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ABSTRACT. We study certain weaker variants of Ug, (O, ), namely Ug, (O, Qp)
and Ug, (0, QP). We explore many topological properties of Ug, (O, Qp) and
Uﬁn(O,QD). Certain situations are considered when these weaker variants
are equivalent to certain related properties. We also make investigations on
these variants using critical cardinalities and Alexandroff duplicate. Few ob-
servations on productively Ug, (O, Qp) and productively Ugy, (O, QP) spaces
are presented. Besides, we present certain characterizations of Ugy,(O,Qp)
and Ug, (O, QP) using weakly groupable covers. We also obtain many game
theoretic observations in this context. Some open problems are given.
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1. INTRODUCTION

The study of selection principles turns out to be an emerging field in topology
and allied areas. A lot of research has been carried out investigating weaker variants
of the selection principles. We suggest the readers to consult the papers [7,8,11-16,
18,21] and references therein for recent explorations in this direction. Throughout
the paper X stands for a topological space. Let A and B be collections consisting
of families of subsets of X. Following [10,19], we define
S1(A, B): For each sequence (Uy,) of elements of A there exists a sequence (V},) such
that for each n V,, € U,, and {V,, : n € N} € B.

Stin(A, B): For each sequence (U,) of elements of A there exists a sequence (V)
such that for each n V), is a finite subset of U,, and Up,enV, € B.

Ugn (A, B): For each sequence (Uy,) of elements of A there exists a sequence (V)
such that for each n V, is a finite subset of U,, and {UV,, : n € N} € B or there is
some n such that UV, = X.

For 1T € {S1,Sfin, Un}, we say that X is a II(A, B) space if X satisfies the
selection principle II(A, B). This convention will be used subsequently.

The game G1(A,B) on X corresponding to the selection principle S;(.A, B) is
played as follows. Players ONE and TWO play an inning for each positive integer
n. In the nth inning ONE chooses a U,, € A and TWO responds by selecting a
U, € U,. TWO wins the play Uy, Uy, Us,Us, ... ,Up, Uy, ... of this game if {U, :
n € N} € B; otherwise ONE wins. The game Ggn (A, B) (respectively, Guan (A, B))
on X corresponding to the selection principle Sg, (A, B) (respectively, Ugy (A, B))
can be similarly defined.

It is easy to see that if ONE does not have a winning strategy in the game
G1(A,B) (respectively, Gan(A,B), Guan(A, B)) on X, then X satisfies Si(A, B)
(respectively, Sgn(A, B), Uan(A,B)). For ¥ € {G1, Ggn, Guin}, observe that win-
ning strategies for ONE (respectively, TWO) in ¥(A,C) (respectively, ¥(A, B))
implies winning strategies for ONE (respectively, TWO) in 3(A, B) (respectively,
(A C)) it BCC.
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2 D. CHANDRA, N. ALAM

Let O denote the collection of all open covers of X and 2 denote the collection of
all w-covers of X (recall that an open cover U of X is said to be an w-cover [10,19]
if X not in U and for each finite subset F' of X there is a set U € U such that
F CU). Let Op denote the family of all sets U of open subsets of X such that U/
is dense in X. Consider the family Qp of all sets U € Op such that for each finite
collection F of nonempty open sets of X there exists a U € U such that UNV # ()
for all V € F and the family QF of all sets & € Qp such that for each U there
exists a dense set Y C X such that each finite set /' C Y is contained in U for some
Uecl.

In this article we consider certain weaker variants of the selection principle
Usn (0, Q), namely Ug,(O,Qp) and Ug,(O,QP) and their corresponding games
Gufin (0, Qp) and Guan (0, QP). We characterize the selection principles Ug, (O, Qp)
and Ug, (O, QP) using neighbourhood assignment as well as weakly groupable cov-
ers. We observe that if every finite power of a space X satisfies Sgn (O, Op), then
X satisfies Ug, (O, Qp). We discuss relation of the selection principles Ug, (O, Q2p)
and Ug, (O, QP) with similar other selection principles. We explore investigations
using critical cardinalities, Alexandroff duplicate, mappings and products. Certain
investigations on productively Ug, (O, Qp) and productively Ug, (O, QP) properties
are also carried out. We obtain few interesting game theoretic observations in this
direction. In particular we observe that the games Guan (O, Qp), Guan (O, Q) and
Gusin (0, ) are equivalent under certain topological assumption. We leave some
problems as open.

2. DEFINITIONS AND TERMINOLOGIES

For undefined notions and terminologies, see [9]. A subset A of a space X is
said to be regular-closed (respectively, regular-open) if Int(A4) = A (respectively,
Int(A) = A). An open cover U of X is said to be a vy-cover [10,19] if U is infinite
and for each x € X, the set {U € U : © ¢ U} is finite. An open cover U of X
is said to be a large cover [10,19] if for each € X, the set {U e U : x € U} is
infinite. We use the symbol I' and A to denote the collection of all y-covers and
large covers of X respectively. Note that ' C 2 C A C O. An open cover U of X
is said to be weakly groupable [1] if X can be expressed as a countable union of
finite, pairwise disjoint subfamilies U,,, n € N, such that for each finite set F' C X
we have ' C UlU,, for some n. The collection of all weakly groupable covers of X
is denoted by O"9P.

The following families of open sets will be used in our investigation.

O: The family of all sets U of open subsets of X such that {U : U € U} covers X.

Q: The family of all sets 4 € O such that each finite set F C X is contained in U
for some U € U.

T: The family of all sets U € O such that for each x € X, theset {U €U : x ¢ U}
is finite.

A: The family of all sets & € O such that for each z € X, the set {U ¢ U : x € U}
is infinite.

Owgp: The family of all sets U € O such that I/ can be expressed as a countable union
of finite, pairwise disjoint subfamilies U,,, n € N, such that for each finite set
F C X there exists a n such that F C Ul4,.
Awgr: The family of all sets i € A such that I € Ow9p.
I'p: The family of all sets Y € Op such that for each nonempty open set U C X,
the set {V e : UNV = (0} is finite.
Ap: The family of all sets Y € Op such that for each nonempty open set U C X,
the set {V €U : UNV # 0} is infinite.
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The family of all sets i € Op such that U can be expressed as a countable
union of finite, pairwise disjoint subfamilies U,,, n € N, such that for each finite
collection F of nonempty open sets of X there exists a n such that VN(UU,) # 0
forall Ve F.

The family of all sets U € Ap such that U € OW9P .

Y C X such that for each € Y, the set {U € U : = ¢ U} is finite.

The family of all sets Y € Ap such that for each U there exists a dense set
Y C X such that for each z € Y, the set {U € U : © € U} is infinite.

The family of all sets U € O"9P such that for each U there exists a dense set
Y C X and U can be expressed as a countable union of finite, pairwise disjoint
subfamilies U,,, n € N, such that each finite set ' C Y is contained in Ul,, for
some n.

The family of all sets & € AP such that U € Ow9PP,

All the families defined above are assumed to be infinite. Observe that

(1) TCQCACO (5) TCI'pandI'P CTp
(2) I‘DQQDQADQOD (6) QQQD and QDQQD
(3) TP C QP CAP COp (7) AC Ap and AP C Ap.
(4) O COp

Also note that every countable member of Q (respectively, Qp, Q) is a member

of Ow9r (respectively, OVIP p, OworD ). A space X is said to be almost Lindel6f (re-
spectively, weakly Lindelof) if for every open cover U of X there exists a countable
subset V of U such that V € O (respectively, V € Op) (see [11,22]).

g:
Oxk:
Go:
Or:
Or
gp:

Gp.:
Orp:

g:
Ga:

The following terminologies will also be used throughout our study.

The family of all covers U of the space X for which each element of U is a Gy
set.

The family of all sets & where X is not in U, each element of U is a Gy set,
and for each compact set C' C X there is a U € U such that C C U.

The family of all covers U € G such that for each finite set F C X there is a
U € U such that I C U.

The family of all covers U € G which are infinite and each infinite subset of U
is a cover of X.

The family of all covers U € G which are infinite and for each x € X, the set
{UelU:x ¢ Uy is finite.

The family of all sets & where each element of U is a G set and UU is dense
in X.

The family of all sets U where each element of U/ is a G5 set and for each
nonempty open set U C X, the set {V €U : UNV = 0} is finite.

The family of all sets U where each element of U is a G set and for each U there
exists a dense set Y C X such that for each z € Y, the set {U e U : x ¢ U} is
finite.

The family of all sets U such that every U € U is a G5 set and {U : U € U}
covers X.

The family of all sets U € G such that for each finite set F C X there exists a
U € U such that I C U.

Consider the Baire space NY. A natural pre-order <* on N is defined by f <* g

if and only if f(n) < g(n) for all but finitely many n. A subset D of NV is said to
be dominating if for each g € NY there exists a f € D such that g <* f. A subset A
of NV is said to be bounded if there is a g € NY such that f <* g for all f € A. Let
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4 D. CHANDRA, N. ALAM

9 be the minimum cardinality of a dominating subset of N and b be the minimum
cardinality of an unbounded subset of N,

The Alexandroff duplicate [4,9] AD(X) of a space X is defined as follows.
AD(X) = X x {0,1}; each point of X x {1} is isolated and a basic neighbour-
hood of (z,0) € X x {0} is a set of the form (U x {0}) U ((U x {1}) \ {(z,1)}),
where U is a neighbourhood of z in X. For a space X, PR(X) denotes the space of
all nonempty finite subsets of X with the Pixley-Roy topology [7]. The collection
{[A,U] : A € PR(X), U open in X} is a base for the Pixley-Roy topology, where
[A,U] ={B € PR(X): AC B C U} for each A € PR(X) and each open set U in
X. A space X is said to be cosmic if it has a countable network. A space X satisfies
the countable chain condition (in short, CCC) if every family of disjoint nonempty
open subsets of X is countable. A space satisfying the CCC is called a CCC space.
For a space X, e(X) = sup{|Y] : Y is a closed and discrete subspace of X} is said
to be the extent of X. For any two spaces X and Y, X &Y denote the topological
sum of X and Y. For any families &/ and V of subsets of X we denote the set
{UNV:UelUUandV €V} by UAV.

3. THE SELECTION PRINCIPLES Ug, (O, Qp) AND Ug, (O, QP)

3.1. Interrelationships

The proof of the following result is straightforward.

Lemma 3.1.

(1) A space X satisfies Ugn (O, Qp) if and only if for every sequence (Uy,) of open
covers of X there exists a sequence (V) such that for each n V, is a finite
subset of Uy, and for each finite collection F of nonempty open subsets of X,
the set {n e N: UN(UV,) # 0 for all U € F} is infinite.

(2) A space X satisfies Ugn (O, QP) if and only if for every sequence (Uy,) of open
covers of X there exist a dense subset Y of X and a sequence (V,,) such that
for each n 'V, is a finite subset of U, and each finite set F' C'Y is contained in
UV, for infinitely many n.

Lindel6f — almost Lindel6f ———— weakly Lindelof

Skn(0,0) — S (0, 0) S6n(0,O0p)
Usa (0, QP)
" T~
Usn (0, Q) — Ugn (0, Q) Usn (O, Qp)
U, (0, TP)
" ™~
Uﬁn(O,F) —_— Uﬁn((’),F) Uﬁn(O7FD)

FIGURE 1. Weaker variants of Ug, (O, T"), Uan (O, Q) and Sg, (O, O)

For a Tychonoff space X let 5X denote the Stone-Cech compactification of X.
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FURTHER OBSERVATIONS ON CERTAIN Ug,-TYPE SELECTION PRINCIPLES 5

Example 3.1. There exists a space which satisfies Ug, (O, QP) (and hence satisfies
Usin (O, Q2p)) but does not satisfy Ugn(O,Q) (ie. does not satisfy Ugn(O,)).

Let D be the discrete space of cardinality wy. Consider X = (8D x (w+1))\ ((8D\
D) x {w}) as a subspace of BD x (w+1). Since D X w is a o-compact dense
subset of X, X satisfies U, (O, QP) (see Section 3.2 below). Now X is not almost
Lindeléf (see [22, Example 2.3]) and so X does not satisfy Ugn (O, Q).

It is well known that every CCC space is weakly Lindelof [17,22]. In the next
example we show that a CCC space may not be Ug, (O, Qp).

Example 3.2. There is a CCC space which does not satisfy Ug, (O, Qp).

Let Z = PR(P), where P is the space of irrationals. Clearly P is a cosmic space
which does not satisfy San (O, O). It has been observed that PR(X) is CCC for every
regular cosmic space X [17] and also if PR(X) satisfies San(O, Op), then each finite
power of X satisfies San(O,0) [7, Theorem 2A]. Thus Z is a CCC space which
does not satisfy Sin(O,Op). The last shows that Z does not satisfy Ugn(O,Qp).

Proposition 3.1.

(1) A space X satisfies Ugn (O, Qp) if and only if for every sequence (Uy,) of covers
of X by regular-open sets there exists a sequence (V) such that for each n V,, is
a finite subset of U, and for each finite collection F of nonempty regular-open
sets there is a n such that U N (UV,) # 0 for allU € F.

(2) Suppose that X is reqular. Then X satisfies Ug, (O, QP) if and only if for every
sequence (Uy,) of covers of X by reqular-open sets there exist a dense subset Y
of X and a sequence (V,,) such that for each n V,, is a finite subset of U,, and
for each finite set F CY there is a n such that FF C UV,.

Proof. We only give proof of (1), and (2) can be similarly verified.

(1). Tt is enough to prove the reverse implication. From the given sequence (U,)
of open covers of X, we first construct for each n a cover W,, = {Int(U) : U € U, }
of X by regular-open sets. Now choose a sequence (#H,,) such that for each n H,
is a finite subset of W, and for each finite collection F of nonempty regular-open
sets there is a n € N such that U N (UH,,) # 0 for all U € F. For each n and
each V € H,, we can choose a Uy € U, such that Int(Uy) = V. Also for each
nV, ={Uy :V € H,} is a finite subset of U,. Let F be a finite collection of
nonempty open sets. Now first choose ' = {Int(U) : U € F} and then choose a
m € N such that VN (UH,,) # 0 for all V € F'. Consequently U N (UV,,) # 0 for
all U € F. Thus X satisfies Ug, (O, Qp). O

Recall that a neighbourhood assignment for a space (X, 7) is a function A :
X — 7 such that € N(z) for each z € X.

Theorem 3.1.

(1) A space X satisfies Ugn (O, Qp) if and only if for each sequence (N,,) of neigh-
bourhood assignments of X there exists a sequence (F,) of finite subsets of X
such that {N(F,,) :n € N} € Qp.

(2) A space X satisfies Ugn (O, QP) if and only if for each sequence (N,,) of neigh-
bourhood assignments of X there exists a sequence (Fy) of finite subsets of X
such that {N(F,) :n € N} € QP.

Proof. Since the proof of (1) and (2) are similar, we only present the proof of (1).
Let (M) be a sequence of neighbourhood assignments of X. For each n we define
U, = {Np(z) : @ € X}. Then (U,) is a sequence of open covers of X and since
X satisfies Ug, (O, Qp), there exists a sequence (V,,) such that for each n V), is a
finite subset of U, and {UV,, : n € N} € Qp. This gives us a sequence (F,) of
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6 D. CHANDRA, N. ALAM

finite subsets of X such that V,, = {N,(z) : € F,} for each n. It follows that
{Nn(F,) :n e N} € Qp.

Conversely let (U,) be a sequence of open covers of X. For each z € X there
exists a U;,En) € U, such that x € U;n). Let (N,,) be a sequence of neighbourhood

assignments of X defined by N, (x) = U™ for each n and each € X. By the
given hypothesis, we get a sequence (F},) of finite subsets of X such that {N,,(F},) :
n € N} € Qp. For each n choose V,, = {N,, () : € F,,}. Then the sequence (V)
witnesses for (U,,) that X satisfies Us, (O, Qp). O

The following result is from [5], we sketch the proof for convenience of the reader.
Theorem 3.2 ( [5]). Every paracompact Ugy,(O, Q) space is U, (O, Q).

Proof. Let X be a paracompact Ugy, (O, Q) space. Let (U,) be a sequence of open
covers of X. Choose a sequence (W,,) such that for each n W, is a locally finite open
refinement of U,,. Now fix n. For each x € X there is an open set U, containing x
such that U, C V for some V € W,, and {W € W,, : WNU, # 0} is finite. Observe
that H,, = {U, : ¢ € X} is an open refinement of W,,. Applying the hypothesis to
the sequence (H,,) of open covers we obtain a sequence (kC,,) such that for each n IC,,
is a finite subset of H,, and for each finite set F' C X there is a n such that F C UKC,,.
Clearly for each n the collection F, = {V € W,, : VNU # () for some U € K,,}
is finite. For each V' € F,,, choose a Uy € U, such that V C Uy and define
V., = {Uyv : V € F,}. Now the property Ug, (O, Q) is witnessed by the sequence
(V). 0

An open cover U of a space X is called star finite if every U € U intersects only
finitely many V' € U. A space X is called hypocompact if every open cover U of X
has a star finite open refinement. Since every hypocompact space is paracompact,
we obtain the following.

Corollary 3.1. Every hypocompact Ug, (O, Q) space is Ugn (O, ).

But the above results (Theorem 3.2 and Corollary 3.1) do not hold in the context
of Ugn(O,Qp) and Ug, (O, QP). The Baire space is a typical counter-example to
it (see Remark 3.1).

Theorem 3.3. If every finite power of a space X satisfies Sgn(O,Op), then X
satisfies Ugn (O, Qp).

Proof. Let (Uy,) be a sequence of open covers of X. Let {N}, : k£ € N} be a partition
of N into infinite subsets. For each k and each m € Ny let W,,, = {U; xUa X - - - x Uy, :
U1,Us,...,Up € Up}. Clearly W, : m € Ni) is a sequence of open covers
of X*. Apply the Sg,(O,Op) property of X* to (W,, : m € Nj) to obtain a
sequence (H,, : m € Ni) of finite sets such that H,, C W, for each m € N and
U{UH,, : m € Ny} is dense in X*. For each m € N;, we can express every H € H,,
as H = Uy(H) x Uz(H) x -+ x Up(H), where Uy(H),Us(H),...,Ux(H) € Up,.
Choose V,, = {U;(H) : 1 < i < k,H € Hp}. Then V,, is a finite subset of U,,
for each m € Nj. Thus we obtain a sequence (V,) of finite sets with V,, C U,,. To
complete the proof, choose a finite collection F = {U;,Us,...,U,} of nonempty
open subsets of X. Since U; x Uy x --- x U, is a nonempty open set in X7, there
is a mg € Ny such that (U; x Uz X --- x Up) N (UHm,) # 0, which in turn implies
that U; N (UVp,,) # 0 for each 1 < ¢ < p. Clearly (V,,) witnesses that X satisfies
Usn (O, Qp). O

Note that S;(Gk,G) implies Ugy (O, Q). A similar observation for Ug, (O, Qp) is
presented in the next result.
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FURTHER OBSERVATIONS ON CERTAIN Ug,-TYPE SELECTION PRINCIPLES 7

Theorem 3.4. S1(Gk,Gp) implies Ugn (O, Qp).

Proof. Let X satisfy S1(Gxk,Gp). To show that X satisfies Ug, (O, Qp) we pick a
sequence (Uy,) of open covers of X. We may assume that for each n U, is closed
for finite unions. Let {Nj : k € N} be a partition of N into infinite sets. For each k
and each n € Ny, choose W,, = {U* : U € U, }. Then for each k (W,, : n € N) is a
sequence of open covers of X*. Fix k. Let U = {Mnen,Wa : Wy, € W, }. Obviously
U € G for X*. Without loss of generality we suppose that U = H; x Ha x - - - x Hy,
where each H; € Gi for X. Applying the S1(Gk,Gp) property of X, for each
1 <4 < k, we get a countable set C; C H; such that UC; is dense in X and
subsequently we have a countable set ¥V = C; x Cy X --- X Cp C U such that UV
is dense in X*. Put V = {Nuen W™ : W™ € W,,,m € Ni}. Later we choose
V' = {W! €W, :n & Ni}. Then UY C UV and so UV’ is also dense in X*. For
each n € Ny let V,, = {U € U, : U¥ € V'}. The sequence (V,,) now witnesses for
(Uy,) that X satisfies Ugy (O, Qp). O

Lemma 3.2. Every weakly Lindeldf P-space satisfies S1(Gr,G).

Proof. Let X be a weakly Lindelof P-space. Pick U € Gg. Since X is a P-space,
U is an open cover of X. Also since X is weakly Lindel6f, there is a countable set
Y C U such that UV is dense in X. Again by the property of a P-space we can
say that the set U{V : V € V} is closed in X. Since UV is the smallest closed set
in X containing UV, UV C U{V : V € V} and hence U{V : V € V} = X. Thus X
satisfies S1(Gx, G). O

By Lemma 3.2 and using the implications of Figures 1 and 2, we obtain the
following.

Theorem 3.5. For a P-space X the following properties are equivalent.

(1) almost Lindeldf (5) weakly Lindelof
(2) Sfin ( ) (6) Sﬁn(OvoD)
(3) Uan(0, Q) (7) Usin(O,9p)
(4) Sl(gK7 g) (8) S1(9k.Gp)

Corollary 3.2. For a P-space Ug, (O, QP) implies S1(Gx, G) (so implies Ugyn (O, Q) ).

Note that for a regular space the Lindel6f and almost Lindelof properties are
equivalent. Again using Theorem 3.5 and implications of Figures 1 and 2 the
following result can be easily verified.

Theorem 3.6. For a reqular P-space X the following properties are equivalent.

(1) Lindelof (5) San(0,0) (9) Sn(0,Op)

(2) San(0,0) (6) Usn(0,9) (10) Ugn(O,Qp)
(3) Usn(O,9Q) (7) S1(9xk,9) (11) S1(9x,9p)-
(4) almost Lindelof (8) weakly Lindeldf (12) Ugn(O,QP).

3.2. Preservation like properties
For a set Y C NN, maxfin(Y) is defined as

maxfin(Y) = {max{f1, fo,..., fx} : f1, f2s.-., fr €Y and k € N},
where max{ fi, fa,..., fx} € NV is given by
max{f1, fa,. .., fk}(n) = max{fi(n), fa(n),..., fr(n)} for all n € N.

Theorem 3.7. Let X be Lindelof and k < 0. If X is a union of & many Ug, (O,T'p)
spaces, then X satisfies Ugn (O, Qp).
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8 D. CHANDRA, N. ALAM

Proof. Let k be a cardinal smaller than 0 and X = U, X, with each X,, satisfies
Uan(O,T'p). To show that X satisfies Ug, (O, Qp) we pick a sequence (U,,) of open
covers of X, say for each n U,, = {Ur(,?) :m € N}. For each a < k we get a sequence

( ,(la)) such that for each n V) is a finite subset of U, and for every nonempty

openset U C X, UN (UV(Q)) # () for all but finitely many n. Next for each o < &
we define f, : N = N by f,(n) = min{m € N : Ve {Ui(") 24 < m}}. Choose
Y = {fo : @ < k}. Obviously the cardinality of maxfin(Y") is less than 9. Then
there exists a g € NY such that for each finite subset A of x we get g £* fa with
fa € maxfin(Y'). For each n V,, = {Ui(n) 11 < g(n)} is a finite subset of U,,. We now
show that the sequence (V,,) witnesses for (U,,) that X satisfies Ugn (O, Qp). Let F
be a finite collection of nonempty open sets of X. Then we can find a finite subset
A of k such that F = UyeaFq with for each a« € A, {UN X, : U € F,} is a finite
collection of nonempty of open sets of X,. For each o € A select a n,, € N such that
for each U € F,, U N (UVT(LO‘)) # () for all n > n,. Choose ng = max{n, : a € A}.
Then we get a nq € N such that ny > ng and fa(nq) < g(n1). Observe that for each
a € Aand cach U € Fo, UN (Ui (npyU™) # 0 e U N (Ui pa iy UT) # 0.
Thus for each @ € A and each U € F,, UN(U 1<g(m)U(n1 )£ Die UN(UVy,) # (Z)
Hence X satisfies Ugy, (O, Qp).

The proof of next two results (Theorems 3.8 and 3.9) are similar to the proof of
Theorem 3.7 with necessary modifications and so are omitted.

Theorem 3.8. Let X be Lindeldf and k < 0. If X is a union of k many Ug, (O, T'P)
spaces, then X satisfies Ug, (O, QP).

Let k be any cardinal. We say that the collection {X, : @ < k} is a Q-wrapping
if for each finite set F' C Uy« X there exists a 8 < & such that F' C Xg.

Theorem 3.9. Let X be Lindeldf and k < b. Suppose that X = Uy« Xy and the
collection { X4 : a < K} is a Q-wrapping. If each X, satisfies Ugn(O,Qp), then X
satisfies Uy (O, Qp).

We do not know whether the above result holds for Ug, (O, QP) and thus, we
present an open question.

Problem 3.1. Let X be Lindeldf and k < b. Suppose that X = Uy« X, and the
collection { X, : o < K} is a Q-wrapping. If each X, satisfies Ug,(O,QP), does
then X satisfy Ugn (O, QP)?

A collection {X, : @ < K} in a space X is said to be a strongly Q-wrapping if for
each a < k and any dense set Y,, C X, the collection {Y, : @ < k} is a Q-wrapping.

Theorem 3.10. Let X be Lindeldf and k < b. Suppose that X = Uy« Xqo and
{X4 1 a < K} is a strongly Q-wrapping. If each X, satisfies Ug,(O,QP), then X
satisfies Ugn (O, QP).

Proof. Let (U,,) be a sequence of open covers of X. We can assume that for each
nu, = {UT(,? : m € N}. For each o < k we get a dense subset Y, and a sequence
( y(La)) such that for each n V,(f‘) is a finite subset of U,, and each finite set F C Y,
is contained in UVS®) for infinitely many n. By the given condition, {Y, : @ < K}
is a Q-wrapping. For each a < x we define f, : N — N by f,(n) = min{m € N :
Vi {Ui(") ;i < m}}. Since kK < b, there exists a ¢ € NY such that for each
a < Kk we get fo <*g. Clearly Y = U,<,Y, is a dense subset of X and for each n
Vp = {Ui(") 11 < g(n)} is a finite subset of U,,. It is easy to observe that ¥ and the
sequence (V,,) witness for (U,,) that X satisfies Ug, (O, QP). O
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FURTHER OBSERVATIONS ON CERTAIN Ug,-TYPE SELECTION PRINCIPLES 9

Note that all the variants described in Figure 1 are preserved under clopen sub-
sets. Observe that every regular-closed subset of a Ug, (O, Qi) ) space is Ugy (O, QP).
But this result does not hold for Ug, (O, Qp) and Ug, (O, Q).

Example 3.3.

(1) A regular-closed subset of a Ug, (O, Q) space need not be Ug, (O, Q).

Let A= {(a0,—1):a<wi} C{(z,~1):2 >0} CR% Y = {(an,n) : a <wi,n €
N} and p = (—1,-1). Choose X1 =Y U AU {p}. We topologize X1 as follows. (i)
Every point of Y is isolated, (ii) for each o < wy a basic neighbourhood of (ay, —1)
is of the form Uy (aq, —1) = {(aa, —1)} U{(an,m) : m > n}, where n € N and (iii)
a basic neighbourhood of p is of the form Uy (p) = {p} U {(ag,n) : B > a,n € N},
where o < wy. We now show that X1 satisfies Ugn(O,T). Let (Uy,) be a sequence
of open covers of X1. For each n choose a U, € U, such that p € U, and also
choose a basic neighbourhood Ug, (p) C U,. Now for each n X1\ U, is at most
countable as Ug, (p) = Ug, (p) U{(ag,—1) : B> Bn}. Clearly K = Upen(X1\ Uy)
is o-compact and hence satisfies Ug, (O,T). Apply the U, (O,T) property of K to
(Uy) to obtain a sequence (V) such that for each n V), is a finite subset of Uy, and
each © € K belongs to UV), for all but finitely many n. Clearly the sequence (V,,),
where V,, = V! U{U,} for each n witnesses that X, satisfies Ugn(O,T).

Let Xy be the space as in Ezample 3.1. Then X, does not satisfy Ugy(O, Q).
Assume that X1 N Xy = (0. Since the cardinality of D is w1, we write D = {dy : o <
w1}. Define a bijection ¢ : D X {w} = A by p(da,w) = (an,—1) for each a < wy.
Also define Z to be the quotient image of the topological sum X1 ® Xo by identifying
(do,w) of Xo with p(da,w) of X1 for each o < wy. Let q: X1 @ Xo — Z be the
quotient map. Now q(Xs) is a regular-closed subset of Z which does not satisfy
Ugn (0, Q) as it is homeomorphic to Xs.

We now claim that Z satisfies Ugn (O, Q). The claim will follow if we show that
Z satisfies Ug,(O,T). Choose a sequence (U,) of open covers of Z. Now q(X1)
being the homoeomorphic image of a Ugy(O,T) space, is also Ugy(O,T). Apply
the Ugn(O,T) property of ¢(X1) to (Uy,) to obtain a sequence (H,) such that for
each n H,, is a finite subset of U, and each x € q(X1) belongs to UH,, for all but
finitely many n. Again since (8D X w) is homeomorphic to D X w, q(8D X w) is
o-compact and so satisfies Ug,(O,T). Thus there is a sequence (K,,) such that for
each n IC,, is a finite subset of Uy, and each x € q(8D x w) belongs to UK, for all
but finitely many n. For each n let V,, = H, UK,,. The sequence (V,,) witnesses
that Z satisfies Ugy(O,T).

(2) A closed subset of a Ug,(O,p) (respectively, Ug, (O, 2P)) space need not be
Usn (O, 2p) (respectively, Ug, (O, QP)).

Consider X as in Ezample 3.1. Now X is a Tychonoff Ug, (O, Q) space and hence
a Uan(O,Qp) space. Since D x{w} is a discrete closed subset of X with cardinality
w1, it follows that D x {w} fails to satisfy Usn(O,Qp) and Ug, (O, QP) as well.

Observe that if a subset Y of a space X satisfies Ug,(O,Qp) (respectively,
Usn (O, 02P)), then Y also satisfies Ug, (O, 2p) (respectively, Ug,(O,QP)). Thus
for a dense subset Y of X, if Y satisfies Ug,(O,p) (respectively, U, (O, QP)),
then X also satisfies Ug, (O, Qp) (respectively, Ug, (O, 2P)), and also every separa-
ble space satisfies Ug, (O, QP) (so satisfies Ug, (O, Qp)). Surprisingly a Ug, (O, Q)
space may not satisfy this preservation property. The Baire space X does not sat-
isfy Ugn(O, Q) because X is paracompact and does not satisfy Ug, (O, ). Since
X is separable, there exists a countable dense subset Y of X. Thus Y satisfies
Ugn(0,9Q) but Y = X does not satisfy Ug, (O, Q).

15 Dec 2023 01:12:53 PST
230808-Chandra Version 3 - Submitted to Rocky Mountain J. Math.



10 D. CHANDRA, N. ALAM

Remark 3.1. The Baire space X is hypocompact and separable. Clearly X satisfies
Uan(0,QP) (so satisfies Ugn(O,Qp)). Thus there is a hypocompact Ug, (O, QP)
space which does not satisfy Ugn(O, Q) (as X does not satisfy Uan(O,9)).

Theorem 3.11. For a space X the following assertions are equivalent.
(1) X satisfies Ugn (O, Q).

(2) AD(X) satisfies Ugn (O, ).

(3) AD(X) satisfies Ugn (O, QP).

Proof. (1) = (2). Let (Uy,) be a sequence of open covers of AD(X). For each n and
cach z € X let W™ = (V{™ x{0,1})\{(z, 1)} be an open set in AD(X) containing
(z,0) such that there is a Ul e U, with wi C U:g"), where V™ is an open set in
X containing . For each n W,, = {Vm(n) :x € X} is an open cover of X. Apply (1)
to (W,,) to obtain a sequence (F},) of finite subsets of X such that ({Vg;(n) cx e Fo})
witnesses the Ug, (O, Q) property of X. For each n and each x € F,, choose a
ol e u, with (x,1) € O™ . Observe that V,, = {Uén) cx € Fp U {Oi”) cx € F,}
is a finite subset of U, for each n. The sequence (V,,) witnesses that AD(X) satisfies
Ut (0, 2).

(3) = (1). Let (Uy,) be a sequence of open covers of X. Say, U,, = {Uén) rx € X},
where Ua(cn is an open set in X containing = for each n. Choose W, = {(Uén) X
{0, 1)\ {(z,1)} : z € X}U{{(z,1)} : # € X} for each n. Since (W,,) is a sequence of
open covers of AD(X), there are a dense subset Z of AD(X) and a sequence (F,,) of
finite subsets of X such that {( M x {0, 1P\ {(z, )} : @ € Fo,}U{{(x,1)} : z € F},}
witnesses the Ug, (O, QP) property of AD(X). For each n V,, = {UQE") cx € Fp}is
a finite subset of U,. It now follows that X satisfies Ug, (O, §2). O

There is a space X satisfying Usn (O, Qp) (respectively, Us, (O, QP)) such that
AD(X) does not satisfy Ug, (O, Qp) (respectively, Ug, (O, 2P)). Let X be the space
as in Example 3.1. Then X is a Tychonoff Ug,(O,Qp) (and also a Ug,(O, QP))
space and A = D x {w} is an uncountable discrete closed subset of X. Observe
that A x {1} is an uncountable discrete clopen subset of AD(X). Thus AD(X)
does not satisfy Ug,(O,€p) and so does not satisfy Ug, (O, QP).

The proof of the following result is in line of (1) = (2) of Theorem 3.11.

Theorem 3.12. For a space X if AD(X) satisfies Ug,(O,Qp), then X also sat-
isfies Ugn (O, Qp).

By Example 3.1, there exists a Tychonoff Ug,(O,Q¥) and hence Ug,(O,p)
space X such that e(X) > w;. However for a T} space X it can be shown that if
AD(X) satisfies Ugn (O, Qp), then e(X) < wy. The conclusion also holds if AD(X)
satisfies Ug, (O, QP).

Theorem 3.13. If f : X = Y is a mapping from a space X satisfying Usn (O, Qp)
(respectively, Ugn (O, QP)) onto a space Y such that for each x € X and each open
set V in'Y containing f(x) there is an open set U in X containing x such that
f(U) CV, then'Y also satisfies Ugn (O, Qp) (respectively, Ugn(O,QP)).

Proof. We only sketch the proof for the case Ug,(O,QP) and other case can be

observed similarly. Let (U,) be a sequence of open covers of Y. Let € X. For
each n choose a Vm(n) € U,, containing f(z). Subsequently for each n we obtain
an open set UQE") in X containing x such that f (Ua(cn)) C Vx(n). We now apply
the Ug,(O,QP) property of X to the sequence (W,), where for each n W, =
{Ué”) : 2 € X}. Choose a dense set Z C X and a sequence (H,,) such that for
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FURTHER OBSERVATIONS ON CERTAIN Ug,-TYPE SELECTION PRINCIPLES 11

each n H, = {Ué”) :1 < i < k,} is a finite subset of W, and for each finite
set F' C Z there is a n such that FF C UH,. Clearly f(Z) is dense in Y. Let
Vi = {Vz(in) :1 < i < k,} for each n. It is now easy to verify that f(Z) and (V,,)
witness that Y satisfies Ug, (O, QD). O

Corollary 3.3. The Ug,(O,Qp) and Uﬁn((’),QD) properties are preserved under
continuous mappings.

Theorem 3.14. If f : X — Y is a closed mapping from a space X onto a space
Y satisfying Ugn(O,Qp) such that for each x € X and each open set U in X
containing x f(U) is a neighbourhood of f(x) and f~1(y) is compact in X for each
y €Y, then X also satisfies Uan(O,Qp).

Proof. Let (U,) be a sequence of open covers of X and y € Y. Since f~1(y) is
compact, for each n there exists a finite subset V¥ of U,, such that f~!(y) C UVY.
Again since f is closed, there exists an open set UZS”) in Y containing y such that
f_l(UZSn)) C UVY. Thus for each n W,, = {U@Sn) :y € Y} is an open cover
of Y. Apply the Ug,(O,Qp) property of Y to (W,) to obtain a sequence (H.)
such that for each n H, = {Ugsn) 01 <4 <k} is a finite subset of W, and
{UH,, :n e N} € Qp for Y. For each n V,, = Ui<;<g, V¥ is a finite subset of U,,.
Let F = {U; : 1 < i < k} be a finite collection of nonempty open sets of X. Then
for each 1 <i < k there exists a nonempty open set V; in Y such that V; C f(U;).
Choose F' = {V; : 1 < i < k}. Later we get a ng € N such that V; N (UH,,,) # 0
for all 1 < ¢ < k. Tt follows that for each 1 < i < k, f(U;) N (UH,,) # 0 and
consequently f(U;) N (UHp,) # 0. Thus for each 1 < i < k, U; N f~Y(UHp,) # 0
and then it turns into U; N (UV,,) # 0. This completes the proof. O

Corollary 3.4.

(1) If f: X — Y is an open perfect mapping from a space X onto a space Y
satisfying Usn (O, Qp), then X also satisfies Ugn (O, Qp).

(2) If f : X = Y is an open closed mapping from a space X onto a space Y
satisfying Ugn (O, Qp) such that f~(y) is compact in X for each y € Y, then
X also satisfies Ugy (O, Qp).

We also obtain a similar observation for Ug, (O, QP) as follows. The proof of
it is similar to the proof of Theorem 3.14 with necessary modifications and so is
omitted.

Theorem 3.15. If f : X — Y is an open closed mapping from a space X onto a
space Y satisfying Ug, (O, QP) such that f~1(y) is compact in X for eachy €Y,
then X also satisfies U, (O, QP).

Corollary 3.5. If f : X — Y is an open perfect mapping from a space X onto a
space Y satisfying U, (O, QP), then X also satisfies Ug, (O, Q7).

The proof of the next result is immediate.

Proposition 3.2. Let X = Up,enXim, where X, € X141 for each m.
(1) If each X, satisfies Ugn(O,Qp), then X also satisfies Ugn (O, Qp).
(2) If each X,, satisfies Ugn(O,QP), then X also satisfies Ug, (O, QP).

In combination with Proposition 3.2, Theorem 3.14 and Theorem 3.15 we obtain
the following.

Proposition 3.3. Let X be a o-compact space. Then X is
(1) productively Ugy (O, Qp).
(2) productively Ugn (O, QP).
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12 D. CHANDRA, N. ALAM

3.3. The productively properties

If P is a property of a space, we call a space X productively P if X x Y has
the property P whenever Y has the property P. We start with the following basic
observation for dense subsets. If Y C X is dense in X and D C Y is dense in Y,
then D is dense in X. Alsoif D C X is dense in X and E C Y is dense in Y, then
D x Fisdensein X x Y.

Proposition 3.4. Let D be a dense subset of a space X.

(1) If D is productively Ug, (O, p), then X is also productively Ugy (O, Qp).
(2) If D is productively Ug, (O, QP), then X is also productively Ug, (O, QP).

Proof. (1). Let Y satisty Uan(O,Qp) and (U,) be a sequence of open covers of
X x Y. Since D is productively Ug,(O,Qp), D x Y satisfies Ug, (O, Qp). Choose
a sequence (V,) such that for each n V, is a finite subset of U,, and for each finite
collection F of nonempty open sets of D x Y there is a n such that U N (UV,,) # 0
for all U € F. Since D is dense in X, the sequence (V,,) witnesses for (U,,) that
X x Y satisfies Ug, (O, Qp). Hence X is productively Ug, (O, Qp).

(2). Let Y satisfy Ug, (O, QP) and (U,,) be a sequence of open covers of X x Y.
Since D is productively Ug, (O, QP), D x Y satisfies Ug, (O, Q). Then there exist
a sequence (V) and a dense subset Z of D x Y such that for each n V), is a finite
subset of U, and each finite subset F' of D X Y is contained in UV, for some n.
Observe that D x Y is dense in X x Y. It follows that Z is dense in X x Y since Z
is dense in D x Y. Then the sequence (V,,) and the set Z guarantee for (i) that
X x Y satisfies Ug, (O, Q2P). Thus X is productively Ug, (O, QP). O

Theorem 3.16. A H-closed space X is
(1) productively Ugn (O, Qp).
(2) productively Ug, (O, QP).

Proof. We furnish proof for the productively Ug,(O,Qp) case and the other case
can be carried out similarly. Let Y satisfy Ugn(O,Qp). Consider a sequence (U,)
of open covers of X x Y. Without loss of generality assume that U, =V, x W,
for each n, where V,, and W,, are respectively open covers of X and Y. Fixy € Y.
Since X x {y} is H-closed, there is a sequence (V¥ x WY) such that for each n
V¥ x WY is a finite subset of U,, and U(VY x WY) is dense in X x {y}. Consider
the open cover U], = {UY : y € Y} of Y, where for each n UY = NWY. Apply the
Usn (O, Qp) property of Y to (U],) to obtain a sequence (H,,) such that for each
n H, is a finite subset of U, and for each finite collection F of nonempty open
sets of Y there is a n such that U N (UH,,) # 0 for all U € F. For each n choose

H, = {U¥,U¥,...,Us* }. Now for each n KC,, = Uk» (V¥ x W) is a finite subset
of U,. Clearly the sequence (K, ) witnesses that X x Y satisfies Ug, (O, Q2p). Thus
X is productively Ug, (O, Qp). O

Theorem 3.17. If X satisfies S1(Gx,Gpy), then X is productively Ug, (O, Qp).

Proof. Let Y satisfy Ug, (O, Qp). To show that X x Y satisfies Ug, (O, Qp) we pick
a sequence (Uy,,) of open covers of X x Y. Without loss of generality we assume
that for each n U, is closed under finite unions. For each compact set C C X and
for each n we find a G set G,,(C') C X such that C C G(C). Then for eachy € Y
and for each n there exists a U € U,, such that G,,(C) x {y} C U. For each n G,, =
{G,(C) : C is a compact subset of X} € Gx. Apply the S;(Gk,Gp,.) property of
X to (Gy) to obtain a sequence (Cy,) of compact subsets of X such that for each
nonempty open set U C X, the set {n € N: UNG,,(C) = (0} is finite. For each n let
Wy, = {V : V is an open set in Y and there is a U € U,, such that G, (C,) x V C
U}. Clearly (W,,) is a sequence of open covers of Y. Since Y satisfies Ug, (O, Qp),
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FURTHER OBSERVATIONS ON CERTAIN Ug,-TYPE SELECTION PRINCIPLES 13

there exists a sequence (K,,) such that for each n I, is a finite subset of W, and for
every finite collection F of nonempty open sets of Y, the set {n € N: UnN(UK,) #
() for all U € F} is infinite. For each n and each V € K, we pick a Uy € U,
such that G,(C,) x V C Uy. For each n let V,, = {Uy : V € K,,}. Observe that
the sequence (V,,) witnesses for (U,) that X x Y satisfies Ugn (O, Q2p). Thus X is
productively Ug, (O, Qp). O

Using similar technique we can prove the following.
Theorem 3.18. If X satisfies S1(Gx,Gr,,), then X is productively Ug, (O, QP).
The following result is an improvement of [3, Lemma 44].

Theorem 3.19. If any dense subspace of X satisfies S1(Gk,Gr), then X satisfies
S1(9xk,Gry)-

Proof. Let Y be a dense subset of X having the property S1(Gk,Gr). We pick a
sequence (U,) of members of Gk to show that X has the property S1(Gk,Gr,).
Since Y satisfies S1(Gk,Gr), there exists a sequence (U,) such that for each n
U, € U, and {U,, : n € N} € Gr for Y. It follows that {U, : n € N} € Gr, for X
as Y is dense in X. Thus X satisfies S1(Gx, Gr,)- O

Since every o-compact space satisfies S1(Gr,Gr) (see [3, Theorem 22]), we have
the following.

Corollary 3.6. If a space X has a dense o-compact subset, then X satisfies
S1(9xk,Gry,)-

Corollary 3.7. Every separable space satisfies S1(Gr,Grp)-
Using Theorem 3.17, Theorem 3.18 (and also Figure 2) we have the following.

Corollary 3.8. A separable space X is

(1) productively Ug, (O, Qp)
(2) productively Ug, (O, QP).

Corollary 3.9. For each cardinal k, R" is
(1) productively Ugy, (O, Qp)
(2) productively Ug,(O,QP).

Proof. Since {f € R* : |{i : f(i) # 0}| < w} is a dense o-compact subset of R"
(see [6, Proposition 4]), by Theorem 3.17, Theorem 3.18, Corollary 3.6 and Figure 2,
R" has the claimed properties. [l

By Corollary 3.8, we can say that Ugn (O, p) (Usa(O, Q")) is preserved under
finite products (in the case of sets of reals). But for arbitrary spaces Ug, (O, Qp)
is not preserved under finite products (see Example 3.4). We need the following
observations on the Pixley-Roy spaces (from [3,7]).

Let CH denote the continuum hypothesis, which states that there is no set whose
cardinality is strictly between that of the integers and the real numbers, or equiv-
alently, that any subset of the reals is finite, is countably infinite, or has the same
cardinality as the reals. There many well known equivalent reformulations of CH.
Consider the set of integers Z equipped with the discrete topology and consider the
Tychonoff product “Z equipped with the product topology. In this context note
that CH can be used to construct subsets X and Y of “Z such that each has the
property S1(£,Q), but (X UY)® (X UY) =“Z (see [3,20]).

Lemma 3.3 ([3, Proposition 4]). For any two spaces X and Y, PR(X) x PR(Y)
is homeomorphic to PRIX ®Y).

15 Dec 2023 01:12:53 PST
230808-Chandra Version 3 - Submitted to Rocky Mountain J. Math.



14 D. CHANDRA, N. ALAM

Lemma 3.4 (cf. [3, Proposition 5]). Assume CH. There exist separable metriz-
able spaces X and'Y such that both satisfy San(Q,Q) but X ®Y does not satisfy
Sﬁn(ov O) :

Theorem 3.20 ( [7, Theorem 2A]). If PR(X) satisfies San(O,Op), then every
finite power of X satisfies San(O, O).

Theorem 3.21 ([7, Theorem 2B]). If X is a metrizable space such that every finite
power of X satisfies San (O, O), then PR(X)" satisfies Sgn (O, Op) for each cardinal

K.

Example 3.4. Assume CH. There are Ug,(O,Qp) spaces X and Y such that
X XY does not satisfy San(O, Op).

By Lemma 3.4, there are two separable metrizable spaces X and Y such that both
X and Y satisfy San(Q,Q) but X &Y does not satisfy San(O,0). Now every
finite power of X and also of Y satisfies Sgn (O, O) (see [10, Theorem 3.9]). By
Theorem 3.21, every finite power of PR(X) and also of PR(Y') satisfies Sgn (O, Op).
It follows that both PR(X) and PR(Y") satisfy Uan(O,2p) (see Theorem 3.3). Also
by Theorem 3.20, PR(X @Y") does not satisfy Sqn(O,Op) and so PR(X) x PR(Y)
does not satisfy Sen(O,Op) (see Lemma 3.5).

/ Uﬁn(O7FD)

Uﬁn(O,F) —_— Uﬁn(07f) Uﬁn(O,FD)
s S1(9k,Grp)

_— \\\\\y
S1(Gk,Gr) — S1(Gk,Gr) S1(Gk,Gpr)
Sl(gk,g) — S1(QK,G) Sl(gng)
Uﬁn(O,Q) — Uﬁn(07ﬁ) Uﬁn(O,QD)

FIGURE 2. Weaker variants of S1(Gk,G), Uan(O,T) and Ug, (O, Q)

4. WEAK GROUPABILITY AND GAMES

4.1. Weakly groupable covers

Theorem 4.1. For a space X the following properties are equivalent.
(1) Usn(0,02p).

(2) Ugn(O,0%97p).

(3) Uan(O, A™9Pp).

Proof. Since Qp C Ap and every countable member of Qp is also a member of
O"9P . the implications (1) = (3) = (2) hold. To show that (2) = (1) we choose
a sequence (U,) of open covers of X. For each n we define W,, = Aj<pnUy,. Observe
that (W,,) is a sequence of open covers of X and since X satisfies Ug, (O, OW9P ),
there exists a sequence (H,,) such that for each n H,, is a finite subset of W,, and
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{UH,, : n € N} € O¥9P,. We consider a sequence n; < ng < --- of members of
N which witnesses that {UH,, : n € N} € O"9 i.e. for each finite collection F
of nonempty open sets of X there exists a k such that U N (U{UH; : ni < i <
ng+1}) # 0 for all U € F. Let (K,,) be a sequence which is given by

Ui<n, His for n <m
Ky =
Unk§i<nk+1Hia for Nk <n< Nk41-

We now define a sequence (V,,) as follows. For each n V), is the collection of all
members of U,, from the representation of each member of IC,,. Clearly for each n
V, is a finite subset of U,, and UK, C UV,. Then the sequence (V,) guarantees
that X satisfies Ug, (O, Qp). O

Using analogous tactic we obtain the next result.

Theorem 4.2. For a space X the following properties are equivalent.
(1) Ugn(0,QP).

(2) Ugn (O, OworP),

(3) Usn (0, A"9P7).

Theorem 4.3. For a Lindeldf space X the following properties are equivalent.

(1) Ugn(O,Qp).

) Usn(T, Qp).

) Sﬁn(ryAwng)-

) For each sequence (Uy,) of vy-covers of X there is a sequence (V,,) of pairwise
disjoint finite sets such that for each n V, C U, and for each finite collection
F of nonempty open subsets of X there is a n such that U N (UV,) # O for all
UeF.

(5) Sqn(T,O%97p).

(6) Ugn (T, A¥9Pp).

Proof. (2) = (1). Let (Uy,) be a sequence of open covers of X. For each n choose
U, = {US :m e N} and W, = {V;{") : m € N} with V;{") = Uj<;<nU™. Then
(W) is a sequence of y-covers of X. Apply the Ug, (T', Qp) property of X to (W,,) to
obtain a sequence (V,EZ”) such that for each n ngl) € W, and {V,S{f} :n € N} € Qp.
For each n let V,, = {Ui(n) :1 <i<m,} and then UV, = V,Sfi). It follows that X
satisfies Ugn (O, Qp).

(2) = (3). Let (U,,) be a sequence of y-covers of X. Without loss of generality
we can assume that for m # n, U, NU, = 0. Use the Ug,(T',Qp) property of
X to obtain a sequence (V,,) such that for each n V, is a finite subset of U,, and
{UV, : n € N} € Qp. It follows that {UV, : n € N} € Ap and hence also
UnenVn € Ap. Now the partition (V,,) witnesses that U,enV, € O“9Pp. Thus
UnenVn € A%9P .

(3) = (4). The proof for this implication is modelled in [1, Theorem 2|. Here
we present a complete proof for convenience of the reader. Let (U,,) be a sequence
of ~-covers of X. Without loss of generality we can assume that for m # n,
U, "U, = 0. For each n choose U,, = {Uf(,f) : m € N}. Then for each n define
W, = {U,(Y}) N--nUWY me N} \ {0}. Clearly each W, is a y-cover of X. By
omitting elements where necessary we can suppose that for m # n, W, "\ W,, = (.
We also in advance choose for each element of each W, a representation as an
intersection as in the definition. Using Sgn(I', A¥9p) we get a sequence (H,)
such that for each n H, is a finite subset of W,, and UpenH, € AY9Pp. Let
UnenHn = UpenK,, where each K, is finite and KC,,, N K,, = 0 for m # n, and
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16 D. CHANDRA, N. ALAM

for each finite collection F of nonempty open sets of X there exists a n such that
UN(UK,) #0forall U € F.

We now choose a sequence of positive integers i1 < i3 < --- as follows. Let
i1 > 1 be so small such that #; NKC; = 0 for all j > i;. Now choose V; as the
set of U € U, that appear as terms (if exist) in the representations of elements of
Kj,j <ii.

Next take io > i1 so small such that Ho N K; = 0 for all j > i5. Choose V; as
the set of U € Us that appear as terms (if exist) in the representations of elements
of ICj,j S ig.

Proceeding similarly we obtain a sequence (V) such that for each n V), is a
finite subset of U,, and V,, NV, = @ for m # n. Let F be a finite collection of
nonempty open sets of X. Then there exists a ng € N such that U N (UK,,) # 0
for all U € F. Let ko € N be the least such that ng < i,. It is easy to see that
(HiUHa U+ UHpy—1) N Ky, = @. This implies that for each V € K, there
exists a Uy € Uy, such that Uy is a term in the representation of V. Choose
V={Uy:V €K,,} and then we get UK,,, C UV C UVy,. Hence X satisfies (4).

(5) = (4). The proof is similar to the proof of (3) = (4).

(6) = (3). Let (U,) be a sequence of y-covers of X. We can assume that
U NU,, = 0 for m # n. Since X satisfies Ug, (T, A¥9P ), there is a sequence (V,,)
such that for each n V,, is a finite subset of U,, and {UV,, : n € N} € A¥9P . Clearly
UnenVn € Ap. Now choose {UV,, : n € N} = UpenHy,, where (H,,) is a sequence
of pairwise disjoint finite sets such that for each finite collection F of nonempty
open sets of X there exists a n such that V N (UH,,) # 0 for all V € F. Using the
sequence (H,,) we can find a sequence (F,,) of pairwise disjoint finite sets such that
for each n F,, C UpenVy with UpenVyn = UpenFrn and also UF,, = UH,,. Let F be
a finite collection of nonempty open sets of X. Then there exists a ng € N such
that UN (UH,,,) = UN(UF,,) # 0 for all U € F. It follows that U,enV,, € A¥9Pp
and consequently X satisfies Sgp (T, A“9P ).

Also since the implications (1) = (2), (4) = (2), (4) = (5) and (2) = (6) are
routine, all the properties are equivalent. O

Corollary 4.1. For a Lindeldf space X the following properties are equivalent.

(1) Unn(O,2p).

) Usn(T,Qp).

) S (I, AV ).

) For each sequence (Uy,) of vy-covers of X there is a sequence (V,,) of pairwise
disjoint finite sets such that for each n V, C U, and for each finite collection
F of nonempty open subsets of X there is a n such that U N (UV,) # O for all
UelF.

(5) Sgn(I',0"9Pp).

(6) Ugn(O,0"9p).

(7) Ugn(O, A™9Pp).

(8)

In analogy to Theorem 4.3 we can prove the following.

Theorem 4.4. For a Lindeldf space X the following properties are equivalent.

(1) Ugn(0,0P).

(2) Ugn(T,0QP).

(3) Sgn (T, A9PP).

(4) For each sequence (Uy) of v-covers of X there is a dense set Y C X and a
sequence (Vy,) of pairwise disjoint finite sets such that for each n V,, C U, and

each finite set F CY is contained in UV, for some n.
(5) Sgn(T,0w9PP).
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FURTHER OBSERVATIONS ON CERTAIN Ug,-TYPE SELECTION PRINCIPLES 17

(6) Ugy (L, AworD),

Corollary 4.2. For a Lindelof space X the following properties are equivalent.

(1) Uﬁn(OvQD)'

) Ugn(T, QP).

) St (T, A¥9PP).

) For each sequence (Uy,) of y-covers of X there is a dense set Y C X and a
sequence (V) of pairwise disjoint finite sets such that for each n V,, CU,, and
each finite set F CY is contained in UV, for some n.

(5) Sgn (T, 09PP).

(6) Usn(0,0"97P).

(7) Ugn(O,Aw9PP).

(8)

We use the following lemma in subsequent observations.

Lemma 4.1. For a space X the following assertions hold.
(1) San(T,Ap) = Sn(2,AD)
(2) Sqn(T,AP) = S, (2, AP).

Proof. (1). It is easy to check that Sg, (€2, Ap) implies Sgn(I', Ap). Let X satisfy
Stn(T,Ap). Let (Uy,) be a sequence of w-covers of X. Without loss of generality
we may assume that for each finite F C Upenly, Uy, N F = (B for all but finitely
many k. For each n enumerate U, bijectively as {Ur(,ff ) im e N}. Next for each n
and each m define V,(V = UlgigmUi("). Then for each n W,, = {V,SL") :m € N} is
a y-cover of X. Apply the Su,(I', Ap) property of X to (W,,) to obtain a sequence
(H,,) such that for each n H,, is a finite subset of W,, and U,enH,, € Ap. Clearly
the sequence (H,,) produces a sequence (V,,) such that for each n V, is a finite
subset of U,, and UV,, = UH,,. Since each V), is disjoint from U}, for all but finitely
many k, UpenVy € Ap. Thus X has the property San(Q, Ap).

The proof of (2) is similar to the proof of (1). O

Theorem 4.5. Let X be a Lindeldf space satisfying Uan(O,Q2p). Then X satisfies
Stn(T, Ap) and each large cover of X is a member of O p.

Proof. Let (Uy,) be a sequence of y-covers of X. Without loss of generality we can
assume that U, NU, = 0 for m # n. Since X satisfies Ug,(O,Qp), we apply
Theorem 4.3(4). Thus we get a sequence (V,,) of pairwise disjoint finite sets such
that for each n V,, C U,, and for each finite collection F of nonempty open sets of
X there is a n such that U N (UV,) # 0 for all U € F. It is easy to observe that
{UV,, : n € N} € Qp and hence {UV,, : n € N} € Ap. Thus we can conclude that
UnenVn € Ap and consequently X satisfies Sg, (T, Ap).

For the next part, first we pick a large cover & of X. We then enumerate U
bijectively as {U, : n € N}. Now (W,) is a sequence of y-covers of X, where
W, = {Un<j<mU; : m € N} for each n. We assume that W,, "\ W,, = 0 for m # n.
Again we use Theorem 4.3(4) to (W,,) to obtain a sequence (#,,) of pairwise disjoint
finite sets such that for each n H,, C W, and for each finite collection F of nonempty
open sets of X there is a n such that U N (UH,) # 0 for all U € F.

Now define kg = mg = ng = 1 and continue as follows.

Choose m; = 2. Observe that Hi C Uj<m, H;. Next choose n; > my so small
in such a way that if U; is a term in the representation of an element of U<, H;,
then ¢ < ny. Again choose k1 > ny so that if j > kp, then the following conditions
are satisfied.

(1) If U; is a term in the representation of an element of #;, then i > ny;
(2) k; is minimal subject to 1 and kq > ny.
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18 D. CHANDRA, N. ALAM

Next choose ma = k1 +1. Now take ngy > mso so small such that if U; is a term in
the representation of an element of Uj<m,H;, then ¢ < ny. Again choose ky > no
so that if j > ko, then the following conditions are satisfied.

(1) If U; is a term in the representation of an element of ;, then i > ny;
(2) ko is minimal subject to 1 and ko > no.

For the general case, choose m;;1 = kj + 1. Next take n;11 > m; ;1 so small
such that if U; is a term in the representation of an element of Uj<pm,,, Hi, then
I < njy1. Again choose kj; 1 > mjy1 such that if [ > k;iq, then the following
conditions are satisfied.

(1) If U; is a term in the representation of an element of H;, then i > n;4q;
(2) kjy1 is minimal subject to 1 and kjy1 > njy1.

For each n let K, = Uk, ,t+i1<j<k,H;. It is easy to observe that for each m
UK, C UnmflgignanlUi’

By the construction of H;’s we get for each finite collection F of nonempty open
sets of X either there is a n such that U N (UKg,—1) # 0 for all U € F, or for each
finite collection F of nonempty open sets of X there is a n such that UN(UKy,) # 0
for all U € F. In the first case the partition

({Ul tNok_o <1 < Nog, k € N})

guarantees that U € Q"9 p.
In the latter case the partition

({U; : nag—1 < i < nogy1,k € N})

guarantees that U € O"9 . Hence the result. O

Corollary 4.3. If X is a Lindeldf Ugn (O, Qp) space, then X satisfies Sgn (2, Ap)
and each large cover of X is a member of OWIPp.

The proof of the following theorem uses similar technique of Theorem 4.5 and
so we omit it.

Theorem 4.6. Let X be a Lindeldf space satisfying Ug, (O, QP). Then X satisfies
San (T, AP) and each large cover of X is a member of Ow9PP.

Corollary 4.4. Let X be a Lindeldf space satisfying Ug, (O, QP). Then X satisfies
San (2, AP) and each large cover of X is a member of OW9PP,

4.2. Game theoretic observations

We begin with the following game theoretic observation which will be used sub-
sequently.

Theorem 4.7 ( [19,23]). For a space X the following assertions are equivalent.
(1) X satisfies Sgn (O, O).

(2) ONE does not have a winning strategy in Ga,(0,0) on X.

(3) ONE does not have a winning strategy in Guan(O,A) on X.

Let OT denote the collection of all countable and increasing open covers of a
space X.

Theorem 4.8. For a Lindeldf space X the following games are equivalent.
(1) G1(0",0p)

(2) Gan(O,0p)

(3) Gufin(O, Op).
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FURTHER OBSERVATIONS ON CERTAIN Ug,-TYPE SELECTION PRINCIPLES 19

Proof. (1) < (3). We only prove that winning strategy for ONE in Gus, (O, Op)
implies the winning strategy for ONE in G;(O',Op) and winning strategy for
TWO in G1(O",Op) implies the winning strategy for TWO in G, (O, Op).

Suppose that ONE has a winning strategy o in Guan (O, Op) on X. Let us define
a strategy 7 for ONE in G;(OT,0p) on X as follows. Let o(()) be the first move
of ONE in Guan(O,Op). Since X is Lindelof, we choose o(@)) = {U,%) :m € N},
Consider 7(0) = {U?ZlUlgl) :m € N} as the first move of ONE in G1(O",0p) and
TWO responds by choosing a Vi € 7(#). Then Vi gives a finite subset V; of o(()
such that UV; = V4 and choose V; as the response of TWO in Guan (O, Op). Let
o(V1) be the second move of ONE in G5, (O, Op) and so on. Thus we obtain a
winning strategy 7 for ONE in G;(OT,0p) on X.

Suppose that TWO has a winning strategy o in G1(OT, Op) on X. We now define
a strategy 7 for TWO in Guan (O, Op) on X as follows. Let Uy = {UT(,P :m € N} be
the first move of ONE in Gus, (O, Op). Choose Wy = {U?‘ZlU,gl) : m € N} as the
first move of ONE in G1(OT,Op) and TWO responds by selecting o(W;) € W;.
Clearly o(W;) gives a finite subset V; of U such that o(W;) = UV; and consider
7(Uy) = V1 as the response of TWO in Guan(O,Op). Let Uy = {U,(,?) :m € N}
be the second move of ONE in Gus,(O,Op) and so on. This defines a winning
strategy 7 for TWO in Gus,(0,0Op) on X.

Using the same technique as in the proof of (1) < (3) one can readily prove that
(1) & (2). O

We intimately follow the proof of (1) < (3) of Theorem 4.8 to obtain the follow-
ing.
Theorem 4.9. For a Lindeldf space X the games G1(OT,Ap) and Guan(O, Ap)
are equivalent.

Theorem 4.10 ( [2, Theorem 28]). For a Lindeldf space X the following assertions
are equivalent.

(1) X satisfies Sgn (O, Op).

(2) ONE does not have a winning strategy in Ga,(O,Op) on X.

Theorem 4.11. For a Lindeldf space X the following assertions are equivalent.

(1) X satisfies Sgn (O, Op).
(2) ONE does not have a winning strategy in Guan(O,Ap) on X.

Proof. (1) = (2). We closely follow the technique of [23, Corollary 4]. Let o be a
strategy for ONE in Guan(O,Ap) on X. We now define a strategy 7 for ONE in
Ggn(O,0p) on X xN as follows. Let o(() be the first move of ONE in G5, (O, Ap)
on X. We choose 7(0) = {U x {n} : U € o(0) and n € N} as the first move of ONE
in Gan (O, Op) on X x N and then TWO responds by selecting a finite subset V; of
7(0). Consider H1 ={U € 0(0) : U x {n} € V; for some n € N} as the response of
TWO in Gusn (O, Ap) on X. Let 0(H;) be the second move of ONE in Guan (O, Ap)
on X and so on. Thus we get a legitimate strategy 7 for ONE in G, (O, Op) on
X x N. Since X x N satisfies Sg, (O, Op), by Theorem 4.10, 7 is not a winning for
ONE in Ggp(O,0p) on X x N. We pick a 7-play 7(0), V1, 7(V1), Vo, 7(V1, V2), . ..
which is lost by ONE in Gg,(O,0p) on X x N. Thus UpenVy, € Op for X x N.
The corresponding o-play is given by o(0), H1,0(H1), Ha,0(H1, Ha), . ... We claim
that {UH, : n € N} € Ap for X. Let V be a nonempty open set in X. Choose a
n1 € N such that (V x {1}) N (UV,,) # 0 and V N (UH,, ) # 0. Clearly the set

F={meN:Ux{m}eU,V, for some U € U 0(H1,Hz,...,Hi—1)}

is finite. Let k = max F' + 1. Choose a ng € N such that (V' x {k}) N (UV,,) # 0.
Accordingly V N (UH,,) # 0 and ny < ny. Proceeding similarly we can say that
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20 D. CHANDRA, N. ALAM

N (UH,) # O for infinitely many n. Thus {UH, : n € N} € Ap for X. Tt
follows that ONE loses the above o-play and o is not a winning strategy for ONE
in Guan(O,Ap) on X. Thus ONE does not have a winning strategy in Gusn (O, Ap)
on X. (]

Corollary 4.5. For a Lindelof space X the following assertions are equivalent.
(1) X satisfies San(O,Op).

(2) ONE does not have a winning strategy in Gan(O,Op) on X.

(3) ONE does not have a winning strategy in Guan (O, Op) on X.

(4) ONE does not have a winning strategy in G1(OT,0p) on X.

(5) ONE does not have a winning strategy in Guan(O,Ap) on X.

(6) ONE does not have a winning strategy in G1(OT,Ap) on X.

The proof of the following two theorems can be obtained using the similar ap-
proach of (1) < (3) of Theorem 4.8.

Theorem 4.12. For a Lindeldf space X the games G1(OT,Qp) and Guan(O,2p)
are equivalent.

Theorem 4.13. For a Lindeldf space X the games G1(OT, A¥97 1) and Gua, (O, A¥9Pp)
are equivalent.

Theorem 4.14. Let X satisfy San(O, O). Then the following assertions are equiv-
alent.

(1) X satisfies Ugn(O,Qp).

(2) ONE does not have a winning strategy in Guan (O, A*9Pp) on X.

Proof. Suppose that X satisfies Ug,(O,Qp). Let o be a strategy for ONE in
Gusin (O, A%9Pp) on X. Let us define a strategy 7 for ONE in Gug,(O, A) on X as
follows. In each inning, the move of ONE in Gua,(O,A) is equal to the move of
ONE in Guan (O, A¥97 ) and the response of TWO in Gug, (O, A¥9P p) is equal to
the response of TWO in Guan(O, A). Since X satisfies San (O, O), by Theorem 4.7,
7 is not a winning strategy for ONE in Guu,(O, A) on X, i.e., there exists a T-play
7(0),V1,7(V1), V2, 7(V1, V2), V3, ... such that {UV, : n € N} € A. Since X satisfies
Ugn (O, Qp), by Theorem 4.5, {UV,, : n € N} € A¥9 . Thus the corresponding
o-play a(0),V1,0(V1),Va,0(V1,V2), Vs, ... is lost by ONE in Gyugn (O, A9 p). Tt
follows that o is not a winning strategy for ONE in Guan (O, A¥9?p). Hence ONE
does not have a winning strategy in Gusn (O, A¥9?p) on X. The other implication
follows from Theorem 4.1. O

Corollary 4.6. Let X satisfy Sgn(O, O). Then the following assertions are equiv-
alent.

(1) X satisfies Ugn (O, Qp).
(2) ONE does not have a winning strategy in G1(OT, A*9Pp) on X.
(3) ONE does not have a winning strategy in Guan(O, A¥9Pp) on X.

Problem 4.1. Let X be a Lindeldf space satisfying Uan(O,Qp). Is it true that
ONE does not have a winning strategy in Guan(O,Qp) on X ?

Problem 4.2. Let X be a Lindeldf space satisfying Uan(O,Qp). Is it true that
ONE does not have a winning strategy in Guan(O, AP p) on X ?

Theorem 4.15. For a P-space X the games G, (O, Op) and G, (O, O) are equiv-
alent.

Proof. Tt is enough to prove that winning strategy for ONE in Gg, (O, O) implies
the winning strategy for ONE in Gg,(O,Op) and winning strategy for TWO in
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Gn(O,Op) implies the winning strategy for TWO in Gg, (O, O). Let o be a win-
ning strategy for ONE in Gg,(O,0) on X. Let us define a strategy 7 for ONE
in Gan(O,0p) on X as follows. In each inning, the move of ONE in Gg, (O, Op)
is equal to the move of ONE in Gg, (O, O) and the response of TWO in G, (O, O) is
equal to the response of TWO in G, (O, Op). Let 7(0), Vi, 7(V1), Vo, 7(V1,V2), Vs, . ..
be a 7-play in Gg,(O,Op) and o(0), V1,0(V1),Va,0(V1,V2), Vs, ... be the corre-
sponding o-play in Gg, (O, O). Since o is a winning strategy for ONE in Gg, (O, O)
on X, {V :V € UpenVn} does not cover X. Observe that U{V : V € UpenVn} =
U(UnenVn)- It follows that UpenV, ¢ Op and hence the r-play is won by ONE.
Thus 7 is a winning strategy for ONE in Gg,(O,Op) on X.

Let o be a winning strategy for TWO in Gg,(O,Op) on X. Let us define a
strategy 7 for TWO in Ggn(O,0) on X as follows. In each inning, the move
of ONE in Gg,(O,0p) is equal to the move of ONE in Gg,(O,0) and the re-
sponse of TWO in Gg, (O, O) is equal to the response of TWO in Gg, (O, Op). Let

ul,T(ul),Z/[g,T(ul,UQ),u:),, v beaT—play in Gﬁn(O,é) andul,O’(ul),u270'(ul,Z/{2),U3, e

be the corresponding o-play in Gg,(O,0p). Since o is a winning strategy for
TWO in Ggn(O,0p) on X, Upeno(Uy,Us, ..., Uy,) € Op. Also since U{V : V €
Uneno Uy, Us, ... .U} = Uo(Uy,Us, ... U,) and for each n o(U,Us, ..., U,) =
TUL, Uy, ..., Uy, UpentUy,Us, ..., U,) € O. Thus the T-play is won by TWO
and hence 7 is a winning strategy for TWO in Gg, (O, 0) on X. O

Theorem 4.16 ( [5]). For a regular space X the games Gan (O, O) and Ggn (O, O)
are equivalent.

Proof. Tt is easy to observe that ONE has a winning strategy in Gg,(O,Q) on X
implies that ONE has a winning strategy in Gg,(O,) on X. Also TWO has a
winning strategy in Gg, (O, ) on X implies that TWO has a winning strategy in
Gn(0,9Q) on X. We now show that if ONE has a winning strategy in Gg, (O, Q) on
X, then ONE has a winning strategy in G, (O, Q) on X. Let o be a winning strat-
egy for ONE in Gg,(0O,9Q) on X. Let us define a strategy 7 for ONE in Gg, (O, Q)
on X as follows. Suppose that o(() is the first move of ONE in Gg,(O, Q). We
can obtain an open cover Uy of X such that {U : U € Uy} refines o(f)). Consider
7(0) = Uy as the first move of ONE in Gg, (O, 2) and TWO responds by choosing
a finite subset V; C 7(0). For each V € V; choose a Uy € o((}) such that V C Uy
and put H; = {Uy : V € V1}. Define H; as the response of TWO in Gg, (O, Q).
Let o(H1) be the second move of ONE in Gg,(O,€) and so on. This defines a
winning strategy 7 for ONE in Gg, (O, Q) on X.

Next we observe that if TWO has a winning strategy in Gg, (O, Q) on X, then
TWO has a winning strategy in Gg,(O,Q) on X. Let o be a winning strategy
for TWO in Gg,(O,Q) on X. We now define a strategy 7 for TWO in Gg, (O, Q)
on X as follows. Let U; be the first move of ONE in Gg,(O,Q). Let Wi be
an open cover of X such that {U : U € W} refines U;. Consider W; as the
first move of ONE in Gg, (O, Q) and TWO responds by choosing a finite subset
a(W1) € Wy. For each V € o(W)) choose a Uy € U such that V C Uy and define
T(Uy) = {Uy : V € d(W;)} as the response of TWO in Gg, (O, Q) and so on. Thus
we get a winning strategy 7 for TWO in Gg, (O, 2) on X. Hence the result. O

Corollary 4.7. For a regular P-space X the following games are equivalent.

(1) G£n(0,Op)

(2) Gan(0,0)

(3) Ggn(0,0).

Theorem 4.17. For a P-space X the games Guan(O,0p) and Guan(O,9Q) are
equivalent.
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Proof. We only prove that winning strategy for ONE in G5, (O, Q) implies the win-
ning strategy for ONE in Gus, (O, Qp) and winning strategy for TWO in Gyuan (O, Qp)
implies the winning strategy for TWO in Gy, (O, ). Let o be a winning strategy
for ONE in Gugn (O, Q) on X. Let us define a strategy 7 for ONE in Gy, (O, Qp)
on X as follows. In each inning, the move of ONE in Gu5,(O,Qp) is equal to the
move of ONE in Gz, (O, Q) and the response of TWO in G5, (O, Q) is equal to the
response of TWO in G5, (O, Qp). Let 7(0), V1, 7(V1), V2, 7(V1,V2), Vs,... be a 7-
play in Guan (O, Qp) and o(0), V1,0(V1), Va,c(V1,V2), Vs, ... be the corresponding
o-play in Guan (O, Q). Since o is a winning strategy for ONE in G5,(0, ) on X,
{UV, :n € N} ¢ Q. We claim that {UV,, :n € N} ¢ Qp. Let F = {z; : 1 <i <k}
be a finite subset of X such that for each n F ¢_ UV,,. Then we can choose
N = U%_| N;, where N;’s are pairwise disjoint such that for each n € N;, x; ¢ UV,
i =1,2,...,k. Foreach: =1,2,...,k and each n € N; let Vi(n) be an open set
in X containing x,; such that Vi(n) N (WY,) = 0. Since X is a P-space, for each
1=1,2,....k, V; = ﬁneNiVi(") is an open set in X with V; N (UV,) = 0 for all
n € N;. Thus we get a family F = {V; : 1 <4 < k} of nonempty open sets of X
such that there does not exist any n € N with U N (UV,,) # 0 for all U € F. Hence
{UV, :n € N} ¢ Qp. It follows that the T-play is won by ONE and consequently
7 is a winning strategy for ONE in G5, (0, Qp) on X.

Let o be a winning strategy for TWO in Gus,(O,Qp) on X. Let us define a
strategy 7 for TWO in Gua, (O, Q) on X as follows. In each inning, the move of
ONE in Gusn (O, Qp) is equal to the move of ONE in G5, (0, Q) and the response
of TWO in Gugn (O, Q) is equal to the response of TWO in Guan (O, Qp). Similarly
we can observe that 7 is a winning strategy for TWO in Gy, (O, Q) on X. O

The proof of the following result is similar to Theorem 4.16 and so we omit it.

Theorem 4.18 ( [5]). For a regular space X the games Gugn (O, Q) and Guan (0, Q)
are equivalent.

Corollary 4.8. For a reqular P-space X the following games are equivalent.
(1) Guﬁn(079D)

(2) Guan(0,Q)

(3) Gusin(0,Q).

Following the same line of proof of Theorems 4.12, 4.13 and 4.14 with necessary
modifications we can prove the next three theorems respectively.

Theorem 4.19. For a Lindelf space X the games G1(OT,QP) and Guun (O, 0QP)
are equivalent.

Theorem 4.20. For a Lindeldf space X the games G1(OT, A*97P) and Gugn (O, Aw9PP)
are equivalent.

Theorem 4.21. Let X satisfy San (O, Q). Then the following assertions are equiv-
alent.

(1) X satisfies Ugya (O, QP).

(2) ONE does not have a winning strategy in Guan (O, A¥9PPY) on X

Corollary 4.9. Let X satisfy Sgn (O, Q). Then the following assertions are equiv-
alent.

(1) X satisfies Ug, (O, QP).

(2) ONE does not have a winning strategy in G1(OT, A¥9PPY on X.

(3) ONE does not have a winning strategy in Guan (O, A9PP) on X

Since QP C Qp, the next result follows directly from Theorem 4.17.
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Theorem 4.22. For a P-space X the following assertions hold.

(1) If ONE has a winning strategy in Guan(O,Q) on X, then ONE has a winning
strategy in Guan (O, QP) on X.

(2) If TWO has a winning strategy in Guan (O, Q) on X, then TWO has a winning
strategy in Guan(O,Q) on X.

Theorem 4.23. For a reqular P-space X the games Guan (O, Q) and Guqn (0, Q)
are equivalent.

Proof. If ONE has a winning strategy in Guan (O, Q") on X, then ONE has a
winning strategy in Guan (O, Q) on X since @ C QF. Let us suppose that ONE
has a winning strategy in Gus, (O, Q) on X. By Theorem 4.18, ONE has a winning
strategy in Guan(0,Q) on X. Then by Theorem 4.22(1), ONE has a winning
strategy in Guan (O, QP) on X. Thus ONE has a winning strategy in Gua.(O, QP)
on X if and only if ONE has a winning strategy in Guan(O,Q) on X. Similarly
using Theorems 4.18 and 4.22(2) we can see that TWO has a winning strategy in
Gusin(0,02P) on X if and only if TWO has a winning strategy in Gugn (O, ) on
X. Hence the result. (]

Corollary 4.10. For a regular P-space X the following games are equivalent.
(1) Guan(O,Qp)

( ) uﬁn((9 Q)
() uﬁn( ) D)
(4) Gusin(0, Q).

ufin
5. OPEN PROBLEMS

We give a short proof of the following result in the context of almost Lindelof
spaces.

Theorem 5.1 ( [5]). Every almost Lindelof space X with cardinality less than
satisfies Ugy (O, Q).

Proof. Let (U,) be a sequence of open covers of X. For each n choose a countable
set W,, = {V,&") :m € N} C U, such that Uyew, V = X. Now for each x €
X define a f, € N¥ by f.(n) = min{m € N : x € Vé[”}, n € N. Since the
cardinality of Y = {f; : * € X} is less than 9, maxfin(Y) is also of cardinality
less than 0. Consequently there are a ¢ € NY and a ny € N corresponding to
each finite set F' C X such that fr(np) < g(ng) with fr € maxfin(Y’), where
fr(n) = max{fz(n) : x € F} for all n € N. We use the convention that if ' = {z},

z € X, then we write f, instead of fr. The sequence (V») now witnesses for X to
be Ugn (O, Q). O

So the following question naturally arises.

Problem 5.1. If X is a weakly Lindeldf space with cardinality less than 0, then
does X satisfy Ugn (O, 02P) (or, Usn(O,Qp), San(O,0p))?

We present two more open problems for further investigation.

Problem 5.2. Give an example of a space which satisfies Ugn (O, Qp) but does not
satisfy Ugn (O, QP).

Problem 5.3. Does every productively weakly Lindelof space satisfy Usn (O, Qp)
(or, San(O,0p))?
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