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NEW EXISTENCE AND GENERALIZED STABILITY RESULTS FOR COUPLED
SYSTEMS OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH ”MAXIMA”

KHADIDJA NISSE∗ AND LAMINE NISSE

ABSTRACT. In this work, we deal with initial value problems of coupled systems of nonlinear fractional
differential equations with state deviating arguments and ”maxima” on the half line. First we prove a
useful estimate for fractional integrals involving maxima. Then, adequate pseudo-metrics on the solutions
space using Bielecki’s idea are introduced and via some Perov’s type fixed point theorem in gauge spaces,
a global existence-uniqueness result is obtained under Lipschitz condition on the nonlinearity with merely
continuous arguments. Our approach allowed us to get rid of strict conditions imposed in some recent
results in the literature. Furthermore, some generalized concept of uniform stability of solutions is also
presented and proved under the same conditions.

1. Introduction

Differential equations with ”maxima” form a special type of functional differential equations, which
involve in addition of the current state of the unknown function, its maximum value over a certain past
time interval. A typical example described by this type of equations and the most cited in the literature,
is the system for regulating the voltage of a generator of constant current considered by E.P. Popov in
1966. Since then, differential equations with ”maxima” appeared in the modeling of many real world
processes, especially those arising in the automatic control theory of various technical systems [4, 23].
For some recent studies on the existence results and stability properties on this subject, we refer to
[8, 13, 14, 15, 21] and the references therein.

Fractional differential equations arise naturally when solving practical problems in many fields
of science, for example in mechanics, physics, bio-chemistry, electrical engineering, medicine, etc.
Therefore, an intensive development in the investigation of fractional differential systems has taken
place in connection with the requirements of applied science [9, 16]. For some recent results on the
topic, specially the question of existence and uniqueness of solutions under different forms of initial
and boundary conditions, we refer to [1, 2, 3, 25, 30].

As it is noted in [20], when treating systems of equations, Perov and Kibenko [22] and also Precup
[24], pointed out that better results can be obtained when endowing the involved space with vector-
valued norms/metrics rather than norms/metrics of product spaces. In this direction, the authors in [20]
presented Perov’s type fixed point theorem for some contractive mappings in spaces endowed with a
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COUPLED SYSTEMS OF FUNCTIONAL DIFFERENTIAL EQUATIONS WITH MAXIMA 2

family of vector-valued pseudo-metrics. As application, they proved also some existence results for
systems of integral equations.

Recently, C.Guendouz et al. [12] studied the following coupled system of fractional differential
equations with initial conditions

(1.1)


CDαu(t) = f (t,u(t),v(t)),
CDβ v(t) = g(t,u(t),v(t)), t ∈ J = ]0,∞[

u(0) = u0,

v(0) = v0,

where CDα and CDβ are the Caputo fractional derivatives, α,β ∈ ]0,1[, f ,g : J×R2 −→ R are given
functions, u0,v0 ∈R. Using Perov’s type fixed point theorem in generalized Banach spaces, the authors
give sufficient conditions for the existence of a unique solution of (1.1) in Cb (the space of bounded
continuous functions on J).

In 1956, A. Bielecki [6] initiated a new method of weighted norms for obtaining global existence
results of ordinary differential equations. This method, known also as the equivalent norms/metrics
method, which aims to optimize the use of Banach’s type fixed point theorems, consists in choosing a
suitable norm with respect to which the involved operator becomes a contraction. For a nice review
of the obtained results and some extensions on the topic in the first 20 years, we refer to [7]. El-
Raheem [11] employed this approach to one-term fractional differential equations on bounded intervals,
satisfying Lipschitz condition with constant argument. Bălean and Mustafa [5] extended this idea,
usually for one-term fractional differential equations but on unbounded intervals obeying to Lipschitz
condition with variable argument. Up to now many papers make use of Bielecki’s idea ([17, 26, 29] to
cite only some of them), sometimes without mentioning this, for weakening the assumptions on the
data’s problem and (or) widening the class of the covered problems by their results.

Motivated by the above considerations about the advantage of the use of generalized gauge spaces in
studying differential systems on one hand [20], and inspired by [5] on the other hand, we aim through
this work to generalize and improve the existence-uniqueness result for (1.1) given in [12, Theorem
15]. More precisely, we consider the following nonlinear coupled system of fractional differential
equations with state deviating arguments and ”maxima”:

(1.2)


CDαu(t) = f

(
t, max

σ∈[a(t),b(t)]
u(σ), max

σ∈[a(t),b(t)]
v(σ),u(τ1(t)),v(τ2(t))

)
, t > 0,

CDβ v(t) = g
(

t, max
σ∈[a(t),b(t)]

u(σ), max
σ∈[a(t),b(t)]

v(σ),u(τ1(t)),v(τ2(t))
)
, t > 0,

subject of the following initial conditions

(1.3)

{
u(t) = ϕ(t), t ≤ 0,
v(t) = ψ(t), t ≤ 0,

where CDα and CDβ denote the Caputo fractional derivative operators of order α and β in ]0,1[
respectively, a, b and τi, i = 1,2 are real continuous functions defined on R+ = [0,+∞[ such that
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0 ≤ a(t)≤ b(t)≤ t , f ,g : R+×R4 −→ R are nonlinear continuous functions, the initial conditions
φ ,ψ : ]−∞, 0]−→ R are continuous functions.

Note that (1.2)-(1.3) is much more general than (1.1). In this study, we introduce useful vector-valued
weighted pseudo-metrics on X = C (R)×C (R), where C (R) denotes the set of all real continuous
functions on R. Then we reformulate (1.2)-(1.3) into a fixed point problem of generalized contractive
mappings on X (in the sens of Definition 2.6), on which we apply some fixed point theorem of Perov’s
type, given in Theorem 2.7. Using this approach, we obtain a global existence-uniqueness result for
(1.2)-(1.3) under more less restrictive conditions in comparison with those imposed in [12], allowing
a large class of nonlinearities to be covered by our result (For further details, see Remark 3.6). In
fact, the existence-uniqueness results obtained in this paper are improved generalizations and partial
complement of many other recent results in the literature, such as those in [19, 18, 28, 15] (see Remark
3.4 and Remark 3.8). Furthermore, we give and we prove some generalized concept of uniform stability
of the solutions.

The rest of the paper is organized as follows. In the next section we recall some useful definitions
and properties from fractional calculus. We introduce also the fixed point theorem in generalized gauge
spaces, on which our existence-uniqueness result is based, as well as some related concepts. The
main result concerning the global existence-uniqueness result for (1.2)-(1.3) is established in section 3.
Finally, in section 4, we present and discuss some generalized concept of uniform stability of solutions.

2. Preliminaries

Let us recall the notion of the fractional derivatives. For further details on some essential related
properties, we refer to [9, 16].

Let n be a positive integer, α the positive real such that n− 1 < α ≤ n and dn/dtn the classical
derivative operator of order n.

Definition 2.1. The Riemann-Liouville fractional integral, and the Riemann-Liouville fractional
derivative, of a real function u defined on R+ of order α , are defined respectively by

Iα

0+u(t) :=
1

Γ(α)

∫ t

0
(t − s)α−1u(s)ds, t > 0,

Dα

0+u(t) :=
dn

dtn In−α

0+ u(t) :=
1

Γ(n−α)

dn

dtn

∫ t

0
(t − s)n−α−1u(s)ds, t > 0,

where Γ(.) is the Gamma function, provided that the right hand sides exist point wise.

Definition 2.2. The Caputo fractional derivative of a real function u defined on R+ of order α , denoted
by CDα

0+ , is defined by

CDα

0+u(t) :=

(
Dα

0+

[
u−

n−1

∑
k=0

u(k)(0)
k!

(.)k

])
(t) , t > 0,

provided that the right hand side exists point wise.

We denote by Mn(R+), the set of all square matrices of order n with positive real elements, I the
identity matrix of order n and by O the zero matrix of order n.
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Definition 2.3. [27] A square real matrix M of order n, is said to be convergent to zero, if Mk −→
O,as k −→ ∞.

Definition 2.4. [27]Let M ∈ Mn(R+) with eigenvalues λi, 1 ≤ i ≤ n, that is λi ∈ R such that det(M−
λiI) = O. Then

ρ (M) = max
1≤i≤n

|λi|

is called the spectral radius of M.

Theorem 2.5. [27, Theorem 3.15] If M ∈ Mn(R+) with ρ (M)< 1, then I −M is non singular, and

(I −M)−1 = I +M+M2 + ...+Mn + ...,

the series on the right is converging. Conversely, if the series on the right converges, then ρ (M)< 1.

We give now, the extension of Gheorghiu’s theorem for generalized contractions on complete
generalized gauge spaces introduced in [20].

Let E be a generalized gauge space endowed with a complete gauge structure D= {Dν}ν∈N , where
N is an index set. For further details on gauge spaces and generalized gauge spaces we refer to
[10, 20].

Definition 2.6. [20] (Generalized contraction) Let (E,D) be a generalized gauge space with D =
{Dν}ν∈N . A map T : D(T )⊂ E −→ E is called a generalized contraction, if there exists a function
w : N −→ N and M ∈ Mn(R+)

N , M = {Mν}ν∈N such that

(2.1) Dν(T (u),T (v))≤ MνDw(ν)(u,v), ∀u,v ∈ D(T ), ∀ν ∈ N

and

(2.2)
∞

∑
n=1

MνMw(ν)Mw2(ν)....Mwn−1(ν)Dwn(ν)(u,v)< ∞, ∀u,v ∈ D(T ), ∀ν ∈ N .

Theorem 2.7. [20, Theorem 2.1] Let (E,D) be a complete generalized gauge space and let T : E −→E
be a generalized contraction. Then, T has a unique fixed point in E, which can be obtained by successive
approximations starting from any element of E.

Recall that C (R) denotes the set of all real continuous functions on R. In all what follows,
C (R)×C (R) is denoted by X .

Following the proof of [19, Lemma 1] with a slight adaptation, we get the system of integral
equations equivalent to (1.2)-(1.3) given by the following lemma.
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COUPLED SYSTEMS OF FUNCTIONAL DIFFERENTIAL EQUATIONS WITH MAXIMA 5

Lemma 2.8. Let f ,g,a,b and τi (with i = 1,2) be continuous functions. Then, (u,v) ∈ X is a solution
of (1.2)-(1.3) if and only if (u,v) is a solution of the following system of integral equations

(2.3)



u(t) = ϕ0 +
∫ t

0

(t − s)α−1

Γ(α)
f
(

s, max
σ∈[a(s),b(s)]

u(σ), max
σ∈[a(s),b(s)]

v(σ),u(τ1(s)),v(τ2(s))

)
ds, t > 0

v(t) = ψ0 +
∫ t

0

(t − s)β−1

Γ(β )
g
(

s, max
σ∈[a(s),b(s)]

u(σ), max
σ∈[a(s),b(s)]

v(σ),u(τ1(s)),v(τ2(s))

)
ds, t > 0

u(t) = ϕ(t), t ≤ 0
v(t) = ψ(t), t ≤ 0.

For i = 1,2, let Ti : X → C (R) be the operators defined for every W := (u,v) ∈ X by

(2.4) T1(W )(t) =


ϕ0+∫ t

0

(t − s)α−1

Γ(α)
f
(

s, max
σ∈[a(s),b(s)]

u(σ), max
σ∈[a(s),b(s)]

v(σ),u(τ1(s)),v(τ2(s))

)
ds, t > 0

ϕ(t), t ≤ 0

(2.5) T2(W )(t) =



ψ0+∫ t

0

(t − s)β−1

Γ(β )
g
(

s, max
σ∈[a(s),b(s)]

u(σ), max
σ∈[a(s),b(s)]

v(σ),u(τ1(s)),v(τ2(s))

)
ds, t > 0

ψ(t), t ≤ 0.

Remark 2.9. According to Lemma 2.8, (1.2)-(1.3) is equivalent to (u,v) = T (u,v) where T : X → X is
the operator defined by T (u,v)(t) = (T1(u,v)(t),T2(u,v)(t)) with T1 and T2 are given respectively by
(2.4) and (2.5).

3. Existence-uniqueness results

The main purpose of this section, is to prove a global existence-uniqueness result for (1.2)-(1.3). To
this end, we consider the following assumptions:
(H1) The functions τi : i = 1,2 are bounded respectively by h1 and h2.
(H2) There exist continuous positive real valued functions Li,Mi : i = 1,2,3,4 defined on R+, and

satisfying

(i) | f (t,ξ1,η1,x1,y1)− f (t,ξ2,η2,x2,y2)| ≤ L1 (t) |ξ1 −ξ2|+L2 (t) |η1 −η2|
+L3 (t) | x1 − x2| +L4 (t) | y1 − y2|

(ii) |g(t,ξ1,η1,x1,y1)−g(t,ξ2,η2,x2,y2)| ≤ M1 (t) |ξ1 −ξ2|+M2 (t) |η1 −η2|
+M3 (t) | x1 − x2| +M4 (t) | y1 − y2|

whenever the left hand sides are defined.
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COUPLED SYSTEMS OF FUNCTIONAL DIFFERENTIAL EQUATIONS WITH MAXIMA 6

Let introduce the positive continuous function:

(3.1) Aθ (t) = e
t +

θ

q

∫ t

0

[
max

1≤i≤4
{Li(τ),Mi(τ)}

]q

dτ

where 1 < p < min
{

1
α
,

1
1−α

,
1
β
,

1
1−β

}
,

1
p
+

1
q
= 1, Li,Mi : i = 1,2,3,4 are the functions given by

(H2) and θ is a positive real number to be specified later.
Let D= {Dν}ν∈N be the complete generalized gauge structure on X defined for W1 = (u1,v1),W2 =

(u2,v2) ∈ X by:

(3.2) Dν (W1,W2) =

 dν(u1,u2)

dν(v1,v2)

 ,

where dν is the weighted pseudo-metric on C (R) given by

(3.3) dν (u,v) = max
t∈ν

{
|u(t)− v(t)|

Aθ (t)

}
, ∀u,v ∈ C (R) ,

where Aθ (t) is defined in (3.1) and N denotes the set of all compact subsets of R.

We start by an auxiliary lemma, which plays a key role in what follows.

Lemma 3.1. Let F,r1 and r2 be continuous positive functions on R+ such that for every t ≥ 0 :
F(t)≤ max

1≤i≤4
{Li(t),Mi(t)} and r1(t)≤ r2(t).

Then, for every u1,u2 ∈ C (R), the following inequality holds true:

(3.4)

∫ t

0

(t − s)α−1

Γ(α)
F(s) max

σ∈[r1(s),r2(s)]
|u1 (σ)−u2 (σ)|ds ≤Cp,α (θ)Aθ (t)×

max
σ∈[r1(t),r2(t)]

|u1 (σ)−u2 (σ)|
Aθ (σ)

, ∀t > 0

where

(3.5) Cp,α (θ) =
p(1−α)− 1

p Γ
1
p (p(α −1)+1)

Γ(α)θ
1− 1

p
.

Proof. Let t > 0, we have:∫ t

0

(t − s)α−1

Γ(α)
F(s) max

σ∈[r1(s),r2(s)]
|u1 (σ)−u2 (σ)|ds =

1
Γ(α)

∫ t

0

[
(t − s)α−1 es

][F(s)
es max

σ∈[r1(s),r2(s)]
|u1 (σ)−u2 (σ)|

]
ds.
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COUPLED SYSTEMS OF FUNCTIONAL DIFFERENTIAL EQUATIONS WITH MAXIMA 7

As a continuous function, any positive power of
F(.)

e.
max

σ∈[r1(.),r1(.)]
|u1 (σ)−u2 (σ)| is locally inte-

grable. Thus, with p and q given in (3.1), Hölder’s inequality leads to∫ t

0

(t − s)α−1

Γ(α)
F(s) max

σ∈[r1(s),r2(s)]
|u1(σ)−u2(σ)|ds ≤

1
Γ(α)

{∫ t

0
(t − s)p(α−1)epsds

} 1
p
{∫ t

0

[
F(s)

es max
σ∈[r1(s),r2(s)]

|u1(σ)−u2(σ)|
]q

ds
} 1

q

≤ 1
Γ(α)

{∫ t

0
sp(α−1)ep(t−s)ds

} 1
p
{∫ t

0

[ max
1≤i≤4

{Li(s),Mi(s)}

es ×

max
σ∈[r1(s),r2(s)]

|u1 (σ)−u2 (σ)|
]q

ds
} 1

q

(3.6)
≤ et

Γ(α)

{∫ pt

0
(
X
p
)

p(α−1)
e−X dX

p

} 1
p {∫ t

0

 max
1≤i≤4

{Li(s),Mi(s)}

es ×

max
σ∈[r1(s),r2(s)]

|u1(σ)−u2(σ)|
]q

ds
} 1

q

.

Note that

(3.7)
[

max
σ∈[r1(s),r2(s)]

|u1 (σ)−u2 (σ)|
]q

≤ max
σ∈[r1(s),r2(s)]

|u1 (σ)−u2 (σ)|q

Indeed, since u1 and u2 are continuous, then let σ0 ∈ [r1(s), r2(s)] such that max
σ∈[r1(s),r2(s)]

|u1 (σ)−u2 (σ)|=

|u1 (σ0)−u2 (σ0)|, hence:[
max

σ∈[r1(s),r2(s)]
|u1 (σ)−u2 (σ)|

]q

= |u1 (σ0)−u2 (σ0)|q

≤ max
σ∈[r1(s),r2(s)]

|u1 (σ)−u2 (σ)|q .

On the other hand we have:

[
max

1≤i≤4
{Li(s),Mi(s)}

]q

=

d
ds

 1
θ

e
θ

∫ s

0

(
max

1≤i≤4
{Li(η),Mi(η)}

)q

dη


e

θ

∫ s

0

(
max

1≤i≤4
{Li(η),Mi(η)}

)q

dη

.
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Consequently, in view of (3.1), one gets:

(3.8)

 max
1≤i≤4

{Li(s),Mi(s)}

es

q

=

d
ds

 1
θ

e
θ

∫ s

0

(
max

1≤i≤4
{Li(η),Mi(η)}

)q

dη


[Aθ (s)]

q .

Returning now to (3.6), using (3.7) together with (3.8), we obtain∫ t

0

(t − s)α−1

Γ(α)
F(s) max

σ∈[r1(s),r2(s)]
|u1(σ)−u2(σ)|ds ≤

et

Γ(α)

{∫ pt

0

(
X
p

)p(α−1)

e−X dX
p

} 1
p

×
∫ t

0

d
ds

 1
θ

e
θ

∫ s

0

(
max

1≤i≤4
{Li(η),Mi(η)}

)q

dη

 max
σ∈[r1(s),r2(s)]

|u1 (σ)−u2 (σ)|q

[Aθ (s)]
q ds


1
q

≤ et

Γ(α)

{
pp(1−α)−1

Γ(p(α −1)+1)
} 1

p

{
θ
− 1

q Aθ (t)
et max

σ∈[r1(t),r2(t)]

|u1 (σ)−u2 (σ)|
Aθ (σ)

}
.

Which completes the proof. □

Note that, similar arguments as those used in the proof of Lemma 3.1 and under the same conditions,
lead to the following inequality:

(3.9)

∫ t

0

(t − s)β−1

Γ(β )
F(s) max

σ∈[r1(s),r2(s)]
|u1 (σ)−u2 (σ)|ds ≤Cp,β (θ)Aθ (t)×

max
σ∈[r1(t),r2(t)]

|u1 (σ)−u2 (σ)|
Aθ (σ)

, ∀t > 0.

Proposition 3.2. Let (H1)− (H2) be satisfied. Then, there exists a map w : N −→ N such that for
every (u1,v1),(u2,v2) ∈ X and every ν ∈ N , the following inequality holds true:

(3.10) Dν (T (u1,v1),T (u2,v2))≤ Mp,α,β (θ)Dw(ν) ((u1,v1) ,(u2,v2))

with

(3.11) Mp,α,β (θ) :=

 2Cp,α(θ) 2Cp,α(θ)

2Cp,β (θ) 2Cp,β (θ)


Where Cp,α(θ) is given by (3.5) (Cp,β (θ) is also given by (3.5) with β instead of α).

Proof. Let us define w : N −→ N as follows:

(3.12) w(ν) =


ν :if ν ⊂ R− =]−∞,0],

[min{−h1,−h2}, max{νm, h1, h2}] :if no,
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COUPLED SYSTEMS OF FUNCTIONAL DIFFERENTIAL EQUATIONS WITH MAXIMA 9

where νm = supν and h1, h2 are the constants given by (H1).
Note that according to (3.12), it follows that

(3.13) For every ν ∈ N : wn(ν) = w(ν), ∀n ≥ 2.

Let ν ∈ N such that ν ⊂ R−. Thus, for every t ∈ ν , we have:

|T1(u1,v1)(t)−T1(u2,v2)(t)|= |ϕ (t)−ϕ (t)|= 0.

Consequently, (3.10) holds true.
Let now ν ∈ N , where ν ∩R+ ̸= /0 and let t ∈ ν such that t > 0. Using (H2(i)), we get:

|T1(u1,v1)(t)−T1(u2,v2)(t)| ≤∫ t

0

(t − s)α−1

Γ(α)

{
L1 (s)

∣∣∣∣ max
σ∈[a(s),b(s)]

u1 (σ)− max
σ∈[a(s),b(s)]

u2 (σ)

∣∣∣∣
+L2 (s)

∣∣∣∣ max
σ∈[a(s),b(s)]

v1 (σ)− max
σ∈[a(s),b(s)]

v2 (σ)

∣∣∣∣}ds

+
∫ t

0

(t − s)α−1

Γ(α)
{L3 (s) |u1 (τ1 (s))−u2 (τ1 (s))|+L4 (s) |v1 (τ2 (s))− v2 (τ2 (s))|}ds

≤
∫ t

0

(t − s)α−1

Γ(α)

{
L1(s) max

σ∈[a(s),b(s)]
|u1(σ)−u2(σ)|+L2(s) max

σ∈[a(s),b(s)]
|v1(σ)− v2(σ)|

}
ds

+
∫ t

0

(t − s)α−1

Γ(α)

{
L3(s) max

σ∈τ1([0,s])
|u1(σ)−u2(σ)|+L4(s) max

σ∈τ2([0,s])
|v1(σ)− v2(σ)|

}
ds.

Taking into account (H1), we obtain:

|T1(u1,v1)(t)−T1(u2,v2)(t)| ≤

≤
∫ t

0

(t − s)α−1

Γ(α)

{
L1(s) max

σ∈[a(s),b(s)]
|u1(σ)−u2(σ)|+L2(s) max

σ∈[a(s),b(s)]
|v1(σ)− v2(σ)|

}
ds

+
∫ t

0

(t − s)α−1

Γ(α)

{
L3(s) max

σ∈[−h1,h1]
|u1(σ)−u2(σ)|+L4(s) max

σ∈[−h2,h2]
|v1(σ)− v2(σ)|

}
ds.

Note first that according to (3.12), together with the fact that b(t)≤ t, the compacts [a(s),b(s)], [−h1,h1], [−h2,h2]
are included in w(ν). Now, using (3.4) to estimate the four integrals above, it follows that:

|T1(u1,v1)(t)−T1(u2,v2)(t)| ≤ 2Cp,α(θ)Aθ (t)
[
dw(ν) (u1,u2)+dw(ν) (v1,v2)

]
.

Dividing the previous inequality by Aθ (t), then taking the supremum on ν , we get:

(3.14) dν (T1(u1,v1),T1(u2,v2))≤ 2Cp,α(θ)
[
dw(ν) (u1,u2)+dw(ν) (v1,v2)

]
.

Similarly, by means of (H1) and (H2(ii)) together with (3.9) we prove that the following inequality
holds true for every (u1,v1),(u2,v2) ∈ X and every ν ∈ N :

(3.15) dν (T2(u1,v1),T2(u2,v2))≤ 2Cp,β (θ)
[
dw(ν) (u1,u2)+dw(ν) (v1,v2)

]
.

Now, (3.10) yields immediately from (3.14) and (3.15). □

We are now ready to prove the following main result.
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COUPLED SYSTEMS OF FUNCTIONAL DIFFERENTIAL EQUATIONS WITH MAXIMA 10

Theorem 3.3. Under hypotheses (H1)− (H2), the system (1.2)-(1.3) admits a unique global solution
in X.

Proof. Recall that, in view of Remark 2.9, the solutions of (1.2)-(1.3) are the fixed points of the
operator T . Hence it is sufficient to show that T is a generalized contraction in the sens of Definition
2.6, then deduce the result from Theorem 2.7.

In view of Proposition 3.2, (2.1) holds true with Mν = Mp,α,β (θ) which is independent of ν and
consequently the series (2.2) becomes

(3.16)
∞

∑
n=0

Mn+1
p,α,β (θ)Dwn(ν) (u,v) .

Note that using the property of convergent matrices given in Theorem 2.5, we see that sufficient
conditions, so that (3.16) is convergent are:

(3.17) ρ
(
Mp,α,β (θ)

)
< 1

and

(3.18) sup
{

Dwn(ν) (u,v) : n = 0,1,2, . . .
}
< ∞.

Let us calculate the eigenvalues of Mp,α,β (θ):

det
(
Mp,α,β (θ)−λ I2

)
= λ

[
λ −

(
Cp,α(θ)+Cp,β (θ)

)]
.

That is (3.17) holds true, if and only if

(3.19) Cp,α(θ)+Cp,β (θ)< 1.

So, let us choose θ in (3.1) sufficiently large such that (3.19) is fulfilled.
On the other hand, and according to (3.13), we have:

sup
{

Dwn(ν) (u,v) : n = 0,1,2, . . .
}
= sup

{
Dν (u,v) ,Dw(ν) (u,v)

}
,

which is clearly finite. This completes the proof. □

Remark 3.4. When f and g in (1.2) are independent of the first and the second arguments and
furthermore τ1(t) = τ2(t) = t, then we have the following observations:

(i) The assumptions of Theorem 3.3 are clearly much less restrictive than those of [12, Theorem
15]. Thus, as a special case of Theorem 3.3, Corollary 3.5 below, is an important improvement
of [12, Theorem 15].

(ii) The problem considered in [28] for ak = ãk = 0(k = 1, ...,m) is extended in (1.2)-(1.3) to the
half line. The assumptions of Theorem 3.3, even when the problem is considered on a bounded
interval, are weaker than those of [28, Theorem 3.1] and [28, Theorem 3.2]. Thus, for some
particular cases, Theorem 3.3 improves and complements the existence-uniqueness results of
[28].

Corollary 3.5. Suppose that the following hypothesis holds true
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COUPLED SYSTEMS OF FUNCTIONAL DIFFERENTIAL EQUATIONS WITH MAXIMA 11

(H) There exist continuous positive real valued functions Li : i = 1,2, Mi : i = 1,2 defined on R+,
satisfying
| f (t,x1,y1)− f (t,x2,y2)| ≤ L1 (t) | x1 − x2| +L2 (t) | y1 − y2|
|g(t,x1,y1)−g(t,x2,y2)| ≤ M1 (t) | x1 − x2| +M2 (t) | y1 − y2|
whenever the left hand sides are defined.

Then (1.1) admits a unique solution in X.

Remark 3.6. In order to compare our approach to that used in [12, Theorem 15], it should be noted
that: firstly, choosing generalized gauge spaces setting (instead of generalized Banach spaces) allows
us to get rid of hypotheses (H1(23)) ,(H2) and replace hi,α ,h j,β ∈ L1 (J,R+) by hi,α ,h j,β ∈ C (J,R+),
which is most suitable for applications. Secondly, by means of the Bielecki’s idea, we included
hi,α , h j,β in the definition of the generalized gauge structure. This make the matrix Mν in (2.1), and
consequently its convergence to zero, independent of these data. That is, the use of suitable vector-
valued weighted pseudo-metrics, allowed us also to get rid of the convergence to zero for the matrix
(27) in [12, Theorem 15].

Applying the basic steps of the approach used in the study of the system (1.2)-(1.3) with appropriate
adaptation, one acquires to a global existence-uniqueness result of the following initial value problem:

(3.20)


CDαu(t) = f (t, max

σ∈[a(t),b(t)]
u(σ),u(g1(t)),u(g2(t)), ...,u(gN(t))), t > 0

u(t) = ϕ(t), t ≤ 0.

Theorem 3.7. Let the following conditions be satisfied:

(C1) gi : i = 1, ...,N are continuous functions and bounded respectively by h1, ..., hN .
(C2) f : R+×RN+1 −→ R is a nonlinear continuous function, such that there exist continuous

positive real valued functions Li : i = 0, ...,N, defined on R+, satisfying

| f (t,ξ ,x1, ...,xN)− f (t,η ,y1, ...,yN)| ≤ L0 (t) |ξ −η |+
N

∑
i=1

Li (t) | xi − yi| .

Then, (3.20) admits a unique global solution in C (R).

Proof. Transform first (3.20) to the equivalent fixed point problem T (u) = u, where T is the operator
defined on C (R) by:

T (u)(t) =

 ϕ0 +
∫ t

0

(t − s)α−1

Γ(α)
f
(

s, max
σ∈[a(s),b(s)]

u(σ),u(g1(s)),...,u(gN(s))

)
ds, t > 0

ϕ(t), t ≤ 0.

Let dν be the weighted pseudo-metric defined on C (R) by (3.3), where

Aθ (t) = e
t +

θ

q

∫ t

0

[
max

0≤i≤N
{Li(τ)}

]q

dτ

, 1 < p < min
{

1
α
,

1
1−α

}
,

1
p
+

1
q
= 1

and Li : i = 1, ...,N are the functions given by (C2).
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COUPLED SYSTEMS OF FUNCTIONAL DIFFERENTIAL EQUATIONS WITH MAXIMA 12

Let w : N −→ N be the mapping defined as follows:

w(ν) :=


ν :if ν ⊂ R− = ]−∞,0] ,[

min
0≤i≤N

{−hi}, max{νm, h1, ...,hN}
]

:if no,

where νm = supν and hi, i = 1, ...,N are the constants given by (C2).
Now, the rest of the proof is similar to Theorem 3.3, so the details are omitted here. □

Remark 3.8.
(i) If gi(t) = t − τi(t)(i = 1, ...,N), then the problem (3.20) is reduced to that considered in [19].

In this case, Theorem 3.7 provides a global existence-uniqueness result under conditions
different from those established in [19, Theorem 1]. So Theorem 3.7 extends and complements
the result of [19].

(ii) If f is independent of the second and the last N −1 arguments, and furthermore g1(t) = t, then
the problem (3.20) is reduced to that considered in [18]. Theorem 3.7 includes and extends
the global existence-uniqueness result of [18, Theorem 5.4.], without any need to obtain first
a local existence result then applying the continuation method to acquire a global existence
result, as it was done in [18].

4. Generalized stability

In some generalized sens, we introduce and discuss in this section, the uniform stability of solutions of
(1.2)-(1.3). Before defining this concept, we give the following observation:
If (ϕ,ψ) and (ϕ̃, ψ̃) are two initial conditions of (1.2)-(1.3), then Dν̃((ϕ,ψ),(ϕ̃, ψ̃)) is defined only
for ν̃ ∈ N such that ν̃ ⊂ R−.

Definition 4.1. (Generalized stability)
We say that the solution of (1.2)-(1.3) is uniformly stable if for every ε = (ε1,ε2)> 0, there exists

δ = (δ1,δ2) > 0 such that, for any two solutions (u(t),v(t)) and (ũ(t), ṽ(t)) of (1.2) with the initial
condition (1.3) and (ũ(t), ṽ(t)) = (ϕ̃(t), ψ̃(t)) for t ≤ 0 respectively, the following holds true:

(4.1) ∀ν ∈ N , ν̃ = ν ∩R−, if Dν̃((ϕ,ψ),(ϕ̃, ψ̃))< δ , then, Dw(ν)((u,v),(ũ, ṽ))< ε.

Remark 4.2. The notion given in Definition 4.1, is a generalization in the following sens: if ν ∈ N
is such that ν ⊂ R−, then in view of (3.12), w(ν) = ν and consequently (4.1) is reduced to the usual
concept of uniform stability.

Theorem 4.3. Let (H1)− (H2) be satisfied. Then, the solution of (1.2)-(1.3) is uniformly stable.

Proof. Let (u(t),v(t)) and (ũ(t), ṽ(t)) be two solutions of (1.2) with the initial condition (1.3) and
(ũ(t), ṽ(t)) = (ϕ̃(t), ψ̃(t)) for t ≤ 0 respectively.

Let ν ∈ N such that w(ν)∩R+ = /0, that is ν = w(ν) = ν̃ . Then, by means of (2.3), we have:

Dw(ν)((u,v),(ũ, ṽ)) = Dν̃((ϕ,ψ),(ϕ̃, ψ̃)).

Consequently, (4.1) holds true with δ = ε .
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COUPLED SYSTEMS OF FUNCTIONAL DIFFERENTIAL EQUATIONS WITH MAXIMA 13

Let now ν ∈ N with w(ν)∩R+ ̸= /0 and let t ∈ w(ν) such that t > 0. From (2.3) together with
(H2), we have:

|u(t)− ũ(t)| ≤

|ϕ(0)− ϕ̃(0)|+
∫ t

0

(t − s)α−1

Γ(α)

{
L1(s)

∣∣∣∣ max
σ∈[a(s),b(s)]

u(σ)− max
σ∈[a(s),b(s)]

ũ(σ)

∣∣∣∣
+L2 (s)

∣∣∣∣ max
σ∈[a(s),b(s)]

v(σ)− max
σ∈[a(s),b(s)]

ṽ(σ)

∣∣∣∣}ds+
∫ t

0

(t − s)α−1

Γ(α)
×

{L3 (s) |u(τ1 (s))− ũ(τ1 (s))|+L4 (s) |v(τ2 (s))− ṽ(τ2 (s))|}ds.

Using Lemma 3.1 and an argument similar to that used in the proof of Proposition 3.2, we prove that

|u(t)− ũ(t)| ≤ |ϕ(0)− ϕ̃(0)|+2Cp,α(θ)Aθ (t)
[
dw2(ν) (u, ũ)+dw2(ν) (v, ṽ)

]
.

Thus, (recall that ν̃ := ν ∩R−)

|u(t)− ũ(t)| ≤ Aθ (t)max
t∈ν̃

|ϕ(t)− ϕ̃(t)|
Aθ (t)

+

+2Cp,α(θ)Aθ (t)
[
dw2(ν) (u, ũ)+dw2(ν) (v, ṽ)

]
= Aθ (t)dν̃ (ϕ, ϕ̃)+2Cp,α(θ)Aθ (t)

[
dw2(ν) (u, ũ)+dw2(ν) (v, ṽ)

]
.

Dividing the above inequality by Aθ (t), then taking the supremum on w(ν) and noting that w2(ν) =
w(ν), we get:

(4.2) dw(ν) (u, ũ)≤ dν̃ (ϕ, ϕ̃)+2Cp,α(θ)
[
dw(ν) (u, ũ)+dw(ν) (v, ṽ)

]
.

Similarly, we prove that the following inequality holds true for every ν ∈ N :

(4.3) dw(ν) (v, ṽ)≤ dν̃ (ψ, ψ̃)+2Cp,β (θ)
[
dw(ν) (u, ũ)+dw(ν) (v, ṽ)

]
.

Now, if we choose θ sufficiently large such that: Cp,α(θ)+Cp,β (θ)<
1
2 , then from (4.2) and (4.3),

it follows that:

1−2
(
Cp,α(θ)+Cp,β (θ)

)
1−2Cp,β (θ)

dw(ν)(u, ũ)≤ dν̃(ϕ, ϕ̃)+
1

1−2Cp,β (θ)
dν̃(ψ, ψ̃)

and
1−2

(
Cp,α(θ)+Cp,β (θ)

)
1−2Cp,α(θ)

dw(ν)(v, ṽ)≤ dν̃(ψ, ψ̃)+
1

1−2Cp,α(θ)
dν̃(ϕ, ϕ̃).

Therefore, for every ε = (ε1,ε2)> 0, there exists δ = (δ1,δ2)> 0 given by

δ1 = min

{
1−2

(
Cp,α(θ)+Cp,β (θ)

)
1−2Cp,β (θ)

ε1,
(1−2Cp,α(θ))

[
1−2

(
Cp,α(θ)+Cp,β (θ)

)]
1−2Cp,α(θ)

ε2

}
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COUPLED SYSTEMS OF FUNCTIONAL DIFFERENTIAL EQUATIONS WITH MAXIMA 14

and

δ2 = min

{(
1−2Cp,β (θ)

)[
1−2

(
Cp,α(θ)+Cp,β (θ)

)]
1−2Cp,β (θ)

ε1,
1−2

(
Cp,α(θ)+Cp,β (θ)

)
1−2Cp,α(θ)

ε2

}
,

such that (4.1) holds true. This completes the proof. □

Remark 4.4. The basic techniques of the approach used in this work for the study of systems of the
form (1.2)-(1.3), can be easily adapted and applied to acquire similar results for coupled systems of n
fractional functional differential equations with ”maxima”, for n > 2.

5. Applications

In this section, we provide two examples illustrating the significance of our main findings.

Example 5.1. Let us consider the following system

(5.1)



CD
3
2 u(t) = e2t(|max

[ t
2 ,t]

u(σ)|+ |max
[ t

2 ,t]
v(σ)|)+ 2t+1

1+|u(sin t)| +
e2t+t

1+|v(cos t)| , t > 0,

CD
1
2 v(t) = et+1(|max

[ t
2 ,t]

u(σ)|+ |max
[ t

2 ,t]
v(σ)|)+ t+2

1+|u(sin t)| +
tet+t2

1+|v(cos t)| , t > 0,

u(t) = 2t +1, t ≤ 0,
v(t) = e2t − t2, t ≤ 0.

(5.1) is identified to (1.2)-(1.3) with

α = 3
2 , f (t,ξ ,η ,x,y) = e2t(|ξ |+ |η |)+ 2t +1

1+ |x|
+

e2t + t
1+ |y|

, τ1 (t) = sin t, a(t) = t
2 ,ϕ(t) = 2t +1,

β = 1
2 , g(t,ξ ,η ,x,y) = et+1(|ξ |+ |η |)+ t +2

1+ |x|
+

tet + t2

1+ |y|
, τ2 (t) = cos t, b(t) = t, ψ(t) = e2t − t2.

It is clear that (H1) is satisfied with h1 = h2 = 1.

On the other hand, we have

| f (t,ξ1,η1,x1,y1)− f (t,ξ2,η2,x2,y2)| ≤ e2t (|ξ1 −ξ2|+ |η1 −η2|)+(2t +1)|x1 − x2|

+(e2t + t)|y1 − y2|
and

|g(t,ξ1,η1,x1,y1)−g(t,ξ2,η2,x2,y2)| ≤ et+1 (|ξ1 −ξ2|+ |η1 −η2|)+(t +2)|x1 − x2|

+(tet + t2)|y1 − y2|.
Thus, (H2) is satisfied with

(5.2) L1(t) = L2(t) = e2t , L3(t) = 2t +1, L4(t) = e2t + t
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and

(5.3) M1(t) = M2(t) = et+1, M3(t) = t +2, M4(t) = tet + t2.

Then, all assumptions of Theorem 3.3 are satisfied and consequently (5.1) admits a unique global
solution, which is furthermore uniformly stable according to Theorem 4.3.

We emphasise here that in our example, the functions given by (5.2)-(5.3) are far from satisfying
the hypotheses of [12, Theorem 15].

Example 5.2. Consider the following equation

(5.4)


CD

5
7 u(t) =

ln(t +1)
1+ |max

[0, t
2 ]

u(σ)|+ et2 |u(e−2t)|+ t|u( cos t
t+1 )|

, t > 0,

u(t) = t2, t ≤ 0.

(5.4) is identified to (3.20) with α = 5
7 , N = 2, a(t) = 0, b(t) = t

2 , g1(t) = e−2t , g2(t) =
cos t
t +1

, ϕ(t) = t2

and

f (t,ξ ,x,y) =
ln(t +1)

1+ |ξ |+ et2 |x|+ t|y|

It is not hard to see that (C1) and (C2) are satisfied with h1 = h2 = 1 and

(5.5) L0(t) = ln(t +1), L1(t) = et2
ln(t +1), L2(t) = t ln(t +1).

Then, according to Theorem 3.7, (5.4) admits a unique global solution.

Note that since the Lipschitz constants given in (5.5) (which depend on t) are clearly unbounded,
many existing results in the literature fail to be applicable to (5.4).

6. Conclusion

In this work, we investigate some systems of coupled fractional differential equations with deviating
arguments and maxima on the half line, given by (1.2)-(1.3). We acquire a global existence-uniqueness
result in the space X = C (R)×C (R), under Lipschitz condition on the nonlinearity with merely
continuous arguments and without any other restrictions. The approach used in this study relies mainly
to some fixed point theorem of Perov’s type in generalized gauge spaces. This suitable choice of the
employed structure, allowed us to get rid of some strict conditions imposed in other recent works in
the literature, such as [12]. In addition, the introduction of useful vector-valued pseudo-metrics on
X , allowed us to get rid also of further conditions. By adapting the basic steps of the above approach
to the initial value problem (3.20) of fractional differential equations with multi-deviating arguments
and ”maxima”, we obtained a global existence-uniqueness result which generalizes and complements
the results established in [15, 19, 18]. In some generalized sens, the uniform stability of solutions of
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(1.2)-(1.3), is also introduced and discussed. We expect that this work, will open the way to improve
and complement many other existence results for (integral, integro-differential) differential systems of
integer or fractional order, especially on unbounded domains.
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[6] A. Bielecki, Une remarque sur la méthode de Banach-Cacciopoli-Tikhonov, Bull. Acad. Polon. Sci. Sér. Sci. Math. 4
(1956), 216–264.

[7] C. Corduneanu, Bielecki’s method in the theory of integral equations, Ann. Univ. Mariae Curie- Sklodowska Sect. A.
XXXVIII (1984), 23—40.

[8] M. A. Darwish, K. Sadarangani, On a quadratic integral equation with supremum involving Erdélki-Kober fractional
order, Mathematische Nachrichten 188 (2015), 566–576, DOI: 10.1002/mana.201400063

[9] K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Berlin, 2004.
[10] J. Dugundji, Topology, Allyn and Bacon, Inc., 470 Atlantic Avenue, Boston, 1966.
[11] Z. F. Z. El-Raheem, Modification of the application of a contraction mapping method on a class of fractional differential

equation, Appl. Math. Comput. 137 (2003), 371–374.
[12] C. Guendouz, J. E. Lazreg, J.J. Nieto, A. Ouahab, Existence and compactness results for a system of fractional

differential equations, J. Funct. Spaces 2020 (2020), 1-12.
[13] Z. He, P. Wang, W. Ge, Periodic boundary value problem for first order impulsive differential equations with supremum,

Indian J. Pure Appl. Math. 34 (2003), 133–143.
[14] V. Ilea, D. Otrocol, Existence and uniqueness of the solution for an integral equation with supremum, via w-distances,

Symmetry 1554 (2020), DOI: 10.3390/sym12091554
[15] V. Ilea, D. Otrocol, Functional differential equations with maxima, via step by step contraction principle, Carpathian J.

Math 37 (2021), 195–202.
[16] A. A. Kilbas, H. M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations Elsevier,

New York, 2006.
[17] M. Klimek, M. Blasik, Existence and uniqueness of solution for a class of nonlinear sequential differential equations of

fractional order, Cent. Eur. J. Math. 10 (2012), DOI: 10.2478/s11533-012-0112-9
[18] C. Li, S. Sarwa, Existence and continuation of solutions for Caputo type fractional differential equations, Electron. J.

Differential Equation 207 (2016).
[19] K. Nisse, L. Nisse, An iterative method for solving a class of fractional functional differential equations with maxima,

Mathematics 6 (2018), DOI: 10.3390/math6010002
[20] A. Novac, R. Precup, Perov type results in gauge spaces and their applications to integral systems on semi-axis, Math.

Slovaca 64 (2014), 961–972, DOI: 10.2478/s12175-014-0251-5
[21] A. Ouani, K. Nisse, L. Nisse, Long-time solvability of functional differential equations with “supremum” involving

increasing nonlinearity at infnite time, Int. J. Nonlinear Anal. Appl. 14 (2023), 1437–1448.

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

11 Feb 2024 08:40:18 PST
231102-Nisse Version 2 - Submitted to Rocky Mountain J. Math.



COUPLED SYSTEMS OF FUNCTIONAL DIFFERENTIAL EQUATIONS WITH MAXIMA 17

[22] A. Perov, A. Kibenko, On certain general method for investigation of boundary value problems, Izv. Akad. Nauk. 30
(1966), 249–264.

[23] E. P.Popov, Automatic Regulation and Control, Nauka, Mosco, 1966.
[24] R. Precup, The role of matrices that are convergent to zero in the study of semilinear operator systems, Math. Comput.

Modelling 49 (2009), 703–708, DOI: 10.1016/j.mcm.2008.04.006
[25] J. Tariboon, S.K. Ntouyas, S. Asawasamrit, C. Promsakon, Positives solutions for Hadamard differential systems with

fractional integral conditions on an unbounded domain, Open Math. 15 (2017), 645–666, DOI: 10.1515/math-2017-
0057

[26] C.C. Tisdell, On the application of sequential and fixed-point theory method to fractional differential equations of
arbitrary order, J. Integral Equations Appl. 24 (2012), 283—319, DOI: 10.1216/JIE-2012-24-2-283

[27] R.S. Varga, Matrix Iterative Analysis, Institute of Computational Mathematics, Springer, Kent State University, Kent,
OH 44242, USA, 1999.

[28] J. Wang, Y. Zhang, Analysis of fractional order differential coupled systems, Math. Methods Appl. Sci. 38 (2014),
3322-3338.

[29] P. Zhang, X. Hao, Existence and uniqueness of solutions for nonlinear integro-differential equations on unbounded
domains in Banach spaces, Adv Difference Equ 247 (2018), DOI: 10.1186/s13662-018-1681-0

[30] P. Zhang, X. Hao, L. Liu, Existence and uniqueness of the global solution for a class of nonlinear fractional integro-
differential equations in a Banach space, Adv Difference Equ 135 (2019), DOI: 10.1186/s13662-019-2076-6

DEPARTMENT OF MATHEMATICS, FACULTY OF EXACT SCIENCES, UNIVERSITY OF EL OUED, ALGERIA

Email address: nisse-khadidja@univ-eloued.dz

DEPARTMENT OF MATHEMATICS, FACULTY OF EXACT SCIENCES, UNIVERSITY OF EL OUED, ALGERIA

Email address: nisse-lamine@univ-eloued.dz

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

11 Feb 2024 08:40:18 PST
231102-Nisse Version 2 - Submitted to Rocky Mountain J. Math.


	1. Introduction
	2. Preliminaries 
	3. Existence-uniqueness results
	4. Generalized stability 
	5. Applications
	6. Conclusion
	References

