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Abstract

In this paper, we study Borell-Brascamp-Lieb inequalities and Brunn’s concavity prin-

ciple in spaces with bitriangular laws of composition. This kind of generalizations contains

the particular interest example of the Heisenberg group Hn. As an application, we prove

some Brunn-Minkoski type inequalities in the Heisenberg group Hn, especially an isomorphic

version of the conjectured Brunn-Minkowski inequality in Hn, which gives a positive answer

to a modified conjecture.

1 Introduction

A basic inequality in convex geometry is the Brunn-Minkowski inequality, which provides
a fundamental relation between volume and Minkowski addition in Rn. The classical Brunn-
Minkowski inequality states that for all Borel sets A,B ⊂ Rn and t ∈ (0, 1), it holds

|(1− t)A+ tB|
1
n ≥ (1− t)|A|

1
n + t|B|

1
n , (1.1)

where | · | denotes the Lebesgue measure on Rn. By the homogeneous of volume in Eucliean
spaces Rn, the Brunn-Minkowski inequality can be written as

|A+B|
1
n ≥ |A|

1
n + |B|

1
n . (1.2)

A far-reaching generalization of Brunn-Minkowski inequality in analysis is a family of func-
tional inequalities, for example, Prékopa-Leindler inequality, and Borell-Brascamp-Lieb inequal-
ity. The classical Prékopa-Leindler inequality [11–13] states that for measurable functions
f, g, h : Rn → R+ with satisfying that for some λ ∈ (0, 1),

h((1− λ)x+ λy) ≥ f(x)1−λg(y)λ, ∀x, y ∈ Rn,

we have ∫
Rn
h(z)dz ≥

(∫
Rn
f(x)dx

)1−λ(∫
Rn
g(y)dy

)λ
.
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Furthermore, the Borell-Brascamp-Lieb inequality was first proved (in a slightly different form)
by Henstock and Macbeath [10] and by Dinghas [7], and was generalized by Brascamp and Lieb
[6] and by Borell [5]. The Borell-Brascamp-Lieb inequality asserts that

Theorem 1.1. Let 0 < λ < 1,− 1
n ≤ p ≤ +∞, 0 ≤ f, g, h ∈ L1(Rn), and for every x, y ∈ Rn,

h ((1− λ)x+ λy) ≥Mλ
p (f(x), g(y)) .

Then ∫
Rn
h ≥Mλ

p
pn+1

(∫
Rn
f,

∫
Rn
g

)
.

Clearly, the number p/(pn + 1) has to be interpreted in the extremal cases (namely, it is
equal to −∞ when p = −1/n, and to 1/n when p = +∞). The quantity Mλ

q (x, y) denotes the

(λ-weighted) q-mean of x, y. That is, for x, y ≥ 0 and xy = 0, we set Mλ
q (x, y) = 0 for every

q ∈ R ∪ {±∞}. For all x, y > 0 and λ ∈ (0, 1), in the case q 6= 0 we set

Mλ
q (x, y) = ((1− λ)xq + λyq)1/q , (1.3)

and in the case q = 0, we set
Mλ

0 (x, y) = x(1−λ)yλ. (1.4)

Obviously, the Prékopa-Leindler inequality is the special case of Borell-Brascamp-Lieb inequality
with p = 0.

Brunn’s concavity principle plays a significant role in convex geometry, which supplies the
first proof of the Brunn-Minkowski inequality, see [1].

Theorem 1.2. Let K be a convex body in Rn and let F be a k-dimensional subspace. Then

the function f : F⊥ → R defined by

f(x) = |K ∩ (F + x)|
1
k

is concave on its support.

The Brunn-Minkowski inequality and its functional version have been generalized to many
different spaces and used to solve various problems in convex geometry, see [1, 8, 16–19] for exam-
ple. Especially, Bobkov [4] proved the Brunn-Minkowski inequality in spaces with bitriangular
laws of composition.

In this paper, we shall extend Borell-Brascamp-Lieb inequality and Brunn’s concavity prin-
ciple to the case of spaces with bitriangular laws of composition. We denote by ei the i-th unit
coordinate vectors in Rn whose i-th component is 1, all others 0, for i = 1, 2, · · · , n. We call a
binary operation or composition

(x, y) = (x1, · · · , xn; y1, · · · , yn)→ x⊕ y ∈ Rn (x, y ∈ Rn)

bitriangular if the coordinates of the “sum” x⊕ y are

(x⊕ y)k = xk + yk + ϕk−1(x1, · · · , xn−1; y1, · · · , yn−1), (1.5)
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for some functions ϕk−1 : Rk−1 × Rk−1 → R, k = 1, · · · , n (with the convention that ϕ0 = 0).
For λ > 0, we define λx by (λx)k = λxk for k = 1, · · · , n.

If functions ϕk, k = 1, · · · , n − 1, are continuous, and A and B are Borel measurable sets,
the Minkowski sum in spaces with bitriangular laws of composition of A and B is defined by

A⊕B = {x⊕ y : x ∈ A, y ∈ B}.

For a body K in Rn, we say that K is a ⊕-convex body, if for every x, y ∈ K and λ ∈ (0, 1), it
holds (1− λ)x⊕ λy ∈ K.

Our main results are the following three theorems. At first, we prove in Section 2 the
Borell-Brascamp-Lieb inequality in spaces with bitriangular laws of composition.

Theorem 1.3. Let f, g, h : Rn → R+ be measurable functions, and let − 1
n ≤ p ≤ +∞ and

λ ∈ (0, 1). If f and g are integrable, and for every x, y ∈ Rn,

h ((1− λ)x⊕ λy) ≥Mλ
p (f(x), g(y)) ,

then ∫
Rn
h ≥Mλ

p
pn+1

(∫
Rn
f,

∫
Rn
g

)
.

Using Theorem 1.3, the Brunn’s convexity principle will be extended to the spaces of Rn
with respect to ⊕ in Section 3.

Theorem 1.4. Let K be a ⊕-convex body in Rn, and H be the k-dimensional space spanned

by {en−k+1, en−k+2, · · · , en}. Then the function F : H⊥ → R defined by

F (x) = |K ∩ (x⊕H)|1/k

is concave on its support.

As applications, we will obtain some Brunn-Minkowski type inequalities in the Heisenberg
group Hn in Section 4. It is especially interesting that an isomorphic version of the conjectured
Brunn-Minkowski inequality in Hn will be shown, that is,

Theorem 1.5. For all nonempty Borel sets A and B in the Heisenberg group Hn,

C|A ·B|
1

2n+2 ≥ |A|
1

2n+2 + |B|
1

2n+2 ,

where C = 2
1

2n+2 .

Note that the conjectured Brunn-Minkowski type inequality in the Heisenberg group Hn

comes from an isoperimetric problem in Hn with respect to Carnot-Carathéodory distance (or
an equivalent gauge distance), which suggests that

|A ·B|
1

2n+2 ≥ |A|
1

2n+2 + |B|
1

2n+2 .
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It has been shown by Monti [15] that this conjecture is not true, even in the case n = 1 (see
also [14]). Our theorem (Theorem 1.5) gives a positive answer to the next modified conjecture:
whether there exists a constant C depending only on n such that

C|A ·B|
1

2n+2 ≥ |A|
1

2n+2 + |B|
1

2n+2 ?

The rest of the paper is organized as follows. In Section 2, we will prove in Theorem 2.1, an
extension of the Borell-Brascamp-Lieb inequality in spaces with bitriangular laws of composition.
In Section 3, we give some preliminary lemmas, and then prove Brunn’s convexity principle in
spaces with bitriangular laws of composition, in Theorem 3.5. In the last section, we use the
Borell-Brascamp-Lieb inequality in spaces with bitriangular laws of composition to obtain some
Brunn-Minkowski type inequalities in the Heisenberg group Hn.

2 Borell-Brascamp-Lieb inequality

In this section, we give an proof of the Borell-Brascamp-Lieb inequality with bitriangular
laws of composition.

Theorem 2.1. Let f, g, h : Rn → R+ be measurable functions, and let − 1
n ≤ p ≤ +∞ and

λ ∈ (0, 1). We assume that f and g are integrable, and for every x, y ∈ Rn,

h ((1− λ)x⊕ λy) ≥Mλ
p (f(x), g(y)) . (2.1)

Then ∫
Rn
h ≥Mλ

p
pn+1

(∫
Rn
f,

∫
Rn
g

)
.

We note that the underlying functions ϕk in this theorem are allowed to depend on the
parameter λ.

Clearly, in the case with ϕk = 0, k = 0, · · · , n − 1, the statement responds to the Borell-
Brascamp-Lieb inequality, see [5, 6].

Proof. We will prove the theorem by induction on the dimension n. In dimension n = 1,
(1−λ)x⊕λy is the usual vector sum (1−λ)x+λy, and Theorem 2.1 is the usual one-dimensional
Borell-Brascamp-Lieb inequality, see [11–13].

Assume then n ≥ 2 and the assertion of theorem is true in all dimension k = {1, 2, · · · , n−1}.
Let x = (a, xn) and y = (b, yn) with a = (x1, x2, · · · , xn−1), b = (y1, y2, · · · , yn−1). For fixed a, b,
we define the three functions on Rn,

fa(xn) = f(a, xn), gb(yn) = g(b, yn)

and
h(1−λ)a⊕λb(zn) = h ((1− λ)a⊕ λb, zn + ϕn−1((1− λ)a, λb)) ,

where (1−λ)a⊕λb is defined in Rn in the usual way for the collection ϕ0, ϕ1, ·, ϕn−2. Using the
definition of bitriangular operation, we have

(1− λ)(a, xn)⊕ λ(b, yn) =
(

(1− λ)a⊕ λb,Mλ
1 (xn, yn) + ϕn−1((1− λ)a, λb)

)
,
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Then for xn, yn ∈ R,

h(1−λ)a⊕λb(M
λ
1 (xn, yn)) = h

(
(1− λ)a⊕ λb,Mλ

1 (xn, yn) + ϕn−1((1− λ)a, λb)
)

= h ((1− λ)(a, xn)⊕ λ(b, yn))

≥Mλ
p (f(a, xn), g(b, yn))

= Mλ
p (fa(xn), gb(yn)) ,

by using definitions of fa, gb, h(1−λ)a⊕λb and (2.1). Thus the triple (fa, gb, h(1−λ)a⊕λb) satisfies
the condition (2.1) in the one-dimensional case, then we get∫

R
h(1−λ)a⊕λb(zn))dzn ≥Mλ

p
p+1

(∫
R
fa(xn)dxn,

∫
R
gb(yn)dyn

)
.

Then we get∫
R
h((1− λ)a⊕ λb, z′n))dz′n =

∫
R
h((1− λ)a⊕ λb, zn + ϕ((1− λ)a, λb)))dzn

=

∫
R
h(1−λ)a⊕λb(zn))dzn

≥Mλ
p
p+1

(∫
R
fa(xn)dxn,

∫
R
gb(yn)dyn

)
.

This means the three functions on Rn

F (a) =

∫
R
fa(xn)dxn, G(b) =

∫
R
gb(yn)dyn, H(c) =

∫
R
h(c, zn))dzn

satisfy (2.1) in dimension n− 1. Using the induction hypothesis to (F,G,H), we have∫
Rn−1

H(c)dc ≥Mλ
p

(p+1)
p

(p+1)
(n−1)+1

(∫
Rn−1

F (a)da,

∫
Rn−1

H(b)db

)

≥Mλ
p

pn+1

(∫
Rn−1

F (a)da,

∫
Rn−1

H(b)db

)
.

Then the desired result follows from the Fubini theorem.

In the case of p = 0, we have the Prékopa-Leindler type inequality, which was proved by
Bobkov [4].

Corollary 2.2. [4] Let f, g, h : Rn → R+ be measurable functions, and λ ∈ (0, 1). We

assume that f and g are integrable, and for every x, y ∈ Rn,

h ((1− λ)x⊕ λy) ≥ f(x)1−λg(y)λ.

Then ∫
Rn
h ≥

(∫
Rn
f

)1−λ(∫
Rn
g

)λ
.
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3 Brunn’s convexity principle

In this section we show Brunn’s convexity principle in spaces with bitriangular laws of com-
position. We shall need the definition for an α-concave function.

Definition 3.1. Let K be a convex set in Rn and let f : K → R+.

(1). We say that f is α-concave for some α > 0 if fα is concave on K, equivalently, if

fα((1− λ)x0 + λx1) ≥ (1− λ)fα(x0) + λfα(x1), for 0 < λ < 1 and x0, x1 ∈ K.

(2). The function f is called log-concave (0-concave) if f((1−λ)x0+λx1) ≥ f (1−λ)(x0)fλ(x1),

for 0 < λ < 1 and x0, x1 ∈ K. Namely, log f is a concave function.

(3). The function f is α-concave for some α < 0 if fα is convex on K, that is, if f((1 −
λ)x0 + λx1) ≥ ((1− λ)fα(x0) + λfα(x1))

1/α , for 0 < λ < 1 and x0, x1 ∈ K.

We need extend α-concave functions to cases with bitriangular laws of composition.

Definition 3.2. Let K be a ⊕-convex set in Rn and let f : K → R+.

(1). We say that f is α-concave with respect to ⊕ for some α > 0 if fα is concave on K,

equivalently, if fα((1− λ)x0 ⊕ λx1) ≥ (1− λ)fα(x0) + λfα(x1), for 0 < λ < 1 and x0, x1 ∈ K.

(2). The function f is called log-concave (0-concave) with respect to ⊕ if f((1−λ)x0⊕λx1) ≥
f (1−λ)(x0)f

λ(x1), for 0 < λ < 1 and x0, x1 ∈ K. Namely, log f is a concave function.

(3). The function f is α-concave with respect to ⊕ for some α < 0 if fα is convex on K,

that is, if f((1− λ)x0 ⊕ λx1) ≥ ((1− λ)fα(x0) + λfα(x1))
1/α , for 0 < λ < 1 and x0, x1 ∈ K.

We first prove a useful lemma.

Lemma 3.3. Let K be a ⊕-convex body in Rn, α, β > 0, and let f, g : K → R+. If f is

1/α-concave with respect to ⊕, g is 1/β-concave with respect to ⊕, then fg is 1/(α+β)-concave

with respect to ⊕.

Proof. Let x0, x1 ∈ K and λ ∈ (0, 1). Applying Hölder’s inequality for the measure (1 −
λ)δx0 + λδx1 with p = (α+ β)/α and q = (α+ β)/β, we get

(1− λ) (f(x0)g(x0))
1

α+β + λ (f(x1)g(x1))
1

α+β

≤
(

(1− λ)f(x0)
1
α + λf(x1)

1
α

) α
α+β

(
(1− λ)g(x0)

1
β + λg(x1)

1
β

) β
α+β

≤ f((1− λ)x0 ⊕ λx1)
1

α+β g((1− λ)x0 ⊕ λx1)
1

α+β

where the latter inequality follows from the convexity of f and g with respect to ⊕.

The above lemma will be used to show that a one-dimensional marginal of a function affects
its level of convexity. Let K be a ⊕-convex body in Rn, and Pe⊥nK be the orthogonal projection

of K to the subspace e⊥n . Given a continuous function f : K → R+, we define Pe⊥n f by

Pe⊥n f(y) =

∫
{r:K∩(y,r)}

f(y, r)dr =

∫
R

1K(y, t)f(y, t)dt,
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for y ∈ Pe⊥nK.

Theorem3.4. Let K be a ⊕-convex body in Rn, α > 0, and let en be the n-th unit coordinate

vector. If f : K → R+ is 1/α-concave with respect to ⊕, then Pe⊥n f is 1/(α + 1)-concave with

respect to ⊕.

In the case of indicator function of K, we have for all α > 0, the length |(y + Ren) ∩K| is
1/α-concave with respect to ⊕.

Proof. Let F (y, s) = 1K(y, s)f(y, s) for y ∈ Pe⊥nK and s ∈ R. The indicator function of
⊕-convex body K is constant on K, and hence it is 1/β-concave with respect to ⊕ for every
β > 0. Thus Lemma 3.3 implies that F (y, s) is 1/(α + β)-concave with respect to ⊕ for every
β > 0. Taking the limit of pointwise inequality which is satisfied for any β > 0, F (y, s) is
1/α-concave with respect to ⊕. Therefore, for all y, z ∈ Pe⊥nK, s, t ∈ R,

F ((1− λ)y ⊕ λz, s+ t+ ϕn−1((1− λ)y, λz)) = F ((1− λ)(y, s)⊕ λ(z, t))

≥Mλ
1/α (F (y, s), F (z, t)) .

Consider three functions on R

f(s) = F (y, s), g(t) = F (z, t),

and
h(r) = F ((1− λ)y ⊕ λz, r + ϕn−1((1− λ)y, λz).)

The triple (f, g, h) satisfies the condition of Theorem 2.1, we have∫
R
h(r)dr ≥Mλ

1/α
(1/α)+1

(∫
R
f(s)ds,

∫
R
g(t)dt

)
.

Then we have ∫
R
F ((1− λ)y ⊕ λz, r) dr

=

∫
R
F ((1− λ)y ⊕ λz, r + ϕn−1((1− λ)y, λz)) dr

≥Mλ
1

α+1

(∫
R
F (y, s)ds,

∫
R
F (z, t)dt

)
.

This proves the desired result.

As a consequence of Theorem 3.4, we prove the following Brunn’s concavity principle for
spaces with bitriangular laws of composition.

Theorem 3.5. Let K be a ⊕-convex body in Rn, and H be the k-dimensional space spanned

by {en−k+1, en−k+2, · · · , en}. Then the function F : H⊥ → R defined by

F (x) = |K ∩ (x⊕H)|1/k

is concave on its support.
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Proof. Consider the function f1(x
′) = 1K(x′, xn−k+1, · · · , xn), which is 1/α-concave with

respect to x′ ∈ Rn−k for every α > 0. For the direction en−k+1, we denote by F1 the subspace
spanned by H⊥ ∪ {en−k+1}. In the space H1, Theorem 3.4 shows that the function

x′ →
∫
R

1K(x′, xn−k+1, · · · , xn)dxn−k+1

is 1/(α + 1)-concave with respect to ⊕ for every α > 0. Putting the same argument in the
directions en−k+2, · · · , en successively, Theorem 3.4 implies that the function

x′ →
∫
R
· · ·
∫
R

1K(x′, xn−k+1, · · · , xn)dxn−k+1 · · · dxn

is 1/(α+ k)-concave with respect to ⊕ for every α > 0. By Fubini’s theorem,∣∣{(x′, z) : (x′, z) ∈ K}
∣∣ =

∫
R
· · ·
∫
R

1K(x′, xn−k+1, · · · , xn)dxn−k+1 · · · dxn

is 1/(α+ k)-concave with respect to ⊕ for every α > 0. Taking the limit of pointwise inequality
as α→ 0, we have that it is satisfied in the limit, which means that

F (x′) =
∣∣{(x′, z) : (x′, z) ∈ K}

∣∣1/k
is concave on its support, as proved.

4 Brunn-Minkowski inequality in Heisenberg group

An interest example of the spaces with bitriangular law of composition is the Heisenberg
group Hn. The Heisenberg group is the space Cn × R ∼ R2n+1 with the noncommunicative
multiplication

[z1, · · · , zn, t] · [z′1, · · · , z′n, t′] = [z1 + z′1, · · · , zn + z′n, t+ t′ + ϕ],

where zi, z
′
i are complex, t, t′ are real, and

ϕ = 2
n∑
i=1

=(ziz′i),

where =(x) denotes the imaginary parts of x ∈ C. Hence this is the bitriangular law of com-
position in R2n+1 of form with ϕ0 = · · · = ϕ2n−1 = 0 and ϕ2n = ϕ. Geometric inequalities
in the sub-Riemannian setting of the Heisenberg group Hn have been attracted many author’s
interests, see [2, 3, 9] for examples.

When f = χA, g = χB, h = χ(1−λ)A·λB in Theorem 2.1, we have the following corollary.

Corollary 4.1. For all nonempty Borel sets A and B in the Heisenberg group Hn, and

p ≥ − 1
2n+1 ,

|(1− λ)A · λB|
1

2n+1+1/p ≥ (1− λ)|A|
1

2n+1+1/p + λ|B|
1

2n+1+1/p .
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As a consequence, if p = 1, we have

Corollary 4.2. For all nonempty Borel sets A and B in the Heisenberg group Hn,

|(1− λ)A · λB|
1

2n+2 ≥ (1− λ)|A|
1

2n+2 + λ|B|
1

2n+2 . (4.1)

Note that in analogy with the classical isoperimetric problem, an isoperimetric problem in
the Heisenberg group Hn with respect to Carnot-Carathéodory distance (or an equivalent gauge
distance) suggests to the following conjectured Brunn-Minkowski type inequality

|A ·B|
1

2n+2 ≥ |A|
1

2n+2 + |B|
1

2n+2 . (4.2)

In comparison with the equivalence of the classical Brunn-Minkowski inequalities (1.1) and
(1.2), the inequality (4.1) is not equivalent to the inequality (4.2). In fact, the conjecture (4.2)
cannot be true, as shown by Monti [15] that (4.2) is not true for n = 1 (see also [14]).

Since (4.2) is not true, a natural isomorphic question asks: whether there exists a constant
C depending only on n such that

C|A ·B|
1

2n+2 ≥ |A|
1

2n+2 + |B|
1

2n+2 .

In the next corollary, we give an isomorphic version of inequality (4.2).

Corollary 4.3. For all nonempty Borel sets A and B in the Heisenberg group Hn,

2
1

2n+2 |A ·B|
1

2n+2 ≥ |A|
1

2n+2 + |B|
1

2n+2 .

Proof. Let f = χA, g = χB, h = χ(1−λ)A⊕λB, where ⊕ is with respect to ϕ0 = · · · = ϕ2n−1 =

0 and ϕ2n = 4
n∑
i=1
=(ziz′i). Using Theorem 2.1 we have for p > 0, λ ∈ (0, 1),

|(1− λ)A⊕ λB|
1

2n+1+1/p ≥ (1− λ)|A|
1

2n+1+1/p + λ|B|
1

2n+1+1/p . (4.3)

Now we claim that
1

2
A⊕ 1

2
B =

1

2
(A ·B), (4.4)

where the left-hand side is applied with the functions ϕk, and the right-hand side, with respect
to ϕk (the Heisenberg group case). It is clear that the k-th coordinates of the left-hand side are
the same with that of the right-hand side, for k = 1, · · · , 2n. Let us check the last coordinate.
Consider x ∈ A, y ∈ B. The (2n+ 1)-th coordinate on the left-hand side is

1

2
x2n+1 +

1

2
y2n+1 + ϕ2n+1(

x

2
,
y

2
) =

1

2
x2n+1 +

1

2
y2n+1 +

n∑
i=1

=(ziz′i)

=
1

2

(
x2n+1 + y2n+1 + 2

n∑
i=1

=(ziz′i)

)
,

which is just the (2n+ 1)-th coordinate on the right-hand side of (4.4).
Letting p = 1 and λ = 1/2, the claim combining with (4.3) implies the desired results.
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Note that although the conjectured inequality (4.2) is not true, Bobkov [4] proved a weaker
version of (4.2) by using Corollary 2.2.

Corollary 4.4. [4] For all nonempty Borel sets A and B in the Heisenberg group Hn,

|A ·B|
1

2n+1 ≥ |A|
1

2n+1 + |B|
1

2n+1 .
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