period-doubling bifurcation can occur when a single eigenvalue of
the Jacobian matrix at fixed point is equal to −1. So, the fixed point E+ loses its stability by a
period-doubling bifurcation when ∆ ≥ 0 and h = h1,2. If the Jacobian matrix at fixed point has a pair
of complex conjugate eigenvalues with modulus equal one, then a Neimark-Sacker bifurcation can
occur. Hence, the fixed point E+ undergoes a Neimark-Sacker bifurcation when ∆ < 0 and h = h∗. □

4. Periodic-doubling bifurcation

We investigate period-doubling bifurcation of the fixed point E+ = (x∗,y∗) by using the bifurcation
theory [21, 23, 26]. The analysis of this part is done via the following Lemma.

Lemma 4.1. Assume that Uk+1 = Fµ(Uk) is a n-dimensional discrete dynamical system where µ ∈ R
is a bifurcation parameter. Let U∗ be an equilibrium point of Fµ and suppose that the characteristic
polynomial of the Jacobian matrix J(U∗) = (bi j)n×n of n-dimensional map Fµ(Uk) is given by

(9) Pµ(λ ) = λ
n +b1λ

n−1 + · · ·+bn−1λ +bn,

where bi = bi(µ,u), i = 1,2,3, · · · ,n and u is a control parameter or another parameter to be deduced.
Let ∆

±
0 (µ,u) = 1, ∆

±
1 (µ,u), · · · ,∆±

n (µ,u) be a sequence of the determinants defined by

(10) ∆
±
i (µ,u) = det(M1 ±M2), i = 1,2, · · · ,n,

where

(11) M1 =


1 b1 b2 · · · bi−1
0 1 b1 · · · bi−2
0 0 1 · · · bi−3
· · · · · · · · · · · · · · ·
0 0 0 · · · 1

, M2 =


bn−i+1 bn−i+2 · · · bn−1 bn
bn−i+2 bn−i+3 · · · bn 0
· · · · · · · · · · · · · · ·

bn−1 bn · · · 0 0
bn 0 0 · · · 0

.

Moreover, suppose that the following conditions hold:

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

17 Jun 2023 05:17:13 PDT
230617-Berkal Version 1 - Submitted to Rocky Mountain J. Math.



QUALITATIVE BEHAVIOR OF A CHEMICAL REACTION SYSTEM WITH FRACTIONAL DERIVATIVES 7

H1- Eigenvalue criterion: Pµ0(−1) = 0, ∆
±
n−1(µ0,u)> 0, Pµ0(1)> 0, ∆

±
i (µ0,u)> 0, i = n−2,n−

4, · · · ,1 (or 1), when n is even (or odd), respectively.

H2- Transversality criterion:
∑

n
i=1(−1)n−ib′i

∑
n
i=1(−1)n−i(n− i+1)bi−1

̸= 0, where b′i denotes derivative of b(µ)

at µ = µ0. Then, a period-doubling bifurcation occurs at critical value µ0.

Theorem 4.2. System (6) undergoes a period-doubling bifurcation at the unique positive equilibrium
point E, if the following conditions hold:

1+D > 0,

1+T +D = 0,

1−T +D > 0.

Thus, the period-doubling bifurcation occurs at h if the parameters (A,B,C,h,α) vary in a neighbor-
hood of the set

B1 =


(A,B,C,h,α) ∈ R5

∣∣∣∣∣∣h = h1 =

[
Γ(α +1)((x∗)2 +4x∗+A+B−2x∗y∗−

√
∆)

AB+2Bx∗+A(x∗)2 +2(x∗)3

] 1
α

∆ = ((x∗)2 +4x∗+A+B−2x∗y∗)2 −4(AB+2Bx∗+A(x∗)2 +2(x∗)3)≥ 0, α ∈ (0,1]

 .

Or,

B2 =


(A,B,C,h,α) ∈ R5

∣∣∣∣∣∣h = h2 =

[
Γ(α +1)((x∗)2 +4x∗+A+B−2x∗y∗+

√
∆)

AB+2Bx∗+A(x∗)2 +2(x∗)3

] 1
α

∆ = ((x∗)2 +4x∗+A+B−2x∗y∗)2 −4(AB+2Bx∗+A(x∗)2 +2(x∗)3)≥ 0, α ∈ (0,1]

 ,

with

x∗ =

(
−C+

√
A2 +4C

2

)
, y∗ =

(
4C+A2 −A

√
A2 +4C

2(B+C)+A2 −A
√

A2 +4C

)
.

Proof. Using Lemmas 4.1, 3.3, and Theorem 3.4, and from the evaluation of Eq. (8) of system (6) at
E+, we have

∆
∓
0 (h) = 1 > 0,

∆
+
1 (h) = 1+D > 0,

(−1)2Ph(−1) = 1+T +D = 0,

Ph(1) = 1−T +D > 0,

if and only if

h = h1,2 =

[
Γ(α +1)((x∗)2 +4x∗+A+B−2x∗y∗∓

√
∆)

AB+2Bx∗+A(x∗)2 +2(x∗)3

] 1
α

,
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QUALITATIVE BEHAVIOR OF A CHEMICAL REACTION SYSTEM WITH FRACTIONAL DERIVATIVES 8

and

∆ = ((x∗)2 +4x∗+A+B−2x∗y∗)2 −4(AB+2Bx∗+A(x∗)2 +2(x∗)3)≥ 0.

In addition, the transversality condition is

T ′+D ′

T +2
=

2(AB+2Bx∗+A(x∗)2 +2(x∗)3)

Γ(α)(A+B+(x∗)2 +4x∗−2x∗y∗)

[
Γ(α +1)((x∗)2 +4x∗+A+B−2x∗y∗∓

√
∆)

AB+2Bx∗+A(x∗)2 +2(x∗)3

]α−1
α

,

with T ′ = dT
dh

∣∣
h=h1,2

and D ′ = dD
dh

∣∣
h=h1,2

.

Then, the period-doubling bifurcation occurs at h = h1 and h = h2. Thus, the proof is done. □

5. Neimark-Sacker bifurcation

This section uses the bifurcation theory [2, 3, 4, 5, 9, 11, 10, 13, 18, 28] to investigate the Neimark-
Sacker bifurcation of the fixed point E+ = (x∗,y∗) if (A,B,C,h,α) ∈ B3 where

B3 =


(A,B,C,h,α) ∈ R5

∣∣∣∣∣∣h = h∗ =
[

Γ(α +1)((x∗)2 +4x∗+A+B−2x∗y∗)
AB+2Bx∗+A(x∗)2 +2(x∗)3

] 1
α

((x∗)2 +4x∗+A+B−2x∗y∗)2 < 4(AB+2Bx∗+A(x∗)2 +2(x∗)3), α ∈ (0,1]

 ,

with

x∗ =

(
−C+

√
A2 +4C

2

)
, y∗ =

(
4C+A2 −A

√
A2 +4C

2(B+C)+A2 −A
√

A2 +4C

)
.

Since h is the bifurcation parameter, and if h in neighbourhood of h, that is, h = h∗+ h̄ where h̄ ≪ 1,
then system (6) takes the form:

(12)


xn+1 = xn +

(h∗+ h̄)α

Γ(α +1)
(
−Axn −2x2

n +Byn + x2
nyn
)
= F1(xn,yn, h̄),

yn+1 = yn +
(h∗+ h̄)α

Γ(α +1)
(
C+ x2

n −Byn − x2
nyn
)
= F2(xn,yn, h̄),

where (A,B,C,h∗,α) ∈ B3. Using the change of variable un = xn − x∗ and vn = yn − y∗ , we can
translate the equilibrium point E+ to origin. Furthermore, expanding F1 and F2 as a Taylor series at
origin to the third order, system (12) becomes

(13)

 un+1 = a11un +a12vn +a13u2
n +a14unvn +a15u2

nvn,

vn+1 = a21un +a22vn +a23u2
n +a24unvn +a25u2

nvn,
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QUALITATIVE BEHAVIOR OF A CHEMICAL REACTION SYSTEM WITH FRACTIONAL DERIVATIVES 9

where

a11 = 1+
(h∗+ h̄)α(−A+2x∗(y∗−2))

Γ(α +1)
, a12 =

(h∗+ h̄)α(B+(x∗)2)

Γ(α +1)
, a13 =

(h∗+ h̄)α(y∗−2)
Γ(α +1)

,

a14 =
4x∗(h∗+ h̄)α

Γ(α +1)
, a15 =

(h∗+ h̄)α

Γ(α +1)
, a21 =

2x∗(h∗+ h̄)α(1− y∗)
Γ(α +1)

, a22 = 1− (h∗+ h̄)α(B+(x∗)2

Γ(α +1)
,

a23 =
x∗(h∗+ h̄)α(1− y∗)

Γ(α +1)
, a24 =

−4x∗(h∗+ h̄)α

Γ(α +1)
, a25 =

−(h∗+ h̄)α

Γ(α +1)
.

The characteristic equation of the Jacobian matrix of system (13) evaluated at the origin is given by

(14) µ
2 −T (h̄)µ +D(h̄)) = 0,

where

T (h̄) = 2+
(h∗+ h̄)α(2x∗y∗− (x∗)2 −4x∗− (A+B))

Γ(α +1)
,

D(h̄) = 1+
(h∗+ h̄)α(2x∗y∗− (x∗)2 −4x∗− (A+B))

Γ(α +1)
+

(h∗+ h̄)2α(AB+2Bx∗+A(x∗)2 +2(x∗)3)

(Γ(α +1))2 .

Moreover, the roots of Eq. (14) are

µ1,2 =
T ∓ i

√
4D −T 2

2
.

It follows that |µ1,2|h̄=0 =
√

D(0), and

d|µ1,2(h̄)|
dh̄

∣∣∣∣
h̄=0

=
(AB+2Bx∗+A(x∗)2 +2(x∗)3)

2Γ(α)
√

D(0)

[Γ(α +1)((x∗)2 +4x∗+A+B−2x∗y∗)
AB+2Bx∗+A(x∗)2 +2(x∗)3

]α−1
α

> 0.

Moreover, it is required that, when h̄, µ
j

1,2 ̸= 1 for j = 1,2,3,4, which is equivalent to T (0) ̸=
−2,0,1,2. We have |T |< 2. Therefore, T ̸=±2. We only require that T ̸= 0,1, so

(15) h ̸=
[

2Γ(α +1)
(A+B)+4x∗+(x∗)2 −2x∗y∗

] 1
α

,

[
Γ(α +1)

(A+B)+4x∗+(x∗)2 −2x∗y∗

] 1
α

.

In order to write the normal form for system (13) at h̄ = 0, we will use the following linear transforma-
tion (

un

vn

)
=

(
a12 0

ε −a11 −ρ

)(
x̄n

ȳn

)
,

with ε = ℜ(µ1,2) =
T (0)

2 and ρ = ℑ(µ1,2) =
1
2

√
(4D(0)−T (0)2). Using this transformation on

system (13), we obtain

(16)

{
x̄n+1 = ε x̄n −ρ ȳn + G̃1(x̄, ȳ,h∗),

ȳn+1 = ρ x̄n + ε ȳn + G̃2(x̄, ȳ,h∗),
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QUALITATIVE BEHAVIOR OF A CHEMICAL REACTION SYSTEM WITH FRACTIONAL DERIVATIVES 10

where

(17)

 G̃1(x̄, ȳ,h∗) = b13x̄2
n +b14x̄nȳn +b15x̄3

n +b16x̄2
nȳn,

G̃2(x̄, ȳ,h∗) = b23x̄2
n +b24x̄nȳn +b25x̄3

n +b26x̄2
nȳn,

with

b13 = a13a12 +a14(ε −a11), b14 =−ρa14, b15 = a15(ε −a11), b16 =−ρa15a12,

b23 =
(a12a13(ε −a11)−a2

12a23 +a14(ε −a11)
2 −a12a24(ε −a11))

ρ
, b24 = a12a24 −a14(ε −a11),

b25 =
a12a15(ε −a11)

2 −a12a25(ε −a11)

ρ
, b26 = a2

12a25 −a12a15(ε −a11).

Furthermore, from (17) we have

∂ 2G̃1

∂ x̄n
2

∣∣∣∣
(0,0)

= 2b13,
∂ 2G̃1

∂ x̄nȳn

∣∣∣∣
(0,0)

= b14,
∂ 2G̃1

∂ ȳn
2

∣∣∣∣
(0,0)

= 0,
∂ 3G̃1

∂ x̄n
3

∣∣∣∣
(0,0)

= 6b15,
∂ 3G̃1

∂ x̄n
2ȳn

∣∣∣∣
(0,0)

= 2b16,

∂ 3G̃1

∂ x̄nȳn
2

∣∣∣∣
(0,0)

= 0,
∂ 3G̃1

∂ ȳn
3

∣∣∣∣
(0,0)

= 0,
∂ 2G̃2

∂ x̄n
2

∣∣∣∣
(0,0)

= 2b23,
∂ 2G̃2

∂ x̄nȳn

∣∣∣∣
(0,0)

= b24,
∂ 2G̃2

∂ ȳn
2

∣∣∣∣
(0,0)

= 0,

∂ 3G̃2

∂ x̄n
3

∣∣∣∣
(0,0)

= 6b25,
∂ 3G̃2

∂ x̄n
2ȳn

∣∣∣∣
(0,0)

= 2b26,
∂ 3G̃2

∂ x̄nȳn
2

∣∣∣∣
(0,0)

= 0,
∂ 3G̃2

∂ ȳn
3

∣∣∣∣
(0,0)

= 0.

In order to ensure the occurrence of Neimark-Sacker bifurcation at (0,0,h∗) of system (16), the
following discriminatory quantity must not be zero:

(18) L = ℜ(µ2m21)−ℜ

(
(1−2µ1)µ

2
2

1−µ1
m20m11

)
− 1

2
|m11|2 −|m02|2 ,

where

m20 =
1
8

[
∂ 2G̃1

∂ x̄2 − ∂ 2G̃1

∂ ȳ2 +2
∂ 2G̃2

∂ x̄∂ ȳ
+ i
(

∂ 2G̃2

∂ x̄2 − ∂ 2G̃2

∂ ȳ2 −2
∂ 2G̃1

∂ x̄∂ ȳ

)]∣∣∣∣
h̄=0

,

m11 =
1
4

[
∂ 2G̃1

∂ x̄2 +
∂ 2G̃1

∂ ȳ2 + i
(

∂ 2G̃2

∂ x̄2 +
∂ 2G̃2

∂ ȳ2

)]∣∣∣∣
h̄=0

,

m02 =
1
8

[
∂ 2G̃1

∂ x̄2 − ∂ 2G̃1

∂ ȳ2 −2
∂ 2G̃2

∂ x̄∂ ȳ
+ i
(

∂ 2G̃2

∂ x̄2 − ∂ 2G̃2

∂ ȳ2 +2
∂ 2G̃1

∂ x̄∂ ȳ

)]∣∣∣∣
h̄=0

,

m21 =
1

16

[
∂ 3G̃1

∂ x̄3 +
∂ 3G̃1

∂ x̄∂ ȳ2 +
∂ 3G̃2

∂ x̄2∂ ȳ
+

∂ 3G̃2

∂ ȳ3 + i
(

∂ 3G̃2

∂ x̄3 +
∂ 3G̃2

∂ x̄∂ ȳ2 −
∂ 3G̃1

∂ x̄2∂ ȳ
− ∂ 3G̃1

∂ ȳ3

)]∣∣∣∣
h̄=0

.
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QUALITATIVE BEHAVIOR OF A CHEMICAL REACTION SYSTEM WITH FRACTIONAL DERIVATIVES 11

By using partial derivatives, we find

m20 =
1
4
(b13 +b14 + i(b23 −b24)) ,

m11 =
1
2
(b13 + ib23) ,

m02 =
1
4
(b13 −b14 + i(b23 +b24)) ,

m21 =
1
8
(3b15 +b16 + i(3b25 −b26)) .

The above analysis leads to the following result.

Theorem 5.1. Assume that condition (15) is satisfied, and let (A,B,C,h,α) ∈ B3 with L ̸= 0. Then,
system (6) undergoes a Neimark-Sacker bifurcation at the fixed point E+ = (x∗,y∗) when the bifurcation
parameter h varies in a small neighbourhood of

h∗ =
[

Γ(α +1)((x∗)2 +4x∗+A+B−2x∗y∗)
AB+2Bx∗+A(x∗)2 +2(x∗)3

] 1
α

.

Moreover, if L < 0 (L > 0) then an attracting (respectively, repelling) invariant closed curve
bifurcates from the fixed point E+ for h > h∗ (respectively, h < h∗).

6. Numerical computations and discussion

Example 6.1. In this example, we consider system (6) when A = 12, B = 1.2, C = 13, α = 0.75 and
h ∈ [0,0.13] with the initial conditions C1 = (1,6.3636) and C2 = (0.98,6.47). When h∗ = 0.0893,
system (6) undergoes the Neimark-Sacker bifurcation at the positive fixed point E+ = (x∗,y∗). The
Neimark-Sacker bifurcation diagrams xn and yn of system (6) are shown in Fig. 1a and 1b, respectively.
Moreover, the maximum Lyapunov exponent is plotted in Fig. 1c. It is observed that the fixed
point is sink (local asymptotically stable) for 0 < h < h∗. At h = h∗ = 0.0893, the fixed point E+

loses its stability. As a result, a closed invariant curve appears around the fixed point E+ due to
Neimark-Sacker bifurcation (see 1d), and the diameter of the closed invariant curve increases with
the increase in the value of h. For further confirmation, we notice that with parametric values
(A,B,C,α,h∗) = (12,1.2,13,0.75,0.0893), the Jacobian matrix of system (6) is given by

J(P+) =

(
0.4185 0.3909
−1.9061 0.6091

)
,

where its eigenvalues are µ1 = 0.5138−0.8579i, µ2 = 0.5138+0.8579i with |µ1,2| ≠ 1. In this case,
the discriminatory quantity (first Lyapunov exponent) L = −0.1169, which proves the correctness
of Theorem 5.1. Figs. 2 and Figs. 3 present some phase portraits for system (6) and the evolution of
xn under the values of the bifurcation parameter h ∈ [0,0.0893] and h ∈ [0.0893,0.114], respectively.
For 0 < h < 0.0893, the fixed point E+ is stable and all orbits tend to E+ (see Figs. 2). If 0.0893 ≤
h < 0.114, we find an attracting closed invariant curve Λs encircling the fixed point. Here, the point
E+ loses its stability because all trajectories asymptotically approaches the closed invariant curve Λs
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QUALITATIVE BEHAVIOR OF A CHEMICAL REACTION SYSTEM WITH FRACTIONAL DERIVATIVES 12

(see Figs. 3). Furthermore, when h ∈ [0.114,0.13], it is easy to see that a 5-,10-,20-,40-period orbits,
quasi periodic orbits and attracting chaotic sets (see 4a,4b,4c and 4d).

Example 6.2. In this example, we take A = 2.92, B = 0.68, C = 0.57, α = 0.5, h ∈ [0,0.55] and the
initial condition C0 = (0.059,0.316). Then, system (6) undergoes a period-doubling bifurcation as the
bifurcation parameter h varies in a small neighbourhood of h1 = 0.2784. To confirm the existence of a
period double bifurcation, the Jacobean matrix evaluated at this point is expressed by

J (E+) =

(
−0.9909 0.4249

0.0337 0.5751

)
.

Hence, the characteristic polynomial is given by

ρ(λ ) = λ
2 +0.4158λ −0.5842,

whose roots are µ1 =−1, µ2 = 0.5842 where |µ2| ̸= 1. We also have

∆
∓
0 (h) = 1 > 0,

∆
+
1 (h) = 1+D = 0.4158 > 0,

(−1)2Ph(−1) = 1+T +D = 0,

Ph(1) = 1−T +D = 0.8317 > 0,

In addition, the transversality condition is written as

T ′+D ′

T +2
= 3.5919 ̸= 0.

Through these results, it is clear that the conditions of Theorem 4.2 are fulfilled. The fixed point E+

of system (6) is asymptotically stable when h < h1, as shown in bifurcation diagrams of xn, yn and
(xn − h− yn)−Space (see Figs 5a,5b and 5d, respectively). At h = h1, the fixed point E+ loses its
stability due to a period-doubling bifurcation. Furthermore, when h > h1, a period-doubling cascade
in orbits of 2-,4-,8-period, quasi peridic and chaotic set. The maximum Lyapunov exponents are
computed and the existence of chaotic regions in the parameter space is clearly depicted in Fig. 5c.

7. Conclusion

This work has investigated the fixed point, local stability, types of bifurcations, closed invariant curves
for a fractional-order chemical reaction system. We found that system (6) undergoes a period-doubling
bifurcation at the unique positive fixed point E+ if some conditions are satisfied, as shown in Theorem
4.2. Furthermore, if condition (15) is satisfied and (A,B,C,h,α) ∈ B3 with L ̸= 0, then system
(6) undergoes a Neimark-Sacker bifurcation at the fixed point E+ = (x∗,y∗). The Neimark-Sacker
bifurcation diagrams xn and yn of system (6) are illustrated in Fig. 1a and 1b, respectively, when
h∗ = 0.0893. These diagrams are plotted under the parameter values A = 12, B = 1.2, C = 13, α = 0.75
and h ∈ [0,0.13] with the initial conditions C1 = (1,6.3636) and C2 = (0.98,6.47). The maximum
Lyapunov exponent is shown in Fig. 1c. It should be noted that the fixed point E+ loses its stability
at h = h∗ = 0.0893. Hence, a closed invariant curve appears around the equilibrium point E+ due
to Neimark-Sacker bifurcation as shown in Fig. 1d. We have also considered that Now, system (6)
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(A) Bifurcation diagram for xn. (B) Bifurcation diagram for yn.
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(C) Maximum Lyaponov exponents (MLE). (D) Bifurcation diagram in (xn −h− yn) Space.

FIGURE 1. Bifurcation diagrams xn and yn (Fig.1a and 1b resp.) with maximum
Lyapunov exponent (Fig.1c) for A = 12, B = 1.2, C = 13, α = 0.75 and h ∈ [0,0.13]
and bifurcation diagram for h ∈ [0,0.1] in (xn −h− yn) Space of system (6).

undergoes period-doubling bifurcation as bifurcation parameter h varies in a small neighbourhood
of h1 = 0.2784 where A = 2.92, B = 0.68, C = 0.57, α = 0.5, h ∈ [0,0.55] and the initial condition
C0 = (0.059,0.316). The bifurcation diagram are shown in Figs. 5a,5b and 5d. Note that when h = h1,
the fixed point E+ loses its stability due to a period-doubling bifurcation. If h > h1, a period-doubling
cascade in orbits of 2-,4-,8-period, quasi periodic and chaotic set. We have presented the maximum
Lyapunov exponents in Fig. 5c. Finally, we can conclude that the used methods can be applied for
dealing with other dynamical systems.
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(A) Phase portrait for h = 0.068.
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(B) Plot of xn for h = 0.068.
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(C) Phase portrait for h = 0.085.
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(D) Plot of xn for h = 0.085.
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(E) Phase portrait for h = 0.088.
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(F) Plot of xn for h = 0.088.

FIGURE 2. Phase portrait with plot of xn of system (6) for different values of h ∈
[0,0.0893] and the initial condition C1 and A = 12, B = 1.2, C = 13, α = 0.75.
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(A) Phase portrait for h = h∗ = 0.0893.
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(B) Plot of xn for h = 0.0893.

(C) Phase portrait for h = 0.08947.
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(D) Plot of xn for h = 0.08947.

(E) Phase portrait for h = 0.09.
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FIGURE 3. Phase portrait with plot of xn of system (6) for different values of h ∈
[0.0893,0.114] and the initial conditions C1, C2 and A = 12, B = 1.2, C = 13, α =
0.75.
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(A) Phase portrait for h = 0.116. (B) Phase portrait for h = 0.122.

(C) Phase portrait for h = 0.1236. (D) Phase portrait for h = 0.129.

FIGURE 4. Phase portrait for system (6) for different values of h ∈ [0.114,0.13] and
A = 12, B = 1.2, C = 13, α = 0.75.
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(A) Bifurcation diagrams xn. (B) Bifurcation diagrams yn.
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(C) Maximum Lyapunov exponent (MLE). (D) Bifurcation diagrams in (xn −h− yn) Space.

FIGURE 5. Bifurcation diagrams xn and yn (Fig.5a and 5b resp.) with maximum
Lyapunov exponent (Fig.5c) for A = 2.92, B = 0.68, C = 0.57, α = 0.5 and h ∈
[0,0.55] and bifurcation diagram for h ∈ [0,0.55] in (xn −h− yn)−Space of system
(6).
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