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Abstract. Di�erential calculus on cartesian spaces has many generalisations. In partic-
ular, on a set X, a di�eological structure is given by maps from open subsets of cartesian
spaces to X, a di�erential structure is given by maps from X to R, and a Frölicher structure
is given by maps from R to X as well as maps from X to R. We illustrate the relations
between these structures through examples.

1. Introduction

There are many structures in the mathematical literature that generalise di�erential cal-
culus beyond manifolds. In this paper we focus on the simplest such structures: di�eology
(as de�ned by Souriau), di�erential structures (in the sense of Sikorski), and Frölicher struc-
tures. A di�eology on a set X is given by a set of maps from open subsets of cartesian spaces
to X; see De�nition 2.1. A di�erential structure on a set X is given by a set of maps from
X to R; see De�nition 2.2. A Frölicher structure on a set X is given by a set of maps from
R to X and a set of maps from X to R; see De�nition 2.12. These structures are motivated
by the following characterisations of smooth maps between manifolds.

Let M and N be open subsets of cartesian spaces Rm and Rn and ψ : M → N a function.
Smoothness of ψ is equivalent to each of the following conditions.

(1) For each k, each open subset U of Rk, and each smooth map p : U →M , the compo-
sition ψ ◦ p : U → N is smooth.

(2) For each real-valued smooth function f : N → R, the composition f ◦ ψ : M → R is
smooth.

(3) For each smooth curve γ : R→M , the composition ψ ◦ γ : R→ N is smooth.

The fact that the third condition implies the smoothness of ψ follows from the following
theorem of Jan Boman [11, Theorem 1]: Let f be a function from Rd to R, and assume that
the composition f ◦ u is in C∞(R,R) for every u ∈ C∞(R,Rd). Then f is in C∞(Rd,R).

In this paper, we illustrate the relation between di�erential structures, di�eological struc-
tures, and Frölicher structures, through examples. The paper should be valuable to re-
searchers and graduate students seeking a quick and e�ective introduction to these structures.
Whereas the goal of the paper is mostly expository, the paper does contain new material. We
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identify Frölicher spaces with so-called re�exive di�erential spaces and so-called re�exive dif-
feological spaces (see De�nition 2.6 and Theorems 2.11 and 2.13). This notion of re�exivity
that we introduce and its relation to Frölicher spaces was in principle known to experts but
to our knowledge it has not been made explicit in the literature. Throughout the paper we
place particular emphasis on the theme of re�exivity and non-re�exivity. Our examples �
many of which are new � illustrate the vast richness of di�eology and di�erential structures
beyond the re�exive ones, while pointing at some that are re�exive for non-trivial reasons.
Last but not least, we pose a number of open questions.

We deliberately focus on these structures, which we view as the simplest among the many
generalisations of di�erential calculus. To this end, we do not focus on higher categorical
approaches to smoothness such as di�erentiable stacks, nor algebro-geometric settings such
as C∞-schemes, nor di�erentiability of �nite order. We believe that a good understanding
of the simpler structures would be bene�cial also for those who wish to work with other
generalisations of di�erential calculus, as di�erent tools capture di�erent subsets of the phe-
nomena that we illustrate. Nevertheless, in response to a referee request, we are including
an appendix (Appendix B) in which we comment on relations of these simpler structures to
some other structures in the higher categorical and algebro-geometric settings.

The richness of these non-re�exive examples motivates working in the presence of both a
di�eology and a di�erential structure that are compatible but not necessarily re�exive. Such
spaces, named �Watts spaces� in [101], have been informally promoted by Jordan Watts for
many years.

In Section 2, we identify the category of Frölicher spaces with the categories of so-called
re�exive di�erential spaces and so-called re�exive di�eological spaces (see De�nition 2.6 and
Theorems 2.11 and 2.13) and give some examples of non-re�exive di�eological spaces and
non-re�exive di�erential spaces.

One of the motivations for considering di�eological and di�erential structures is that they
are meaningful for arbitrary subsets and quotients of manifolds. In Section 3, we discuss how
di�eological and di�erential structures relate on these objects; see Propositions 3.2 and 3.5.
We include two open questions, one about the di�eology of symplectic reduced spaces, and
one about the di�erential structure of an irrational line in the torus.

In Section 4, we consider orbifolds, quotients by compact Lie group actions, and manifolds
with corners. By a result of Gerald Schwarz [86], the Hilbert map identi�es the quotient of
a linear compact Lie group action with a subset of a cartesian space as di�erential spaces.
Consequently, the subspace di�erential structure on its image is re�exive. As a consequence,
manifolds with corners can be de�ned equivalently as di�erential spaces or as di�eological
spaces; either of these structures is re�exive. See Example 4.6. On the other hand, the
quotient di�eology can be non-re�exive, and consequently di�erent from the subset di�eology
on the image of the Hilbert map. See Examples 4.1 and 4.4.

In Section 5, we consider �nite unions of copies of the real line, as well as �nite unions
of manifolds. For example, the union of the three coordinate axes in R3 is di�eomorphic
to a union of three concurrent lines in R2 di�eologically but not as di�erential spaces. The
former di�erential space is re�exive; the latter is not. See Examples 5.1 and 5.4. For
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a generalization to cleanly intersecting submanifolds, see Example 5.3. We conclude this
section with a question about the re�exivity of an example that comes from polyfolds.

In Section 6, we consider topological properties of di�eological and di�erential spaces, and
obtain some topological necessary conditions for re�exivity.

Appendix A contains some technical proofs that are deferred from the earlier sections.

In Appendix B, we brie�y compare di�eological, di�erential, and Frölicher spaces to Lie
groupoids, stacks, sheaves of sets over the site Open, Mostow spaces, subcartesian spaces,
di�erentiable spaces à la Gonzalez-Salas/Spallek, and C∞-schemes.

This paper evolved from visits of Patrick Iglesias-Zemmour and author Batubenge to the
University of Toronto. Batubenge and Iglesias-Zemmour contributed to the initiation and
vision of this paper and to Sections 2, 3, 4, 5, and relevant proofs in Appendix A. Many
of the details were worked out and written up by Watts as Chapter 2 of his University of
Toronto Ph.D. thesis [102], supervised by Yael Karshon. Appendix B was authored mostly
by Jordan Watts, in response to our referee's request to clarify how the simple structures on
which we are focusing in this paper relate to more complicated structures that occur in the
literature.

Some history and notes on the literature.

The development of the various notions of smooth structures discussed in this paper oc-
curred mainly in the 1960s, '70s, and '80s, motivated by the need to push di�erentiability
beyond the con�nes of �nite-dimensional manifolds to the singular subset, singular quotient,
and in�nite-dimensional settings.

Di�erential structures (De�nition 2.2) were introduced by Sikorski in the late 1960s; see
[87, 88]. Many of the properties of the smooth structure on a smooth manifold can be
derived from its ring of smooth functions; a di�erential space is a topological space equipped
with a ring of functions that captures these properties. A di�erential structure determines a
sheaf of continuous functions that contains the constants (as considered by Hochschild [44]),
which, in turn, is a special case of a ringed space (a topological space equipped with a sheaf
of rings; see EGA 1 [39]). Pushing similar notions from algebraic geometry into the realm
of di�erential geometry leads to further developments, C∞-schemes [52] and di�erentiable
spaces in the sense of Gonzalez-Salas [37] being some resulting theories.

Special cases of di�erential spaces appear in the literature in various contexts. A sub-
cartesian space, introduced by Aronszajn in the late 1960s and motivated by manifolds with
singularities that occur in his study of the Bessel potential in functional analysis, is a Haus-
dor� di�erential space that is locally di�eomorphic to (arbitrary) subsets of cartesian spaces;
see [2, 3, 4, 91]. In the mid-1970s, interest in equipping singular orbit spaces of compact Lie
group actions with a smooth structure (see Bredon [12, Chapter 6]) led to a result of Schwarz
[86] showing that while a priori quotient spaces, these spaces are in fact subcartesian as well;
see also Cushman-�niatycki [26], who work with orbit spaces of proper Lie group actions in
the subcartesian setting. A similar result for symplectic quotients in the early 1990s by
Arms-Cushman-Gotay [1] lead to the study of these spaces as subcartesian spaces equipped
with Poisson structures; for example, this is used in the treatment of symplectic quotients
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as symplectic strati�ed spaces by Sjamaar-Lerman [89]. Today, viewing strati�ed spaces as
di�erential spaces is commonplace; for example, they appear in the book by P�aum [83]
and the work of �niatycki [91] as subcartesian spaces, and Kreck's stratifolds [61, 98] are
a version of strati�ed di�erential spaces whose functions satisfy certain conditions at the
strata. Di�erential subspaces of cartesian spaces are special cases of subcartesian spaces:
convex subsets are studied in Karshon-Watts [57], and so-called Hölder sets and certain sub-
analytic sets are studied in Rainer [85, Theorem 1.13]. Our main reference on the theory of
di�erential spaces is the book by �niatycki [91].

Di�eology (De�nition 2.1) was introduced by Jean-Marie Souriau around 1980; see [92].
An early success of the theory which helped to motivate its further development is the work
of Donato-Iglesias on irrational tori [27]; see Example 3.9. Irrational tori, (or �infracircle�s)
also appear in the study of geometric quantisation [106], [46], as well as the integration of
certain Lie algebroids [25], and so play a role in mathematical physics. Strati�ed spaces as
di�eological spaces appear in [40, 41], where the di�eological language is a natural setting to
describe the so-called zero perverse di�erential forms of the intersection theory of Goresky-
MacPherson. Our main reference on the theory of di�eology is the book by Iglesias-Zemmour
[47].

Souriau's motivation for developing di�eology came from in�nite-dimensional groups ap-
pearing in mathematical physics. A similar notion was introduced and studied by Kuo-Tsai
Chen already in the 1970s for the purpose of putting di�erentiability on path spaces used
in variational calculus on an equal footing with smooth structures on manifolds; the precise
de�nition went through several revisions [14, 15, 16, 17]. The main di�erence between di�e-
ological spaces and Chen spaces is that the latter use convex subsets instead of open subsets
of cartesian spaces as domains of the so-called plots. In [57], authors Karshon and Watts
show that di�eological spaces are isomorphic as a category to a full subcategory of Chen
spaces.

Similar motivations in functional analysis lead Frölicher and Kriegl to introduce what are
now called Frölicher spaces in their book [35], following the work of Frölicher in the early
1980s [32, 33, 34]. A special case is the �convenient setup� of Frölicher, Kriegl, and Michor
[35, 63], which applies to �nite and in�nite-dimensional vector spaces and manifolds. Vector
spaces from the di�eological perspective are studied by Christensen-Wu in [21]. Re�exivity
of spaces of smooth maps between di�eological spaces is examined in an upcoming paper [58]
by the authors Karshon and Watts. Iglesias-Zemmour and Karshon study Lie groups as dif-
feological subgroups of di�eomorphism groups in [49], coadjoint orbits of in�nite-dimensional
groups are studied by Iglesias-Zemmour in [28] and Lee in [65], in�nite products and coprod-
ucts appear in Karshon's paper on moduli spaces [53], di�eological classifying spaces appear
in the work of Magnot-Watts [73] and Christensen-Wu [22], and Magnot studies Frölicher
and di�eological Lie groups in [70, 71, 72].

Many of the categories mentioned above are compared in the paper of Andrew Stacey
[96]. Along with the di�eological, di�erential, and Frölicher spaces, he also considers various
de�nitions of Chen spaces, as well as Smith spaces [90] (topological spaces equipped with
a set of continuous functions that satisfy a certain �re�exivity� condition), and constructs
functors between these categories. Treatments of di�eological and Chen spaces from the

4

1 May 2023 11:22:48 PDT
230501-Watts Version 1 - Submitted to Rocky Mountain J. Math.



point-of-view of sheaves on categories is given in Baez-Ho�nung [6] (also see [5]), and a
treatment of di�eological spaces from the point-of-view of stacks on manifolds is given in
Watts-Wolbert [105].

Quotient spaces of Lie group actions, Lie groupoids, and more generally, singular foliations,
form another setting in which the theories of di�eology, Frölicher spaces, and di�erential
spaces are important. Orbifolds are given a di�eological treatment in a paper of Iglesias-
Zemmour, Karshon, and Zadka [48], and further studied in an intersection of di�eology with
non-commutative geometry in a paper of Iglesias-Zemmour and La�neur [50]. Quasifolds
from a di�eological and groupoid perspective are treated in Karshon-Miyamoto [55], based
on the work of Masrour Zoghi [109]. From a di�erential space perspective, or equivalently
in this case, a Frölicher perspective, orbifolds are examined in a paper of Watts [103], and
orbit spaces of linear circle actions in a paper of Craig-Downey-Goad-Mahoney-Watts [24].
Di�erential forms on these quotient spaces from a di�eological perspective are compared with
basic forms for compact Lie group actions in Watts' Ph.D. thesis [102], proper Lie group
actions in a paper by Karshon-Watts [56], proper Lie groupoids in a paper by Watts [104],
and certain singular foliations by Miyamoto [76].
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2. Relations Between Structures

De�nition 2.1 (Di�eology). Let X be a nonempty set. A parametrisation of X is a
function p : U → X where U is an open subset of Rn for some n. A di�eology D on X is a
set of parametrisations satisfying the following three conditions.

(1) (Covering) For every x ∈ X and every nonnegative integer n ∈ N, the constant
function p : Rn → {x} ⊆ X is in D.

(2) (Locality) Let p : U → X be a parametrisation such that for every u ∈ U there
exists an open neighbourhood V of u in U satisfying p|V ∈ D. Then p ∈ D.

(3) (Smooth Compatibility) Let p : U → X be a plot in D. Then for every n ∈ N,
every open subset V ⊆ Rn, and every in�nitely-di�erentiable map F : V → U , we
have p ◦ F ∈ D.

A set X equipped with a di�eology D is called a di�eological space and is denoted by (X,D).
When the di�eology is understood, we may drop the symbol D. The parametrisations in D
are called plots. A map F : X → Y between di�eological spaces is smooth if for any plot
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p : U → X of X the composition F ◦ p : U → Y is a plot of Y . The map is a di�eomorphism
if it is smooth and has a smooth inverse. To avoid ambiguity, we sometimes say that the
map is di�eologically smooth or is a di�eological di�eomorphism.

The D-topology on X is the strongest topology in which every plot is continuous; thus, a
subset Y of X is D-open if and only if for each plot p ∈ D the preimage p−1(Y ) is open in
the domain of p. �

Given a collection of functions F0 on a set X, its initial topology is the weakest topology
on X for which every function in F0 is continuous. Thus, a sub-basis for the initial topology
is given by the pre-images of open intervals by functions in F0.

De�nition 2.2 (Di�erential space). Let X be a nonempty set. A di�erential structure
on X is a nonempty family F of real-valued functions on X, along with its initial topology,
satisfying the following two conditions.

(1) (Smooth compatibility) For any positive integer k, functions f1, ..., fk ∈ F , and
F ∈ C∞(Rk), the composition F (f1, ..., fk) is in F .

(2) (Locality) Let f : X → R be a function such that for any x ∈ X there exist an open
neighbourhood U ⊆ X of x and a function g ∈ F satisfying f |U = g|U . Then f ∈ F .

A set X equipped with a di�erential structure F is called a di�erential space and is denoted
by (X,F). When the di�erential structure is understood, we may drop the symbol F . A map
F : X → Y between di�erential spaces (X,FX) and (Y,FY ) is smooth if for every function
f : Y → R in FY the composition f ◦ F is in FX . The map is a di�eomorphism if it is
smooth and has a smooth inverse. To avoid ambiguity, we sometimes say that the map is
functionally smooth or is a functional di�eomorphism. �

De�nition 2.3 (�Compatible� and �induces�). Given a set X with a collection D0 of
parametrisations and a collection F0 of real-valued functions, we say that

(i) D0 and F0 are compatible if f ◦p is in�nitely-di�erentiable for all p ∈ D0 and f ∈ F0;

(ii) D0 induces F0 if F0 coincides with the set

ΦD0 := {f : X → R | ∀(p : U → X) ∈ D0, f ◦ p ∈ C∞(U)}

of those real-valued functions whose precomposition with each element of D0 is
in�nitely-di�erentiable;

(iii) F0 induces D0 if D0 coincides with the set

ΠF0 := {parametrisations p : U → X | ∀f ∈ F0, f ◦ p ∈ C∞(U)}

of those parametrisations whose composition with each element of F0 is in�nitely-
di�erentiable.

Thus, D0 and F0 are compatible if and only if F0 is contained in ΦD0, if and only if D0 is
contained in ΠF0. �
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Example 2.4 (Manifolds). On a smooth manifold M , the sets of parametrisations U →
M that are in�nitely-di�erentiable and the set of real-valued functions M → R that are
in�nitely-di�erentiable are a di�eology and a di�erential structure that induce each other.
This follows from the fact that smoothness is a local property and from the existence of
smooth bump functions. G

Remark 2.5. We make the following easy observations:

• Each of the operations D0 7→ ΦD0 and F0 7→ ΠF0 is inclusion-reversing.

• We always have ΠΦD0 ⊇ D0 and ΦΠF0 ⊇ F0.

These facts imply that, given a family D of parametrisations, there exists a family of real-
valued functions that induces D if and only if ΠΦD = D. Indeed, if D = ΠF then ΠΦD ⊆ D
amounts to ΠΦΠF ⊆ ΠF , which follows from ΦΠF ⊃ F . Similarly, given a family F of
real-valued functions, there exists a family of parametrisations that induces F if and only if
ΦΠF = F . �

De�nition 2.6 (Re�exive). A di�eologyD is re�exive if ΠΦD = D. A di�erential structure
F is re�exive if ΦΠF = F . �

Proposition 2.7 (Re�exive stability). For any family F0 of real-valued functions on a
set, ΠF0 is a re�exive di�eology on the set. For any family D0 of parametrisations on a set,
ΦD0 is a re�exive di�erential structure on the set.

We prove Proposition 2.7 in �A.1.

Thus, if a di�eology D and a di�erential structure F induce each other, then they are both
re�exive. For example, manifolds are re�exive both as di�eological spaces and as di�erential
spaces. Here are examples of di�eological and of di�erential spaces that are not re�exive:

Example 2.8 (Spaghetti di�eology). The spaghetti di�eology (or wire di�eology) on R2

consists of those parametrisations that locally factor through curves. That is, a parametri-
sation p : U → R2 is in the spaghetti di�eology if and only if for every u ∈ U there is an open
neighbourhood V of u in U , a smooth map F : V → R, and a smooth curve q : R→ R2, such
that p|V = q ◦ F . See [47, Section 1.10] for more details.

The di�erential structure that is induced by the spaghetti di�eology consists of those real-
valued functions f : R2 → R such that f ◦ q is smooth for every smooth curve R→ R2. By
Boman's theorem [11, Theorem 1], every such function f is in�nitely-di�erentiable. Thus,
this is the standard di�erential structure on R2, and the di�eology that it induces is the
standard di�eology on R2.

The spaghetti di�eology and the standard di�eology have the same smooth curves R→ R2,
but they are di�erent. For example, the identity map on R2 is in the standard di�eology but
not in the spaghetti di�eology. Thus, the spaghetti di�eology is not re�exive. G

Example 2.9 (Rational numbers). Consider the set Q of rational numbers with the
di�erential structure C∞(Q) that consists of those functions f : Q → R that locally extend
to smooth functions on R. This includes, for example, the restriction to Q of the function
x 7→ 1

x−
√

2
. All the plots in ΠC∞(Q) are locally constant. (Indeed, since the inclusion

7

1 May 2023 11:22:48 PDT
230501-Watts Version 1 - Submitted to Rocky Mountain J. Math.



map Q ↪→ R is in C∞(Q), every p ∈ ΠC∞(Q) must be smooth as a function to R. By the
intermediate value theorem, such a pmust be locally constant.) Consequently, the di�erential
space (Q, C∞(Q)) is not re�exive. G

Example 2.10 (Ck(R)). Fix an integer k ≥ 0. Consider the real line R with the di�erential
structure Ck(R) consisting of those real-valued functions that are k-times continuously dif-
ferentiable. All the plots in ΠCk(R) are locally constant. (Indeed, take any parametrisation
p : U → R. Since the identity map is in Ck(R), if p ∈ ΠCk(R), then p must be in�nitely-
di�erentiable. If p is in�nitely-di�erentiable and not locally constant, then there exists u ∈ U
such that dp|u 6= 0; the composition of p with a map f ∈ Ck(R) that is not smooth at p(u) is
not smooth, so p /∈ ΠCk(R).) Consequently, the di�erential space (R, Ck(R)) is not re�exive.

G

Di�eological spaces, along with di�eologically smooth maps, form a category; re�exive
di�eological spaces form a full subcategory. Di�erential spaces, along with functionally
smooth maps, form a category; re�exive di�erential spaces form a full subcategory.

If (X,DX) and (Y,DY ) are two di�eological spaces and F : X → Y is a di�eologically
smooth map, then F is also a functionally smooth map from (X,ΦDX) to (Y,ΦDY ). Thus,
we have a functor Φ from di�eological spaces to re�exive di�erential spaces that sends a
di�eological space (X,D) to the re�exive di�erential space (X,ΦD) and that sends each
map to itself. Similarly, we have a functor Π from di�erential spaces to re�exive di�eological
spaces that sends a di�erential space (X,F) to the re�exive di�eological space (X,ΠF) and
that sends each map to itself. In �A.2 we prove these facts and obtain the following theorem:

Theorem 2.11 (Isomorphism of categories of re�exive spaces). The restriction of
the functor Φ to the subcategory of re�exive di�eological spaces is an isomorphism of cate-
gories onto the subcategory of re�exive di�erential spaces. The restriction of the functor Π
to the subcategory of re�exive di�erential spaces is an isomorphism of categories onto the
subcategory of re�exive di�eological spaces. These isomorphisms are inverses of each other.

Given a set X and a family F0 of real-valued functions on X, we also consider the set
ΓF0 of those maps from R to X whose composition with each element of F0 is in�nitely-
di�erentiable:

ΓF0 := {c : R→ X | ∀f ∈ F0, f ◦ c ∈ C∞(R)}.
The operation F0 7→ ΓF0 is inclusion-reversing. Also, for any family of functions F0 from X
to R and family of functions C0 from R to X, we have C0 ⊆ ΓΦC0 and F0 ⊆ ΦΓF0. These
facts imply that ΓΦΓF0 = ΓF0.

De�nition 2.12 (Frölicher spaces). A Frölicher structure on a set X is a family F of
real-valued functions X → R and a family C of maps R→ X, such that

ΦC = F and ΓF = C.
Such a triple (X, C,F) is a Frölicher space.

Let (X, CX ,FX) and (Y, CY ,FY ) be Frölicher spaces. A map F : X → Y is Frölicher
smooth if it satis�es one, hence all, of the following equivalent conditions:

(i) f ◦ F ∈ FX for every f ∈ FY .
8
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(ii) f ◦ F ◦ c ∈ C∞(R,R) for every c ∈ CX and f ∈ FY .
(iii) F ◦ c ∈ CY for every c ∈ CX .

((i) implies (ii) because FX and CX are compatible, (ii) implies (i) because FX = ΦCX , (ii)
implies (iii) because CY = ΓFY , (iii) implies (ii) because FY and CY are compatible.) �

Frölicher spaces, along with Frölicher smooth maps, form a category. There is a functor
Ξ from the category of Frölicher spaces to the category of re�exive di�erential spaces that
takes (X, C,F) to (X,F) and takes each map to itself. There is also a functor Γ from the
category of di�erential spaces that takes (X,F) to (X,ΓF ,ΦΓF) and takes each map to
itself. In �A.3 we prove these facts and obtain the following theorem:

Theorem 2.13 (Frölicher spaces as re�exive spaces). The functor Ξ is an isomorphism
from the category of Frölicher spaces to the category of re�exive di�erential spaces. The
functor Γ restricts to an isomorphism from the category of re�exive di�erential spaces to the
category of Frölicher spaces. These isomorphisms are inverses of each other.

To summarise, we have isomorphisms between the categories of Frölicher spaces {(X, C,F)},
re�exive di�erential spaces {(X,F)}, and re�exive di�eological spaces {(X,D)}, where the
functors send every map to itself and their actions on objects are given by the following
commuting diagram.

{(X,D)}
C=1-dim'l plots, F=ΦD

..

F=ΦD

��

{(X, C,F)}
D=ΠF

mm

same F

zz
{(X,F)}

C=ΓF

::

D=ΠF

[[
(2.14)

Notes.

(1) In the literature, what we call di�erential structure, di�erential space, functionally
smooth map, and functional di�eomorphism, are sometimes called Sikorski structure,
Sikorski space, Sikorski smooth map, and Sikorski di�eomorphism.

(2) In the literature, the adjective �re�exive� often refers to a Banach space E and means
that the natural inclusion of E into (E∗)∗ is an isomorphism. Many Banach spaces
(for example C([0, 1])) are not re�exive as Banach spaces, but the di�eology and
di�erential structure on a Banach (or Fréchet) space that consist of those parametri-
sations and those real-valued functions that are smooth in the usual sense are always
re�exive; see [32, 42]; also see [58]. Also, the analogue of re�exive stability (Propo-
sition 2.7) for the functor sending a Banach space to its dual is not true: by the
Hahn-Banach theorem, a Banach space E is re�exive if and only if its dual space E∗

is re�exive [31].
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(3) The behaviour of the functors Φ and Π is that of an antitone Galois connection [81].
Other examples of such relationships include sets of polynomials and their zero sets
in algebraic geometry, as well as �eld extensions and their Galois groups.

(4) The functor Ξ : (X, C,F) 7→ (X,F) from Frölicher spaces to di�erential spaces was
described in Cherenack's paper [18]. The functor Γ : (X,F) 7→ (X,ΓF ,ΦΓF) from
di�erential spaces to Frölicher spaces was described in Batubenge's Ph.D. thesis [7,
�2.7]. A di�erential space (X,F) is re�exive if and only if ΦΓF = F ; these spaces were
introduced in [7, �5.2] under the name �pre-Frölicher spaces�. Further comparisons
between Frölicher and di�erential spaces appear in [9].

(5) Example 2.10 appears in [102, Example 2.79]. In the context of Smith spaces,
(R, C0(R)) is discussed in [96, p.100, paragraph on �Smith spaces�]; however, when
R is equipped with its standard topology, (R, C0(R)) is not a Smith space.

(6) Some of the results of this section can be rephrased in terms of adjoint functors and
re�ective subcategories; see Sections 8.4.1 and 8.4.4 of [35]. In particular, Ξ is a left
adjoint to Γ, Φ is a left adjoint to Π, and Γ ◦ Φ is a left adjoint to Π ◦ Ξ. These
facts are also in Stacey's paper [96], noting that (X, C,F) should be (X, CX ,FX) in
the last sentence of the second paragraph of the subsection on Smith and Frölicher
spaces (Section 5).

3. Subsets and Quotients

In this section we discuss subsets and quotients from several points of view: di�erential
structures, di�eology, and topology. We omit many of the proofs. The interested reader can
�ll in the details as an exercise or look them up in Iglesias�Zemmour's book [47, Chapter 1],
Watts' thesis [102, Chapter 2], or �niatycki's book [91, Chapter 2].

De�nition 3.1 (Subsets). Let X be a set and Y ⊆ X a subset. Given a di�eology D on X,
the subset di�eology on Y consists of those parametrisations p : U → Y whose composition
with the inclusion map Y ↪→ X is a plot in D. Given a di�erential structure F on X, the
subspace di�erential structure on Y consists of those functions f : Y → R that locally extend
to X in the following sense: for every x ∈ Y there exists an open neighbourhood U of x in
X with respect to the initial topology and a function f̃ ∈ F such that f |U∩Y = f̃ |U∩Y . �

Di�erential structures are well adapted to subsets:

Proposition 3.2 (Di�erential subspaces). Given a di�erential space (X,F) and a subset
Y ⊂ X, we obtain on Y an unambiguous di�eology and an unambiguous topology. Indeed,
we can �rst take the subspace di�erential structure on Y and then the di�eology on Y that
it induces, or we can �rst take the di�eology on X that F induces and then the subset
di�eology on Y ; these two procedures yield the same di�eology on Y . Also, the initial topology
corresponding to the subspace di�erential structure on Y coincides with the subspace topology
on Y induced by the initial topology on X. �
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Di�eologies are not as well adapted to subsets:

Remark 3.3. Given a di�eological space (X,D) and a subset Y ⊂ X, the subset Y might
not acquire an unambiguous di�erential structure nor an unambiguous topology. The two
procedures � �rst passing to the induced di�erential structure onX and then to the subspace
di�erential structure on Y , or �rst passing to the subset di�eology on Y and then to the
induced di�erential structure on Y � might yield two di�erent di�erential structures on Y .
Also, the D-topology corresponding to the subset di�eology on Y might di�er from the subset
topology induced by the D-topology on X. Both of these ambiguities occur with the subset
Q of R of Example 2.9, as well as with the �pinched topologist's sine curve� of Example 6.8.

�

De�nition 3.4 (Quotients). Let X be a set, let ∼ be an equivalence relation on X, and
let π : X → X/∼ be the quotient map. Given a di�erential structure F on X, the quotient
di�erential structure on X/∼ consists of those functions f : X/∼ → R whose pullback
f ◦π : X → R is in F . Given a di�eology D on X, the quotient di�eology on X/∼ consists of
those parametrisations p : U → X/∼ that locally lift to X in the following sense: for every
u ∈ U there exist an open neighbourhood V of u in U and a plot q : V → X such that
p|V = π ◦ q. �

Di�eologies are well adapted to quotients:

Proposition 3.5 (Di�eological quotients). Given a di�eological space (X,D) and an
equivalence relation ∼ on X, we obtain on the quotient X/∼ an unambiguous di�erential
structure and an unambiguous topology. Indeed, we can �rst take the quotient di�eology on
X/∼ and then the di�erential structure that it induces, or we can �rst take the di�erential
structure on X that D induces and then take the quotient di�erential structure on X/∼.
These two procedures yield the same di�erential structure on X/∼. Also, the D-topology
corresponding to the di�eology on X/∼ coincides with the quotient topology on X/∼ induced
by the D-topology on X. �

Di�erential structures are not as well adapted to quotients:

Remark 3.6. Given a di�erential space (X,F) and an equivalence relation ∼ on X, the
quotient X/∼ might not acquire an unambiguous di�eology nor an unambiguous topology.
The two procedures � �rst passing to the induced di�eology on X and then to the quotient
di�eology on X/∼, or �rst passing to the quotient di�erential structure on X/∼ and then
to the induced di�eology on X/∼ � might yield two di�erent di�eologies on the quotient
X/∼. For example, this occurs with the irrational torus R/(Z + αZ) as in Example 3.9,
with the quotient R/Z2 as in Example 4.4, and with the quotient R/(0, 1) of the real line R
by the open interval (0, 1) as in Example 6.10. Also, the initial topology corresponding to
the quotient di�erential structure on X/∼ might di�er from the quotient topology on X/∼
induced by the initial topology on X; for example, this occurs with the quotient R/(0, 1). �

We conclude this section with a couple of examples and open questions.

We start with an important collection of sub-quotients:
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Example 3.7 (Reduced Spaces). For a symplectic manifold (M,ω) with an action of a
compact Lie group G and momentum map µ : M → g∗, the reduced space µ−1(0)/G inherits
from M an unambiguous di�eology and an unambiguous di�erential structure, which are
compatible. The di�erential structure on the reduced space µ−1(0)/G does not always induce
the di�eology on the reduced space µ−1(0)/G (Example 4.4). �

Example 3.7 raises an interesting question:

Question 3.8. In the setup of Example 3.7, does the di�eology on the reduced space
µ−1(0)/G necessarily induce the di�erential structure on the reduced space µ−1(0)/G?

The following example illustrates that di�eology can carry rich information about quotients
and that di�erential structures can carry rich information about subsets.

Example 3.9 (Irrational �ow on the torus). Fix an irrational number α. Consider the
linear �ow with slope α on the torus R2/Z2:

[x, y] 7→ [x+ t, y + αt].

Let Tα be the quotient of the torus by this linear �ow, equipped with the quotient di�eology
(which induces the quotient di�erential structure and the quotient topology; see Proposi-
tion 3.5). Let Lα be the orbit through [0, 0] of this linear �ow, equipped with the subspace
di�erential structure (which induces the subset di�eology and the subset di�erential struc-
ture; see Proposition 3.2).

The di�erential structure on Tα is trivial: it consists of the constant functions. In contrast,
the di�eology of Tα is non-trivial. For example,

t 7→

{
[0, 0] t < 0

[0, r] t ≥ 0

is not a plot of Tα if r 6∈ Z + αZ. Thus, the di�eological space Tα is not re�exive.

The di�eology on Lα is standard: the inclusion map t 7→ [t, αt] is a di�eomorphism from
the real line R with its standard di�eology to Lα. In contrast, the di�erential structure on
Lα is not standard: for example, its topology is not locally connected. It follows that the
di�erential space Lα is not re�exive. G

We now elaborate on Example 3.9, leading to an open question.

An automorphism of the torus (as a Lie group) carries the linear �ow with slope α to a
linear �ow with slope β where β is obtained from α by a fractional linear transformation
with integer coe�cients:

β =
aα + b

cα + d
, a, b, c, d ∈ Z , ad− bc = ±1.

When α and β are related in this way, we say that they are GL(2,Z)-congruent. Thus, if α
and β are GL(2,Z)-congruent, then the quotients Tα and Tβ are di�eomorphic as di�eological
spaces (hence also as di�erential spaces), and the subsets Lα and Lβ are di�eomorphic as
di�erential spaces (hence also as di�eological spaces). Donato and Iglesias [27] proved a
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striking result: if Tα and Tβ are di�eomorphic as di�eological spaces, then α and β are
GL(2,Z)-congruent. See Iglesias's book [47, Exercise 4 with solution at the back of the
book].

Question 3.10. Assuming that Lα and Lβ are di�eomorphic as di�erential spaces, can we
conclude that α and β are GL(2,Z)-congruent?

4. Orbifolds, Quotients by Compact Group Actions, and Manifolds with

Corners

In this section, we study the quotient di�eological and quotient di�erential structures on
the orbit space of a linear action of a compact Lie group on a cartesian space, and apply this
to proper Lie group actions, to orbifolds, and to manifolds-with-corners.

Example 4.1 (Orthogonal quotient). Let G be a compact Lie group acting linearly
on Rn. By a theorem of Hilbert [107, p. 618], the ring of G-invariant polynomials on Rn is
�nitely-generated. A choice of m generators for this ring induces a G-invariant proper map
i : Rn → Rm, which we call a Hilbert map. By a theorem of Gerald Schwarz [86], every G-
invariant smooth function on Rn can be expressed as the pullback by i of a smooth function
on Rm. This implies that the Hilbert map descends to a di�eomorphism from Rn/G, with
the quotient di�erential structure induced from Rn, to the image of the Hilbert map, with
the subspace di�erential structure induced from Rm.

The quotient di�erential structure on Rn/G is induced by the quotient di�eology on Rn/G
by Proposition 3.5, so it is re�exive by Proposition 2.7. Consequently, the subspace di�er-
ential structure on the image of the Hilbert map is re�exive.

In contrast, the quotient di�eology on Rn/G might not be re�exive. For example, the map
Rn/O(n)→ [0,∞) given by [x] 7→ ‖x‖2 is an isomorphism of di�erential spaces (by Schwarz's
theorem), but the quotient di�eologies on Rn/O(n) are non-isomorphic for di�erent values
of n (see [47], Exercise 50, with solution at the back of the book). In particular, this Hilbert
map does not induce a di�eomorphism of di�eological spaces from Rn/G to its image in Rm.

G

Example 4.2 (Proper Lie group action). Combining Proposition 3.5, Example 4.1, and
the slice theorem [60, 82], the di�erential structure on the quotient of a manifold by a compact
(or proper) Lie group action is re�exive and is subcartesian; i.e., locally di�eomorphic to
subsets of cartesian spaces. G

Example 4.3 (Z2- and (Z2)n-actions). We note two special cases of Schwarz's theorem
[86], which in the case n = 1 were proved by Whitney [108].

(1) Let the two-element group Z2 act on Rn by (x1, . . . , xn) 7→ ±(x1, . . . , xn). Then
every invariant smooth function has the form g((xixj)1≤i≤j≤n) where g : Rn(n+1)/2 →
R is smooth. Here the Hilbert map Rn → Rn(n+1)/2 is given by (x1, . . . , xn) 7→
((xixj)1≤i≤j≤n). When n = 2, after a linear change of coordinates, the image of the
Hilbert map becomes the subset {z2 = x2 + y2, z ≥ 0} of R3.
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(2) Let (Z2)n act on Rn by (x1, . . . , xn) 7→ (±x1, . . . ,±xn). Then every invariant smooth
function has the form g(x2

1, . . . , x
2
n) where g : Rn → R is smooth. Here the Hilbert

map Rn → Rn is given by (x1, . . . , xn) 7→ (x2
1, . . . , x

2
n). Its image is the positive

orthant, Rn
≥0. G

Example 4.4 (Orbifolds). (E�ective) orbifolds can be de�ned as di�eological spaces that
are locally di�eomorphic to quotients of the form Rn/Γ, where Γ is a �nite subgroup of O(n)
(see [48]). As a di�erential space, an orbifold is re�exive. However, the di�eology on an
orbifold is generally not re�exive, as illustrated in the following two examples.

Let the two-element group Z2 act on R by x 7→ ±x, and let π : R → R/Z2 be the
quotient map. The quotient di�eology DR/Z2 induces the quotient di�erential structure
C∞(R/Z2) (see Proposition 3.5), but it is not induced by this di�erential structure: the
map p(u, v) := [±

√
u2 + v2] from R2 to R/Z2 does not have a smooth lift near the origin,

but it is in the di�eology that is induced by C∞(R/Z2). Indeed, by Schwarz's theorem (see
Example 4.3), if f ∈ C∞(R/Z2), then π∗f(x) = g(x2) for some smooth function g : R→ R,
and so f ◦ p is equal to (u, v) 7→ g(u2 + v2), which is smooth. This shows that DR/Z2 is not
re�exive.

The following example is due to Moshe Zadka. Let the two-element group Z2 act on R2

by (x, y) 7→ ±(x, y), and let π : R2 → R2/Z2 be the quotient map. The quotient di�eology
DR2/Z2

induces the quotient di�erential structure C∞(R2/Z2) (see Proposition 3.5), but it is
not induced by this di�erential structure: the map

p(r cos θ, r sin θ) :=

{
[e−1/r2 cos(θ/2), e−1/r2 sin(θ/2)] r > 0

[0, 0] r = 0

from R2 to R2/Z2 does not have a smooth (nor even continuous) lift near the origin, but it is
in the di�eology that is induced by C∞(R2/Z2). Indeed, by Schwarz's theorem (see Example
4.3), if f ∈ C∞(R2/Z2), then π∗f(x, y) = g(x2, xy, y2) for some smooth function g : R3 → R,
and so f ◦ p is equal to

(r cos θ, r sin θ) 7→

{
g(e−2/r2 1+cos θ

2
, e−2/r2 sin θ

2
, e−2/r2 1−cos θ

2
) r > 0

g(0, 0, 0) r = 0,

which is smooth. This shows that DR2/Z2
is not re�exive. G

Example 4.5 (The positive orthant). On the positive orthant Rn
≥0, the subspace di�er-

ential structure that is induced from Rn is re�exive. Indeed, by Example 4.3, the positive
orthant is the image of a Hilbert embedding, and by Example 4.1, this implies that the
di�erential structure F is re�exive. G

Example 4.6 (Manifolds-with-corners). We recall the de�nition of a manifold-with-
corners. An n-dimensional chart-with-corners on a topological spaceM is a homeomorphism
ϕ : U → Ω from an open subset U of M to a relatively open subset Ω of the positive
orthant Rn

≥0. Charts-with-corners ϕ1, ϕ2 are compatible if ϕ2 ◦ ϕ−1
1 and ϕ1 ◦ ϕ−1

2 , which are
homeomorphisms between relatively open subsets of Rn

≥0, are smooth in the sense that they
locally extend to smooth functions from Rn to Rn. An atlas-with-corners on M is a set of
pairwise compatible charts with corners whose domains cover M . A manifold-with-corners
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is a Hausdor�, second-countable topological space M equipped with a maximal atlas with
corners.

An equivalent de�nition of manifold-with-corners is as a Hausdor�, second countable dif-
ferential space that is locally functionally di�eomorphic to open subsets of Rn

≥0. A map
between manifolds-with-corners is smooth in the classical sense if and only if it is function-
ally smooth. The di�erential structure on a manifold-with-corners is re�exive; this follows
from Example 4.5 (the positive orthant) and the existence of smooth bump functions.

Manifolds-with-corners can also be viewed as di�eological spaces. The D-topology on the
positive orthant Rn

≥0 coincides with the subspace topology induced from Rn; this follows
from the fact that the plot (x1, . . . , xn) 7→ (x2

1, . . . , x
2
n) restricts to a homeomorphism from

the positive orthant to itself with respect to the subspace topology. By Proposition 3.2 and
Example 4.5, the subset di�eology and the subspace di�erential structure on the positive
orthant Rn

≥0 induce each other. It follows that a map between relatively open subsets of
the positive orthant is a di�eological di�eomorphism if and only if it is a functional di�eo-
morphism, which is equivalent to being a di�eomorphism in the classical sense. It further
follows that a manifold-with-corners can be equivalently de�ned as a di�eological space that
is locally di�eomorphic to open subsets of Rn

≥0. G

Notes.

(1) The argument in Example 4.5 is a generalisation of the same statement for half-
spaces Rn−1 × [0,∞) that was given by Iglesias-Zemmour in [47, ch. 4] to show
that the classical notion of a manifold-with-boundary is the same as the di�eological
notion. This generalisation appeared in [68]. More generally, the subspace di�erential
structure on any locally closed convex set is re�exive; see [57].

(2) Manifolds-with-corners were introduced in 1961 by Jean Cerf and by Adrien Douady
[13, 29] and are now included in standard textbooks such as John Lee's [66, Chap-
ter 16]. Our de�nitions of a manifold-with-corners are equivalent to theirs. These
de�nitions are local.
Manifolds-with-faces were introduced in 1968 by Klaus Jänich [51]; also see [100,

Chap. 4]. The codimension-k strata of a manifold-with-corners are the connected
components of the set of those points that, in a chart-with-corners, have exactly k
coordinates that vanish. Manifolds-with-faces are manifolds-with-corners in which ev-
ery codimension-k stratum is in the closure of k distinct codimension one strata. This
condition is global. The disc-with-one-corner in the plane, given in polar coordinates
by r ≤ sin 2θ for 0 ≤ θ ≤ π/2, is a manifold-with-corners but is not a manifold-with-
faces. Some authors use the term �t-manifold� for a manifold-with-corners and the
term �manifold-with-corners� for a manifold-with-faces; see [74, De�nition 1.8.5]; also
see [83, Article 1.1.19].
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5. Intersecting submanifolds

In this section we consider the di�eological and di�erential structures on some unions
of lines in the plane, and more generally, on some unions of submanifolds in an ambient
manifold.

Example 5.1 (Two coordinate axes). Consider the wedge sum of two copies of R attached
at their origins, which we write as X = (R1 q R2)/(01 ∼ 02); denote the quotient di�eology
by DX . Let E ⊂ R2 be the union of the two coordinate axes in the cartesian plane, equipped
with its subspace di�erential structure. Let

ϕ : X → E

be the bijection whose pullback to R1 is x 7→ (x, 0) and whose pullback to R2 is y 7→ (0, y).
Then

(1) The map ϕ is a functional di�eomorphism from the di�erential space (X,ΦDX) to
the di�erential subspace (E,C∞(E)) of R2. Moreover, the di�erential structure ΦDX
consists of those real-valued functions on X whose pullbacks to R1 and to R2 are
smooth.

(2) The di�erential space (E,C∞(E)) is re�exive.

(3) The di�eological space (X,DX) is not re�exive. G

Proof. We prove Item (1) in �A.4. By Item (1), C∞(E) is a di�erential structure that is
induced by some di�eology; Proposition 2.7 (�re�exive stability�) then gives Item (2). For
Item (3) we need to show that ΠΦDX ) DX . Consider the parametrisation p : R→ X whose
composition with ϕ is

t 7→


(e−1/t2 , 0) if t < 0

(0, 0) if t = 0

(0, e−1/t2) if t > 0.

Because this composition is a smooth map with image in E, it is a plot of E; by Proposi-
tion 3.2 it is in ΠC∞(E); Item (1) implies that p is in ΠΦDX . On the other hand, p does
not lift to a smooth (nor even continuous) map to R1 q R2 on any neighbourhood of t = 0,
so p is not in the quotient di�eology DX on X. This proves (3). �

Remark 5.2.

(1) Example 5.1 generalises to any �nite number of copies of R. In particular, the
subspace di�erential structure on the union of the three coordinate axes in R3 is
re�exive.

(2) Example 5.1 generalises to arbitrary pointed manifolds (N1, ∗1), . . . , (Nk, ∗k), of pos-
sibly di�erent dimensions, with X := (N1 q . . . q Nk)/∗i ∼ ∗j for all i, j, and with
E ⊂ N1 × . . .×Nk. See [102, Example 2.67].

(3) Example 5.1 also generalises to transversally intersecting submanifolds; see [102, Ex-
ample 2.70]. Here, we take N1 and N2 to be (embedded) submanifolds of an ambient
manifold M . We let i : N1qN2 →M be the map whose restriction to each Ni is the
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inclusion map, we take X := N1 qN2/∼ where x ∼ y if and only if i(x) = i(y), and
we take E := N1 ∪N2 ⊂M . �

The generalisations mentioned in Remark 5.2 are special cases of the following more general
example:

Example 5.3 (Cleanly-intersecting submanifolds). Let M be a manifold, and let
{iτ : Nτ ↪→ M} be a family of submanifolds whose intersections are jointly clean in the
following sense. Each point of M is in the domain of some coordinate chart ϕ : U → Ω ⊆ Rn

such that, for each τ , if the submanifold Nτ meets U , then ϕ(U ∩Nτ ) is the intersection of

Ω with a coordinate subspace of Rn. Let X :=

(∐
τ

Nτ

)
/∼ where, for x ∈ Nτ and y ∈ Nτ ′ ,

we have x ∼ y if and only if iτ (x) = iτ ′(y); denote the quotient di�eology by DX . Consider
the subset E :=

⋃
τ

iτ (Nτ ) of M , let C∞(E) be the subspace di�erential structure, and let

ϕ : X → E be the bijection whose pullback to Nτ is iτ . Then, as in Example 5.1,

(1) The map ϕ is a functional di�eomorphism from the di�erential space (X,ΦDX) to
the di�erential subspace (E,C∞(E)) ofM . Moreover, the di�erential structure ΦDX
consists of those real-valued functions on X whose pullback to each Nτ is smooth.

(2) The di�erential space (E,C∞(E)) is re�exive.

(3) The di�eological space (X,DX) is not re�exive, unless the components of E are
submanifolds of M .

For details, see �A.4.

Example 5.4 (Three lines in R2). Let S be the subset of R2 given by the union of the
x-axis, the y-axis, and the line y = x, with the subspace di�erential structure C∞(S) and
the subset di�eology DS that are induced from R2. Let E ⊆ R3 be the union of the three
coordinate axes, with the subspace di�erential structure C∞(E) and the subset di�eology
DE that are induced from R3. Consider the bijection ϕ : E → S given by (t, 0, 0) 7→ (t, 0),
(0, t, 0) 7→ (0, t), and (0, 0, t) 7→ (t, t). Then

(1) The map ϕ is a di�eological di�eomorphism from (E,DE), where DE is the subset
di�eology on E that is induced from R3, to (S,DS), where DS is the subset di�eology
on S that is induced from R2.

(2) The di�erential space (S,C∞(S)) is not re�exive. G

Proof. Because ϕ extends to a smooth map between the ambient spaces R3 → R2, (for
example, take (x, y, z) 7→ (x+z, y+z),) the map ϕ : E → S is functionally and di�eologically
smooth, so ϕ ◦ DE ⊆ DS. We prove the opposite inclusion, DS ⊆ ϕ ◦ DE, in �A.4.

By Item 1 of Remark 5.2, the di�erential structure C∞(E) on E is re�exive. We then have

(S,ΦΠC∞(S)) = (S,ΦDS) since DS = ΠC∞(S) (see Proposition 3.2),
∼= (E,ΦDE) by Part (1),
= (E,C∞(E)) since DE = ΠC∞(E) and C∞(E) is re�exive.

The dimension of the Zariski tangent space at a point in a di�erential space is invariant under
functional di�eomorphisms (see [69]). Since the dimension of the Zariski tangent space at
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the origin in S is 2, and that at the origin in (E,C∞(E)), hence in (S,ΦΠC∞(S)), is 3, the
di�erential space (S,C∞(S)) is not re�exive. �

Example 5.5 (Many lines in R2). For any integer k ≥ 3, Example 5.4 generalises to the
union of any k distinct lines through the origin in R2. In particular, every two such unions
are di�eomorphic as di�eological spaces. In contrast, two such unions are di�eomorphic
as di�erential spaces if and only if they di�er by a linear transformation of R2. (Given a
di�eomorphism between them, take its di�erential at the origin.) Thus, for each k ≥ 4, such
unions produce a continuum of non-isomorphic di�erential spaces.

The following example was communicated to us by Katrin Wehrheim as a topological
space that can arise in the context of polyfolds. We're interested in its di�eology:

Example 5.6 (Axis and half-plane). Take the space X that is obtained by gluing the
x-axis {(x, 0) | x ∈ R} with the open right half-plane {(x, y) | x > 0, y ∈ R} along
their intersection in R2. By Proposition 3.5, its quotient di�eology DX induces its quotient
di�erential structure FX and its quotient topology. These are not induced by the natural
inclusion map X ↪→ R2: the function

f(x, y) :=

{
0 y = 0
e−1/|y|

x
y 6= 0, x > 0

is in FX but it is not continuous with respect to the subset topology induced from R2.

Question 5.7. In Example 5.6, is the di�eology DX re�exive?

Notes. From the point of view of Frölicher spaces, wedge products are also analyzed in
Batubenge and Ntumba's paper [8, pages 76�78]. Other aspects of the above examples also
appeared in Watts' Ph.D. thesis [102, Examples 2.67 and 2.70] and in Christensen and Wu's
paper [20, Examples 3.17, 3.19, and 3.20].

6. Topological Considerations

Recall that the D-topology of a di�eological space is the strongest topology making all of
its plots continuous, and the initial topology of a di�erential space is the weakest topology
making all of the functions of its di�erential structure continuous. The purpose of this section
is to point out some properties of these topologies that are necessary for re�exivity.

We begin with a simple observation:

Lemma 6.1 (Compatible topologies). Let X be a set, and let D and F be a di�eology
and a di�erential structure on X, respectively. Suppose that D and F are compatible. Then
the initial topology induced by F is contained in the D-topology induced by D.

Proof. Let f ∈ F and p ∈ D. Because f ◦ p is (smooth, hence) continuous, for any open
interval I the preimage p−1(f−1(I)) is open in the domain of p. Since p ∈ D is arbitrary,
f−1(I) is D-open. Since f is arbitrary, the D-topology contains the initial topology. �
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Propositions 6.2 and 6.3 below are known [43, 64]; for completeness, we include their
proofs.

Proposition 6.2 (Di�eological spaces are locally path-connected). The D-topology of
a di�eological space is locally path-connected. (Consequently, the connected components co-
incide with the path-connected components, and these components are both open and closed.)

Proof. Let X be a di�eological space, let x be a point of X, and let V be a D-open neighbour-
hood of x. We need to show that V contains a path-connected neighbourhood of x. Let X ′

be the smooth path component of x in V ; we will show that X ′ is D-open. Let p : U → V be
a plot. For each connected component U ′ of U , the image p(U ′) is smoothly path-connected,
so it is either contained in X ′ or disjoint from X ′. So the preimage p−1(X ′), being a union of
connected components of U , is open in U . Varying the plot p, this shows that the preimage
X ′ is D-open. Since X ′ is smoothly path-connected, it is path-connected. �

Recall that a topological space X is completely regular if for every closed set C and
point x ∈ X r C there exists a continuous function f : X → [0, 1] that vanishes on C
and is equal to 1 on x. Spaces that are T0 (points are distinguishable by open sets) and
completely regular are called T3 1

2
. Such spaces are automatically T3 (regular and T0), hence

T2 (Hausdor�), hence T1 (points are closed).

Proposition 6.3 (Di�erential spaces are completely regular). The initial topology of a
di�erential space is completely regular. Consequently, any T0 di�erential space is Hausdor�.

Proof. Let (X,F) be a di�erential space, equipped with the initial topology. Let C be a closed
subset ofX, and let x be a point inXrC. By the de�nition of the initial topology, there exist
functions h1, . . . , hk ∈ F and open intervals I1, . . . , Ik such that x ∈ ∩ki=1h

−1
i (Ii) ⊂ X r C.

Take f := b ◦ (h1, . . . , hk) where b : Rk → [0, 1] is a smooth function whose support is
contained in I1 × . . .× Ik and such that f(h1(x), . . . , hk(x)) = 1. �

Lemma 6.1 and Propositions 6.2 and 6.3 imply the following topological necessary condi-
tions for the compatibility of a di�eology and a di�erential structure.

Corollary 6.4. Let X be a set, and let D and F be a di�eology and di�erential structure
on X, respectively. Suppose that D and F are compatible.

(1) If the initial topology induced by F is T0, then the D-topology induced by D is Haus-
dor�.

(2) If the D-topology induced by D is connected, then the initial topology induced by F is
path-connected.

Using the ideas developed above, we show some necessary conditions for re�exivity of
di�eological spaces and of di�erential spaces.

Proposition 6.5 (T0 re�exive di�eological spaces). Every T0 re�exive di�eological space
is Hausdor�.
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Proof. Let (X,D) be a di�eological space whose D-topology is T0. Let x, y ∈ X be distinct
points such that for any open neighbourhoods U of x and V of y we have U ∩ V 6= ∅. Since
the D-topology is T0, without loss of generality there exists an open neighbourhood W of y
so that x /∈ W . De�ne p : R→ {x, y} by

p(t) :=

{
x if t < 0,

y if t ≥ 0.

Then p−1(W ) = [0,∞). Since p is not continuous, p /∈ D.

Let f ∈ ΦD. Then f(x) = f(y). (Otherwise, setting a = f(x), b = f(y), and 0 < ε < |b−a|
2

,
we have x ∈ U := f−1((a − ε, a + ε)) and y ∈ V := f−1((b − ε, b + ε)), and the intersection
U ∩ V is empty. By Lemma 6.1, U and V are D-open. This contradicts the choice of x and
y.) So the composition f ◦ p is (constant, hence) smooth. This shows that p ∈ ΠΦD. So D
is not re�exive. �

Proposition 6.6 (Locally smoothly path-connected di�erential spaces). On every
re�exive di�erential space, the initial topology is locally smoothly path-connected.

Proof. Let (X,F) be a re�exive di�erential space, equipped with the initial topology, let
x ∈ X be any point, and let U be an open neighbourhood of x in X. Let C be the smooth
path component of x in U . It is enough to show that C is a neighbourhood of x.

Let b ∈ F be a smooth function such that b(x) = 1 and whose support supp(b) is contained
in U (cf. the proof of Proposition 6.3). De�ne g : X → R to be equal to b on C and zero
outside C. Since g−1((0,∞)) contains x and is contained in C, it is enough to show that
g ∈ F .

Let p ∈ ΠF . Since the D-topology induced by ΠF contains the initial topology induced
by F , the connected components of p−1(U), as well as p−1(X r supp(b)), are open in the
domain of p. Let q be the restriction of p to one of the connected components of p−1(U). If
the image of q does not meet C, then g ◦ q is identically 0. Suppose the image of q does meet
C. Since C is a smooth path component of U , the image of q is contained in C, and so g ◦ q
is equal to b ◦ q, which is smooth. Since g ◦ p is identically zero on the p−1(X r supp(b)), it
is smooth. It follows that g ∈ ΦΠF . Since F is re�exive, g ∈ F . �

Here are a couple of applications of the necessary conditions for re�exivity that we gave
in Propositions 6.5 and 6.6.

Example 6.7 (Line with double origin). Glue two copies of the real line along the com-
plement of the origin; write the quotient space as X := (R1 q R2)/∼. Consider its quotient
di�eology. Its D-topology, which coincides with the quotient topology (see Proposition 3.5),
is T0 but not Hausdor�. So the di�eological space X is not re�exive; see Proposition 6.5.

Example 6.8 (Pinched Topologist's Sine Curve). Let Y ⊂ R2 be the image of the
curve γ : [0, 1]→ R2 that is given by

γ(t) =

{
( 0, 0 ) if t = 0

( t, t sin(1/t) ) if 0 < t ≤ 1,
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equipped with the subspace topology and di�erential structure FY induced from R2 (see
Proposition 3.2). The point (0, 0) does not have any neighbourhood that is smoothly path
connected; this follows from the fact that the curve γ is not recti�able. It follows from
Proposition 6.6 that FY is not re�exive. G

Examples 6.9 and 6.10 below originally appeared in Jordan Watts' thesis [102, Examples
2.74 and 2.76]. In both of these examples, a quotient space is obtained from R by collapsing
an interval to a point.

Example 6.9 (R modulo a closed interval). Let X := R/[0, 1], equipped with the
quotient di�eology DX , the quotient di�erential structure FX , and the quotient topology.
The initial topology induced by FX coincides with the quotient topology. This follows from
the fact that the function f : X → R whose pullback to R is

x 7→


−e−

1
|x| if x < 0

0 if x ∈ [0, 1]

e−
1
|x−1| if x > 1

is in FX and is a homeomorphism with respect to the quotient topology on X. The map
ϕ : X → R whose pullback to R is

x 7→


x if x < 0

0 if x ∈ [0, 1]

x− 1 if x > 1

is a di�eomorphism between the di�erential spaces (X,FX) and (R,F), where F is the set of
those smooth functions on R whose derivatives of all positive orders vanish at 0. The quotient
di�eology DX is not re�exive: ϕ−1 : R→ X is in (ΠFX , which by Proposition 3.5 is) ΠΦDX ,
but it does not have any smooth (or even continuous) lift to R in any neighbourhood of the
origin. G

Example 6.10 (R modulo an open interval). Let Y := R/(0, 1), equipped with the
quotient di�eology DY . Let πY : R → Y be the quotient map. The one-point set πY ((0, 1))
is open with respect to (the quotient topology, hence) the D-topology. In fact, this topology
is T0. But this topology is not Hausdor�: the points πY (0) and πY (1) do not have disjoint
neighbourhoods. By Proposition 6.5, DY is not re�exive.

Recall that the quotient di�eology DY induces the quotient di�erential structure FY . In
contrast with the previous example, the initial topology induced by FY is strictly smaller
than the quotient topology: in the initial topology, the points πY (0), πY ((0, 1)), and πY (1) are
topologically indistinguishable. The corresponding Kolmogorov quotient (see Remark 6.11
below) can be identi�ed with R/[0, 1]. G

Examples 6.9 and 6.10 motivate the following general remark on indistinguishable points.

Remark 6.11 (Indistinguishable points). Given a di�erential space X, one can create
another di�erential space Y by creating �clones� of points of X, which are not distinguishable
by smooth functions. In fact, up to isomorphism, such �cloning� is the only way of obtaining
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a di�erential space whose initial topology is not Hausdor�. More precisely, let (X,F) be a
di�erential space. Let XK be the quotient of X by the equivalence relation where x ∼ x′

i� f(x) = f(x′) for all f ∈ F . Equip XK with the quotient di�erential structure (see
De�nition 3.4). Up to isomorphism, X is obtained fromXK by �cloning�. The initial topology
of XK induced by FK coincides with its quotient topology (contrast with Remark 3.6). It
is T0 (hence, by Proposition 6.3, it is T3 1

2
). The T0 di�erential space XK , with the map

π : X → XK , satis�es the following universal property:

If Y is a T0 di�erential space and ϕ : X → Y is a functionally smooth
map, then there exists a unique functionally smooth map ϕK : XK → Y
such that ϕ = ϕK ◦ π.

(6.12)

Topologically, XK coincides with the Kolmogorov quotient of X, which is the quotient by
the equivalence relation where x ∼ x′ if and only if each open neighbourhood of x contains
x′ and vice versa. It also coincides with the Hausdor��cation of X (whose construction
for more general topological spaces may require iterated quotients, and possibly trans�nite
recursion; see [99]). These satisfy universal properties similar to (6.12) but with respect to
continuous maps to T0 spaces and to Hausdor� spaces, respectively. �

Example 6.13 (R Modulo (x ∼ 2x)). Take X = R/∼ where x ∼ y if and only if y = 2mx
for some integerm. Its quotient di�eology is non-trivial, but its di�erential structure consists
of the constant functions, so its quotient di�eology is not re�exive. Another way to see this
is to note that the D-topology coincides with the quotient topology (Proposition 3.5), which
is T0, but not Hausdor�, and to apply Proposition 6.5. G

We have seen several non-re�exive quotients of re�exive di�eological spaces: the irrational
torus R/(Z + αZ) (Example 3.9), the orbifold R2/Z2 (Example 4.4), the quotients R/[0, 1]
and R/(0, 1) (Examples 6.9 and 6.10), and the quotient R/(x ∼ 2x) (Example 6.13). In the
�rst three of these, the initial topology coincides with the quotient topology; in the last two,
the initial topology is di�erent from the quotient topology. The second and third of these
are Hausdor�; the others are non-Hausdor�.

These examples raise the question of whether the initial topology coincides with the quo-
tient topology on a quotient di�erential space that is Hausdor�. The answer is no: the
following example, inspired by the Moore-Niemytzki plane (see [97, Example 82], where it
is called the Niemytzki tangent disk topology), exhibits a quotient di�erential space whose
initial topology is Hausdor� but is strictly smaller than its quotient topology.

Example 6.14 (A Moore-Niemytzki-like topology). Let H be the open upper half
plane in R2, and let H be its closure in R2. Equip H, H, and the sets

Cx := H ∪ {(x, 0)},
for x ∈ R, with the subspace di�erential structures and subset di�eologies that are induced
from R2. Equip

X :=
∐
x∈R

Cx

with the coproduct di�erential structure, denoted FX , and with the coproduct di�eology,
denoted DX . Let Y be the gluing of the components of X along H, equipped with the
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quotient di�erential structure FY and the quotient di�eology DY . Denote the inclusion
maps of the Cx into X and the quotient map from X to Y as

ix : Cx → X and π : X → Y.

There exists a unique bijection
ϕ : Y → H

such that, for each x ∈ R, the composition ϕ◦π ◦ ix : Cx → H is the inclusion map of Cx into
H. Because this inclusion map is smooth, and because the components Cx form an open
covering of X, it follows that ϕ ◦ π : X → H is smooth. By the de�nition of the quotient
di�erential structure, it follows that ϕ : Y → H is smooth.

We claim:
For any function g : H → R,
if g|Cx : Cx → R is functionally smooth for all x,
then g is functionally smooth.

(6.15)

Indeed, let g : H → R, and suppose that g|Cx : Cx → R is smooth for all x. Then g|H : H → R
is smooth. Let x ∈ R. Because g|Cx is smooth, there is an open neighbourhood Ux of (x, 0)
in R2 and a smooth function hx ∈ C∞(Ux) that coincides with g on the subset Cx ∩Ux. Let
(x′, 0) ∈ Ux. For all su�ciently large n, we have (x′, 1

n
) ∈ Ux, and so hx(x′, 1

n
) = g(x′, 1

n
).

But hx(x′, 1
n
) −−−→
n→∞

hx(x
′, 0) because hx is smooth on Ux, and g(x′, 1

n
) −−−→
n→∞

g(x′, 0) because

g is smooth on Cx′ , so hx(x′, 0) = g(x′, 0). Because x′ was arbitrary, hx coincides with g on
all of H ∩ Ux. Because x was arbitrary, it follows that g is smooth.

Because the inverse ϕ−1 : H → Y satis�es

ϕ−1|Cx = π ◦ ix : Cx → Y

for all x, it follows from (6.15) that this inverse is functionally smooth. Thus, ϕ is a functional
di�eomorphism.

By Christensen-Sinnamon-Wu [19, Lemma 3.17], since each Cx is a convex subset of R2,
its D-topology is equal to its subspace topology induced from R2. Because the D-topology
induced by the quotient di�eology DY on Y is equal to the quotient topology τY on Y induced
from X (Proposition 3.5), a subset A of Y is closed if and only if i−1

x (π−1(A)) is closed in
Cx for all x. Consequently, every subset of ϕ−1(∂H) is closed. Thus, while ϕ is a continuous
bijection from (Y, τY ) to H, it is not a homeomorphism.

It follows that the initial topology on Y is strictly smaller than the quotient topology τY .
Note, though, that both of these topologies are Haudor�.

Finally, note that the di�eology DY is not re�exive. Indeed, because ϕ : Y → H is a
functional di�eomorphism, the map x 7→ ϕ−1(x, 0) from R to Y is functionally smooth. But
this map is not di�eologically smooth. G

Notes.

• In a di�eological space, the path components (with respect to the D-topology) coin-
cide with the (di�eologically) smooth path components [47, Article 5.7].
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• By the proof of Proposition 6.3, every di�erential space is smoothly regular, in the
following sense [63]: for every closed set C and point x ∈ XrC there exists a smooth
function f : X → [0, 1] that vanishes on C and is equal to 1 on x.

• By [101, Theorem 3.10]: given a di�eology D and a di�erential structure F that
are compatible, the D-topology coincides with the initial topology if and only if the
D-topology is smoothly regular.

• In Example 6.14, we showed that the D-topology of Y is Hausdor�. However, it is
not completely regular. Indeed, since any subset of ϕ−1(∂H) is closed, there is no
continuous function that separates π ◦ ix((x, 0)) from its complement in ϕ−1(∂H). It
follows that the D-topology of Y is not smoothly regular.

• In Corollary 6.4 we can obtain a stronger statement: if the initial topology is T0,
then the D-topology is completely Hausdor�, i.e., points are separated by continuous
functions X → [0, 1] (in fact, by di�eologically smooth functions contained in F).

A. Proofs

A.1. Re�exive stability. Recall that, given a set X with a collection D0 of parametriza-
tions and a collection F0 of real-valued functions, ΦD0 denotes the set of those real-valued
functions f : X → R whose precomposition with each element ofD0 is in�nitely-di�erentiable,
and ΠF0 denotes the set of those parametrisations p : U → X whose composition with each
element of F0 is in�nitely-di�erentiable.

Lemma A.1. Fix a set X, and let D0 be a family of parametrisations into X. Then ΦD0

is a di�erential structure on X.

Proof. We �rst show smooth compatibility. Let f1, ..., fk ∈ ΦD0 and let F ∈ C∞(Rk). Let p ∈
D0. Because the components of (f1, . . . , fk) ◦ p are in�nitely-di�erentiable, the composition
F ◦ (f1, . . . , fk) ◦ p is in�nitely-di�erentiable. Because p is arbitrary, F ◦ (f1, . . . , fk) is in
ΦD0.

We now show locality. Equip X with the initial topology of ΦD0. Let f : X → R be a
function satisfying: for every x ∈ X there is an open neighbourhood V of x in X and a
function g ∈ ΦD0 such that f |V = g|V . We want to show that f ∈ ΦD0. Fix (p : U → X) ∈
D0. Let V ⊆ X be an open subset, and let g ∈ ΦD0 be a function such that f |V = g|V .
Then f ◦ p|p−1(V ) = g ◦ p|p−1(V ). The pre-image p−1(V ) is open in U . (Indeed, V is a union
of pre-images h−1((a, b)) of open intervals (a, b) under functions h in ΦD0, so p−1(V ) is a
union of the pre-images (h ◦ p)−1((a, b)), and h ◦ p : U → R is in�nitely-di�erentiable, hence
continuous, because p ∈ D0 and h ∈ ΦD0.) Since each such g ◦ p is smooth in U and is
covered by such open sets p−1(V ), and since smoothness is a local condition, f ◦ p : U → R
is smooth. Since p ∈ D0 is arbitrary, f ∈ ΦD0. �

Lemma A.2. Fix a set X, and let F0 be a set of real-valued functions on X. Then ΠF0 is
a di�eology on X.
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Proof. To see that ΠF0 contains all the constant maps into X, note that if p : U → X is
constant then for any f ∈ F0 the composition f ◦ p : U → X is constant, hence in�nitely-
di�erentiable.

Next, we show locality. Let p : U → X be a parametrisation such that for every u ∈ U
there is an open neighbourhood V of u in U such that p|V ∈ ΠF0; we want to show that
p ∈ ΠF0. Let f ∈ F0. For any u ∈ U , there is an open neighbourhood V of u in U such
that f ◦ p|V is smooth. Since smoothness on U is a local condition, f ◦ p : U → R is smooth.
Since f ∈ F0 is arbitrary, p ∈ ΠF0.

Finally, we show smooth compatibility. Let U and V be open subsets of cartesian spaces,
and let F : V → U be a smooth map. Let (p : U → X) ∈ ΠF0. For any f ∈ F0, we have
that f ◦ p is smooth, so f ◦ p ◦ F is smooth. Because f ∈ F0 is arbitrary, p ◦ F ∈ ΠF0. �

Proof of Re�exive Stability (Proposition 2.7). By Lemma A.1, F := ΦD0 is a di�erential
structure; by Remark 2.5, it is re�exive. By Lemma A.2, D := ΠF0 is a di�eology; by
Remark 2.5, it is re�exive. �

A.2. Isomorphism of categories of re�exive spaces. Recall that Φ(X,D) = (X,ΦD)
on objects and Φ(F ) = F on morphisms.

Proof that Φ is a functor from the category of di�eological spaces to the category of re�exive
di�erential spaces. By Proposition 2.7, if (X,D) is a di�eological space then (X,ΦD) is a
re�exive di�erential space. We need to show that if F : (X,DX)→ (Y,DY ) is di�eologically
smooth then F is also functionally smooth as a map between the re�exive di�erential spaces
(X,ΦDX) and (Y,ΦDY ). Let f ∈ ΦDY . Let p ∈ DX . Because F is di�eologically smooth,
F ◦ p ∈ DY . This and the fact that f ∈ ΦDY imply that f ◦ F ◦ p is in�nitely-di�erentiable.
Since p ∈ DX is arbitrary, this shows that f ◦ F ∈ ΦDX . Since f ∈ ΦDY is arbitrary, this
shows that F is functionally smooth. �

Recall that Π(X,F) = (X,ΠF) on objects and Π(F ) = F on morphisms.

Proof that Π is a functor from di�erential spaces to re�exive di�eological spaces. By Propo-
sition 2.7, if (X,F) is a di�erential space, then (X,ΠF) is a re�exive di�eological space. We
need to show that if F : (X,FX) → (Y,FY ) is functionally smooth then F is also di�eolog-
ically smooth as a map between the re�exive di�eological spaces (X,ΠFX) and (Y,ΠFY ).
Let p ∈ ΠFX . Let f ∈ FY . Because F is functionally smooth, f ◦ F ∈ FX . This and the
fact that p ∈ ΠFX imply that f ◦F ◦ p is smooth. Since f ∈ FY is arbitrary, this shows that
F ◦p ∈ ΠFY . Because p ∈ ΠFX is arbitrary, this shows that F is di�eologically smooth. �

Proof of isomorphism of categories of re�exive spaces (Theorem 2.11). If (X,F) is a re�ex-
ive di�erential space, then Φ ◦ Π(X,F) = (X,ΦΠF) = (X,F). If (X,D) is a re�exive
di�eological space, then Π ◦Φ(X,D) = (X,ΠΦD) = (X,D). This and the fact that Π and
Φ send every map to itself shows that the restriction of the functor Φ to the subcategory of
re�exive di�eological spaces and the restriction of the functor Π to the subcategory of re�ex-
ive di�erential spaces are inverses of each other and give an isomorphism of categories. �
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A.3. Frölicher spaces as re�exive spaces. Recall that Ξ(X, C,F) = (X,F) on objects
and Ξ(F ) = F on morphisms.

Proof that Ξ is a functor from the category of Frölicher spaces to the category of re�exive
di�eological spaces. Let (X, C,F) be a Frölicher space. In particular, F = ΦC. By Propo-
sition 2.7, F is a re�exive di�erential structure. Thus, Ξ takes Frölicher spaces to re�exive
di�erential spaces. As noted in De�nition 2.12, if a map of Frölicher spaces is Frölicher
smooth, then it is also functionally smooth. �

Recall that Γ(X,F) = (X,ΓF ,ΦΓF) on objects and Γ(F ) = F on morphisms.

Proof that Γ is a functor from the category of di�erential spaces to the category of Frölicher
spaces. Let (X,F) be a di�erential space. The equality ΓΦΓF = ΓF shows that (X,ΓF ,ΦΓF)
is a Frölicher space. As noted in De�nition 2.12, if a map of di�erential spaces is functionally
smooth, then it is also Frölicher smooth. �

Proof of �Frölicher spaces as re�exive spaces� (Theorem 2.13). If f is a real-valued function
on a di�eological space (X,D) and f ◦ c is in�nitely-di�erentiable for every plot c in D with
domain R, then f ◦ p is in�nitely-di�erentiable for every plot p : U → X in D. Indeed, by
Boman's theorem [11, Theorem 1] it is enough to show that the composition f ◦ p ◦ γ is
in�nitely-di�erentiable for every in�nitely-di�erentiable curve γ : R → U , and this is true
because p ◦ γ is a plot in D with domain R.

If (X, C,F) is a Frölicher space, then Γ ◦ Ξ(X, C,F) = Γ(X,F) = (X,ΓF ,ΦΓF) =
(X, C,F). If (X,F) is a re�exive di�erential space, then Ξ ◦ Γ(X,F) = Ξ(X,ΓF ,ΦΓF) =
(X,ΦΓF) = (X,ΦΠF) = (X,F). Here, the equality ΦΓF = ΦΠF is obtained from the
previous paragraph by setting D = ΠF . This and the fact that Π and Γ send every map to
itself shows that the functor Ξ and the restriction of the functor Π to the category of re�exive
di�erential spaces are inverses of each other and give an isomorphism of categories. �

A.4. Intersecting submanifolds.

Proof of Part (1) of Example 5.1. Recall that E ⊂ R2 is the union of the two coordinate
axes and C∞(E) is its subspace di�erential structure, that DX is the quotient di�eology on
X := (R1 q R2)/(01 ∼ 02), and that ϕ : X → E is the bijection whose pullback to R1 is
x 7→ (x, 0) and whose pullback to R2 is y 7→ (0, y). Fix a real-valued function f : E → R.
De�ne fi : R→ R, for i = 1, 2, by f1(x) = f(x, 0) and f2(y) = f(0, y). We need to show that
each of the conditions f ∈ C∞(E) and ϕ∗f ∈ ΦDX is equivalent to f1 and f2 being smooth.

First, suppose that f ∈ C∞(E). Then f1 and f2, being the compositions of the smooth
maps x 7→ (x, 0) and y 7→ (0, y) with a smooth extension of f to R2, are smooth.

Now, suppose that ϕ∗f ∈ ΦDX . Let i = 1 or i = 2. The inclusion map of the ith copy of
R in X, which we denote Ii : R→ X, is in the quotient di�eology DX . By the de�nition of
ΦDX , the composition (ϕ∗f) ◦ Ii is smooth. This composition is fi, so fi is smooth.

Now, suppose that f1 and f2 are smooth. Then (x, y) 7→ f1(x)+f2(y)−f(0, 0) is a smooth
extension of f to R2. This shows that f ∈ C∞(E).
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Still assuming that f1 and f2 are smooth, let p : U → X be a plot in the quotient dif-
feology DX . Let u ∈ U be any point. Let V be a connected neighbourhood of u in U
and p̃ : V → R1 q R2 a smooth lifting of p|V ; these exist by the de�nition of the quotient
di�eology. By continuity, the image of p̃ is contained in Ri for some i ∈ {1, 2}. The map
(ϕ∗f) ◦ p|V : V → R, being the composition of the smooth maps p̃ and fi, is smooth. Since
smoothness is a local condition and u ∈ U is arbitrary, (ϕ∗f) ◦ p : U → R is smooth. Since
p ∈ DX is arbitrary, ϕ∗f ∈ ΦDX . �

Sketch of proof of Example 5.3. The proof is similar to that of Example 5.1 once we make
the following observation. Let I be a set of subsets of {1, . . . , n}, and let EI :=

⋃
I∈I

RI where

RI is the span of the xi-axes for i ∈ I. For every I ∈ I, let prI : Rn → RI denote the natural
projection map. Then, for every function f : EI → R that is smooth on RI for each I ∈ I,
the function ∑

A⊂I
A 6=∅

(−1)1+|A|f ◦ pr∩A : Rn → R

is a a smooth extension of f to Rn. Indeed, to see that this function coincides with f on EI ,
we argue as follows. Fix x ∈ EI . When A is the empty set, then pr∩A(x) = x (this is not
the same as when

⋂
A = ∅, in which case pr∅ = 0). Hence (−1)1+|A|f ◦ pr∩A(x) = −f(x).

So it is enough to show that the sum∑
A⊂I

(−1)1+|A|f(pr∩A(x))

vanishes. We can write this sum as∑
A⊆{I1,...,Im}
B⊆{J1,...,Js}

(−1)1+|A|+|B|f(pr(∩A)∩(∩B)(x)),

where I1, . . . , Im is an enumeration of the set {I ∈ I | x ∈ RI} and J1, . . . , Js is an
enumeration of the set I \ {I1, . . . , Im}. Because x ∈ RIi for all i = 1, . . . ,m, we have
pr(∩A)∩(∩B)(x) = pr∩B(x). So we can write the above sum as∑

B⊆{J1,...,Js}

(−1)1+|B|f(pr∩B(x))
∑

A⊆{I1,...,Im}

(−1)|A|.

Because x ∈ EI , we have m ≥ 1, and so
∑

A⊆{I1,...,Im}
(−1)|A| = 0, so the above sum vanishes.

�

Completion of the proof of Part (1) of Example 5.4. Recall that E ⊆ R3 is the union of the
three coordinate axes; S ⊆ R2 is the union l1 ∪ l2 ∪ l3 where l1 is the x-axis, l2 is the y-axis,
and l3 is the line given by y = x; and ϕ : E → S is the map (t, 0, 0) 7→ (t, 0), (0, t, 0) 7→ (0, t),
(0, 0, t) 7→ (t, t). We need to prove that DS ⊆ ϕ ◦ DE. For this, we �x an open subset U of
Rk for some k and a plot

p : U → S

of S, and we need to prove that ϕ−1 ◦ p : U → E is a plot of E. Let (p1, p2) : U → R2 be
the composition of p : U → S with the inclusion map S → R2, and let q : U → R3 be the
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composition of ϕ−1 ◦ p : U → E with the inclusion map E → R3. On each subset p−1(li), the
map q coincides with the map gi, where

g1(u) = (p1(u), 0, 0), g2(u) = (0, p2(u), 0), and g3(u) = (0, 0, p1(u)).

The maps gi : U → R are smooth (because p is a plot), and we need to prove that the map
q : U → R3 is smooth.

Let

Ui = interior(p−1(li)) for i = 1, 2, 3, and let W =
⋃
j 6=k

Uj ∩ Uk.

We claim that

U = U1 ∪ U2 ∪ U3 ∪W, and Ui ⊆ Ui ∪W for i = 1, 2, 3. (A.3)

Indeed, let u ∈ U r (U1 ∪ U2 ∪ U3). Then p(u) = 0 and each neighbourhood of u contains
points from at least two of the sets p−1(li r {0}) for i = 1, 2, 3. So there exist j 6= k such
that every neighbourhood of u contains points of p−1(lj r {0}) and points of p−1(lk r {0}).
Then u ∈ Uj ∩ Uk, and so u ∈ W . This proves the �rst part of (A.3). Now suppose that
u ∈ Ui. By the �rst part of (A.3), either u ∈ Ui, or u ∈ W , or u ∈ Uj for j 6= i. In the �rst
or second case, u ∈ Ui ∪W . In the third case, u ∈ Ui ∩ Uj ⊆ Ui ∩ Uj ⊆ W ⊆ Ui ∪W . This
proves the second part of (A.3).

Let t1, . . . , tk be the coordinates on U ⊆ Rk. Consider the di�erentiation operators

Dm =
∂m1+...+mk

∂tm1
1 · · · ∂t

mk
k

for m = (m1, . . . ,mk) ∈ Zk≥0.

For each i ∈ {1, 2, 3} the restriction Dm(p1, p2)|Ui takes values in the linear subspace li of R2.
By continuity, (Dm(p1, p2))|Ui also takes values in li. If j 6= k, then, because lj ∩ lk = {0},
the derivatives Dm(p1, p2) vanish on Uj ∩ Uk. So

if u ∈ W , then Dmgi(u) = 0 for all m ∈ Zk≥0 and i = 1, 2, 3. (A.4)

Consider the following statements.

(Im) Dmq : U → R3 exists throughout U and vanishes on W .
(IIm) For each i = 1, 2, 3, Dmq (exists and) coincides with Dmgi on Ui.
(IIIm) Dmq : U → R3 (exists and) is continuous.

(Im) implies (IIm). This follows by the second part of (A.3) from the facts that q and
gi coincide on the open set Ui and that, assuming (Im), Dmq and Dmgi both vanish at the
points of W (Dmq by hypothesis and Dmgi by (A.4)).

(Im) and (IIm) imply (IIIm). This is because Dmq coincides with continuous maps on the
closed sets U1, U2, U3, W , whose union is U (by the �rst part of (A.3)).

We will now show that (Im) is true for all m. For m = 0, this follows from (A.4).
Arguing by induction, assume that (Im′), and hence (IIm′) and (IIIm′), are true, and let m
be obtained from m′ by increasing one of its coordinates by one, say, the `th coordinate.
Because q coincides with the smooth map gi on the open set Ui, the derivative Dmq exists
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on the Uis. Denote the `th standard basis element of Rk by e`. Fix a point u ∈ W . For any
h such that u+ he` ∈ U , we claim that

Dm′q(u+ he`)−Dm′q(u)

h
=


Dm′gi(u+ he`)−Dm′gi(u)

h
if u+ he` ∈ Ui

0 if u+ he` 6∈ U1 ∪ U2 ∪ U3.

(A.5)
The �rst case is because q and gi, and hence their derivatives, coincide on the open subset
Ui, and because Dm′q(u) = 0 (by (Im′)) and Dm′gi(u) = 0 (by (A.4) for m′). In the
second case u + he` ∈ W (by the �rst part of (A.3)) and u ∈ W (by assumption), so
Dm′q(u + he`) = Dm′q(u) = 0 (by (Im′)). Since each term on the right hand side of (A.5)
converges to zero as h→ 0 (by (A.4) for m), we conclude that the left hand side converges
to zero, so Dmq(u) exists and is equal to zero. Because u ∈ W is arbitrary, we obtain (Im).

Thus, (Im), (IIm), and (IIIm) are true for all m. In particular, q is smooth, as required. �

B. Comparisons with Other Structures

In this appendix, we compare di�eological and di�erential spaces (and hence Frölicher
spaces by Theorem 2.13) with some of the other generalisations of di�erential calculus that
appear in the literature. We refer to Andrew Stacey's paper [96] for a more extensive
comparative study of Chen spaces, Smith spaces, di�eological spaces, Frölicher spaces, and
di�erential spaces; we do not address Chen spaces nor Smith spaces here. For a direct
comparison of di�eological and Chen spaces, see [57]. We refer to Joao Nuno Mestre's
Ph.D. thesis [75, Chapter 2] for a comparative study of di�erential spaces, Mostow spaces,
subcartesian spaces, di�erentiable spaces (not the same as �di�erential� spaces), and C∞-
schemes.

For the sake of brevity, we do not give de�nitions of the structures discussed below.
Instead, we refer the reader to the following sources that are more focused on these subjects
(we do not claim that this is an exhaustive list):

• Lie groupoids and stacks [10, 67, 77, 84];

• sheaves of sets over a site [6];

• synthetic di�erential geometry and C∞-schemes [30, 52, 59, 78];

• Mostow spaces [79];

• subcartesian spaces [2, 3, 4, 91];

• di�erentiable spaces [37, 93, 94, 95].

B.1. From Lie groupoids to di�eological spaces. There is a functor from the category
of Lie groupoids to the category of di�eological spaces, sending a Lie groupoid to its orbit
space equipped with the quotient di�eology, and smooth morphisms between Lie groupoids
to di�eologically smooth maps between the orbit spaces. This functor is neither faithful nor
full, even when restricted to e�ective étale proper Lie groupoids (i.e. e�ective orbifolds); see
the examples of Moshe Zadka [48, Examples 24 and 25].
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However, this functor does factor through Morita equivalence. In fact, the bicategory of
Lie groupoids with bibundles between them and isomorphisms of bibundles as 2-arrows (see
[67, 77] for de�nitions) has a pseudofunctor to di�eological spaces, in which bibundles are
sent to di�eologically smooth maps, and 2-arrows are sent to trivial 2-arrows (di�eological
spaces form an honest 1-category); this is proven by Watts in [104, Theorem 3.8]. Moreover,
when this pseudofunctor is restricted to e�ective orbifolds with �locally invertible� bibundles
between them, then this is an equivalence of categories onto di�eological orbifolds with locally
invertible smooth maps between them. In fact, Karshon and Miyamoto in [55] (following an
earlier preprint by Karshon and Zoghi that was announced in [109]) prove that this restriction
works in the more general setting of so-called e�ective quasifold groupoids and di�eological
quasifolds.

An important feature of this pseudofunctor is that much of the isotropic information is
generally lost. Indeed, consider U(n) and SO(2n) acting on R2n by rotations. The resulting
di�eological quotients are di�eologically di�eomorphic, but the groupoids are not even Morita
equivalent: the stabilisers at the origin are not isomorphic. However, in certain circumstances
these stabilisers can be recovered: it follows from [48] that the restricted pseudofunctor
from e�ective étale proper Lie groupoids to di�eological orbifolds is injective on objects.
It follows from [24] that the same pseudofunctor restricted to action groupoids of faithful
linear representations of the circle is also injective on objects. See Example 4.1 for more
such examples. It would be interesting to pin down precisely which isotropic information is
lost and which is retained, even in the case of linear compact group actions. There are also
examples of Lie groupoids whose orbit spaces are di�eologically di�eomorphic, the isotropic
information is the same, but the Lie groupoids are not Morita equivalent; see [55, Section 7].

B.2. From stacks to di�eological spaces. There is an equivalence of bicategories between
the bicategory of Lie groupoids and the 2-category of di�erentiable stacks, and thus by B.1
there is a pseudofunctor from di�erentiable stacks to di�eological spaces (viewing di�eological
spaces as a bicategory with trivial 2-arrows). The image of a di�erentiable stack via this
pseudofunctor is the orbit space of a Lie groupoid representing the stack, but di�erent choices
of representative Lie groupoid yield only di�eomorphic orbit spaces.

In Watts-Wolbert [105], the authors show that this pseudofunctor can be described more
strictly as a 2-functor: given a di�erentiable stack, this 2-functor sends it to a di�eological
space that only depends on the stack (although it is di�eomorphic to the orbit space of any
representative Lie groupoid). Moreover, this 2-functor extends to all stacks over the site of
smooth manifolds, sending a stack to its underlying di�eological �coarse moduli space�. Up
to an application of the comparison lemma of sheaves on sites, the 2-functor factors through
the so-called concretization functor of Baez and Ho�nung [6], which sends a sheaf of sets
over the site of smooth manifolds to its underlying di�eological space. In fact, the 2-functor
is adjoint to the inclusion functor from di�eological spaces into stacks, which again factors
through sheaves of sets over the site of manifolds; see Subsection B.3 for more details. In
other words, stacks form a language that uni�es Lie groupoids up to Morita equivalence,
sheaves of sets over manifolds, and di�eological spaces.
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Di�erential spaces do not �t into this setting at all. For instance, R with its standard
di�eology is di�eologically di�eomorphic to the cusp given by x2 = y3 in R2; see Karshon-
Miyamoto-Watts [54]. However, the standard di�erential structure on R is not functionally
di�eomorphic to the subspace di�erential structure on the cusp; indeed, the structural di-
mension of the cusp is 2, whereas at each non-cuspoidal point, it is 1. It is also equal to 1
at all points of R. Since structural dimension is an invariant of such di�erential spaces (see
[69]), these two spaces are not functionally di�eomorphic.

B.3. Di�eological spaces as sheaves over Open. A di�eology on a set X cannot be
obtained from a �structure sheaf� on X as a topological space; for example, the irrational
torus (Example 3.9) has an interesting di�eology but a trivial topology. Instead, di�eology
can be viewed as a sheaf of sets over a site.

Namely, let Open denote the category whose objects are the open subsets of cartesian
spaces (Rn, n ≥ 0) and whose arrows are smooth maps. This is a site whose coverages are
exactly the standard open covers of open subsets of cartesian spaces. A di�eology DX on
a set X determines a contravariant functor DX : Open → Setop (i.e. a presheaf), sending
U to the set of plots with domain U . The locality axiom of di�eology guarantees that this
presheaf is in fact a sheaf. Furthermore, if we let X be the sheaf assigning to each object U
of Open all functions U → X, then DX is a subsheaf of X that satis�es DX(R0) = X(R0).
This de�nition is due to Lerman [23, De�nition A.13]. A similar approach to di�eology as
sheaves over a category already appears in the work of Iglesias-Zemmour in the appendix to
his 1986 paper [45].

In the language of Baez and Ho�nung, di�eologies are exactly the sheaves over Open that
are �concrete� [6]. Not all sheaves over Open are concrete, however. For instance, for k > 0,
consider the sheaf Ωk(·) assigning to the object U in Open all di�erential k-forms Ωk(U).
Then Ωk(R0) is trivial. Note, however, that this does not correspond to the di�eological
space R0, as DR0 sends U to the singleton consisting of the constant plot U → R0, whereas
Ωk(U) is not a singleton for general U .

B.4. Di�erential structures and ringed spaces. Let (X,F) be a di�erential space. Then
there is a naturally induced reduced ringed space (X, F̂) where for each open U ⊆ X (with
respect to the initial topology induced by F), the ring F(U) is the subspace di�erential
structure on U . (A �reduced� ringed space is a ringed space whose sheaf is a sheaf of contin-
uous real-valued functions.) Moreover, any smooth map of di�erential spaces f : (X,FX)→
(Y,FY ) induces a morphism of reduced ringed spaces (f, f ]) : (X, F̂X) → (Y, F̂Y ). One can
recover (X,F) by taking F to be the ring of global sections.

The opposite operation does not work: starting with an appropriate reduced ringed space,
the shea��cation of the global sections as above does not necessarily return the original
ringed space. For example, consider the non-Hausdor� manifold �the real line with two
origins�; see Example 6.7. This is the quotient of R q R by the relation x ∼ y if x and y
are non-zero and copies of the same real number. Equip the resulting quotient topological
space X with the sheaf sending an open set U (in the quotient topology) to the subspace
di�erential structure on U induced by the quotient di�erential structure on X. This sheaf
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cannot be obtained from a di�erential space, as the topology on X is not initial with respect
to the global sections of the sheaf.

B.5. From di�erential spaces to C∞-schemes. A C∞-ringed space is a topological space
equipped with a sheaf of C∞-rings. An a�ne C∞-scheme is a locally C∞-ringed space
isomorphic to the real spectrum of a C∞-ring. A C∞-scheme is a locally C∞-ringed space
(X,OX) such that X admits an open cover {Uα} in which (Uα,OX |Uα) is an a�ne C∞-
scheme.

Proposition 2.77 of [75] states that any reduced a�ne C∞-scheme can be considered to
be a di�erential space, and Corollary of 2.78 of [75] states that any reduced C∞-scheme can
be considered to be a Mostow space. In general, however, a reduced C∞-scheme is not the
shea��cation of a di�erential space; see the example in B.4. On the other hand, di�erential
spaces embed into (reduced) C∞-schemes; see [75, Corollary 2.76].

We must keep the adjective �reduced� above. Indeed, even for a�ne C∞-schemes, there
may be, for instance, nilpotent elements in the C∞-ring of global sections that cannot be
realised as real-valued functions on a set. A simple example of this is given by the so-called
�dual numbers�: R[x]/(x2) has a real spectrum given by a point with corresponding sheaf of
functions exactly those of R0. All elements generated by x(x2) are forgotten by this sheaf.
See [78, page 19] for more details on this example.

B.6. From di�erential spaces to Mostow spaces. A Mostow space is a reduced ringed
space (X,F) such that for any open set U ⊆ X, the ring F(U) satis�es the smooth compat-
ibility condition of di�erential spaces: for any f1, . . . , fk ∈ F(U) and any g ∈ C∞(Rk), the
composition g(f1, . . . , fk) is in F(U). It follows that there is a full embedding of di�erential
spaces into Mostow spaces by converting a di�erential space into a ringed space as above.
Thus, one may view a Mostow space as a di�erential space in which the topology on the
space is allowed to be �ner than that of the initial topology. For example, given a di�e-
ological space (X,D) where X is equipped with the D-topology, the corresponding ringed
space induced from (X,ΦD) is naturally a Mostow space. This becomes a di�erential space
if we replace the D-topology with the initial topology. In fact, replacing the topology of
the Mostow space with the initial topology induced by its global sections is adjoint to the
embedding of di�erential spaces into Mostow spaces; see [75, Proposition 2.66].

B.7. From subcartesian spaces to di�erentiable spaces. Recall from the introduction
that a subcartesian space is a di�erential space that is locally functionally di�eomorphic to
subsets of cartesian spaces.

Di�erentiable spaces are a special case (the �∞-standard� case) of spaces introduced by
Spallek [93, 94, 95]; a standard reference on these is the book by Gonzalez-Salas [37]. A
di�erentiable algebra is an R-algebra isomorphic to C∞(Rn)/a for some n and ideal a closed
with respect to the Fréchet topology. An a�ne di�erentiable space is a locally ringed space
isomorphic to the real spectrum of a di�erentiable algebra. A di�erentiable space (X,OX)
is a locally ringed space admitting an open cover {Uα} such that (Uα,OX |Uα) is an a�ne
di�erentiable space for each α. Warning: again, a di�erential space and a di�erentiable
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space are two di�erent things; we will prepend �Sikorski� to the former in this subsection to
avoid confusion.

Proposition 2.81 of [75] states that any reduced a�ne di�erentiable space is a subcartesian
space, and consequently, any reduced di�erentiable space is a Mostow space. These facts
follow from the discussion on C∞-schemes mentioned above, and the fact that di�erentiable
spaces form a full subcategory of C∞-schemes [75, Corollary 2.76]. In fact, one can say more.
It follows from [37, Proposition 5.6, Corollary 5.7] that any reduced a�ne di�erentiable
space is a closed Sikorski di�erential subspace of Rn for some n, which is stronger than the
subcartesian condition.

B.8. Conclusion. It is the opinion of the author Watts that these various theories described
above should not be viewed as competing with each other, but instead, that each theory
individually focuses on speci�c attributes desired in what one calls a �smooth space�. For
example, neither di�eological, Frölicher, nor di�erential spaces start with a topological space;
they all start with structures consisting of functions mapping into and/or out of a set. (While
a di�erential structure uses the initial topology to de�ne the locality axiom, this topology is
induced by the di�erential structure). On the contrary, ringed spaces such as C∞-schemes,
di�erentiable spaces, and Mostow spaces, start with a topological space upon which a sheaf
is de�ned.

As another example, Lie groupoids and stacks may encode more information than di�e-
ological spaces. In some situations, one can get away with using the simpler language of
di�eology, however, in other situations, one needs the language of Lie groupoids and stacks.

A more unifying setting that keeps to concrete 1-categories is to consider sets equipped
with a di�eology and a di�erential structure that are compatible; see De�nition 2.3. This
setting is used in [101] and [57], and has the advantage of containing as full subcategories
the categories of di�eological spaces, di�erential spaces, and Frölicher spaces. It also allows
one to simultaneously utilise invariants and techniques speci�cally designed for di�eological
or di�erential spaces.
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