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Abstract. The present paper deals with non-real eigenvalues of singular indefi-

nite Sturm-Liouville boundary value problems with limit-circle type non-oscillation

endpoints. The estimate of upper bounds on non-real eigenvalues for the singu-

lar indefinite eigenvalue problem associated to the separated self-adjoint boundary

conditions with non-principle solutions are obtained.
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1. Introduction

Consider the singular indefinite Sturm-Liouville differential equation

(1.1) −(py′)′ + qy = λwy in L2
|w|(a, b)

associated to a self-adjoint boundary value condition, where −∞ < a < b < ∞,

the functions p, q, w are real-valued and w changes sign on (a, b). Such a problem

is called indefinite which is of great importance for its wide applications in physics,

such as transport theory and quantum mechanics, and has discrete, real eigenvalues

unbounded from both above and below. The most difference between indefinite and

right-definite(w > 0) problem is the non-real spectral points may appear([9, 18]). For

a review of early works on indefinite problems, see [1, 8, 12, 13].

The problem on the related estimates of non-real eigenvalues for the indefinite

problems was raised in [13] and stressed in [11]. Recently, the problem for the regular

case was solved in [2, 16, 17, 20]. For the singular indefinite Sturm-Liouville problem

under the condition of p(x) = 1, w(x) = sgn(x), q ∈ L1 or q ∈ L∞ or uniformly

locally integrable potentials and singular limit-point endpoints case were studied in
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2 FU SUN* AND XIAOXUE HAN

[3, 4, 5, 6]. In particular, the authors in [5] considered the bounds of non-real eigen-

values for the more generally coefficients of the weight function w and the potential

function p, which deviate from the case w(x) = sgn(x) and p(x) = 1, and particu-

larly, the indefinite weight functions w with finitely or infinitely many sign changes

within a compact interval, functions 1/p ∈ Lη(R) for η ∈ [1,∞] and uniformly lo-

cally integrable potentials q or q ∈ Ls(R) for s ∈ [1,∞] are also well investigated.

Very recently, the operators theory and the bounds of non-real eigenvalues of in-

definite Laplacian problems and singular indefinite Sturm-Liouville operators with

Lp-potentials have been studied in [7, 15], and a priori bounds and the existence of

non-real eigenvalues for the singular indefinite Sturm-Liouville eigenvalue problem-

s with limit-circle type non-oscillation endpoints associated to a special self-adjoint

boundary condition with principle solutions are obtained in [19]. For the existence

of non-real eigenvalues for the general singular eigenvalue problem with limit-circle

type non-oscillation endpoints, we can exploit the transformation z(·, λ) = y(·, λ)/v

transforms this singular problem into the regular indefinite problem (cf. [10, Lemma

4.4], [19, Lemma4.2]), then the existence and non-existence of non-real eigenvalues

are proved in [10, 16, 19, 20, 21] and references cited therein.

The present paper will focus on the upper bounds for singular indefinite Sturm-

Liouville eigenvalue problems with limit-circle type non-oscillation endpoints associ-

ated with the self-adjoint boundary conditions given by the non-principal solution

(see the below in (2.6)). A priori bounds of non-real eigenvalues for this eigenval-

ue problem are obtained. The main ingredient of this paper is the equivalence of

boundary conditions at the endpoints in Lemma 2.4.

The rest of this paper is organized as follows. Section 2 contains a basic discussion

of singular indefinite Sturm-Liouville problem with limit-circle type non-oscillation

endpoints and some preliminary results, then the upper bounds on non-real eigenval-

ues in terms of integrable conditions of coefficients for the singular perturbation of

Legendre eigenvalue problem are shown in Section 3, see Theorem 3.1 and 3.2. An

example is given in Section 4 to illustrate the results.
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SINGULAR INDEFINITE PROBLEMS 3

2. Preliminary knowledge and results

In this section, we give some basic knowledge for the singular differential equation

(1.1) under the standard conditions that p, q, w are real-valued functions satisfying

(2.1) p > 0, |w| > 0 a.e. on (a, b),
1

p
, w, q ∈ L1

loc(a, b),

∫ b

a

(∣∣∣∣1p
∣∣∣∣+ |q|+ |w|

)
= ∞,

and w satisfying

(2.2) Γ := ess inf
x∈(a,b)\[a1,b1]

|w(x)| > 0

and w has constant sign a.e. on (a, a1) and (b1, b), −∞ < a < a1 < b1 < b < ∞.

Throughout this section the functions p, q, w always satisfy (2.1) and (2.2).

We first introduce some concepts (cf.[10, 14, 22]). The endpoint b (or a) is oscil-

latory if every nontrivial real-valued solution has an infinite number of zeros in (c, b)

(or (a, c)) for any c ∈ (a, b), and it is non-oscillatory otherwise. For fixed λ ∈ R, a

real solution u of (1.1) is called a principal solution at b if there exists c ∈ (a, b) such

that

u(x) ̸= 0, x ∈ (c, b),

∫ b

c

1

pu2
= ∞.

A real solution v of (1.1) is called a non-principal solution at b if there exists c ∈ (a, b)

such that

v(x) ̸= 0, x ∈ (c, b),

∫ b

c

1

pv2
< ∞.

If u and v are principal and non-principal solutions at b, respectively, then

u(x)

v(x)
→ 0 as x → b.

We say that the endpoint b (resp. a) is a limit-circle type endpoint if all solutions

of (1.1) are in L2
|w|[c, b) (resp. L2

|w|(a, c]) for some c ∈ (a, b). It is well known that

the limit-circle type endpoint is independent of λ ∈ R. The endpoint b (or a) is

limit-circle type non-oscillation if it is both limit-circle type and non-oscillation.

The main condition in this paper is

(2.3)

γ ∈ L1(a, b), where γ(t) := sup
a<x<b

∣∣∣∣ 1

p(t)

∫ x

t

q(s)ds

∣∣∣∣,
P ∈ L2

|w|(a, b), where P(x) :=

∫ x

c

1

p(t)
dt
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4 FU SUN* AND XIAOXUE HAN

for some (and hence for all) c ∈ (a, b).

Lemma 2.1. (cf. [19, Lemma 2.1]) Assume that (2.3) holds. Then (1.1) is limit-

circle type non-oscillation at endpoints a and b.

Lemma 2.2. (cf. [19, Lemma 2.2]) Assume that (2.3) holds. If
∫ b

c
1/p(x)dx = ∞,

then for every λ ∈ R, there exists a non-principal solution v of (1.1) at b such that

pv′(x) → v0 ̸= 0 as x → b. The similar conclusion holds at a.

Set

[f, g] := f(pg′)− g(pf ′), f, g ∈ Dmax,

where Dmax = {f ∈ L2
|w|(a, b) : f, pf ′ ∈ ACloc(a, b),

1
|w| [−(pf ′)′ + qf ] ∈ L2

|w|(a, b)},

ACloc(a, b) denotes the set of all complex-valued functions which are absolutely con-

tinuous on all compact subintervals of (a, b).

Let va, vb be the non-principal solutions of (1.1) at a, b for λ = 0 defined in Lemma

2.2, respectively, and ua, ub be the corresponding principal solutions, and satisfying

[ua, va](x) ≡ 1, [ub, vb](x) ≡ 1.

Lemma 2.3. Let vb be defined as above and (2.3) holds. Then for arbitrary y ∈ Dmax

and vb satisfy

y,
√
py′,

√
pv′b ∈ L2(a, b) and py′(x)vb(x) → 0 as x → b.

The similar conclusion holds at a.

Proof. From (2.2), one sees that there exists N such that |w(x)| ≥ N a.e. x outside

of a compact interval [a1, b1] and∫ b

a

|y(x)|2dx =

∫ b1

a1

|y(x)|2dx+

∫
(a,b)\[a1,b1]

|y(x)|2dx

≤ (b1 − a1) sup
x∈[a1,b1]

|y(x)|2 + 1

N

∫
(a,b)\[a1,b1]

|y(x)|2|w(x)|dx < ∞,

where the continuity of y implies the boundedness on [a1, b1]. Then y ∈ L2(a, b).

Since vb and y are the solutions of (1.1) for λ = 0 and λ, respectively, i.e.,

−(pv′b)
′ + qvb = 0, −(py′)′ + qy = λwy.
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SINGULAR INDEFINITE PROBLEMS 5

Then

− pv′b(b)vb(b) + pv′b(a)vb(a) +

∫ b

a

p|v′b|2 +
∫ b

a

qv2b = 0,

− py′(b)y(b) + py′(a)y(a) +

∫ b

a

p|y′|2 +
∫ b

a

q|y|2 = λ

∫ b

a

w|y|2.

This facts with y, vb ∈ Dmax and (2.2) led to
√
py′,

√
pv′b ∈ L2(a, b).

Let Sy = [−(py′)′ + qy]/|w|, y ∈ Dmax, then∫ x

c

vb|w|Sy =

∫ x

c

vb[−(py′)′ + qy] = −py′(x)vb(x) + py′(c)vb(c) +

∫ x

c

(py′v′b + qyvb),

and hence lim
x→b

(py′vb) exist and finite. Suppose that

lim
x→b

p(x)|y′(x)||vb(x)| = α̃ > 0.

Then there exists b0 > 0 such that |vb(x)| > 0 and

p(x)|y′(x)| ≥ α̃

|vb(x)|
for x ∈ (b0, b). Multiplication with |v′b(t)| and integration leads to

(2.4)

∫ x

b0

p(t)|y′(t)||v′b(t)|dt ≥ α̃

∫ x

b0

|v′b(t)|
|vb(t)|

dt ≥ α̃

∣∣∣∣∫ x

b0

v′b(t)

vb(t)
dt

∣∣∣∣ = α̃

∣∣∣∣ln vb(x)

vb(b0)

∣∣∣∣ .
By pv′b(x) → v0 ̸= 0 as x → b in Lemma 2.2 and

∫ b

c
1/p(t)dt = ∞, we have

(2.5) vb(x) = vb(c) +

∫ x

c

v′b(s)ds = vb(c) +

∫ x

c

pv′b(s)
1

p(s)
ds → ∞, x → b.

This together with (2.4) implies that the left hand side of (2.4) is bounded since
√
py′,

√
pv′b ∈ L2(a, b) hold while the right hand side grows to ∞, which is a con-

tradiction and hence the assumption lim
x→b

p(x)|y′(x)||vb(x)| = α̃ > 0 was false, thus

lim
x→b

p(x)y′(x)vb(x) = 0. The proof of Lemma 2.3 is finished. �
In the following we give a special separated self-adjoint boundary conditions of

limit-circle type non-oscillation endpoints in the form [y, va](a) = 0, [y, vb](b) = 0,

and the corresponding eigenvalue problem is

(2.6)

 − (py′)′ + qy = λwy,

[y, va](a) = 0, [y, vb](b) = 0.

A complex number λ is called an eigenvalue of boundary value problem (2.6) if

there is a nontrivial solution y ∈ Dmax satisfying the boundary conditions. Such a

solution y is called an eigenfunction of λ. Since the sign change of the weight function,

5 Apr 2023 02:35:05 PDT
221206-FuSun Version 3 - Submitted to Rocky Mountain J. Math.



6 FU SUN* AND XIAOXUE HAN

the indefinite eigenvalues problem (2.6) is not self-adjoint in a Hilbert space but it

can be interpreted as self-adjoint in the Krein space with indefinite inner product.

The following Lemma plays an important role in the proof of the main results of this

paper, which gives the equivalence between boundary conditions constructed by the

non-principal solutions of (1.1) and the eigenfunctions at the end points.

Lemma 2.4. Assume that (2.1), (2.2), (2.3) hold and vb(·) is the non-principal so-

lution of (1.1) at b for λ = 0 defined as above. Let y be an eigenfunction of (2.6)

corresponding to the eigenvalue λ. If
∫ b

c
1/p(t)dt = ∞, then y is bounded and

[y, vb](b) = 0 ⇔ (py′)(x)y(x) → 0 as x → b.

The similar conclusion holds for x → a.

Proof. Since vb is a non-principal solution at b, one can choose c ∈ (a, b) such that

vb(x) ̸= 0, x ∈ [c, b). From y and vb are the solutions of (1.1) for λ and λ = 0, re-

spectively, we have that for x ∈ [c, b), integrating (y(x)/vb(x))
′ = −[y, vb](x)/(pv

2
b )(x)

over the interval [c, x] gives that

(2.7) y(x) =

(
y(c)

vb(c)
−

∫ x

c

[y, vb](t)

pv2b (t)
dt

)
vb(x) := H(x)vb(x).

Then H is bounded since [y, vb](b) = 0 and vb is a non-principal solution at b. More-

over,

(2.8) (py′)(x) = H(x)(pv′b)(x)−
[y, vb](x)

vb(x)
.

It follows from [y, vb](b) = 0 and py′(x)vb(x) → 0 as x → b in Lemma 2.3 that

pv′b(x)y(x) → 0, x → b. This together with pv′b(x) → v0 ̸= 0 as x → b in Lemma

2.2 implies that y(x) → 0, x → b, which together with y(x) = H(x)vb(x) in (2.7)

and vb(x) → ∞, x → b in (2.5) led to H(x) → 0, x → b. The facts pv′b(x) → v0 ̸=

0, vb(x) → ∞, [y, vb](x) → 0 as x → b and (2.8) yields that py′(x) → 0, x → b.

Hence py′(x)y(x) → 0, x → b.

Conversely, assume that y → ∞, x → b, it follows from py′(x)y(x) → 0, x → b

that py′(x) → 0, x → b. This together with (2.8), pv′b(x) → v0 ̸= 0, vb(x) →
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∞, [y, vb](x) → 0 as x → b implies that H(x) → 0, x → b. Then from the L’Hóspital

principle and H(x), v−1
b (x) → 0 as x → b one sees that

lim
x→b

y(x) = lim
x→b

H(x)vb(x) = lim
x→b

H(x)

v−1
b (x)

= lim
x→b

[y, vb](x)(pv
2
b )

−1(x)

v−2
b (x)v′b(x)

= lim
x→b

[y, vb](x)

p(x)v′b(x)
= 0

since pv′b(x) → v0 ̸= 0, [y, vb](x) → 0 as x → b, which is a contradiction. So that

y(x) → 0 as x → b. This together with pv′b(x) → v0 ̸= 0 as x → b in Lemma 2.2 that

pv′b(x)y(x) → 0 as x → b. Hence [y, vb](b) = 0 provided that py′(x)vb(x) → 0 as x → b

in Lemma 2.3. This completes the proof of Lemma 2.4. �

3. The upper bounds of non-real eigenvalues

In this section we give a priori bounds on non-real eigenvalues of the singular

indefinite eigenvalue problem

(3.1)

 − (py′)′ + qy = λwy,

[y, va](a) = 0, [y, vb](b) = 0,

where va and vb are non-principle solutions of −(py′)′ + qy = 0 at a and b defined

as above, respectively, q is real valued and q ∈ L2(a, b). One can verify that the

main condition (2.3) holds for this problem, and hence all the conclusions in Section

2 hold for (3.1). Additionally, we assume that for some constant Γp, Γ
a
p,q, Γ

b
p,q, Γq,

Γp,q, x ∈ [ess inf a, ess sup b] satisfied

(3.2)

ess inf a ≤ a1 ≤ a0 ≤ b1 ≤ ess sup b, b− a > 1, L1(a, b) ∋ p̃ :=

∫ x

a0

1

p
,

√
p(x) ≤ Γp,

∣∣∣∣∣ b− x√
p(x)

∫ x

a

q−(t)dt

∣∣∣∣∣ ≤ Γb
p,q,

∣∣∣∣∣ x− a√
p(x)

∫ b

x

q−(t)dt

∣∣∣∣∣ ≤ Γa
p,q,

Γq :=
1

b− a

∫ b

a

q−(t)dt, Γp,q :=
Γb
p,q + Γa

p,q

b− a
, q− = max{0,−q}

in order to estimate the a priori bounds of non-real eigenvalues.

Since w2(x) > 0 a.e. on (a, b), we can choose δ > 0 such that

(3.3) ∆(δ) = {x ∈ (a, b) : w2(x) < δ}, m(δ) = mes ∆(δ).
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Theorem 3.1. Assume that q ∈ L2(a, b), w ∈ AC(a, b), w′ ∈ L2
p(a, b) and (2.3),

(3.2), (3.3) hold. If

∫ b

a

dt

p(t)
= ∞, then for any non-real eigenvalue λ of (3.1) it holds

(3.4)
| Imλ| ≤ 2

δ

√
2W (Γq + 2Γ2

p,q),

|λ| ≤ 2

δ

{
Γw

(
2(Γq + 2Γ2

p,q) +
√
b− a∥q∥2

)
+
√

2W (Γq + 2Γ2
p,q)

}
,

where Γw = max{|w(x)| : x ∈ (a, b)} and W =
∫ b

a
p|w′|2.

A point at x which the weight function w changes its sign will be called a turning

point [12]. If w has only one turning point on (a, b), that is there exist a point

ã ∈ (a, b) such that

(3.5) (x− ã)w(x) > 0 a.e. on (a, b).

Since (x− ã)w(x) > 0 a.e. on (a, b), we can choose η > 0 such that

(3.6) ∆(η) = {x ∈ (a, b) : (x− ã)w(x) < η}, m(η) = mes ∆(η).

Theorem 3.2. Assume that q ∈ L2(a, b), (2.3), (3.2), (3.5) and (3.6) hold. If∫ b

a

dt

p(t)
= ∞, then for any non-real eigenvalue λ of (3.1) it holds that

(3.7)

| Imλ| ≤ 2

η

(
Γq + Γ2

p + 2Γ2
p,q

)
,

|λ| ≤ 2

η

{(
Γq + 2Γ2

p,q

)
(1 + 4(b− a)) + Γ2

p

}
.

In order to prove the Theorem 3.1 and 3.2, we first give the estimates of ∥√pφ′∥2
and ∥√q−φ∥2, where φ is an eigenfunction of (3.1) corresponding to the non-real

eigenvalue λ. That is [φ, va](a) = 0, [φ, vb](b) = 0 and

(3.8) −(pφ′)′ + qφ = λwφ.

Since the problem (3.8) is a linear system and φ is continuous, we can choose φ

satisfying
∫ b

a
|φ(x)|2dx = 1 in the following discussion.

Lemma 3.3. Assume that q ∈ L2(a, b) and

∫ b

a

dt

p(t)
= ∞, let λ, φ be defined as above

and (3.2) holds, then

(3.9)

∫ b

a

p|φ′|2 ≤ 2
(
Γq + 2Γ2

p,q

)
,

∫ b

a

q−|φ|2 ≤ 2
(
Γq + 2Γ2

p,q

)
.
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Proof. It follows from Lemma 2.4 that φ is bounded and satisfies

(3.10) (pφ′)(x)φ(x) → 0 as x → a or b.

Multiplying both sides of (3.10) by φ and integrating over the interval (a, b), we get∫ b

a

p|φ′|2 +
∫ b

a

q|φ|2 = λ

∫ b

a

w|φ|2.

Here (3.10) is used. This together with Imλ ̸= 0 yields that
∫ b

a
w|φ|2 = 0 and hence

(3.11)

∫ b

a

p|φ′|2 +
∫ b

a

q|φ|2 = 0.

Let

Θ(x) =

∫ x

a

q−(t)dt− (x− a)Γq, Γq =
1

b− a

∫ b

a

q−(t)dt, x ∈ [a, b].

Then one can verify that

(3.12) Θ(a) = 0 = Θ(b), Θ′(x) = q−(x)− Γq, a.e. x ∈ (a, b).

Furthermore, the condition q ∈ L2(a, b) implies that

|Θ(x)| =
∣∣∣∣b− x

b− a

∫ x

a

q− − x− a

b− a

∫ b

x

q−

∣∣∣∣ ≤ Γb
p,q + Γa

p,q

b− a

√
p(x) = Γp,q

√
p(x),

and hence ∫ b

a

q−|φ|2 =
∫ b

a

(Θ′ + Γq)|φ|2 = Γq − 2Re

(∫ b

a

Θφ′φ

)
,

which together with |Θ(x)| ≤ Γp,q

√
p(x) and

∫ b

a
|φ|2 = 1 yields that

(3.13)
∫ b

a

q−|φ|2 ≤ Γq + 2Γp,q

(∫ b

a

p|φ′|2
)1/2

≤ Γq +
1

2

∫ b

a

p|φ′|2 + 2Γ2
p,q.

It follows from (3.11), (3.13) and q = q+ − q− that∫ b

a

p|φ′|2 ≤ 2
(
Γq + 2Γ2

p,q

)
,

∫ b

a

q−|φ|2 ≤ 2
(
Γq + 2Γ2

p,q

)
,

which completes the proof of Lemma 3.3. �

Lemma 3.4. Assume that q ∈ L2(a, b),

∫ b

a

dt

p(t)
= ∞ and (3.2), (3.3) hold. For

any ε0 > 0, there exists ε > 0 such that
∫
∆(δ)

|φ(x)|2dx < ε0 if 0 < δ < ε for all
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10 FU SUN* AND XIAOXUE HAN

eigenfunctions φ of (3.1) corresponding to a non-real eigenvalue and
∫ b

a
|φ|2 = 1.

Particularly, when ε0 = 1/2, ε can be chosen such that

2m(ε)

(
1 + 2(Γq + 2Γ2

p,q)

∫ b1

a1

1

p

)
+ 4

(
Γq + 2Γ2

p,q

) ∫
∆(δ)

∣∣∣∣∫ x

a0

1

p

∣∣∣∣ dx ≤ 1/2.

The similar conclusion holds for ∆(η).

Proof. Since
∫ b

a
|φ|2 = 1, there must exist x0 ∈ [a1, b1] such that |φ(x0)| ≤ 1, and

hence it follows from Lemma 3.3 that

|φ(x)| ≤ |φ(x0)|+
∣∣∣∣∫ x

x0

φ′
∣∣∣∣ ≤ 1+

∣∣∣∣∫ x

x0

1

p

∣∣∣∣ 12 ∣∣∣∣∫ x

x0

p|φ′|2
∣∣∣∣ 12 ≤ 1+

√
2
(
Γq + 2Γ2

p,q

) ∣∣∣∣∫ x

x0

1

p

∣∣∣∣ 12 ,
which implies that

|φ(x)|2 ≤ 2 + 4
(
Γq + 2Γ2

p,q

) ∣∣∣∣∫ x

x0

1

p

∣∣∣∣ .
As a result,∫

∆(δ)

|φ(x)|2dx ≤ 2m(ε) + 4
(
Γq + 2Γ2

p,q

) ∫
∆(δ)

∣∣∣∣∫ x

x0

1

p

∣∣∣∣ dx
≤ 2m(ε) + 4

(
Γq + 2Γ2

p,q

) ∫
∆(δ)

∣∣∣∣∫ a0

x0

1

p
+

∫ x

a0

1

p

∣∣∣∣ dx
≤ 2m(ε)

(
1 + 2(Γq + 2Γ2

p,q)

∫ b1

a1

1

p

)
+ 4

(
Γq + 2Γ2

p,q

) ∫
∆(δ)

∣∣∣∣∫ x

a0

1

p

∣∣∣∣ dx.
Since m(δ) → 0 as δ → 0 and

∫ x

a0

1
p
= p̃ ∈ L1(a, b), one sees that the last term of the

above inequality tends to 0 as δ → 0 by the continuity of the integral
∫
∆(δ)

∣∣∣∫ x

a0
1
p

∣∣∣ dx.
�

With the aids of the above lemmas we now proof Theorem 3.1 and 3.2.

The proof of Theorem 3.1. Multiplying both sides of (3.8) by wφ and integrating

by parts on (a, b), we have from [φ, va](a) = 0 = [φ, vb](b) and (3.10)

(3.14) λ

∫ b

a

w2|φ|2 =
∫ b

a

(wp|φ′|2 + wq|φ|2) +
∫ b

a

w′pφ′φ.

It follows from
∫ b

a
φ(x)dx = 1 and b− a > 1 that ∥φ∥∞ ≤ 1. This together with (3.9)

in Lemma 3.3 and Γw = max{|w(x)| : x ∈ (a, b)} yields that

(3.15)

∣∣∣∣∫ b

a

wp|φ′|2 +
∫ b

a

wq|φ|2
∣∣∣∣ ≤ Γw

(∫ b

a

p|φ′|2 + ∥φ∥2∞
∫ b

a

|q|
)

≤ Γw

(
2(Γq + 2Γ2

p,q) +
√
b− a∥q∥2

)
.
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It follows from w′ ∈ L2(a, b), W =
∫ b

a
p|w′|2, (3.9) and Schwarz inequality that

(3.16)

∣∣∣∣∫ b

a

w′pφ′φ

∣∣∣∣ ≤ ∥φ∥∞
(∫ b

a

p|w′|2
)1/2 (∫ b

a

p|φ′|2
)1/2

≤
√

2W (Γq + 2Γ2
p,q).

Recall the definition of ∆(δ) in (3.3),

(3.17)

∫ b

a

w2|φ|2 ≥ δ

∫
(a,b)\∆(δ)

|φ|2 = δ

(∫ b

a

|φ|2 −
∫
∆(δ)

|φ|2
)

≥ δ (1− 1/2) ≥ δ/2.

Then from (3.14)-(3.17) we get

(3.18)

|λ|δ
2
≤ |λ|

∫ b

a

w2|φ|2 ≤ Γw

(
2(Γq + 2Γ2

p,q) +
√
b− a∥q∥2

)
+
√

2W (Γq + 2Γ2
p,q).

Separating the imaginary parts of (3.14) implies

Imλ

∫ b

a

w2|φ|2 = Im

(∫ b

a

w′pφ′φ

)
,

which together with (3.16) and (3.17) implies that

(3.19) | Imλ|δ
2
≤ | Imλ|

∫ b

a

w2|φ|2 ≤
∣∣∣∣∫ b

a

w′pφ′φ

∣∣∣∣ ≤ √
2W (Γq + 2Γ2

p,q).

Hence we get the inequalities in (3.4) by (3.19) and (3.18). �
The proof of Theorem 3.2. Multiplying both sides of (3.8) by φ and integrating

over the interval [x, b], we have

(3.20) pφ′(x)φ(x) +

∫ b

x

p|φ′|2 +
∫ b

x

q|φ|2 = λ

∫ b

x

w|φ|2.

Now, integrating (3.20) over [ã, b], where ã ∈ (a, b) in (3.2), gives that

(3.21)

|λ|
∫ b

ã

(x− ã)w|φ|2 = |λ|
∫ b

ã

∫ b

x

w|φ|2

≤
∫ b

ã

p|φ′||φ|+
∫ b

ã

∫ b

x

p|φ′|2 +
∫ b

ã

∫ b

x

|q||φ|2

≤ Γp

(∫ b

ã

p|φ′|2
)1/2

+ (b− ã)

(∫ b

ã

(p|φ′|2 + |q||φ|2)
)

≤ 1

2
Γ2
p +

1

2

∫ b

ã

p|φ′|2 + (b− ã)

(∫ b

ã

(p|φ′|2 + |q||φ|2)
)
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provided by
√
p(x) ≤ Γp,

∫ b

a
|φ(x)|2dx = 1 and Schwarz inequality. Integrating by

parts on the interval [a, x] and [a, ã], similar with the above discussion we have

(3.22)

|λ|
∫ ã

a

(x− ã)w|φ|2 = −|λ|
∫ ã

a

∫ x

a

w|φ|2

≤ Γp

(∫ ã

a

p|φ′|2
)1/2

+ (b− ã)

(∫ ã

a

(p|φ′|2 + |q||φ|2)
)

≤ 1

2
Γ2
p +

1

2

∫ ã

a

p|φ′|2 + (b− ã)

(∫ ã

a

(p|φ′|2 + |q||φ|2)
)

Hence (3.21) and (3.22) yields that

(3.23)

|λ|
∫ b

a

(x− ã)w|φ|2 ≤ Γ2
p +

1

2

∫ b

a

p|φ′|2 + (b− ã)

(∫ b

a

(p|φ′|2 + |q||φ|2)
)

≤ Γ2
p +

1

2

∫ b

a

p|φ′|2 + (b− a)

(∫ b

a

(p|φ′|2 + q|φ|2) + 2

∫ b

a

q−|φ|2
)

≤
(
Γq + 2Γ2

p,q

)
(1 + 4(b− a)) + Γ2

p

by (3.11), (3.9) and |q| = q + 2q−. Separating the imaginary parts of (3.20) we get

Imλ

∫ b

x

w|φ|2 = Im (pφ′(x)φ(x)) .

With the similar method, we have

(3.24) | Imλ|
∫ b

a

(x− ã)w|φ|2 ≤ Γq + Γ2
p + 2Γ2

p,q.

According to the definition of ∆(η) in (3.6), it follows that∫ b

a

(x− ã)w|φ|2 ≥ η

∫
(a,b)\∆(η)

|φ|2 = η

(∫ b

a

|φ|2 −
∫
∆(η)

|φ|2
)

≥ η/2,

which together with (3.23) and (3.24) lead to the inequalities in (3.7). �

4. Example

In this section we give an example to state the upper bounds result in Section 3.

Consider the singular eigenvalue problem

(4.1)

 − [(1− x2)y′]′ + qy = λxy,

[y, v−1](−1) = 0, [y, v1](1) = 0,

where p(x) = 1− x2, w(x) = x, x ∈ (−1, 1), v−1 and v1 are non-principle solutions of

−[(1− x2)y′]′ + qy = 0 at −1 and 1, respectively, q is real valued and q ∈ L2(−1, 1).
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Since the differential expression in (4.1) and the classical Legendre equation [22,

Example 8.3.1, p157]

−[(1− x2)y′]′ = λy, x ∈ (−1, 1)

have the same first coefficient term (1 − x2), so we call (4.1) as “the perturbation of

Legendre eigenvalue problem ” with indefinite weight x on (−1, 1), which arises from

models in the transport theory in physics through variable separation. It follows from

Cauchy-Schwarz inequality that∣∣∣∣∫ x

t

q(s)ds

∣∣∣∣ ≤ √
1± t

(∫ 1

−1

|q|2
)1/2

=
√
1± t∥q∥2,

where ∥ · ∥2 denote the norm of the space L2(−1, 1) and hence∣∣∣∣ 1

1− t2

∫ x

t

q(s)ds

∣∣∣∣ ≤ (√
1± t

)−1 ∥q∥2 ∈ L1(−1, 1).

Clearly ∫ x

0

1

1− t2
dt =

1

2
ln

1 + x

1− x
∈ L2

|x|(−1, 1), Γ = ess inf
x∈(−1,1)\[−1/2,1/2]

|x| > 0.

Therefore, the main condition (2.2) and (2.3) hold for this problem. Hence all the

conclusions in Section 2 hold for the problem (4.1). Furthermore,∫ x

0

1

1− t2
dt ∈ L1(−1, 1),

√
1− x2 ≤ 1,∣∣∣∣ 1− x√

1− x2

∫ x

−1

q−(t)dt

∣∣∣∣ ≤ √
1− x

(∫ x

−1

|q−(t)|2dt
)1/2

≤
√
1− x∥q−∥2 ≤

√
2∥q−∥2,∣∣∣∣ x+ 1√

1− x2

∫ 1

x

q−(t)dt

∣∣∣∣ ≤ √
1 + x

(∫ 1

x

|q−(t)|2dt
)1/2

≤
√
1 + x∥q−∥2 ≤

√
2∥q−∥2.

Then the condition in (3.2) holds.

Since x2 > 0 a.e. on (−1, 1), we can choose δ > 0 such that

∆(δ) = {x ∈ (−1, 1) : x2 < δ}, m(δ) = mes ∆(δ).

By Theorem 3.1, the upper bound on non-real eigenvalues λ of (4.1) is given by

| Imλ| ≤ 4√
3δ

√
∥q−∥2

(√
2 + 8∥q−∥2

)
,

|λ| ≤ 2

δ

{
√
2 (∥q−∥2 + ∥q∥2) + 8∥q−∥22 +

2√
3

√
∥q−∥2

(√
2 + 8∥q−∥2

)}
.
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14 FU SUN* AND XIAOXUE HAN

Since w(x) = x has only one turning point ã = 0 on (−1, 1) and satisfied x2 >

0 a.e. on (−1, 1), we can choose η > 0 such that

∆(η) = {x ∈ (−1, 1) : x2 < η}, m(η) = mes ∆(η).

By Theorem 3.2, the upper bound for any non-real eigenvalue λ of (4.1) hold that

| Imλ| ≤ 2

η

(
1 +

∥q−∥2√
2

+ 4∥q−∥22
)
, |λ| ≤ 2

η

{
9∥q−∥2

(
1√
2
+ 4∥q−∥2

)
+ 1

}
.
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