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Abstract. We study certain weaker variants of Ufin(O,Ω), namely Ufin(O,ΩD)
and Ufin(O,ΩD). We explore many topological properties of Ufin(O,ΩD) and

Ufin(O,ΩD). Certain situations are considered when these weaker variants
are equivalent to certain related properties. We also make investigations on

these variants using critical cardinalities and Alexandroff duplicate. Few ob-

servations on productively Ufin(O,ΩD) and productively Ufin(O,ΩD) spaces
are presented. Besides, we present certain characterizations of Ufin(O,ΩD)

and Ufin(O,ΩD) using weakly groupable covers. We also obtain many game

theoretic observations in this context. Some open problems are given.
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1. Introduction

The study of selection principles turns out to be an emerging field in topology
and allied areas. A lot of research has been carried out investigating weaker variants
of the selection principles. We suggest the readers to consult the papers [7,8,11–16,
18,21] and references therein for recent explorations in this direction. Throughout
the paper X stands for a topological space. Let A and B be collections consisting
of families of subsets of X. Following [10,19], we define
S1(A,B): For each sequence (Un) of elements of A there exists a sequence (Vn) such
that for each n Vn ∈ Un and {Vn : n ∈ N} ∈ B.
Sfin(A,B): For each sequence (Un) of elements of A there exists a sequence (Vn)
such that for each n Vn is a finite subset of Un and ∪n∈NVn ∈ B.
Ufin(A,B): For each sequence (Un) of elements of A there exists a sequence (Vn)
such that for each n Vn is a finite subset of Un and {∪Vn : n ∈ N} ∈ B or there is
some n such that ∪Vn = X.

For Π ∈ {S1,Sfin,Ufin}, we say that X is a Π(A,B) space if X satisfies the
selection principle Π(A,B). This convention will be used subsequently.

The game G1(A,B) on X corresponding to the selection principle S1(A,B) is
played as follows. Players ONE and TWO play an inning for each positive integer
n. In the nth inning ONE chooses a Un ∈ A and TWO responds by selecting a
Un ∈ Un. TWO wins the play U1, U1,U2, U2, . . . ,Un, Un, . . . of this game if {Un :
n ∈ N} ∈ B; otherwise ONE wins. The game Gfin(A,B) (respectively, Gufin(A,B))
on X corresponding to the selection principle Sfin(A,B) (respectively, Ufin(A,B))
can be similarly defined.

It is easy to see that if ONE does not have a winning strategy in the game
G1(A,B) (respectively, Gfin(A,B), Gufin(A,B)) on X, then X satisfies S1(A,B)
(respectively, Sfin(A,B), Ufin(A,B)). For Σ ∈ {G1,Gfin,Gufin}, observe that win-
ning strategies for ONE (respectively, TWO) in Σ(A, C) (respectively, Σ(A,B))
implies winning strategies for ONE (respectively, TWO) in Σ(A,B) (respectively,
Σ(A, C)) if B ⊆ C.
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Let O denote the collection of all open covers of X and Ω denote the collection of
all ω-covers of X (recall that an open cover U of X is said to be an ω-cover [10,19]
if X not in U and for each finite subset F of X there is a set U ∈ U such that
F ⊆ U). Let OD denote the family of all sets U of open subsets of X such that ∪U
is dense in X. Consider the family ΩD of all sets U ∈ OD such that for each finite
collection F of nonempty open sets of X there exists a U ∈ U such that U ∩ V 6= ∅
for all V ∈ F and the family ΩD of all sets U ∈ ΩD such that for each U there
exists a dense set Y ⊆ X such that each finite set F ⊆ Y is contained in U for some
U ∈ U .

In this article we consider certain weaker variants of the selection principle
Ufin(O,Ω), namely Ufin(O,ΩD) and Ufin(O,ΩD) and their corresponding games
Gufin(O,ΩD) and Gufin(O,ΩD). We characterize the selection principles Ufin(O,ΩD)
and Ufin(O,ΩD) using neighbourhood assignment as well as weakly groupable cov-
ers. We observe that if every finite power of a space X satisfies Sfin(O,OD), then
X satisfies Ufin(O,ΩD). We discuss relation of the selection principles Ufin(O,ΩD)
and Ufin(O,ΩD) with similar other selection principles. We explore investigations
using critical cardinalities, Alexandroff duplicate, mappings and products. Certain
investigations on productively Ufin(O,ΩD) and productively Ufin(O,ΩD) properties
are also carried out. We obtain few interesting game theoretic observations in this
direction. In particular we observe that the games Gufin(O,ΩD), Gufin(O,ΩD) and
Gufin(O,Ω) are equivalent under certain topological assumption. We leave some
problems as open.

2. Definitions and terminologies

For undefined notions and terminologies, see [9]. A subset A of a space X is

said to be regular-closed (respectively, regular-open) if Int(A) = A (respectively,
Int(A) = A). An open cover U of X is said to be a γ-cover [10, 19] if U is infinite
and for each x ∈ X, the set {U ∈ U : x /∈ U} is finite. An open cover U of X
is said to be a large cover [10, 19] if for each x ∈ X, the set {U ∈ U : x ∈ U} is
infinite. We use the symbol Γ and Λ to denote the collection of all γ-covers and
large covers of X respectively. Note that Γ ⊆ Ω ⊆ Λ ⊆ O. An open cover U of X
is said to be weakly groupable [1] if X can be expressed as a countable union of
finite, pairwise disjoint subfamilies Un, n ∈ N, such that for each finite set F ⊆ X
we have F ⊆ ∪Un for some n. The collection of all weakly groupable covers of X
is denoted by Owgp.

The following families of open sets will be used in our investigation.

O: The family of all sets U of open subsets of X such that {U : U ∈ U} covers X.
Ω: The family of all sets U ∈ O such that each finite set F ⊆ X is contained in U

for some U ∈ U .
Γ: The family of all sets U ∈ O such that for each x ∈ X, the set {U ∈ U : x /∈ U}

is finite.
Λ: The family of all sets U ∈ O such that for each x ∈ X, the set {U ∈ U : x ∈ U}

is infinite.
Owgp: The family of all sets U ∈ O such that U can be expressed as a countable union

of finite, pairwise disjoint subfamilies Un, n ∈ N, such that for each finite set
F ⊆ X there exists a n such that F ⊆ ∪Un.

Λwgp: The family of all sets U ∈ Λ such that U ∈ Owgp.
ΓD: The family of all sets U ∈ OD such that for each nonempty open set U ⊆ X,

the set {V ∈ U : U ∩ V = ∅} is finite.
ΛD: The family of all sets U ∈ OD such that for each nonempty open set U ⊆ X,

the set {V ∈ U : U ∩ V 6= ∅} is infinite.
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OwgpD: The family of all sets U ∈ OD such that U can be expressed as a countable
union of finite, pairwise disjoint subfamilies Un, n ∈ N, such that for each finite
collection F of nonempty open sets of X there exists a n such that V ∩(∪Un) 6= ∅
for all V ∈ F .

ΛwgpD: The family of all sets U ∈ ΛD such that U ∈ OwgpD.
ΓD: The family of all sets U ∈ ΓD such that for each U there exists a dense set

Y ⊆ X such that for each x ∈ Y , the set {U ∈ U : x /∈ U} is finite.
ΛD: The family of all sets U ∈ ΛD such that for each U there exists a dense set

Y ⊆ X such that for each x ∈ Y , the set {U ∈ U : x ∈ U} is infinite.

OwgpD: The family of all sets U ∈ OwgpD such that for each U there exists a dense set
Y ⊆ X and U can be expressed as a countable union of finite, pairwise disjoint
subfamilies Un, n ∈ N, such that each finite set F ⊆ Y is contained in ∪Un for
some n.

ΛwgpD: The family of all sets U ∈ ΛD such that U ∈ OwgpD.

All the families defined above are assumed to be infinite. Observe that

(1) Γ ⊆ Ω ⊆ Λ ⊆ O
(2) ΓD ⊆ ΩD ⊆ ΛD ⊆ OD
(3) ΓD ⊆ ΩD ⊆ ΛD ⊆ OD
(4) O ⊆ OD

(5) Γ ⊆ ΓD and ΓD ⊆ ΓD
(6) Ω ⊆ ΩD and ΩD ⊆ ΩD
(7) Λ ⊆ ΛD and ΛD ⊆ ΛD.

Also note that every countable member of Ω (respectively, ΩD, ΩD) is a member

of Owgp (respectively, OwgpD, OwgpD). A space X is said to be almost Lindelöf (re-
spectively, weakly Lindelöf) if for every open cover U of X there exists a countable
subset V of U such that V ∈ O (respectively, V ∈ OD) (see [11,22]).

The following terminologies will also be used throughout our study.

G: The family of all covers U of the space X for which each element of U is a Gδ
set.

GK : The family of all sets U where X is not in U , each element of U is a Gδ set,
and for each compact set C ⊆ X there is a U ∈ U such that C ⊆ U .

GΩ: The family of all covers U ∈ G such that for each finite set F ⊆ X there is a
U ∈ U such that F ⊆ U .

GΓ: The family of all covers U ∈ G which are infinite and each infinite subset of U
is a cover of X.

GΓ: The family of all covers U ∈ G which are infinite and for each x ∈ X, the set

{U ∈ U : x /∈ U} is finite.
GD: The family of all sets U where each element of U is a Gδ set and ∪U is dense

in X.
GDΓ

: The family of all sets U where each element of U is a Gδ set and for each
nonempty open set U ⊆ X, the set {V ∈ U : U ∩ V = ∅} is finite.

GΓD : The family of all sets U where each element of U is a Gδ set and for each U there
exists a dense set Y ⊆ X such that for each x ∈ Y , the set {U ∈ U : x /∈ U} is
finite.

G: The family of all sets U such that every U ∈ U is a Gδ set and {U : U ∈ U}
covers X.

GΩ: The family of all sets U ∈ G such that for each finite set F ⊆ X there exists a
U ∈ U such that F ⊆ U .

Consider the Baire space NN. A natural pre-order ≤∗ on NN is defined by f ≤∗ g
if and only if f(n) ≤ g(n) for all but finitely many n. A subset D of NN is said to
be dominating if for each g ∈ NN there exists a f ∈ D such that g ≤∗ f . A subset A
of NN is said to be bounded if there is a g ∈ NN such that f ≤∗ g for all f ∈ A. Let

15 Dec 2023 01:12:53 PST
230808-Chandra Version 3 - Submitted to Rocky Mountain J. Math.



4 D. CHANDRA, N. ALAM

d be the minimum cardinality of a dominating subset of NN and b be the minimum
cardinality of an unbounded subset of NN.

The Alexandroff duplicate [4, 9] AD(X) of a space X is defined as follows.
AD(X) = X × {0, 1}; each point of X × {1} is isolated and a basic neighbour-
hood of (x, 0) ∈ X × {0} is a set of the form (U × {0}) ∪ ((U × {1}) \ {(x, 1)}),
where U is a neighbourhood of x in X. For a space X, PR(X) denotes the space of
all nonempty finite subsets of X with the Pixley-Roy topology [7]. The collection
{[A,U ] : A ∈ PR(X), U open in X} is a base for the Pixley-Roy topology, where
[A,U ] = {B ∈ PR(X) : A ⊆ B ⊆ U} for each A ∈ PR(X) and each open set U in
X. A space X is said to be cosmic if it has a countable network. A space X satisfies
the countable chain condition (in short, CCC) if every family of disjoint nonempty
open subsets of X is countable. A space satisfying the CCC is called a CCC space.
For a space X, e(X) = sup{|Y | : Y is a closed and discrete subspace of X} is said
to be the extent of X. For any two spaces X and Y , X ⊕ Y denote the topological
sum of X and Y . For any families U and V of subsets of X we denote the set
{U ∩ V : U ∈ U and V ∈ V} by U ∧ V.

3. The selection principles Ufin(O,ΩD) and Ufin(O,ΩD)

3.1. Interrelationships

The proof of the following result is straightforward.

Lemma 3.1.

(1) A space X satisfies Ufin(O,ΩD) if and only if for every sequence (Un) of open
covers of X there exists a sequence (Vn) such that for each n Vn is a finite
subset of Un and for each finite collection F of nonempty open subsets of X,
the set {n ∈ N : U ∩ (∪Vn) 6= ∅ for all U ∈ F} is infinite.

(2) A space X satisfies Ufin(O,ΩD) if and only if for every sequence (Un) of open
covers of X there exist a dense subset Y of X and a sequence (Vn) such that
for each n Vn is a finite subset of Un and each finite set F ⊆ Y is contained in
∪Vn for infinitely many n.

Lindelöf almost Lindelöf weakly Lindelöf

Sfin(O,O) Sfin(O,O) Sfin(O,OD)

Ufin(O,ΩD)

Ufin(O,Ω) Ufin(O,Ω) Ufin(O,ΩD)

Ufin(O,ΓD)

Ufin(O,Γ) Ufin(O,Γ) Ufin(O,ΓD)

Figure 1. Weaker variants of Ufin(O,Γ), Ufin(O,Ω) and Sfin(O,O)

For a Tychonoff space X let βX denote the Stone-Čech compactification of X.
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Example 3.1. There exists a space which satisfies Ufin(O,ΩD) (and hence satisfies
Ufin(O,ΩD)) but does not satisfy Ufin(O,Ω) (i.e. does not satisfy Ufin(O,Ω)).
Let D be the discrete space of cardinality ω1. Consider X = (βD× (ω+1))\ ((βD \
D) × {ω}) as a subspace of βD × (ω + 1). Since βD × ω is a σ-compact dense
subset of X, X satisfies Ufin(O,ΩD) (see Section 3.2 below). Now X is not almost
Lindelöf (see [22, Example 2.3]) and so X does not satisfy Ufin(O,Ω).

It is well known that every CCC space is weakly Lindelöf [17, 22]. In the next
example we show that a CCC space may not be Ufin(O,ΩD).

Example 3.2. There is a CCC space which does not satisfy Ufin(O,ΩD).
Let Z = PR(P), where P is the space of irrationals. Clearly P is a cosmic space
which does not satisfy Sfin(O,O). It has been observed that PR(X) is CCC for every
regular cosmic space X [17] and also if PR(X) satisfies Sfin(O,OD), then each finite
power of X satisfies Sfin(O,O) [7, Theorem 2A]. Thus Z is a CCC space which
does not satisfy Sfin(O,OD). The last shows that Z does not satisfy Ufin(O,ΩD).

Proposition 3.1.

(1) A space X satisfies Ufin(O,ΩD) if and only if for every sequence (Un) of covers
of X by regular-open sets there exists a sequence (Vn) such that for each n Vn is
a finite subset of Un and for each finite collection F of nonempty regular-open
sets there is a n such that U ∩ (∪Vn) 6= ∅ for all U ∈ F .

(2) Suppose that X is regular. Then X satisfies Ufin(O,ΩD) if and only if for every
sequence (Un) of covers of X by regular-open sets there exist a dense subset Y
of X and a sequence (Vn) such that for each n Vn is a finite subset of Un and
for each finite set F ⊆ Y there is a n such that F ⊆ ∪Vn.

Proof. We only give proof of (1), and (2) can be similarly verified.
(1). It is enough to prove the reverse implication. From the given sequence (Un)

of open covers of X, we first construct for each n a cover Wn = {Int(U) : U ∈ Un}
of X by regular-open sets. Now choose a sequence (Hn) such that for each n Hn
is a finite subset of Wn and for each finite collection F of nonempty regular-open
sets there is a n ∈ N such that U ∩ (∪Hn) 6= ∅ for all U ∈ F . For each n and
each V ∈ Hn we can choose a UV ∈ Un such that Int(UV ) = V . Also for each
n Vn = {UV : V ∈ Hn} is a finite subset of Un. Let F be a finite collection of
nonempty open sets. Now first choose F ′ = {Int(U) : U ∈ F} and then choose a
m ∈ N such that V ∩ (∪Hm) 6= ∅ for all V ∈ F ′. Consequently U ∩ (∪Vm) 6= ∅ for
all U ∈ F . Thus X satisfies Ufin(O,ΩD). �

Recall that a neighbourhood assignment for a space (X, τ) is a function N :
X → τ such that x ∈ N (x) for each x ∈ X.

Theorem 3.1.

(1) A space X satisfies Ufin(O,ΩD) if and only if for each sequence (Nn) of neigh-
bourhood assignments of X there exists a sequence (Fn) of finite subsets of X
such that {N (Fn) : n ∈ N} ∈ ΩD.

(2) A space X satisfies Ufin(O,ΩD) if and only if for each sequence (Nn) of neigh-
bourhood assignments of X there exists a sequence (Fn) of finite subsets of X
such that {N (Fn) : n ∈ N} ∈ ΩD.

Proof. Since the proof of (1) and (2) are similar, we only present the proof of (1).
Let (Nn) be a sequence of neighbourhood assignments of X. For each n we define
Un = {Nn(x) : x ∈ X}. Then (Un) is a sequence of open covers of X and since
X satisfies Ufin(O,ΩD), there exists a sequence (Vn) such that for each n Vn is a
finite subset of Un and {∪Vn : n ∈ N} ∈ ΩD. This gives us a sequence (Fn) of
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finite subsets of X such that Vn = {Nn(x) : x ∈ Fn} for each n. It follows that
{Nn(Fn) : n ∈ N} ∈ ΩD.

Conversely let (Un) be a sequence of open covers of X. For each x ∈ X there

exists a U
(n)
x ∈ Un such that x ∈ U (n)

x . Let (Nn) be a sequence of neighbourhood

assignments of X defined by Nn(x) = U
(n)
x for each n and each x ∈ X. By the

given hypothesis, we get a sequence (Fn) of finite subsets of X such that {Nn(Fn) :
n ∈ N} ∈ ΩD. For each n choose Vn = {Nn(x) : x ∈ Fn}. Then the sequence (Vn)
witnesses for (Un) that X satisfies Ufin(O,ΩD). �

The following result is from [5], we sketch the proof for convenience of the reader.

Theorem 3.2 ( [5]). Every paracompact Ufin(O,Ω) space is Ufin(O,Ω).

Proof. Let X be a paracompact Ufin(O,Ω) space. Let (Un) be a sequence of open
covers of X. Choose a sequence (Wn) such that for each nWn is a locally finite open
refinement of Un. Now fix n. For each x ∈ X there is an open set Ux containing x
such that Ux ⊆ V for some V ∈ Wn and {W ∈ Wn : W ∩Ux 6= ∅} is finite. Observe
that Hn = {Ux : x ∈ X} is an open refinement of Wn. Applying the hypothesis to
the sequence (Hn) of open covers we obtain a sequence (Kn) such that for each n Kn
is a finite subset ofHn and for each finite set F ⊆ X there is a n such that F ⊆ ∪Kn.
Clearly for each n the collection Fn = {V ∈ Wn : V ∩ U 6= ∅ for some U ∈ Kn}
is finite. For each V ∈ Fn, choose a UV ∈ Un such that V ⊆ UV and define
Vn = {UV : V ∈ Fn}. Now the property Ufin(O,Ω) is witnessed by the sequence
(Vn). �

An open cover U of a space X is called star finite if every U ∈ U intersects only
finitely many V ∈ U . A space X is called hypocompact if every open cover U of X
has a star finite open refinement. Since every hypocompact space is paracompact,
we obtain the following.

Corollary 3.1. Every hypocompact Ufin(O,Ω) space is Ufin(O,Ω).

But the above results (Theorem 3.2 and Corollary 3.1) do not hold in the context
of Ufin(O,ΩD) and Ufin(O,ΩD). The Baire space is a typical counter-example to
it (see Remark 3.1).

Theorem 3.3. If every finite power of a space X satisfies Sfin(O,OD), then X
satisfies Ufin(O,ΩD).

Proof. Let (Un) be a sequence of open covers of X. Let {Nk : k ∈ N} be a partition
of N into infinite subsets. For each k and each m ∈ Nk letWm = {U1×U2×· · ·×Uk :
U1, U2, . . . , Uk ∈ Um}. Clearly (Wm : m ∈ Nk) is a sequence of open covers
of Xk. Apply the Sfin(O,OD) property of Xk to (Wm : m ∈ Nk) to obtain a
sequence (Hm : m ∈ Nk) of finite sets such that Hm ⊆ Wm for each m ∈ Nk and
∪{∪Hm : m ∈ Nk} is dense in Xk. For each m ∈ Nk we can express every H ∈ Hm
as H = U1(H) × U2(H) × · · · × Uk(H), where U1(H), U2(H), . . . , Uk(H) ∈ Um.
Choose Vm = {Ui(H) : 1 ≤ i ≤ k,H ∈ Hm}. Then Vm is a finite subset of Um
for each m ∈ Nk. Thus we obtain a sequence (Vn) of finite sets with Vn ⊆ Un. To
complete the proof, choose a finite collection F = {U1, U2, . . . , Up} of nonempty
open subsets of X. Since U1 × U2 × · · · × Up is a nonempty open set in Xp, there
is a m0 ∈ Np such that (U1 × U2 × · · · × Up) ∩ (∪Hm0

) 6= ∅, which in turn implies
that Ui ∩ (∪Vm0) 6= ∅ for each 1 ≤ i ≤ p. Clearly (Vn) witnesses that X satisfies
Ufin(O,ΩD). �

Note that S1(GK ,G) implies Ufin(O,Ω). A similar observation for Ufin(O,ΩD) is
presented in the next result.

15 Dec 2023 01:12:53 PST
230808-Chandra Version 3 - Submitted to Rocky Mountain J. Math.



FURTHER OBSERVATIONS ON CERTAIN Ufin-TYPE SELECTION PRINCIPLES 7

Theorem 3.4. S1(GK ,GD) implies Ufin(O,ΩD).

Proof. Let X satisfy S1(GK ,GD). To show that X satisfies Ufin(O,ΩD) we pick a
sequence (Un) of open covers of X. We may assume that for each n Un is closed
for finite unions. Let {Nk : k ∈ N} be a partition of N into infinite sets. For each k
and each n ∈ Nk choose Wn = {Uk : U ∈ Un}. Then for each k (Wn : n ∈ Nk) is a
sequence of open covers of Xk. Fix k. Let U = {∩n∈NkWn : Wn ∈ Wn}. Obviously
U ∈ GK for Xk. Without loss of generality we suppose that U = H1×H2×· · ·×Hk,
where each Hi ∈ GK for X. Applying the S1(GK ,GD) property of X, for each
1 ≤ i ≤ k, we get a countable set Ci ⊆ Hi such that ∪Ci is dense in X and
subsequently we have a countable set V = C1 × C2 × · · · × Ck ⊆ U such that ∪V
is dense in Xk. Put V = {∩n∈NkWm

n : Wm
n ∈ Wn,m ∈ Nk}. Later we choose

V ′ = {Wn
n ∈ Wn : n ∈ Nk}. Then ∪V ⊆ ∪V ′ and so ∪V ′ is also dense in Xk. For

each n ∈ Nk let Vn = {U ∈ Un : Uk ∈ V ′}. The sequence (Vn) now witnesses for
(Un) that X satisfies Ufin(O,ΩD). �

Lemma 3.2. Every weakly Lindelöf P -space satisfies S1(GK ,G).

Proof. Let X be a weakly Lindelöf P -space. Pick U ∈ GK . Since X is a P -space,
U is an open cover of X. Also since X is weakly Lindelöf, there is a countable set
V ⊆ U such that ∪V is dense in X. Again by the property of a P -space we can
say that the set ∪{V : V ∈ V} is closed in X. Since ∪V is the smallest closed set
in X containing ∪V, ∪V ⊆ ∪{V : V ∈ V} and hence ∪{V : V ∈ V} = X. Thus X
satisfies S1(GK ,G). �

By Lemma 3.2 and using the implications of Figures 1 and 2, we obtain the
following.

Theorem 3.5. For a P -space X the following properties are equivalent.

(1) almost Lindelöf
(2) Sfin(O,O)
(3) Ufin(O,Ω)
(4) S1(GK ,G)

(5) weakly Lindelöf
(6) Sfin(O,OD)
(7) Ufin(O,ΩD)
(8) S1(GK ,GD).

Corollary 3.2. For a P -space Ufin(O,ΩD) implies S1(GK ,G) (so implies Ufin(O,Ω)).

Note that for a regular space the Lindelöf and almost Lindelöf properties are
equivalent. Again using Theorem 3.5 and implications of Figures 1 and 2 the
following result can be easily verified.

Theorem 3.6. For a regular P -space X the following properties are equivalent.

(1) Lindelöf
(2) Sfin(O,O)
(3) Ufin(O,Ω)
(4) almost Lindelöf

(5) Sfin(O,O)
(6) Ufin(O,Ω)
(7) S1(GK ,G)
(8) weakly Lindelöf

(9) Sfin(O,OD)
(10) Ufin(O,ΩD)
(11) S1(GK ,GD).
(12) Ufin(O,ΩD).

3.2. Preservation like properties

For a set Y ⊆ NN, maxfin(Y ) is defined as

maxfin(Y ) = {max{f1, f2, . . . , fk} : f1, f2, . . . , fk ∈ Y and k ∈ N},
where max{f1, f2, . . . , fk} ∈ NN is given by

max{f1, f2, . . . , fk}(n) = max{f1(n), f2(n), . . . , fk(n)} for all n ∈ N.

Theorem 3.7. Let X be Lindelöf and κ < d. If X is a union of κ many Ufin(O,ΓD)
spaces, then X satisfies Ufin(O,ΩD).
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8 D. CHANDRA, N. ALAM

Proof. Let κ be a cardinal smaller than d and X = ∪α<κXα with each Xα satisfies
Ufin(O,ΓD). To show that X satisfies Ufin(O,ΩD) we pick a sequence (Un) of open

covers of X, say for each n Un = {U (n)
m : m ∈ N}. For each α < κ we get a sequence

(V(α)
n ) such that for each n V(α)

n is a finite subset of Un and for every nonempty

open set U ⊆ Xα, U ∩ (∪V(α)
n ) 6= ∅ for all but finitely many n. Next for each α < κ

we define fα : N → N by fα(n) = min{m ∈ N : V(α)
n ⊆ {U (n)

i : i ≤ m}}. Choose
Y = {fα : α < κ}. Obviously the cardinality of maxfin(Y ) is less than d. Then
there exists a g ∈ NN such that for each finite subset A of κ we get g �∗ fA with

fA ∈ maxfin(Y ). For each n Vn = {U (n)
i : i ≤ g(n)} is a finite subset of Un. We now

show that the sequence (Vn) witnesses for (Un) that X satisfies Ufin(O,ΩD). Let F
be a finite collection of nonempty open sets of X. Then we can find a finite subset
A of κ such that F = ∪α∈AFα with for each α ∈ A, {U ∩Xα : U ∈ Fα} is a finite
collection of nonempty of open sets of Xα. For each α ∈ A select a nα ∈ N such that

for each U ∈ Fα, U ∩ (∪V(α)
n ) 6= ∅ for all n ≥ nα. Choose n0 = max{nα : α ∈ A}.

Then we get a n1 ∈ N such that n1 > n0 and fA(n1) < g(n1). Observe that for each

α ∈ A and each U ∈ Fα, U ∩ (∪i≤fα(n1)U
(n1)
i ) 6= ∅ i.e. U ∩ (∪i≤fA(n1)U

(n1)
i ) 6= ∅.

Thus for each α ∈ A and each U ∈ Fα, U ∩ (∪i≤g(n1)U
(n1)
i ) 6= ∅ i.e. U ∩ (∪Vn1

) 6= ∅.
Hence X satisfies Ufin(O,ΩD). �

The proof of next two results (Theorems 3.8 and 3.9) are similar to the proof of
Theorem 3.7 with necessary modifications and so are omitted.

Theorem 3.8. Let X be Lindelöf and κ < d. If X is a union of κ many Ufin(O,ΓD)
spaces, then X satisfies Ufin(O,ΩD).

Let κ be any cardinal. We say that the collection {Xα : α < κ} is a Ω-wrapping
if for each finite set F ⊆ ∪α<κXα there exists a β < κ such that F ⊆ Xβ .

Theorem 3.9. Let X be Lindelöf and κ < b. Suppose that X = ∪α<κXα and the
collection {Xα : α < κ} is a Ω-wrapping. If each Xα satisfies Ufin(O,ΩD), then X
satisfies Ufin(O,ΩD).

We do not know whether the above result holds for Ufin(O,ΩD) and thus, we
present an open question.

Problem 3.1. Let X be Lindelöf and κ < b. Suppose that X = ∪α<κXα and the
collection {Xα : α < κ} is a Ω-wrapping. If each Xα satisfies Ufin(O,ΩD), does
then X satisfy Ufin(O,ΩD)?

A collection {Xα : α < κ} in a space X is said to be a strongly Ω-wrapping if for
each α < κ and any dense set Yα ⊆ Xα the collection {Yα : α < κ} is a Ω-wrapping.

Theorem 3.10. Let X be Lindelöf and κ < b. Suppose that X = ∪α<κXα and
{Xα : α < κ} is a strongly Ω-wrapping. If each Xα satisfies Ufin(O,ΩD), then X
satisfies Ufin(O,ΩD).

Proof. Let (Un) be a sequence of open covers of X. We can assume that for each

n Un = {U (n)
m : m ∈ N}. For each α < κ we get a dense subset Yα and a sequence

(V(α)
n ) such that for each n V(α)

n is a finite subset of Un and each finite set F ⊆ Yα
is contained in ∪V(α)

n for infinitely many n. By the given condition, {Yα : α < κ}
is a Ω-wrapping. For each α < κ we define fα : N → N by fα(n) = min{m ∈ N :

V(α)
n ⊆ {U (n)

i : i ≤ m}}. Since κ < b, there exists a g ∈ NN such that for each
α < κ we get fα ≤∗ g. Clearly Y = ∪α<κYα is a dense subset of X and for each n

Vn = {U (n)
i : i ≤ g(n)} is a finite subset of Un. It is easy to observe that Y and the

sequence (Vn) witness for (Un) that X satisfies Ufin(O,ΩD). �
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FURTHER OBSERVATIONS ON CERTAIN Ufin-TYPE SELECTION PRINCIPLES 9

Note that all the variants described in Figure 1 are preserved under clopen sub-
sets. Observe that every regular-closed subset of a Ufin(O,ΩD) space is Ufin(O,ΩD).
But this result does not hold for Ufin(O,ΩD) and Ufin(O,Ω).

Example 3.3.

(1) A regular-closed subset of a Ufin(O,Ω) space need not be Ufin(O,Ω).
Let A = {(aα,−1) : α < ω1} ⊆ {(x,−1) : x ≥ 0} ⊆ R2, Y = {(aα, n) : α < ω1, n ∈
N} and p = (−1,−1). Choose X1 = Y ∪A ∪ {p}. We topologize X1 as follows. (i)
Every point of Y is isolated, (ii) for each α < ω1 a basic neighbourhood of (aα,−1)
is of the form Un(aα,−1) = {(aα,−1)} ∪ {(aα,m) : m ≥ n}, where n ∈ N and (iii)
a basic neighbourhood of p is of the form Uα(p) = {p} ∪ {(aβ , n) : β > α, n ∈ N},
where α < ω1. We now show that X1 satisfies Ufin(O,Γ). Let (Un) be a sequence
of open covers of X1. For each n choose a Un ∈ Un such that p ∈ Un and also
choose a basic neighbourhood Uβn(p) ⊆ Un. Now for each n X1 \ Un is at most

countable as Uβn(p) = Uβn(p) ∪ {(aβ ,−1) : β > βn}. Clearly K = ∪n∈N(X1 \ Un)
is σ-compact and hence satisfies Ufin(O,Γ). Apply the Ufin(O,Γ) property of K to
(Un) to obtain a sequence (V ′n) such that for each n V ′n is a finite subset of Un and
each x ∈ K belongs to ∪V ′n for all but finitely many n. Clearly the sequence (Vn),
where Vn = V ′n ∪ {Un} for each n witnesses that X1 satisfies Ufin(O,Γ).
Let X2 be the space as in Example 3.1. Then X2 does not satisfy Ufin(O,Ω).
Assume that X1∩X2 = ∅. Since the cardinality of D is ω1, we write D = {dα : α <
ω1}. Define a bijection ϕ : D × {ω} → A by ϕ(dα, ω) = (aα,−1) for each α < ω1.
Also define Z to be the quotient image of the topological sum X1⊕X2 by identifying
(dα, ω) of X2 with ϕ(dα, ω) of X1 for each α < ω1. Let q : X1 ⊕ X2 → Z be the
quotient map. Now q(X2) is a regular-closed subset of Z which does not satisfy
Ufin(O,Ω) as it is homeomorphic to X2.
We now claim that Z satisfies Ufin(O,Ω). The claim will follow if we show that
Z satisfies Ufin(O,Γ). Choose a sequence (Un) of open covers of Z. Now q(X1)
being the homoeomorphic image of a Ufin(O,Γ) space, is also Ufin(O,Γ). Apply
the Ufin(O,Γ) property of q(X1) to (Un) to obtain a sequence (Hn) such that for
each n Hn is a finite subset of Un and each x ∈ q(X1) belongs to ∪Hn for all but
finitely many n. Again since q(βD×ω) is homeomorphic to βD×ω, q(βD×ω) is
σ-compact and so satisfies Ufin(O,Γ). Thus there is a sequence (Kn) such that for
each n Kn is a finite subset of Un and each x ∈ q(βD × ω) belongs to ∪Kn for all
but finitely many n. For each n let Vn = Hn ∪ Kn. The sequence (Vn) witnesses
that Z satisfies Ufin(O,Γ).

(2) A closed subset of a Ufin(O,ΩD) (respectively, Ufin(O,ΩD)) space need not be
Ufin(O,ΩD) (respectively, Ufin(O,ΩD)).
Consider X as in Example 3.1. Now X is a Tychonoff Ufin(O,ΩD) space and hence
a Ufin(O,ΩD) space. Since D×{ω} is a discrete closed subset of X with cardinality
ω1, it follows that D × {ω} fails to satisfy Ufin(O,ΩD) and Ufin(O,ΩD) as well.

Observe that if a subset Y of a space X satisfies Ufin(O,ΩD) (respectively,
Ufin(O,ΩD)), then Y also satisfies Ufin(O,ΩD) (respectively, Ufin(O,ΩD)). Thus
for a dense subset Y of X, if Y satisfies Ufin(O,ΩD) (respectively, Ufin(O,ΩD)),
then X also satisfies Ufin(O,ΩD) (respectively, Ufin(O,ΩD)), and also every separa-
ble space satisfies Ufin(O,ΩD) (so satisfies Ufin(O,ΩD)). Surprisingly a Ufin(O,Ω)
space may not satisfy this preservation property. The Baire space X does not sat-
isfy Ufin(O,Ω) because X is paracompact and does not satisfy Ufin(O,Ω). Since
X is separable, there exists a countable dense subset Y of X. Thus Y satisfies
Ufin(O,Ω) but Y = X does not satisfy Ufin(O,Ω).
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10 D. CHANDRA, N. ALAM

Remark 3.1. The Baire space X is hypocompact and separable. Clearly X satisfies
Ufin(O,ΩD) (so satisfies Ufin(O,ΩD)). Thus there is a hypocompact Ufin(O,ΩD)
space which does not satisfy Ufin(O,Ω) (as X does not satisfy Ufin(O,Ω)).

Theorem 3.11. For a space X the following assertions are equivalent.

(1) X satisfies Ufin(O,Ω).
(2) AD(X) satisfies Ufin(O,Ω).
(3) AD(X) satisfies Ufin(O,ΩD).

Proof. (1)⇒ (2). Let (Un) be a sequence of open covers of AD(X). For each n and

each x ∈ X let W
(n)
x = (V

(n)
x ×{0, 1})\{(x, 1)} be an open set in AD(X) containing

(x, 0) such that there is a U
(n)
x ∈ Un with W

(n)
x ⊆ U (n)

x , where V
(n)
x is an open set in

X containing x. For each nWn = {V (n)
x : x ∈ X} is an open cover of X. Apply (1)

to (Wn) to obtain a sequence (Fn) of finite subsets of X such that ({V (n)
x : x ∈ Fn})

witnesses the Ufin(O,Ω) property of X. For each n and each x ∈ Fn choose a

O
(n)
x ∈ Un with (x, 1) ∈ O(n)

x . Observe that Vn = {U (n)
x : x ∈ Fn}∪{O(n)

x : x ∈ Fn}
is a finite subset of Un for each n. The sequence (Vn) witnesses that AD(X) satisfies
Ufin(O,Ω).

(3)⇒ (1). Let (Un) be a sequence of open covers ofX. Say, Un = {U (n)
x : x ∈ X},

where U
(n)
x is an open set in X containing x for each n. Choose Wn = {(U (n)

x ×
{0, 1})\{(x, 1)} : x ∈ X}∪{{(x, 1)} : x ∈ X} for each n. Since (Wn) is a sequence of
open covers of AD(X), there are a dense subset Z of AD(X) and a sequence (Fn) of

finite subsets of X such that {(U (n)
x ×{0, 1})\{(x, 1)} : x ∈ Fn}∪{{(x, 1)} : x ∈ Fn}

witnesses the Ufin(O,ΩD) property of AD(X). For each n Vn = {U (n)
x : x ∈ Fn} is

a finite subset of Un. It now follows that X satisfies Ufin(O,Ω). �

There is a space X satisfying Ufin(O,ΩD) (respectively, Ufin(O,ΩD)) such that
AD(X) does not satisfy Ufin(O,ΩD) (respectively, Ufin(O,ΩD)). LetX be the space
as in Example 3.1. Then X is a Tychonoff Ufin(O,ΩD) (and also a Ufin(O,ΩD))
space and A = D × {ω} is an uncountable discrete closed subset of X. Observe
that A × {1} is an uncountable discrete clopen subset of AD(X). Thus AD(X)
does not satisfy Ufin(O,ΩD) and so does not satisfy Ufin(O,ΩD).

The proof of the following result is in line of (1)⇒ (2) of Theorem 3.11.

Theorem 3.12. For a space X if AD(X) satisfies Ufin(O,ΩD), then X also sat-
isfies Ufin(O,ΩD).

By Example 3.1, there exists a Tychonoff Ufin(O,ΩD) and hence Ufin(O,ΩD)
space X such that e(X) ≥ ω1. However for a T1 space X it can be shown that if
AD(X) satisfies Ufin(O,ΩD), then e(X) < ω1. The conclusion also holds if AD(X)
satisfies Ufin(O,ΩD).

Theorem 3.13. If f : X → Y is a mapping from a space X satisfying Ufin(O,ΩD)
(respectively, Ufin(O,ΩD)) onto a space Y such that for each x ∈ X and each open
set V in Y containing f(x) there is an open set U in X containing x such that
f(U) ⊆ V , then Y also satisfies Ufin(O,ΩD) (respectively, Ufin(O,ΩD)).

Proof. We only sketch the proof for the case Ufin(O,ΩD) and other case can be
observed similarly. Let (Un) be a sequence of open covers of Y . Let x ∈ X. For

each n choose a V
(n)
x ∈ Un containing f(x). Subsequently for each n we obtain

an open set U
(n)
x in X containing x such that f

(
U

(n)
x

)
⊆ V

(n)
x . We now apply

the Ufin(O,ΩD) property of X to the sequence (Wn), where for each n Wn =

{U (n)
x : x ∈ X}. Choose a dense set Z ⊆ X and a sequence (Hn) such that for
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FURTHER OBSERVATIONS ON CERTAIN Ufin-TYPE SELECTION PRINCIPLES 11

each n Hn = {U (n)
xi : 1 ≤ i ≤ kn} is a finite subset of Wn and for each finite

set F ⊆ Z there is a n such that F ⊆ ∪Hn. Clearly f(Z) is dense in Y . Let

Vn = {V (n)
xi : 1 ≤ i ≤ kn} for each n. It is now easy to verify that f(Z) and (Vn)

witness that Y satisfies Ufin(O,ΩD). �

Corollary 3.3. The Ufin(O,ΩD) and Ufin(O,ΩD) properties are preserved under
continuous mappings.

Theorem 3.14. If f : X → Y is a closed mapping from a space X onto a space
Y satisfying Ufin(O,ΩD) such that for each x ∈ X and each open set U in X

containing x f(U) is a neighbourhood of f(x) and f−1(y) is compact in X for each
y ∈ Y , then X also satisfies Ufin(O,ΩD).

Proof. Let (Un) be a sequence of open covers of X and y ∈ Y . Since f−1(y) is
compact, for each n there exists a finite subset Vyn of Un such that f−1(y) ⊆ ∪Vyn.

Again since f is closed, there exists an open set U
(n)
y in Y containing y such that

f−1(U
(n)
y ) ⊆ ∪Vyn. Thus for each n Wn = {U (n)

y : y ∈ Y } is an open cover
of Y . Apply the Ufin(O,ΩD) property of Y to (Wn) to obtain a sequence (Hn)

such that for each n Hn = {U (n)
yi : 1 ≤ i ≤ kn} is a finite subset of Wn and

{∪Hn : n ∈ N} ∈ ΩD for Y . For each n Vn = ∪1≤i≤knVyin is a finite subset of Un.
Let F = {Ui : 1 ≤ i ≤ k} be a finite collection of nonempty open sets of X. Then

for each 1 ≤ i ≤ k there exists a nonempty open set Vi in Y such that Vi ⊆ f(Ui).
Choose F ′ = {Vi : 1 ≤ i ≤ k}. Later we get a n0 ∈ N such that Vi ∩ (∪Hn0) 6= ∅
for all 1 ≤ i ≤ k. It follows that for each 1 ≤ i ≤ k, f(Ui) ∩ (∪Hn0

) 6= ∅ and
consequently f(Ui) ∩ (∪Hn0

) 6= ∅. Thus for each 1 ≤ i ≤ k, Ui ∩ f−1(∪Hn0
) 6= ∅

and then it turns into Ui ∩ (∪Vn0
) 6= ∅. This completes the proof. �

Corollary 3.4.

(1) If f : X → Y is an open perfect mapping from a space X onto a space Y
satisfying Ufin(O,ΩD), then X also satisfies Ufin(O,ΩD).

(2) If f : X → Y is an open closed mapping from a space X onto a space Y
satisfying Ufin(O,ΩD) such that f−1(y) is compact in X for each y ∈ Y , then
X also satisfies Ufin(O,ΩD).

We also obtain a similar observation for Ufin(O,ΩD) as follows. The proof of
it is similar to the proof of Theorem 3.14 with necessary modifications and so is
omitted.

Theorem 3.15. If f : X → Y is an open closed mapping from a space X onto a
space Y satisfying Ufin(O,ΩD) such that f−1(y) is compact in X for each y ∈ Y ,
then X also satisfies Ufin(O,ΩD).

Corollary 3.5. If f : X → Y is an open perfect mapping from a space X onto a
space Y satisfying Ufin(O,ΩD), then X also satisfies Ufin(O,ΩD).

The proof of the next result is immediate.

Proposition 3.2. Let X = ∪m∈NXm, where Xm ⊆ Xm+1 for each m.

(1) If each Xm satisfies Ufin(O,ΩD), then X also satisfies Ufin(O,ΩD).
(2) If each Xm satisfies Ufin(O,ΩD), then X also satisfies Ufin(O,ΩD).

In combination with Proposition 3.2, Theorem 3.14 and Theorem 3.15 we obtain
the following.

Proposition 3.3. Let X be a σ-compact space. Then X is

(1) productively Ufin(O,ΩD).
(2) productively Ufin(O,ΩD).
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12 D. CHANDRA, N. ALAM

3.3. The productively properties

If P is a property of a space, we call a space X productively P if X × Y has
the property P whenever Y has the property P . We start with the following basic
observation for dense subsets. If Y ⊆ X is dense in X and D ⊆ Y is dense in Y ,
then D is dense in X. Also if D ⊆ X is dense in X and E ⊆ Y is dense in Y , then
D × E is dense in X × Y .

Proposition 3.4. Let D be a dense subset of a space X.

(1) If D is productively Ufin(O,ΩD), then X is also productively Ufin(O,ΩD).
(2) If D is productively Ufin(O,ΩD), then X is also productively Ufin(O,ΩD).

Proof. (1). Let Y satisfy Ufin(O,ΩD) and (Un) be a sequence of open covers of
X × Y . Since D is productively Ufin(O,ΩD), D × Y satisfies Ufin(O,ΩD). Choose
a sequence (Vn) such that for each n Vn is a finite subset of Un and for each finite
collection F of nonempty open sets of D× Y there is a n such that U ∩ (∪Vn) 6= ∅
for all U ∈ F . Since D is dense in X, the sequence (Vn) witnesses for (Un) that
X × Y satisfies Ufin(O,ΩD). Hence X is productively Ufin(O,ΩD).

(2). Let Y satisfy Ufin(O,ΩD) and (Un) be a sequence of open covers of X × Y .
Since D is productively Ufin(O,ΩD), D×Y satisfies Ufin(O,ΩD). Then there exist
a sequence (Vn) and a dense subset Z of D × Y such that for each n Vn is a finite
subset of Un and each finite subset F of D × Y is contained in ∪Vn for some n.
Observe that D×Y is dense in X ×Y . It follows that Z is dense in X ×Y since Z
is dense in D × Y . Then the sequence (Vn) and the set Z guarantee for (Un) that
X × Y satisfies Ufin(O,ΩD). Thus X is productively Ufin(O,ΩD). �

Theorem 3.16. A H-closed space X is

(1) productively Ufin(O,ΩD).
(2) productively Ufin(O,ΩD).

Proof. We furnish proof for the productively Ufin(O,ΩD) case and the other case
can be carried out similarly. Let Y satisfy Ufin(O,ΩD). Consider a sequence (Un)
of open covers of X × Y . Without loss of generality assume that Un = Vn ×Wn

for each n, where Vn and Wn are respectively open covers of X and Y . Fix y ∈ Y .
Since X × {y} is H-closed, there is a sequence (Vyn × Wy

n) such that for each n
Vyn ×Wy

n is a finite subset of Un and ∪(Vyn ×Wy
n) is dense in X × {y}. Consider

the open cover U ′n = {Uyn : y ∈ Y } of Y , where for each n Uyn = ∩Wy
n. Apply the

Ufin(O,ΩD) property of Y to (U ′n) to obtain a sequence (Hn) such that for each
n Hn is a finite subset of U ′n and for each finite collection F of nonempty open
sets of Y there is a n such that U ∩ (∪Hn) 6= ∅ for all U ∈ F . For each n choose

Hn = {Uy1
n , Uy2

n , . . . , U
ykn
n }. Now for each n Kn = ∪kni=1(Vyin ×Wyi

n ) is a finite subset
of Un. Clearly the sequence (Kn) witnesses that X ×Y satisfies Ufin(O,ΩD). Thus
X is productively Ufin(O,ΩD). �

Theorem 3.17. If X satisfies S1(GK ,GDΓ
), then X is productively Ufin(O,ΩD).

Proof. Let Y satisfy Ufin(O,ΩD). To show that X×Y satisfies Ufin(O,ΩD) we pick
a sequence (Un) of open covers of X × Y . Without loss of generality we assume
that for each n Un is closed under finite unions. For each compact set C ⊆ X and
for each n we find a Gδ set Gn(C) ⊆ X such that C ⊆ Gδ(C). Then for each y ∈ Y
and for each n there exists a U ∈ Un such that Gn(C)×{y} ⊆ U . For each n Gn =
{Gn(C) : C is a compact subset of X} ∈ GK . Apply the S1(GK ,GDΓ

) property of
X to (Gn) to obtain a sequence (Cn) of compact subsets of X such that for each
nonempty open set U ⊆ X, the set {n ∈ N : U ∩Gn(C) = ∅} is finite. For each n let
Wn = {V : V is an open set in Y and there is a U ∈ Un such that Gn(Cn) × V ⊆
U}. Clearly (Wn) is a sequence of open covers of Y . Since Y satisfies Ufin(O,ΩD),
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there exists a sequence (Kn) such that for each n Kn is a finite subset ofWn and for
every finite collection F of nonempty open sets of Y , the set {n ∈ N : U ∩ (∪Kn) 6=
∅ for all U ∈ F} is infinite. For each n and each V ∈ Kn we pick a UV ∈ Un
such that Gn(Cn) × V ⊆ UV . For each n let Vn = {UV : V ∈ Kn}. Observe that
the sequence (Vn) witnesses for (Un) that X × Y satisfies Ufin(O,ΩD). Thus X is
productively Ufin(O,ΩD). �

Using similar technique we can prove the following.

Theorem 3.18. If X satisfies S1(GK ,GΓD ), then X is productively Ufin(O,ΩD).

The following result is an improvement of [3, Lemma 44].

Theorem 3.19. If any dense subspace of X satisfies S1(GK ,GΓ), then X satisfies
S1(GK ,GΓD ).

Proof. Let Y be a dense subset of X having the property S1(GK ,GΓ). We pick a
sequence (Un) of members of GK to show that X has the property S1(GK ,GΓD ).
Since Y satisfies S1(GK ,GΓ), there exists a sequence (Un) such that for each n
Un ∈ Un and {Un : n ∈ N} ∈ GΓ for Y . It follows that {Un : n ∈ N} ∈ GΓD for X
as Y is dense in X. Thus X satisfies S1(GK ,GΓD ). �

Since every σ-compact space satisfies S1(GK ,GΓ) (see [3, Theorem 22]), we have
the following.

Corollary 3.6. If a space X has a dense σ-compact subset, then X satisfies
S1(GK ,GΓD ).

Corollary 3.7. Every separable space satisfies S1(GK ,GΓD ).

Using Theorem 3.17, Theorem 3.18 (and also Figure 2) we have the following.

Corollary 3.8. A separable space X is

(1) productively Ufin(O,ΩD)
(2) productively Ufin(O,ΩD).

Corollary 3.9. For each cardinal κ, Rκ is

(1) productively Ufin(O,ΩD)
(2) productively Ufin(O,ΩD).

Proof. Since {f ∈ Rκ : |{i : f(i) 6= 0}| < ω} is a dense σ-compact subset of Rκ
(see [6, Proposition 4]), by Theorem 3.17, Theorem 3.18, Corollary 3.6 and Figure 2,
Rκ has the claimed properties. �

By Corollary 3.8, we can say that Ufin(O,ΩD) (Ufin(O,ΩD)) is preserved under
finite products (in the case of sets of reals). But for arbitrary spaces Ufin(O,ΩD)
is not preserved under finite products (see Example 3.4). We need the following
observations on the Pixley-Roy spaces (from [3,7]).

Let CH denote the continuum hypothesis, which states that there is no set whose
cardinality is strictly between that of the integers and the real numbers, or equiv-
alently, that any subset of the reals is finite, is countably infinite, or has the same
cardinality as the reals. There many well known equivalent reformulations of CH.
Consider the set of integers Z equipped with the discrete topology and consider the
Tychonoff product ωZ equipped with the product topology. In this context note
that CH can be used to construct subsets X and Y of ωZ such that each has the
property S1(Ω,Ω), but (X ∪ Y )⊕ (X ∪ Y ) = ωZ (see [3, 20]).

Lemma 3.3 ( [3, Proposition 4]). For any two spaces X and Y , PR(X) × PR(Y )
is homeomorphic to PR(X ⊕ Y ).
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14 D. CHANDRA, N. ALAM

Lemma 3.4 (cf. [3, Proposition 5]). Assume CH. There exist separable metriz-
able spaces X and Y such that both satisfy Sfin(Ω,Ω) but X ⊕ Y does not satisfy
Sfin(O,O).

Theorem 3.20 ( [7, Theorem 2A]). If PR(X) satisfies Sfin(O,OD), then every
finite power of X satisfies Sfin(O,O).

Theorem 3.21 ([7, Theorem 2B]). If X is a metrizable space such that every finite
power of X satisfies Sfin(O,O), then PR(X)κ satisfies Sfin(O,OD) for each cardinal
κ.

Example 3.4. Assume CH. There are Ufin(O,ΩD) spaces X and Y such that
X × Y does not satisfy Sfin(O,OD).
By Lemma 3.4, there are two separable metrizable spaces X and Y such that both
X and Y satisfy Sfin(Ω,Ω) but X ⊕ Y does not satisfy Sfin(O,O). Now every
finite power of X and also of Y satisfies Sfin(O,O) (see [10, Theorem 3.9]). By
Theorem 3.21, every finite power of PR(X) and also of PR(Y ) satisfies Sfin(O,OD).
It follows that both PR(X) and PR(Y ) satisfy Ufin(O,ΩD) (see Theorem 3.3). Also
by Theorem 3.20, PR(X ⊕ Y ) does not satisfy Sfin(O,OD) and so PR(X)× PR(Y )
does not satisfy Sfin(O,OD) (see Lemma 3.3).

Ufin(O,ΓD)

Ufin(O,Γ) Ufin(O,Γ) Ufin(O,ΓD)

S1(GK ,GΓD )

S1(GK ,GΓ) S1(GK ,GΓ) S1(GK ,GDΓ
)

S1(GK ,G) S1(GK ,G) S1(GK ,GD)

Ufin(O,Ω) Ufin(O,Ω) Ufin(O,ΩD)

Figure 2. Weaker variants of S1(GK ,G), Ufin(O,Γ) and Ufin(O,Ω)

4. Weak groupability and games

4.1. Weakly groupable covers

Theorem 4.1. For a space X the following properties are equivalent.

(1) Ufin(O,ΩD).
(2) Ufin(O,OwgpD).
(3) Ufin(O,ΛwgpD).

Proof. Since ΩD ⊆ ΛD and every countable member of ΩD is also a member of
OwgpD, the implications (1)⇒ (3)⇒ (2) hold. To show that (2)⇒ (1) we choose
a sequence (Un) of open covers of X. For each n we define Wn = ∧i≤nUn. Observe
that (Wn) is a sequence of open covers of X and since X satisfies Ufin(O,OwgpD),
there exists a sequence (Hn) such that for each n Hn is a finite subset of Wn and
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{∪Hn : n ∈ N} ∈ OwgpD. We consider a sequence n1 < n2 < · · · of members of
N which witnesses that {∪Hn : n ∈ N} ∈ OwgpD i.e. for each finite collection F
of nonempty open sets of X there exists a k such that U ∩ (∪{∪Hi : nk ≤ i <
nk+1}) 6= ∅ for all U ∈ F . Let (Kn) be a sequence which is given by

Kn =

{
∪i<n1

Hi, for n < n1

∪nk≤i<nk+1
Hi, for nk ≤ n < nk+1.

We now define a sequence (Vn) as follows. For each n Vn is the collection of all
members of Un from the representation of each member of Kn. Clearly for each n
Vn is a finite subset of Un and ∪Kn ⊆ ∪Vn. Then the sequence (Vn) guarantees
that X satisfies Ufin(O,ΩD). �

Using analogous tactic we obtain the next result.

Theorem 4.2. For a space X the following properties are equivalent.

(1) Ufin(O,ΩD).

(2) Ufin(O,OwgpD).

(3) Ufin(O,ΛwgpD).

Theorem 4.3. For a Lindelöf space X the following properties are equivalent.

(1) Ufin(O,ΩD).
(2) Ufin(Γ,ΩD).
(3) Sfin(Γ,ΛwgpD).
(4) For each sequence (Un) of γ-covers of X there is a sequence (Vn) of pairwise

disjoint finite sets such that for each n Vn ⊆ Un and for each finite collection
F of nonempty open subsets of X there is a n such that U ∩ (∪Vn) 6= ∅ for all
U ∈ F .

(5) Sfin(Γ,OwgpD).
(6) Ufin(Γ,ΛwgpD).

Proof. (2) ⇒ (1). Let (Un) be a sequence of open covers of X. For each n choose

Un = {U (n)
m : m ∈ N} and Wn = {V (n)

m : m ∈ N} with V
(n)
m = ∪1≤i≤mU

(n)
i . Then

(Wn) is a sequence of γ-covers ofX. Apply the Ufin(Γ,ΩD) property ofX to (Wn) to

obtain a sequence (V
(n)
mn ) such that for each n V

(n)
mn ∈ Wn and {V (n)

mn : n ∈ N} ∈ ΩD.

For each n let Vn = {U (n)
i : 1 ≤ i ≤ mn} and then ∪Vn = V

(n)
mn . It follows that X

satisfies Ufin(O,ΩD).
(2) ⇒ (3). Let (Un) be a sequence of γ-covers of X. Without loss of generality

we can assume that for m 6= n, Um ∩ Un = ∅. Use the Ufin(Γ,ΩD) property of
X to obtain a sequence (Vn) such that for each n Vn is a finite subset of Un and
{∪Vn : n ∈ N} ∈ ΩD. It follows that {∪Vn : n ∈ N} ∈ ΛD and hence also
∪n∈NVn ∈ ΛD. Now the partition (Vn) witnesses that ∪n∈NVn ∈ OwgpD. Thus
∪n∈NVn ∈ ΛwgpD.

(3) ⇒ (4). The proof for this implication is modelled in [1, Theorem 2]. Here
we present a complete proof for convenience of the reader. Let (Un) be a sequence
of γ-covers of X. Without loss of generality we can assume that for m 6= n,

Um ∩ Un = ∅. For each n choose Un = {U (n)
m : m ∈ N}. Then for each n define

Wn = {U (1)
m ∩ · · · ∩ U (n)

m : m ∈ N} \ {∅}. Clearly each Wn is a γ-cover of X. By
omitting elements where necessary we can suppose that for m 6= n, Wm ∩Wn = ∅.
We also in advance choose for each element of each Wn a representation as an
intersection as in the definition. Using Sfin(Γ,ΛwgpD) we get a sequence (Hn)
such that for each n Hn is a finite subset of Wn and ∪n∈NHn ∈ ΛwgpD. Let
∪n∈NHn = ∪n∈NKn, where each Kn is finite and Km ∩ Kn = ∅ for m 6= n, and
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16 D. CHANDRA, N. ALAM

for each finite collection F of nonempty open sets of X there exists a n such that
U ∩ (∪Kn) 6= ∅ for all U ∈ F .

We now choose a sequence of positive integers i1 < i2 < · · · as follows. Let
i1 ≥ 1 be so small such that H1 ∩ Kj = ∅ for all j > i1. Now choose V1 as the
set of U ∈ U1 that appear as terms (if exist) in the representations of elements of
Kj , j ≤ i1.

Next take i2 > i1 so small such that H2 ∩ Kj = ∅ for all j > i2. Choose V2 as
the set of U ∈ U2 that appear as terms (if exist) in the representations of elements
of Kj , j ≤ i2.

Proceeding similarly we obtain a sequence (Vn) such that for each n Vn is a
finite subset of Un and Vm ∩ Vn = ∅ for m 6= n. Let F be a finite collection of
nonempty open sets of X. Then there exists a n0 ∈ N such that U ∩ (∪Kn0

) 6= ∅
for all U ∈ F . Let k0 ∈ N be the least such that n0 ≤ ik0

. It is easy to see that
(H1 ∪ H2 ∪ · · · ∪ Hk0−1) ∩ Kn0 = ∅. This implies that for each V ∈ Kn0 there
exists a UV ∈ Uk0 such that UV is a term in the representation of V . Choose
V = {UV : V ∈ Kn0

} and then we get ∪Kn0
⊆ ∪V ⊆ ∪Vk0

. Hence X satisfies (4).
(5)⇒ (4). The proof is similar to the proof of (3)⇒ (4).
(6) ⇒ (3). Let (Un) be a sequence of γ-covers of X. We can assume that

Um ∩ Un = ∅ for m 6= n. Since X satisfies Ufin(Γ,ΛwgpD), there is a sequence (Vn)
such that for each n Vn is a finite subset of Un and {∪Vn : n ∈ N} ∈ ΛwgpD. Clearly
∪n∈NVn ∈ ΛD. Now choose {∪Vn : n ∈ N} = ∪n∈NHn, where (Hn) is a sequence
of pairwise disjoint finite sets such that for each finite collection F of nonempty
open sets of X there exists a n such that V ∩ (∪Hn) 6= ∅ for all V ∈ F . Using the
sequence (Hn) we can find a sequence (Fn) of pairwise disjoint finite sets such that
for each n Fn ⊆ ∪n∈NVn with ∪n∈NVn = ∪n∈NFn and also ∪Fn = ∪Hn. Let F be
a finite collection of nonempty open sets of X. Then there exists a n0 ∈ N such
that U ∩ (∪Hn0

) = U ∩ (∪Fn0
) 6= ∅ for all U ∈ F . It follows that ∪n∈NVn ∈ ΛwgpD

and consequently X satisfies Sfin(Γ,ΛwgpD).
Also since the implications (1) ⇒ (2), (4) ⇒ (2), (4) ⇒ (5) and (2) ⇒ (6) are

routine, all the properties are equivalent. �

Corollary 4.1. For a Lindelöf space X the following properties are equivalent.

(1) Ufin(O,ΩD).
(2) Ufin(Γ,ΩD).
(3) Sfin(Γ,ΛwgpD).
(4) For each sequence (Un) of γ-covers of X there is a sequence (Vn) of pairwise

disjoint finite sets such that for each n Vn ⊆ Un and for each finite collection
F of nonempty open subsets of X there is a n such that U ∩ (∪Vn) 6= ∅ for all
U ∈ F .

(5) Sfin(Γ,OwgpD).
(6) Ufin(O,OwgpD).
(7) Ufin(O,ΛwgpD).
(8) Ufin(Γ,ΛwgpD).

In analogy to Theorem 4.3 we can prove the following.

Theorem 4.4. For a Lindelöf space X the following properties are equivalent.

(1) Ufin(O,ΩD).
(2) Ufin(Γ,ΩD).

(3) Sfin(Γ,ΛwgpD).
(4) For each sequence (Un) of γ-covers of X there is a dense set Y ⊆ X and a

sequence (Vn) of pairwise disjoint finite sets such that for each n Vn ⊆ Un and
each finite set F ⊆ Y is contained in ∪Vn for some n.

(5) Sfin(Γ,OwgpD).

15 Dec 2023 01:12:53 PST
230808-Chandra Version 3 - Submitted to Rocky Mountain J. Math.



FURTHER OBSERVATIONS ON CERTAIN Ufin-TYPE SELECTION PRINCIPLES 17

(6) Ufin(Γ,ΛwgpD).

Corollary 4.2. For a Lindelöf space X the following properties are equivalent.

(1) Ufin(O,ΩD).
(2) Ufin(Γ,ΩD).

(3) Sfin(Γ,ΛwgpD).
(4) For each sequence (Un) of γ-covers of X there is a dense set Y ⊆ X and a

sequence (Vn) of pairwise disjoint finite sets such that for each n Vn ⊆ Un and
each finite set F ⊆ Y is contained in ∪Vn for some n.

(5) Sfin(Γ,OwgpD).

(6) Ufin(O,OwgpD).

(7) Ufin(O,ΛwgpD).

(8) Ufin(Γ,ΛwgpD).

We use the following lemma in subsequent observations.

Lemma 4.1. For a space X the following assertions hold.

(1) Sfin(Γ,ΛD) = Sfin(Ω,ΛD)
(2) Sfin(Γ,ΛD) = Sfin(Ω,ΛD).

Proof. (1). It is easy to check that Sfin(Ω,ΛD) implies Sfin(Γ,ΛD). Let X satisfy
Sfin(Γ,ΛD). Let (Un) be a sequence of ω-covers of X. Without loss of generality
we may assume that for each finite F ⊆ ∪n∈NUn, Uk ∩ F = ∅ for all but finitely

many k. For each n enumerate Un bijectively as {U (n)
m : m ∈ N}. Next for each n

and each m define V
(n)
m = ∪1≤i≤mU

(n)
i . Then for each n Wn = {V (n)

m : m ∈ N} is
a γ-cover of X. Apply the Sfin(Γ,ΛD) property of X to (Wn) to obtain a sequence
(Hn) such that for each n Hn is a finite subset of Wn and ∪n∈NHn ∈ ΛD. Clearly
the sequence (Hn) produces a sequence (Vn) such that for each n Vn is a finite
subset of Un and ∪Vn = ∪Hn. Since each Vn is disjoint from Uk for all but finitely
many k, ∪n∈NVn ∈ ΛD. Thus X has the property Sfin(Ω,ΛD).

The proof of (2) is similar to the proof of (1). �

Theorem 4.5. Let X be a Lindelöf space satisfying Ufin(O,ΩD). Then X satisfies
Sfin(Γ,ΛD) and each large cover of X is a member of OwgpD.

Proof. Let (Un) be a sequence of γ-covers of X. Without loss of generality we can
assume that Um ∩ Un = ∅ for m 6= n. Since X satisfies Ufin(O,ΩD), we apply
Theorem 4.3(4). Thus we get a sequence (Vn) of pairwise disjoint finite sets such
that for each n Vn ⊆ Un and for each finite collection F of nonempty open sets of
X there is a n such that U ∩ (∪Vn) 6= ∅ for all U ∈ F . It is easy to observe that
{∪Vn : n ∈ N} ∈ ΩD and hence {∪Vn : n ∈ N} ∈ ΛD. Thus we can conclude that
∪n∈NVn ∈ ΛD and consequently X satisfies Sfin(Γ,ΛD).

For the next part, first we pick a large cover U of X. We then enumerate U
bijectively as {Un : n ∈ N}. Now (Wn) is a sequence of γ-covers of X, where
Wn = {∪n<j≤mUj : m ∈ N} for each n. We assume that Wm ∩Wn = ∅ for m 6= n.
Again we use Theorem 4.3(4) to (Wn) to obtain a sequence (Hn) of pairwise disjoint
finite sets such that for each nHn ⊆ Wn and for each finite collection F of nonempty
open sets of X there is a n such that U ∩ (∪Hn) 6= ∅ for all U ∈ F .

Now define k0 = m0 = n0 = 1 and continue as follows.
Choose m1 = 2. Observe that H1 ⊆ ∪j≤m1

Hj . Next choose n1 ≥ m1 so small
in such a way that if Ui is a term in the representation of an element of ∪j≤m1

Hj ,
then i < n1. Again choose k1 > n1 so that if j ≥ k1, then the following conditions
are satisfied.

(1) If Ui is a term in the representation of an element of Hj , then i ≥ n1;
(2) k1 is minimal subject to 1 and k1 > n1.
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18 D. CHANDRA, N. ALAM

Next choose m2 = k1 +1. Now take n2 ≥ m2 so small such that if Ui is a term in
the representation of an element of ∪j≤m2

Hj , then i < n2. Again choose k2 > n2

so that if j ≥ k2, then the following conditions are satisfied.

(1) If Ui is a term in the representation of an element of Hj , then i ≥ n2;
(2) k2 is minimal subject to 1 and k2 > n2.

For the general case, choose mj+1 = kj + 1. Next take nj+1 ≥ mj+1 so small
such that if Ul is a term in the representation of an element of ∪i≤mj+1

Hi, then
l < nj+1. Again choose kj+1 > nj+1 such that if l ≥ kj+1, then the following
conditions are satisfied.

(1) If Ui is a term in the representation of an element of Hl, then i ≥ nj+1;
(2) kj+1 is minimal subject to 1 and kj+1 > nj+1.

For each n let Kn = ∪kn−1+1≤j≤knHj . It is easy to observe that for each m
∪Km ⊆ ∪nm−1≤i≤nm+1Ui.

By the construction of Hi’s we get for each finite collection F of nonempty open
sets of X either there is a n such that U ∩ (∪K2n−1) 6= ∅ for all U ∈ F , or for each
finite collection F of nonempty open sets of X there is a n such that U∩(∪K2n) 6= ∅
for all U ∈ F . In the first case the partition

({Ui : n2k−2 ≤ i < n2k, k ∈ N})

guarantees that U ∈ OwgpD.
In the latter case the partition

({Ui : n2k−1 ≤ i < n2k+1, k ∈ N})

guarantees that U ∈ OwgpD. Hence the result. �

Corollary 4.3. If X is a Lindelöf Ufin(O,ΩD) space, then X satisfies Sfin(Ω,ΛD)
and each large cover of X is a member of OwgpD.

The proof of the following theorem uses similar technique of Theorem 4.5 and
so we omit it.

Theorem 4.6. Let X be a Lindelöf space satisfying Ufin(O,ΩD). Then X satisfies

Sfin(Γ,ΛD) and each large cover of X is a member of OwgpD.

Corollary 4.4. Let X be a Lindelöf space satisfying Ufin(O,ΩD). Then X satisfies

Sfin(Ω,ΛD) and each large cover of X is a member of OwgpD.

4.2. Game theoretic observations

We begin with the following game theoretic observation which will be used sub-
sequently.

Theorem 4.7 ( [19,23]). For a space X the following assertions are equivalent.

(1) X satisfies Sfin(O,O).
(2) ONE does not have a winning strategy in Gfin(O,O) on X.
(3) ONE does not have a winning strategy in Gufin(O,Λ) on X.

Let O↑ denote the collection of all countable and increasing open covers of a
space X.

Theorem 4.8. For a Lindelöf space X the following games are equivalent.

(1) G1(O↑,OD)
(2) Gfin(O,OD)
(3) Gufin(O,OD).
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Proof. (1) ⇔ (3). We only prove that winning strategy for ONE in Gufin(O,OD)
implies the winning strategy for ONE in G1(O↑,OD) and winning strategy for
TWO in G1(O↑,OD) implies the winning strategy for TWO in Gufin(O,OD).

Suppose that ONE has a winning strategy σ in Gufin(O,OD) on X. Let us define
a strategy τ for ONE in G1(O↑,OD) on X as follows. Let σ(∅) be the first move

of ONE in Gufin(O,OD). Since X is Lindelöf, we choose σ(∅) = {U (1)
m : m ∈ N}.

Consider τ(∅) = {∪mk=1U
(1)
k : m ∈ N} as the first move of ONE in G1(O↑,OD) and

TWO responds by choosing a V1 ∈ τ(∅). Then V1 gives a finite subset V1 of σ(∅)
such that ∪V1 = V1 and choose V1 as the response of TWO in Gufin(O,OD). Let
σ(V1) be the second move of ONE in Gufin(O,OD) and so on. Thus we obtain a
winning strategy τ for ONE in G1(O↑,OD) on X.

Suppose that TWO has a winning strategy σ in G1(O↑,OD) onX. We now define

a strategy τ for TWO in Gufin(O,OD) on X as follows. Let U1 = {U (1)
m : m ∈ N} be

the first move of ONE in Gufin(O,OD). Choose W1 = {∪mk=1U
(1)
k : m ∈ N} as the

first move of ONE in G1(O↑,OD) and TWO responds by selecting σ(W1) ∈ W1.
Clearly σ(W1) gives a finite subset V1 of U1 such that σ(W1) = ∪V1 and consider

τ(U1) = V1 as the response of TWO in Gufin(O,OD). Let U2 = {U (2)
m : m ∈ N}

be the second move of ONE in Gufin(O,OD) and so on. This defines a winning
strategy τ for TWO in Gufin(O,OD) on X.

Using the same technique as in the proof of (1)⇔ (3) one can readily prove that
(1)⇔ (2). �

We intimately follow the proof of (1)⇔ (3) of Theorem 4.8 to obtain the follow-
ing.

Theorem 4.9. For a Lindelöf space X the games G1(O↑,ΛD) and Gufin(O,ΛD)
are equivalent.

Theorem 4.10 ( [2, Theorem 28]). For a Lindelöf space X the following assertions
are equivalent.

(1) X satisfies Sfin(O,OD).
(2) ONE does not have a winning strategy in Gfin(O,OD) on X.

Theorem 4.11. For a Lindelöf space X the following assertions are equivalent.

(1) X satisfies Sfin(O,OD).
(2) ONE does not have a winning strategy in Gufin(O,ΛD) on X.

Proof. (1) ⇒ (2). We closely follow the technique of [23, Corollary 4]. Let σ be a
strategy for ONE in Gufin(O,ΛD) on X. We now define a strategy τ for ONE in
Gfin(O,OD) on X×N as follows. Let σ(∅) be the first move of ONE in Gufin(O,ΛD)
on X. We choose τ(∅) = {U ×{n} : U ∈ σ(∅) and n ∈ N} as the first move of ONE
in Gfin(O,OD) on X×N and then TWO responds by selecting a finite subset V1 of
τ(∅). Consider H1 = {U ∈ σ(∅) : U × {n} ∈ V1 for some n ∈ N} as the response of
TWO in Gufin(O,ΛD) on X. Let σ(H1) be the second move of ONE in Gufin(O,ΛD)
on X and so on. Thus we get a legitimate strategy τ for ONE in Gfin(O,OD) on
X ×N. Since X ×N satisfies Sfin(O,OD), by Theorem 4.10, τ is not a winning for
ONE in Gfin(O,OD) on X × N. We pick a τ -play τ(∅),V1, τ(V1),V2, τ(V1,V2), . . .
which is lost by ONE in Gfin(O,OD) on X × N. Thus ∪n∈NVn ∈ OD for X × N.
The corresponding σ-play is given by σ(∅),H1, σ(H1),H2, σ(H1,H2), . . . . We claim
that {∪Hn : n ∈ N} ∈ ΛD for X. Let V be a nonempty open set in X. Choose a
n1 ∈ N such that (V × {1}) ∩ (∪Vn1) 6= ∅ and V ∩ (∪Hn1) 6= ∅. Clearly the set

F = {m ∈ N : U × {m} ∈ ∪n1
i=1Vi for some U ∈ ∪n1

i=1σ(H1,H2, . . . ,Hi−1)}
is finite. Let k = maxF + 1. Choose a n2 ∈ N such that (V × {k}) ∩ (∪Vn2

) 6= ∅.
Accordingly V ∩ (∪Hn2) 6= ∅ and n1 < n2. Proceeding similarly we can say that

15 Dec 2023 01:12:53 PST
230808-Chandra Version 3 - Submitted to Rocky Mountain J. Math.



20 D. CHANDRA, N. ALAM

V ∩ (∪Hn) 6= ∅ for infinitely many n. Thus {∪Hn : n ∈ N} ∈ ΛD for X. It
follows that ONE loses the above σ-play and σ is not a winning strategy for ONE
in Gufin(O,ΛD) on X. Thus ONE does not have a winning strategy in Gufin(O,ΛD)
on X. �

Corollary 4.5. For a Lindelöf space X the following assertions are equivalent.

(1) X satisfies Sfin(O,OD).
(2) ONE does not have a winning strategy in Gfin(O,OD) on X.
(3) ONE does not have a winning strategy in Gufin(O,OD) on X.
(4) ONE does not have a winning strategy in G1(O↑,OD) on X.
(5) ONE does not have a winning strategy in Gufin(O,ΛD) on X.
(6) ONE does not have a winning strategy in G1(O↑,ΛD) on X.

The proof of the following two theorems can be obtained using the similar ap-
proach of (1)⇔ (3) of Theorem 4.8.

Theorem 4.12. For a Lindelöf space X the games G1(O↑,ΩD) and Gufin(O,ΩD)
are equivalent.

Theorem 4.13. For a Lindelöf space X the games G1(O↑,ΛwgpD) and Gufin(O,ΛwgpD)
are equivalent.

Theorem 4.14. Let X satisfy Sfin(O,O). Then the following assertions are equiv-
alent.

(1) X satisfies Ufin(O,ΩD).
(2) ONE does not have a winning strategy in Gufin(O,ΛwgpD) on X.

Proof. Suppose that X satisfies Ufin(O,ΩD). Let σ be a strategy for ONE in
Gufin(O,ΛwgpD) on X. Let us define a strategy τ for ONE in Gufin(O,Λ) on X as
follows. In each inning, the move of ONE in Gufin(O,Λ) is equal to the move of
ONE in Gufin(O,ΛwgpD) and the response of TWO in Gufin(O,ΛwgpD) is equal to
the response of TWO in Gufin(O,Λ). Since X satisfies Sfin(O,O), by Theorem 4.7,
τ is not a winning strategy for ONE in Gufin(O,Λ) on X, i.e., there exists a τ -play
τ(∅),V1, τ(V1),V2, τ(V1,V2),V3, . . . such that {∪Vn : n ∈ N} ∈ Λ. Since X satisfies
Ufin(O,ΩD), by Theorem 4.5, {∪Vn : n ∈ N} ∈ ΛwgpD. Thus the corresponding
σ-play σ(∅),V1, σ(V1),V2, σ(V1,V2),V3, . . . is lost by ONE in Gufin(O,ΛwgpD). It
follows that σ is not a winning strategy for ONE in Gufin(O,ΛwgpD). Hence ONE
does not have a winning strategy in Gufin(O,ΛwgpD) on X. The other implication
follows from Theorem 4.1. �

Corollary 4.6. Let X satisfy Sfin(O,O). Then the following assertions are equiv-
alent.

(1) X satisfies Ufin(O,ΩD).
(2) ONE does not have a winning strategy in G1(O↑,ΛwgpD) on X.
(3) ONE does not have a winning strategy in Gufin(O,ΛwgpD) on X.

Problem 4.1. Let X be a Lindelöf space satisfying Ufin(O,ΩD). Is it true that
ONE does not have a winning strategy in Gufin(O,ΩD) on X?

Problem 4.2. Let X be a Lindelöf space satisfying Ufin(O,ΩD). Is it true that
ONE does not have a winning strategy in Gufin(O,ΛwgpD) on X?

Theorem 4.15. For a P -space X the games Gfin(O,OD) and Gfin(O,O) are equiv-
alent.

Proof. It is enough to prove that winning strategy for ONE in Gfin(O,O) implies
the winning strategy for ONE in Gfin(O,OD) and winning strategy for TWO in
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Gfin(O,OD) implies the winning strategy for TWO in Gfin(O,O). Let σ be a win-
ning strategy for ONE in Gfin(O,O) on X. Let us define a strategy τ for ONE
in Gfin(O,OD) on X as follows. In each inning, the move of ONE in Gfin(O,OD)
is equal to the move of ONE in Gfin(O,O) and the response of TWO in Gfin(O,O) is
equal to the response of TWO in Gfin(O,OD). Let τ(∅),V1, τ(V1),V2, τ(V1,V2),V3, . . .
be a τ -play in Gfin(O,OD) and σ(∅),V1, σ(V1),V2, σ(V1,V2),V3, . . . be the corre-
sponding σ-play in Gfin(O,O). Since σ is a winning strategy for ONE in Gfin(O,O)
on X, {V : V ∈ ∪n∈NVn} does not cover X. Observe that ∪{V : V ∈ ∪n∈NVn} =

∪(∪n∈NVn). It follows that ∪n∈NVn /∈ OD and hence the τ -play is won by ONE.
Thus τ is a winning strategy for ONE in Gfin(O,OD) on X.

Let σ be a winning strategy for TWO in Gfin(O,OD) on X. Let us define a
strategy τ for TWO in Gfin(O,O) on X as follows. In each inning, the move
of ONE in Gfin(O,OD) is equal to the move of ONE in Gfin(O,O) and the re-
sponse of TWO in Gfin(O,O) is equal to the response of TWO in Gfin(O,OD). Let
U1, τ(U1),U2, τ(U1,U2),U3, . . . be a τ -play in Gfin(O,O) and U1, σ(U1),U2, σ(U1,U2),U3, . . .
be the corresponding σ-play in Gfin(O,OD). Since σ is a winning strategy for
TWO in Gfin(O,OD) on X, ∪n∈Nσ(U1,U2, . . . ,Un) ∈ OD. Also since ∪{V : V ∈
∪n∈Nσ(U1,U2, . . . ,Un)} = ∪σ(U1,U2, . . . ,Un) and for each n σ(U1,U2, . . . ,Un) =
τ(U1,U2, . . . ,Un), ∪n∈Nτ(U1,U2, . . . ,Un) ∈ O. Thus the τ -play is won by TWO
and hence τ is a winning strategy for TWO in Gfin(O,O) on X. �

Theorem 4.16 ( [5]). For a regular space X the games Gfin(O,O) and Gfin(O,O)
are equivalent.

Proof. It is easy to observe that ONE has a winning strategy in Gfin(O,Ω) on X
implies that ONE has a winning strategy in Gfin(O,Ω) on X. Also TWO has a
winning strategy in Gfin(O,Ω) on X implies that TWO has a winning strategy in
Gfin(O,Ω) on X. We now show that if ONE has a winning strategy in Gfin(O,Ω) on
X, then ONE has a winning strategy in Gfin(O,Ω) on X. Let σ be a winning strat-
egy for ONE in Gfin(O,Ω) on X. Let us define a strategy τ for ONE in Gfin(O,Ω)
on X as follows. Suppose that σ(∅) is the first move of ONE in Gfin(O,Ω). We
can obtain an open cover U0 of X such that {U : U ∈ U0} refines σ(∅). Consider
τ(∅) = U0 as the first move of ONE in Gfin(O,Ω) and TWO responds by choosing
a finite subset V1 ⊆ τ(∅). For each V ∈ V1 choose a UV ∈ σ(∅) such that V ⊆ UV
and put H1 = {UV : V ∈ V1}. Define H1 as the response of TWO in Gfin(O,Ω).
Let σ(H1) be the second move of ONE in Gfin(O,Ω) and so on. This defines a
winning strategy τ for ONE in Gfin(O,Ω) on X.

Next we observe that if TWO has a winning strategy in Gfin(O,Ω) on X, then
TWO has a winning strategy in Gfin(O,Ω) on X. Let σ be a winning strategy
for TWO in Gfin(O,Ω) on X. We now define a strategy τ for TWO in Gfin(O,Ω)
on X as follows. Let U1 be the first move of ONE in Gfin(O,Ω). Let W1 be
an open cover of X such that {U : U ∈ W1} refines U1. Consider W1 as the
first move of ONE in Gfin(O,Ω) and TWO responds by choosing a finite subset
σ(W1) ⊆ W1. For each V ∈ σ(W1) choose a UV ∈ U1 such that V ⊆ UV and define
τ(U1) = {UV : V ∈ σ(W1)} as the response of TWO in Gfin(O,Ω) and so on. Thus
we get a winning strategy τ for TWO in Gfin(O,Ω) on X. Hence the result. �

Corollary 4.7. For a regular P -space X the following games are equivalent.

(1) Gfin(O,OD)
(2) Gfin(O,O)
(3) Gfin(O,O).

Theorem 4.17. For a P -space X the games Gufin(O,ΩD) and Gufin(O,Ω) are
equivalent.
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Proof. We only prove that winning strategy for ONE in Gufin(O,Ω) implies the win-
ning strategy for ONE in Gufin(O,ΩD) and winning strategy for TWO in Gufin(O,ΩD)
implies the winning strategy for TWO in Gufin(O,Ω). Let σ be a winning strategy
for ONE in Gufin(O,Ω) on X. Let us define a strategy τ for ONE in Gufin(O,ΩD)
on X as follows. In each inning, the move of ONE in Gufin(O,ΩD) is equal to the
move of ONE in Gufin(O,Ω) and the response of TWO in Gufin(O,Ω) is equal to the
response of TWO in Gufin(O,ΩD). Let τ(∅),V1, τ(V1),V2, τ(V1,V2),V3, . . . be a τ -
play in Gufin(O,ΩD) and σ(∅),V1, σ(V1),V2, σ(V1,V2),V3, . . . be the corresponding
σ-play in Gufin(O,Ω). Since σ is a winning strategy for ONE in Gufin(O,Ω) on X,
{∪Vn : n ∈ N} /∈ Ω. We claim that {∪Vn : n ∈ N} /∈ ΩD. Let F = {xi : 1 ≤ i ≤ k}
be a finite subset of X such that for each n F * ∪Vn. Then we can choose

N = ∪ki=1Ni, where Ni’s are pairwise disjoint such that for each n ∈ Ni, xi /∈ ∪Vn,

i = 1, 2, . . . , k. For each i = 1, 2, . . . , k and each n ∈ Ni let V
(n)
i be an open set

in X containing xi such that V
(n)
i ∩ (∪Vn) = ∅. Since X is a P -space, for each

i = 1, 2, . . . , k, Vi = ∩n∈NiV
(n)
i is an open set in X with Vi ∩ (∪Vn) = ∅ for all

n ∈ Ni. Thus we get a family F = {Vi : 1 ≤ i ≤ k} of nonempty open sets of X
such that there does not exist any n ∈ N with U ∩ (∪Vn) 6= ∅ for all U ∈ F . Hence
{∪Vn : n ∈ N} /∈ ΩD. It follows that the τ -play is won by ONE and consequently
τ is a winning strategy for ONE in Gufin(O,ΩD) on X.

Let σ be a winning strategy for TWO in Gufin(O,ΩD) on X. Let us define a
strategy τ for TWO in Gufin(O,Ω) on X as follows. In each inning, the move of
ONE in Gufin(O,ΩD) is equal to the move of ONE in Gufin(O,Ω) and the response
of TWO in Gufin(O,Ω) is equal to the response of TWO in Gufin(O,ΩD). Similarly
we can observe that τ is a winning strategy for TWO in Gufin(O,Ω) on X. �

The proof of the following result is similar to Theorem 4.16 and so we omit it.

Theorem 4.18 ( [5]). For a regular space X the games Gufin(O,Ω) and Gufin(O,Ω)
are equivalent.

Corollary 4.8. For a regular P -space X the following games are equivalent.

(1) Gufin(O,ΩD)
(2) Gufin(O,Ω)
(3) Gufin(O,Ω).

Following the same line of proof of Theorems 4.12, 4.13 and 4.14 with necessary
modifications we can prove the next three theorems respectively.

Theorem 4.19. For a Lindelöf space X the games G1(O↑,ΩD) and Gufin(O,ΩD)
are equivalent.

Theorem 4.20. For a Lindelöf space X the games G1(O↑,ΛwgpD) and Gufin(O,ΛwgpD)
are equivalent.

Theorem 4.21. Let X satisfy Sfin(O,O). Then the following assertions are equiv-
alent.

(1) X satisfies Ufin(O,ΩD).

(2) ONE does not have a winning strategy in Gufin(O,ΛwgpD) on X.

Corollary 4.9. Let X satisfy Sfin(O,O). Then the following assertions are equiv-
alent.

(1) X satisfies Ufin(O,ΩD).

(2) ONE does not have a winning strategy in G1(O↑,ΛwgpD) on X.

(3) ONE does not have a winning strategy in Gufin(O,ΛwgpD) on X.

Since ΩD ⊆ ΩD, the next result follows directly from Theorem 4.17.
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Theorem 4.22. For a P -space X the following assertions hold.

(1) If ONE has a winning strategy in Gufin(O,Ω) on X, then ONE has a winning
strategy in Gufin(O,ΩD) on X.

(2) If TWO has a winning strategy in Gufin(O,ΩD) on X, then TWO has a winning
strategy in Gufin(O,Ω) on X.

Theorem 4.23. For a regular P -space X the games Gufin(O,ΩD) and Gufin(O,Ω)
are equivalent.

Proof. If ONE has a winning strategy in Gufin(O,ΩD) on X, then ONE has a
winning strategy in Gufin(O,Ω) on X since Ω ⊆ ΩD. Let us suppose that ONE
has a winning strategy in Gufin(O,Ω) on X. By Theorem 4.18, ONE has a winning
strategy in Gufin(O,Ω) on X. Then by Theorem 4.22(1), ONE has a winning
strategy in Gufin(O,ΩD) on X. Thus ONE has a winning strategy in Gufin(O,ΩD)
on X if and only if ONE has a winning strategy in Gufin(O,Ω) on X. Similarly
using Theorems 4.18 and 4.22(2) we can see that TWO has a winning strategy in
Gufin(O,ΩD) on X if and only if TWO has a winning strategy in Gufin(O,Ω) on
X. Hence the result. �

Corollary 4.10. For a regular P -space X the following games are equivalent.

(1) Gufin(O,ΩD)
(2) Gufin(O,Ω)
(3) Gufin(O,ΩD)
(4) Gufin(O,Ω).

5. Open Problems

We give a short proof of the following result in the context of almost Lindelöf
spaces.

Theorem 5.1 ( [5]). Every almost Lindelöf space X with cardinality less than d
satisfies Ufin(O,Ω).

Proof. Let (Un) be a sequence of open covers of X. For each n choose a countable

set Wn = {V (n)
m : m ∈ N} ⊆ Un such that ∪V ∈Wn

V = X. Now for each x ∈
X define a fx ∈ NN by fx(n) = min{m ∈ N : x ∈ V

(n)
m }, n ∈ N. Since the

cardinality of Y = {fx : x ∈ X} is less than d, maxfin(Y ) is also of cardinality
less than d. Consequently there are a g ∈ NN and a nF ∈ N corresponding to
each finite set F ⊆ X such that fF (nF ) < g(nF ) with fF ∈ maxfin(Y ), where
fF (n) = max{fx(n) : x ∈ F} for all n ∈ N. We use the convention that if F = {x},
x ∈ X, then we write fx instead of fF . The sequence (Vn) now witnesses for X to
be Ufin(O,Ω). �

So the following question naturally arises.

Problem 5.1. If X is a weakly Lindelöf space with cardinality less than d, then
does X satisfy Ufin(O,ΩD) (or, Ufin(O,ΩD), Sfin(O,OD))?

We present two more open problems for further investigation.

Problem 5.2. Give an example of a space which satisfies Ufin(O,ΩD) but does not
satisfy Ufin(O,ΩD).

Problem 5.3. Does every productively weakly Lindelöf space satisfy Ufin(O,ΩD)
(or, Sfin(O,OD))?
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