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STABLE ADIABATIC TIMES FOR A CONTINUOUS EVOLUTION OF MARKOV
CHAINS

KYLE BRADFORD

ABSTRACT. This paper extends the concept of the adiabatic time to the stable adiabatic time. As ε ↘ 0
our paper shows that, for a continuous evolution of particular Markov chains, the stable adiabatic time is
bounded above by a constant multiple of the square of the biggest mixing time over the evolution divided
by ε . Furthermore, we showed that this bound is optimal.

1. INTRODUCTION

In the realm of Markov chains the mixing time serves as a key quantity for assessing the convergence
of irreducible and aperiodic time-homogeneous Markov chains [1, 13, 15]. In this context, denote
| · |TV as the total variation norm and | · |k as the `k(Rn) norm.

Definition 1. For ε > 0 the mixing time of a time-homogeneous, irreducible and aperiodic Markov
chain governed by a probability transition matrix P, which has unique stationary distribution π , is
defined as:

(1) tmix(P,ε) = inf{T ∈ N : sup
ν

‖νPT −π‖TV ≤ ε}

While time-homogeneous Markov chains have undergone extensive scrutiny, the stability of time-
inhomogeneous Markov chains have less attention. Some literature mentions stability metrics for
time-inhomogeneous Markov chains[16, 17, 18]. This paper discusses specific time-inhomogeneous
Markov chains and a related metric of stability. These Markov chains take inspiration from the
simulated annealing algorithm for finding the global extremum of a function. A greedy algorithm
will search locally to make improved estimates of the extremum, but this algorithm may only find a
local extremum. Algorithms that use metaheuristics allow for the immediate estimates to be worse in
an effort to find the global extremum, but they typically take longer to stabilize to the solution. The
simulated annealing algorithm uses a temperature parameter to transition between these two types
of algorithms. Annealing starts with a high temperature and is decreased at each step following an
annealing schedule. The transition that takes place during the allotted time period determines the
global extremum.

This paper defines a continuous path function in a matrix space consisting of finite dimensional,
irreducible and aperiodic probability transition matrices. A parameter T ∈ N will be defined to
be sufficiently large comparable to the temperature parameter of an annealing schedule. The time-
inhomogeneous Markov chain at time k has a probability transition matrix defined by evaluating the
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continuous path function at time k/T for 0≤ k ≤ T and by evaluating the function at 1 for k > T . The
initial transition matrix corresponds to the annealing schedule at a high temperature, and the final
transition matrix corresponds to the annealing schedule at the end of the time budget. The appropriate
selection of T helps define the related metric of stability that is called the stable adiabatic time.

This article continues the effort in [3, 4, 11] to bound the stable adiabatic time of an evolving,
time-inhomogeneous Markov chain by a function of the largest mixing time over the entire evolution.
Specifically, this paper makes three important contributions: 1) finding an exact bound rather than an
asymptotic bound, 2) finding a tighter, optimal bound of the stable adiabatic time and 3) expanding
the types of evolutions to include all continuous transitions in the appropriate matrix space. Some
of the strongest applications of the adiabatic time and the stable adiabatic time come from quantum
physics and quantum computation, namely, the quantum adiabatic theorem from physics [7, 10] and
quantum adiabatic computing [12]. There is a strong presence of adiabatic processes in optimization
algorithms in queueing systems [6], network design [14] and network performance [19]. There is
also an application to the stability of an Ising model with Glauber dynamics [3]. Many of these
applications were discussed in detail in previous works. For example, the quantum adiabatic theorem
was discussed in [2, 3, 4, 11] and the quantum computation applications were discussed in [4]. In [4]
the time-inhomogeneous Markov chain was specifically governed by a convex-combination evolution
of two irreducible, aperiodic probability transition matrices. In particular there were matrices P0 and
P1 and Pt = (1− t)P0 + tP1. Given a large integer T the probability transition matrix at time k ≤ T
for the time-inhomogeneous Markov chain was P k

T
. Naturally, if stochastic matrices P0 and P1 are

both irreducible and aperiodic, then Ps is both irreducible and aperiodic for s ∈ [0,1]. This allows
for a definition of the mixing time for each s ∈ [0,1]. Taking the supremum of all of these mixing
times is one of the ways that one can discuss stability for the time-inhomogeneous Markov chains with
probability transition matrices P k

T
. The following definition makes this formal.

Definition 2. For ε > 0 the largest mixing time of a time-inhomogeneous, discrete-time Markov chain
governed by a convex-combination evolution between the irreducible and aperiodic P0 and P1

(2) tmix(P0,P1,ε) = sup
s∈[0,1]

{tmix(Ps,ε)}.

This paper has, thus far, mentioned the stable adiabatic time without stating the formal definition.
Now there is enough background information to make this definition for convex-combination evolutions.
This was the main object of study in [4] and will motivate the analogue that we will use in this paper.

Definition 3. For ε > 0 the stable adiabatic time of a time-inhomogeneous, discrete-time Markov
chain governed by a convex-combination evolution between the irreducible and aperiodic P0 and P1,
which has unique stationary distribution π k

T
for the probability transition matrix P k

T
, is defined as :

(3) tsad(P0,P1,ε) = inf{T ∈ N : ‖π0P 1
T
· · ·P k

T
−π k

T
‖TV < ε for 1≤ k ≤ T}.

The stable adiabatic time is another type of stability for these kinds of time-inhomogeneous Markov
chains. It is natural to ask how the two previous definitions compare. This was discussed in [4] for
these specific convex-combination evolutions. The following asymptotic result was discovered in [4]
relating the stable adiabatic time and the largest mixing time.
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Theorem 1. Given a time-inhomogeneous, discrete-time Markov chain governed by a convex-combination
evolution between the irreducible and aperiodic P0 and P1, for any ε > 0,

(4) tsad(P0,P1,ε) = O
(

t4
mix(P0,P1,ε/2)

ε3

)
as ε ↘ 0.

The main goal of this paper is to expand the types of evolutions that can take place. To elaborate,
first let Mn([0,1]) be the collection of all n× n matrices with entries in [0,1]. Define Pn = {P ∈
Mn([0,1]) : P1 = 1} where 1 is the n dimensional column vector with all entries 1 and define

P ia
n = {P ∈Pn : P is irreducible and aperiodic}.

To describe continuity in this matrix space the standard matrix norm will be used. Specifically for a
matrix M the matrix norm is defined as ‖M‖ = maxν ‖νM‖1 where the maximum is taken over all
probability distributions ν . This paper considers continuous functions P : [0,1]→P ia

n with respect
to the matrix norm to build the more general types of evolutions. One can now allow the time-
inhomogeneous Markov chains to be governed by a continuous evolution defined through the function
P. Given a large integer T the probability transition matrix at time k ≤ T for the time-inhomogeneous
Markov chain was P

( k
T

)
. Because all probability transition matrices are in P ia

n a mixing time exists for
all s ∈ [0,1]. The supremum can be taken again to make a metric for stability for time-inhomogeneous
Markov chains governed by these continuous evolutions. Note the difference between this definition
and Definition 2.

Definition 4. For ε > 0 the largest mixing time of a time-inhomogeneous, discrete-time Markov chain
governed by a continuous evolution in P ia

n , written as tmix(Psup,ε), is defined as follows:

(5) tmix(Psup,ε) = sup
s∈[0,1]

{tmix(P(s),ε)}.

Finally the version of the stable adiabatic time used in this paper can be introduced. The key
difference in Definition 3 is the type of evolution. This version of the stable adiabatic time allows for a
more general, continuous evolution in P ia

n .

Definition 5. For ε > 0 the stable adiabatic time of a time-inhomogeneous, discrete-time Markov
chain governed by a continuous evolution in P ia

n , written as tsad(P,ε), is defined as follows:

tsad(P,ε) = inf

{
T ∈ N :

∥∥∥∥∥π (0)P
(

1
T

)
· · ·P

(
k
T

)
−π

(
k
T

)∥∥∥∥∥
TV

< ε

for 1≤ k ≤ T}.
(6)

With these definitions formally laid out it can be said that the purpose of this paper is to find a
relationship between tsad(P,ε) and tmix(Psup,ε) in an analogous way as Theorem 1. The machinery
in this paper allows for an optimal result. The rest of the paper is organized as follows: Section 2
introduces the necessary background information to allow for a succinct proof of the main result.
Section 3 gives the main result of the paper and gives a detailed proof of the main result. Section 4
gives a context of the importance of the result and additional proofs and argumentation is outlined in
Section 5.
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2. SUPPORTING MATERIAL

When one makes a proof about continuous function spaces, a common technique involves using a
dense subset known as the Lipschitz continuous function with finite Lipschitz constant. This section
introduces two important propositions that aid the proof of the main result. For both the first proposition
and the main result in Section 3 using Lipschitz continuous functions allows for a keen insight as to
what commands these time-inhomogeneous Markov chains governed by a continuous evolution. In
this matrix space the following definition of a Lipschitz continuous function is used.

Definition 6. A function P∗ : [0,1]→Mn([0,1]) is Lipschitz if there exists a positive constant L, called
the Lipschitz constant, so that

(7) ‖P∗ (x)−P∗ (y)‖ ≤ L
∣∣x− y

∣∣
for x,y ∈ [0,1].

The function P : [0,1]→P ia
n creates a function π : [0,1]→ Rn. By definition P is continuous with

respect to the matrix norm, so a natural question is whether π is a continuous function with respect to
the total variation norm. The following proposition declares that it is. This in and of itself is not that
surprising, but the nature of how it is continuous gives information that will be necessary to prove the
main result. The following two propositions were introduced in [4].

Proposition 1. Let σ = infs∈[0,1]{σ(s)} where σ(s) is the smallest nonzero singular value of I−P(s).
If P : [0,1]→P ia

n is a continuous function with respect to the matrix norm, then π : [0,1]→ Rn is
uniformly continuous with respect to the total variation norm. In particular, for ε > 0 there exists a
positive constant L such that for s ∈ [0,1] and

(8) δ =
εσ

3Ln3/2 ,

t ∈ {[0,1] :
∣∣t− s

∣∣≤ δ} implies that ‖π(t)−π(s)‖TV ≤ ε .

Notice that in the above proposition the continuity depends on the smallest nonzero singular value
of the function P throughout the entire evolution. This value σ has information relating to the largest
mixing time of P throughout the entire evolution. The following proposition makes this point.

Proposition 2. Let P : [0,1]→P ia
n be a continuous function with respect to the matrix norm. Let

σ = infs∈[0,1]{σ(s)} where σ(s) is the smallest nonzero singular value of I−P(s).
Given ε > 0,

(9)
1−2

√
nε

σ
≤ tmix(Psup,ε).

Instead of including a proof of Proposition 2 note that the proof follows rather directly from a
similar argument in [4]. In this paper one can find a similar relationship between the smallest nonzero
singular value of a matrix and its mixing time. Here the only thing to note is that the mixing time of
time-homogeneous Markov chains associated with the smallest nonzero singular value is smaller than
the supremum of all mixing times throughout the entire evolution. This provides all the necessary
background to approach our main result. This result is now addressed in Section 3.
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3. MAIN RESULT

The main result of this paper is given in the following theorem and proven in this section. It will
provide the necessary analogue for the bound on the stable adiabatic time for time-inhomogeneous
Markov chains governed by a continuous evolution by a function of the largest mixing time over the
entire evolution. Note that this result differs from Theorem 1 by not being an asymptotic result and
having a lower power of the largest mixing time bound the stable adiabatic time. After this theorem is
proven, the impact of the result will be discussed in Section 4.

Theorem 2. Given a time-inhomogeneous, discrete-time Markov chain governed by a continuous
evolution in P ia

n , for 0 < ε < 1
2
√

n and P : [0,1]→P ia
n a continuous function with respect to the matrix

norm we have that

(10) tsad(P,ε)≤
3n3/2Lt2

mix(Psup,ε)

(1−2
√

nε)ε

Proof. Recall that the space of Lipschitz continuous functions from [0,1] to P ia
n with finite Lipschitz

constant is dense in the space of continuous functions from [0,1] to P ia
n . This implies that one can

find a Lipschitz continuous function P∗ : [0,1]→P ia
n with Lipschitz constant L such that

‖P(t)−P∗(t)‖ ≤ ε

4tmix (Psup,ε/2)

for all t ∈ [0,1].
The goal of this proof is to select a value of T large enough so that∥∥∥∥∥π(0)P

(
1
T

)
P
(

2
T

)
· · ·P

(
k−1

T

)
P
(

k
T

)
−π

(
k
T

)∥∥∥∥∥
TV

≤ ε

for 1≤ k ≤ T .
Let

T =
3n3/2Lt2

mix (Psup,ε/2)
(1−2

√
nε)ε

.

At this point the proof is decomposed into two parts.
Part 1. Assume that k ≥ tmix(Psup,ε/2)
Let N = k− tmix(Psup,ε/2).
Observe that

π(0)P
(

1
T

)
P
(

2
T

)
· · ·P

(
k−1

T

)
P
(

k
T

)
= νN

(
P
(

k
T

)
+

(
P
(

N +1
T

)
−P

(
k
T

)))
P◦N+2

= νNP
(

k
T

)
P◦N+2 +νN

(
P
(

N +1
T

)
−P

(
k
T

))
P◦N+2.
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where νN = π(0)P
( 1

T

)
P
( 2

T

)
· · ·P

(N
T

)
, P◦` = P

(
`
T

)
· · ·P

( k
T

)
.

By continuing this process for P
( i

T

)
for i≥ N +2, it can be shown that

π(0)P
(

1
T

)
P
(

2
T

)
· · ·P

(
k−1

T

)
P
(

k
T

)
= νN

(
P
(

k
T

))k−N

+
k−N−2

∑
`=0

νN

(
P
(

k
T

))`(
P
(

N +1+ `

T

)
−P

(
k
T

))
P◦N+2+`.

By the triangle inequality, it can be shown that∥∥∥∥∥π(0)P
(

1
T

)
P
(

2
T

)
· · ·P

(
k−1

T

)
P
(

k
T

)
−π

(
k
T

)∥∥∥∥∥
TV

≤

∥∥∥∥∥νN

(
P
(

k
T

))k−N

−π

(
k
T

)∥∥∥∥∥
TV

+
k−N−2

∑
`=0

∥∥∥∥∥νN

(
P
(

k
T

))`(
P
(

N +1+ `

T

)
−P

(
k
T

))
P◦N+2+`

∥∥∥∥∥
TV

.

Because 2‖µ−ν‖TV = ‖µ−ν‖1 whenever µ and ν are probability distributions,∥∥∥∥∥π(0)P
(

1
T

)
P
(

2
T

)
· · ·P

(
k−1

T

)
P
(

k
T

)
−π

(
k
T

)∥∥∥∥∥
TV

≤

∥∥∥∥∥νN

(
P
(

k
T

))k−N

−π

(
k
T

)∥∥∥∥∥
TV

+
1
2

k−N−2

∑
`=0
‖ν◦` P◦N+2+`‖1

where ν◦` = νN
(
P
( k

T

))` (P(N+1+`
T

)
−P

( k
T

))
.

Notice that for 0≤ `≤ k−N−2, P◦N+2+` is a probability transition matrix. This will imply that

‖ν◦` P◦N+2+`‖1 =
n

∑
j=1

∣∣ n

∑
i=1

ν
◦
` (i)P◦N+2+` (i, j)

∣∣
≤

n

∑
j=1

n

∑
i=1

∣∣ν◦` (i) ∣∣P◦N+2+` (i, j)

=
n

∑
i=1

∣∣ν◦` (i) ∣∣ n

∑
j=1

P◦N+2+` (i, j)

=
n

∑
i=1

∣∣ν◦` (i) ∣∣
= ‖ν◦` ‖1.
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Therefore ∥∥∥∥∥π(0)P
(

1
T

)
P
(

2
T

)
· · ·P

(
k−1

T

)
P
(

k
T

)
−π

(
k
T

)∥∥∥∥∥
TV

≤

∥∥∥∥∥νN

(
P
(

k
T

))k−N

−π

(
k
T

)∥∥∥∥∥
TV

+
1
2

k−N−2

∑
`=0

∥∥∥∥∥νN

(
P
(

k
T

))`(
P
(

N +1+ `

T

)
−P

(
k
T

))∥∥∥∥∥
1

.

It is clear that νN
(
P
( k

T

))`
is a probability vector for 0≤ `≤ k−N−2, so naturally

∥∥∥∥∥π(0)P
(

1
T

)
P
(

2
T

)
· · ·P

(
k−1

T

)
P
(

k
T

)
−π

(
k
T

)∥∥∥∥∥
TV

≤max
ν

∥∥∥∥∥ν

(
P
(

k
T

))k−N

−π

(
k
T

)∥∥∥∥∥
TV

+
1
2

k−N−2

∑
`=0

max
ν

∥∥∥∥∥ν

(
P
(

N +1+ `

T

)
−P

(
k
T

))∥∥∥∥∥
1

where the maximum is taken over all probability vectors ν .
Because k−N = tmix(Psup,ε/2)≥ tmix(P

( k
T

)
,ε/2), it is easy to see that

∥∥∥∥∥π(0)P
(

1
T

)
P
(

2
T

)
· · ·P

(
k−1

T

)
P
(

k
T

)
−π

(
k
T

)∥∥∥∥∥
TV

≤ ε

2
+

1
2

k−N−2

∑
`=0

max
ν

∥∥∥∥∥ν

(
P
(

N +1+ `

T

)
−P

(
k
T

))∥∥∥∥∥
1

.

Observe that the terms in the sum of the right hand side of the inequality are now the matrix norms for
the matrices P

(N+1+`
T

)
−P

( k
T

)
for 0≤ `≤ k−N−2. This would imply that

∥∥∥∥∥π(0)P
(

1
T

)
P
(

2
T

)
· · ·P

(
k−1

T

)
P
(

k
T

)
−π

(
k
T

)∥∥∥∥∥
TV

≤ ε

2
+

1
2

k−N−2

∑
`=0

∥∥∥∥∥P
(

N +1+ `

T

)
−P

(
k
T

)∥∥∥∥∥.
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By adding and subtracting the same value to the above inequality and then using the triangle inequality∥∥∥∥∥π(0)P
(

1
T

)
P
(

2
T

)
· · ·P

(
k−1

T

)
P
(

k
T

)
−π

(
k
T

)∥∥∥∥∥
TV

≤ ε

2
+

1
2

k−N−2

∑
`=0

∥∥∥∥∥P∗
(

N +1+ `

T

)
−P∗

(
k
T

)∥∥∥∥∥
+

1
2

k−N−2

∑
`=0

∥∥∥∥∥P
(

N +1+ `

T

)
−P∗

(
N +1+ `

T

)∥∥∥∥∥
+

1
2

k−N−2

∑
`=0

∥∥∥∥∥P∗
(

k
T

)
−P

(
k
T

)∥∥∥∥∥.
Using the density of the Lipschitz continuous functions with finite Lipschitz constant in the continuous
function space ∥∥∥∥∥π(0)P

(
1
T

)
P
(

2
T

)
· · ·P

(
k−1

T

)
P
(

k
T

)
−π

(
k
T

)∥∥∥∥∥
TV

≤ ε

2
+

1
2

k−N−2

∑
`=0

∥∥∥∥∥P∗
(

N +1+ `

T

)
−P∗

(
k
T

)∥∥∥∥∥
+

k−N−2

∑
`=0

ε

4tmix (Psup,ε/2)
.

Because P∗ : [0,1]→P ia
n is a Lipschitz continuous function with Lipschitz constant L, it can be shown

that ∥∥∥∥∥π(0)P
(

1
T

)
P
(

2
T

)
· · ·P

(
k−1

T

)
P
(

k
T

)
−π

(
k
T

)∥∥∥∥∥
TV

≤ ε

2
+

L
2

k−N−2

∑
`=0

∣∣∣∣∣N +1+ `

T
− k

T

∣∣∣∣∣
+

k−N−2

∑
`=0

ε

4tmix (Psup,ε/2)
.

After relabeling the sum∥∥∥∥∥π(0)P
(

1
T

)
P
(

2
T

)
· · ·P

(
k−1

T

)
P
(

k
T

)
−π

(
k
T

)∥∥∥∥∥
TV

≤ ε

2
+

L
4T

(k−N−1)(k−N)

+
ε

4tmix (Psup,ε/2)
(k−N−1).
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Because k−N = tmix(Psup,ε/2)∥∥∥∥∥π(0)P
(

1
T

)
P
(

2
T

)
· · ·P

(
k−1

T

)
P
(

k
T

)
−π

(
k
T

)∥∥∥∥∥
TV

≤ 3ε

4
+

L
4T

t2
mix (Psup,ε/2) .

T was selected to be large enough. In fact,

T =
3n3/2Lt2

mix (Psup,ε/2)
(1−2

√
nε)ε

≥
Lt2

mix(Psup,ε/2)
ε

.

Finally it is shown that∥∥∥∥∥π(0)P
(

1
T

)
P
(

2
T

)
· · ·P

(
k−1

T

)
P
(

k
T

)
−π

(
k
T

)∥∥∥∥∥
TV

≤ ε.

Part 2. Assume that k < tmix (Psup,ε/2)
First notice that

π(0)P
(

1
T

)
P
(

2
T

)
· · ·P

(
k−1

T

)
P
(

k
T

)
−π

(
k
T

)
=

(
π(0)−π

(
1
T

))
P◦1 +π

(
1
T

)
P◦2−π

(
k
T

)
.

Repeating this process, it can be shown that

π(0)P
(

1
T

)
P
(

2
T

)
· · ·P

(
k−1

T

)
P
(

k
T

)
−π

(
k
T

)
=

k

∑
j=1

(
π

(
j−1

T

)
−π

(
j

T

))
P◦j .

By the triangle inequality∥∥∥∥∥π(0)P
(

1
T

)
P
(

2
T

)
· · ·P

(
k−1

T

)
P
(

k
T

)
−π

(
k
T

)∥∥∥∥∥
TV

≤
k

∑
j=1

∥∥∥∥∥
(

π

(
j−1

T

)
−π

(
j

T

))
P◦j

∥∥∥∥∥
TV

.

Because P◦j is a probability transition matrix∥∥∥∥∥
(

π

(
j−1

T

)
−π

(
j

T

))
P◦j

∥∥∥∥∥
TV

≤

∥∥∥∥∥π

(
j−1

T

)
−π

(
j

T

)∥∥∥∥∥
TV

.
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This will imply that ∥∥∥∥∥π(0)P
(

1
T

)
P
(

2
T

)
· · ·P

(
k−1

T

)
P
(

k
T

)
−π

(
k
T

)∥∥∥∥∥
TV

≤
k

∑
j=1

∥∥∥∥∥π

(
j−1

T

)
−π

(
j

T

)∥∥∥∥∥
TV

.

Using Proposition 1 it is clear that as long as

T ≥
3Ln3/2tmix(Psup,ε/2)

εσ

one has that ∥∥∥∥∥π

(
j−1

T

)
−π

(
j

T

)∥∥∥∥∥
TV

≤ ε

tmix(Psup,ε/2)
.

This would imply that∥∥∥∥∥π(0)P
(

1
T

)
P
(

2
T

)
· · ·P

(
k−1

T

)
P
(

k
T

)
−π

(
k
T

)∥∥∥∥∥
TV

≤ kε

tmix(Psup,ε/2)
≤ ε.

Proposition 2 implies that

T =
3Ln3/2t2

mix(Psup,ε/2)
(1−2

√
nε)ε

≥
3Ln3/2tmix(Psup,ε/2)

εσ
.

This completes our proof. �

4. CONCLUSION

Notice that an immediate consequence of Theorem 2 is that there is a tighter asymptotic bound when
compared to the previous result in Theorem 1. Also convex-combination evolutions are a specific type
of continuous evolution, so the class of evolutions is much broader. The following corollary sums up
these two points.

Corollary 1. Given a time-inhomogeneous, discrete-time Markov chain governed by a continuous
evolution in P ia

n , for ε > 0 and P : [0,1]→P ia
n a continuous function with respect to the matrix norm

we have that

(11) tsad(P,ε) = O
(

t2
mix(Psup,ε/2)

ε

)
as ε ↘ 0.
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To answer a final question, this bound is optimal. To show this, it suffices to find one specific
function P such that the stable adiabatic time is exactly a constant multiplied my the square of the
largest mixing time divided by ε . For this one can consider a convex-combination evolution. Here let

P0 =


1 0 · · · 0
1 0 · · · 0
...

...
. . .

...
1 0 · · · 0

 and P1 =



0 1 0 0 · · · 0
0 0 1 0 · · · 0

0 0 0 1
. . .

...
...

...
...

. . . . . . 0
0 0 0 · · · 0 1
0 0 0 · · · 0 1


.

Notice that P0 and P1 do not create irreducible Markov chains; however, if we were to slightly alter
the matrices, then we can preserve the structure of the convex combination, the approximate mixing
times throughout the evolution and the stable adiabatic time. For example, define for a small value δ

the values a = δ/(n−1) and b = 1−δ −a. Letting Jn be the square matrix of all ones of dimension
n, we can define two new probability transition matrices P∗0 = aJn + bP0 and P∗1 = aJn + bP1. The
convex combination of P∗0 and P∗1 form an evolution in P ia

n .
As shown in [3] the adiabatic time for a convex-combination evolution from P0 to P1 is of the

asymptotic order of the square of the largest mixing time divided by ε . The only inequality that must
hold for the adiabatic time, rather than the stable adiabatic time, is for ‖π0P 1

T
· · ·P T

T
−π T

T
‖TV < ε .

Naturally, for all the other inequalities to hold ‖π0P 1
T
· · ·P k

T
−π k

T
‖TV < ε where 1≤ k < T one must

select a value of T at least as large as a constant multiplied by the square of the largest mixing time
divided by ε . Because the small alteration of the convex-combination evolution preserves all the
stability of the original evolution, the result in this paper guarantees that this value of T must be of the
same asymptotic order for the convex-combination evolution in P ia

n . This shows that the result from
Corollary 1 is optimal.

5. PROOFS

5.1. Proof of Proposition 1. To begin, consider the creation of an orthonormal basis of eigenvectors
associated with (I−P(s))(I−P(s))T with respect to ‖ · ‖2 through a singular value decomposition of
(I−P(s)), where s ∈ [0,1].
Here let σ1(s)≥ ·· · ≥ σn−1(s) = σ(s) be the positive singular values of (I−P(s)) with respect to the
Euclidean inner product. This implies that there exists an orthonormal basis {v1(s), · · · ,vn(s)} such
that vj(s)(I−P(s))(I−P(s))T = σ2

j (s)vj(s) for 1≤ j ≤ n−1 and vn(s)(I−P(s))(I−P(s))T = 0.
Here vn(s) = π(s)/‖π(s)‖2.
To show continuity at s let ε > 0 and first notice that for any t ∈ [0,1], (π(t)− π(s))(I−P(s)) =
π(t)(P(t)−P(s)).
Using the Euclidean norm, it can easily be seen that if P(t) 6= P(s) and t 6= s, then

‖(π(t)−π(s))(I−P(s))‖2

‖π(t)−π(s)‖2
=
‖π(t)(P(t)−P(s))‖2

‖π(t)−π(s)‖2
.
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Throughout this proof 〈·, ·〉 we denote the Euclidean inner product.
For 1≤ j ≤ n let c j(s, t) = 〈π(t)−π(s),vj(s)〉. Then π(t)−π(s) = ∑

n
j=1 c j(s, t)vj(s).

This will imply that

‖(π(t)−π(s))(I−P(s))‖2
2

‖π(t)−π(s)‖2
2

=
〈(π(t)−π(s))(I−P(s)),(π(t)−π(s))(I−P(s))〉

〈π(t)−π(s),π(t)−π(s)〉

=
〈π(t)−π(s),(π(t)−π(s))(I−P(s))(I−P(s))T 〉

〈π(t)−π(s),π(t)−π(s)〉

=
〈∑n

j=1 c j(s, t)vj(s),∑n−1
j=1 σ2

j (s)c j(s, t)vj(s)〉
〈∑n

j=1 c j(s, t)vj(s),∑n
j=1 c j(s, t)vj(s)〉

=
∑

n−1
j=1 σ2

j (s)c
2
j(s, t)

∑
n
j=1 c2

j(s, t)

≥ σ
2
n−1(s)

∑
n−1
j=1 c2

j(s, t)

∑
n
j=1 c2

j(s, t)

= σ
2
n−1(s)

(
1− c2

n(s, t)
∑

n
j=1 c2

j(s, t)

)

= σ
2
n−1(s)

(
1−
(
< π(t)−π(s),vn(s)>
‖π(t)−π(s)‖2

)2
)
.

Letting w(s, t) = (π(t)−π(s))/‖π(t)−π(s)‖2, the above inequality can be written as

σ
2
n−1(s)

(
1− (〈w(s, t),vn(s)〉)2

)
≤ ‖π(t)(P(t)−P(s))‖2

2

‖π(t)−π(s)‖2
2

.

Because w(s, t) and vn(s) are unit vectors, the fact that

‖w(s, t)‖2
2−2〈w(s, t),vn(s)〉+‖vn(s)‖2

2 = ‖w(s, t)−vn(s)‖2
2

can be used to show that

1−〈w(s, t),vn(s)〉=
1
2
‖w(s, t)−vn(s)‖2

2

and the fact that

‖w(s, t)‖2
2 +2〈w(s, t),vn(s)〉+‖vn(s)‖2

2 = ‖w(s, t)+vn(s)‖2
2

can be used to show that

1+ 〈w(s, t),vn(s)〉=
1
2
‖w(s, t)+vn(s)‖2

2.
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From this it is clear that 1− (〈w(s, t),vn(s)〉)2 = ‖w(s, t)− vn(s)‖2
2 · ‖w(s, t)+ vn(s)‖2

2/4. Plugging
this into the previous equation we obtain

‖π(t)−π(s)‖2 ≤
2‖π(t)(P(t)−P(s))‖2

σn−1(s)‖w(s, t)−vn(s)‖2 · ‖w(s, t)+vn(s)‖2
.

Notice that 〈w(s, t),1〉/
√

n = 0 and 〈vn(s),1〉/
√

n = 1/(
√

n‖π(s)‖2) for all t ∈ [0,1]. Because these
are the scalar components of the projections of w(s, t) and vn(s) onto 1 respectively, it can be shown that
the minimum possible value for ‖w(s, t)−vn(s)‖2 and ‖w(s, t)+vn(s)‖2 is at least 1/(

√
n‖π(s)‖2) .

This shows that

‖π(t)−π(s)‖2 ≤
2n‖π(s)‖2

2 · ‖π(t)(P(t)−P(s))‖2

σn−1(s)

≤ 2n‖π(t)(P(t)−P(s))‖2

σn−1(s)

=
2n‖π(t)(P(t)−P(s))‖2

σ(s)
.

Let σ = mins∈[0,1]{σ(s)}.
Again for x,y ∈ Rn such that x and y are probability measures, it is understood that

1
2
‖x−y‖2 ≤ ‖x−y‖TV ≤

√
n

2
‖x−y‖2.

This will imply that

‖π(t)−π(s)‖TV ≤
n3/2‖π(t)(P(t)−P(s))‖1

σ

≤ n3/2 maxν ‖ν(P(t)−P(s))‖1

σ

where the maximum is taken over all vectors ν such that ‖ν‖1 = 1.
Using the matrix norm notation one can conclude that

‖π(t)−π(s)‖TV ≤
n3/2‖P(t)−P(s)‖

σ
.

Notice that the space of Lipschitz continuous functions mapping [0,1] to P ia
n are dense in the space of

continuous functions mapping [0,1] to P ia
n . This implies that there exists a Lipschitz function P∗ with

Lipschitz constant L such that

‖P(t)−P∗(t)‖ ≤ σε

3n3/2
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for all t ∈ [0,1].
One can use the triangle inequality along with this density argument to conclude that

‖π(t)−π(s)‖TV ≤
n3/2‖P(t)−P(s)‖

σ

=
n3/2

σ
(‖P∗(t)−P∗(s)+P(t)−P∗(t)+P∗(s)−P(s)‖)

≤ n3/2

σ
(‖P∗(t)−P∗(s)‖+‖P(t)−P∗(t)‖+‖P∗(s)−P(s)‖)

≤ n3/2

σ

(
‖P∗(t)−P∗(s)‖+ σε

3n3/2 +
σε

3n3/2

)
=

n3/2‖P∗(t)−P∗(s)‖
σ

+
2ε

3

Because P∗ is Lipschitz continuous with Lipschitz constant L, one has that ‖P∗(t)−P∗(s)‖ ≤ L
∣∣t− s

∣∣
for all t,s ∈ [0,1].
This shows that

‖π(t)−π(s)‖TV ≤
Ln3/2

∣∣t− s
∣∣

σ
+

2ε

3
.

Clearly if ε > 0, then having ∣∣t− s
∣∣≤ δ =

εσ

3Ln3/2

implies ‖π(t)−π(s)‖TV ≤ ε .
This shows that π is continuous at s ∈ [0,1]. Because one can do this for any s ∈ [0,1], it is seen that π

is continuous with respect to the total variation norm on [0,1]. Because δ does not depend on the value
of s ∈ [0,1], it is shown that π is uniformly continuous.
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