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1 Introduction

We study the properties of weak solutions of the following fractional Laplacian system
(−∆)αu = f (u, v), in Rn,

(−∆)βv = g(u, v), in Rn,

(1.1)

where 0 < α, β < 1, n > max{2α, 2β}, f , g are some nonlinear continuous functions. The fractional

Laplacian operator (−∆)α defined as

(−∆)αu = Cn,αP.V.
∫
Rn

u(x) − u(y)

|x − y|n+2α dy,

where Cn,α is positive constant, P.V. stands for the Cauchy principal value. The fractional Laplacian

operator (−∆)β has the same form of (−∆)α, so we omit the definition of it, and in the following use the

(−∆)α as the represents in the background knowledge(Section 1 and Section 2). By the difference quo-

tients of the fractional Laplacian, one see that the fractional Laplacian is a nonlocal pseudo-differential
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operator. The nonlocality makes it difficult to study, to handle the nonlocality, Caffarelli and Silvestre

[4] introduced the extension method which can reduce the nonlocal problem of (−∆)α to a local one in

higher dimensions. For a function u : Rn → R, consider its extension function U : Rn × [0,∞)→ R that

satisfies 
div(y1−2α∇U(x, y)) = 0, (x, y) ∈ Rn × [0,∞),

U(x, 0) = u(x), x ∈ Rn,

then

(−∆)αu = −Cn,α lim
y→0+

y1−2α ∂U
∂y

.

In this paper, base on the extension result in [4], we investigate the extension boundary system of

(1.1). Combining with some integral inequality to the method moving planes, we obtain the Liouville

type results of system (1.1). For the special case, consider the single equation which forms as the equation

of (1.1). The Liouville type theorems in Rn for Lane-Emden equation

−∆u = f (u) (1.2)

have been studied by many famous authors. Caffarelli, Gidas and Spruck [3] studied the asymptotic

symmetry and local behavior of the above semilinear elliptic equations, when the right item power is

critical Sobelov growth. In [13], Gidas and Spruk proved that there was no positive classical solution of

(1.2), which the spacial case that f (u) = up ( 0 < p < n+2
n−2 ). And then Chen and Li [6] given a simple

proof of the same result as [13] about the problem (1.2), the tool be used was the method of moving

planes.

For the equation (1.2) with Neumann boundary
−∆u(x, y) = 0, (x, y) ∈ Rn+1,

∂u
∂ν

= f (u), x ∈ Rn,

where ∆ is the Laplacian operator in Rn+1 and ν is the unit outward normal. In [16], Hu established

nonexistence for positive solutions of the case that f (u) = up (1 ≤ p < n
n−1 ). Ou [19] extended the

conclusion of [16] to the range is −∞ ≤ p < n
n−1 , which used the method of moving planes. Wan and

Xiang [24] studied the following nonlinear Neumann problem
div(ya∇u(x, y)) = 0, x ∈ Rn, y > 0,

lim
y→0+

yauy(x, y) = − f (u(x, 0)), x ∈ Rn,
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where a ∈ (−1, 1), n ≥ 1, ∇ = (∂x1, · · · , ∂xn, ∂y), f is nonnegative function. They proved a Liouville type

theorem for nonnegative solutions of the above Neumann problem, and mentioned that this Neumann

problem in Rn is relate to the fractional equation

(−∆)αu = f (u),

which is the extension result of [4], where α = 1−a
2 . By using the extension method in [4], there are many

fruitful results were obtained, can see [2, 5, 7, 25] and the references therein.

For the semilinear elliptic system 
−∆u = vp, in Rn,

−∆v = uq, in Rn.

(1.3)

If p > 0, q > 0, De Figueiredo and Felmer [10] conjectured that the hyperbola

1
p + 1

+
1

q + 1
= 1 −

2
n

is the dividing curve between existence and nonexistence of the solution to the semilinear elliptic system

(1.3). Serrin and Zou [20, 21] given some positive answer when the solutions are radially of system

(1.3). The authors in [10] also proved that this system has no positive solutions, when 0 < p, q ≤ n+2
n−2

and (p, q) , ( n+2
n−2 ,

n+2
n−2 ). Guo and Liu [14] given the Liouville type results for positive solutions of the

following nonlinear elliptic system 
−∆u = f (u, v), in Rn,

−∆v = g(u, v), in Rn,

when n ≥ 3. In [14] the method of moving planes combined with integral inequalities was fully utilized.

Recently, Wang [25] studied the properties for solutions of the fractional Laplacian system
(−∆)αu = f (u, v), in Rn,

(−∆)αv = g(u, v), in Rn,

where the (−∆)α defined as above. The method of moving planes combined with integral inequalities also

be used to prove the Liouville type theorems. For the case that different order of fractional Laplacain,

Araujo, Faria, Leite and Miyagaki [1] established there is no positive solution for the following system

(−∆)αu = u−pv−q, in Ω,

(−∆)βv = u−rv−θ, in Ω,

u = v = 0, in Rn \Ω,
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here Ω is a smooth bounded open subset in Rn, where 0 < α, β < 1, n ≥ 2, and r, q > 0, p, θ ≥ 0. Li and

Ma [18] derived symmetry of the solutions to the fractional system

(−∆)αu = f (v), in Rn,

(−∆)βv = g(u), in Rn,

u, v ≥ 0, in Rn,

where f and g satisfy some continuity.

The extension method from [4] is a key tool in this paper, this method was commonly used in recent

literature since it allows nonlocal problems to be written in a local way, which permits of variational

techniques and tools for the problems involving of fractional operator, that were used in second elliptic

problems. In this paper, we build the properties of solutions for system (1.1) which base on the extension

method of [4]. So we consider the following elliptic system

div(y1−2α∇U(x, y)) = 0, in H,

lim
y→0+

y1−2α ∂U(x, y)
∂y

= − f (U(x, 0),V(x, 0)), on ∂H \ {0},

div(y1−2β∇V(x, y)) = 0, in H,

lim
y→0+

y1−2β ∂V(x, y)
∂y

= −g(U(x, 0),V(x, 0)), on ∂H \ {0},

(1.4)

where H = {(x, y) : x ∈ Rn, y > 0}, denote

∂U
∂να

= lim
y→0+

y1−2α ∂U(x, y)
∂y

,

and
∂U
∂νβ

= lim
y→0+

y1−2β ∂U(x, y)
∂y

.

We will get the Liouville type properties for the solutions of the fractional system (1.1) which following

the results of (1.4).

Theorem 1.1. For 0 < α, β < 1, let (u, v) ∈ Hα
loc(Rn) ∩ C(Rn) × Hβ

loc(Rn) ∩ C(Rn) be a nonnegative

solution of problem 
(−∆)αu = f (v), in Rn,

(−∆)βv = g(u), in Rn.

(1.5)

Suppose that f and g : [0,+∞)→ R+ are continuous functions satisfying:

(i) f (t), g(t) are nondecreasing in (0,+∞),
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(ii) h(t) =
f (t)

t
n+2α
n−2β

, k(t) =
g(t)

t
n+2β
n−2α

are nonincreasing in (0,+∞).

Then either (u, v) = (c1, c2) for some constants c1 and c2 with f (c2) = g(c1) = 0 or there exist positive

constants A and B such that h(t) = A, k(t) = B and (u, v) is radially symmetric about some point.

Theorem 1.2. For 0 < α, β < 1, let (u, v) ∈ Hα
loc(Rn) ∩C(Rn) × Hβ

loc(Rn) ∩C(Rn) be a positive solution

of problem (1.1). Suppose that f and g : [0,+∞)→ R+ are continuous functions satisfying:

(i) f (t1, t2) is nondecreasing in t2 and f ≥ 0 for t1, t2 > 0,

(ii) there exist p1 ≥ 0, q1 > 0, (n − 2α)p1 + (n − 2β)q1 = n + 2α, such that f (t1,t2)
t1 p1 t2q1 is nonincreasing in

(t1, t2),

(iii) g(t1, t2) is nondecreasing in t1 and g ≥ 0 for t1, t2 > 0,

(iv) there exist p2 > 0, q2 ≥ 0, (n − 2α)p2 + (n − 2β)q2 = n + 2β, such that g(t1,t2)
t1 p2 t2q2 is nonincreasing

in (t1, t2).

Then either (u, v) = (c1, c2) for some constants c1 and c2 with f (c1, c2) = g(c1, c2) = 0 or there

exist positive constants Ã and B̃ such that f (t1, t2) = Ãt1 p1 t2q1 , g(t1, t2) = B̃t1 p2 t2q2 and (u, v) is radially

symmetric about some point.

Theorem 1.3. For 0 < α, β < 1, let (u, v) ∈ Hα
loc(Rn) ∩C(Rn) × Hβ

loc(Rn) ∩C(Rn) be a positive solution

of problem (1.1). Suppose that f and g : [0,+∞)→ R+ are C0 functions satisfying:

(i) f (γt1,γt2)

γ
n+2α
n−2α

, g(γt1,γt2)

γ
n+2β
n−2β

are nonincreasing in γ, and either

(ii) f (t1, t2) is increasing and locally Lipschitz continuous in t2, that is

0 < f (t1, t2) − f (t1, t2′) ≤ L(m)(t2 − t2′)

provided that m ≥ t2 ≥ t2′ > 0, m ≥ t1 ≥ 0, and g(t1, t2) is increasing and locally Lipschitz continuous in

t1 in the sense that

0 < g(t1, t2) − g(t1′, t2) ≤ L′(m)(t1 − t1′),

or

(ii)′ f (t1, t2) is increasing in t2 and nondecreasing in t1; g(t1, t2) is increasing in t1 and nondecreasing

in t2.

Then either (u, v) = (c1, c2) for some constants c1 and c2 with f (c1, c2) = g(c1, c2) = 0 or there

exist positive constants Ã and B̃ such that f (t1, t2) = Ãt1 p1 t2q1 , g(t1, t2) = B̃t1 p2 t2q2 and (u, v) is radially

symmetric about some point.
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In this paper, the key tool is some integral inequalities. The idea comes from Terracini in [22, 23],

and also can refer to [14, 24, 26] etc.. The main difficulty stems is the nonlinearities are coupled, based

on the Kelvin’s transform together with the method of moving plane, we use some integral inequality

which make sure the start of the method of moving plane. Moreover, since we only assumed that f and

g are continuous, therefore, the classical maximum principle can not work on the method of moving

plane directly, so we use the method of moving planes combined with integral inequality. The results

in this paper partially contain the conclusions in [1] and [17]. We extend from elliptic system in [14]

to fractional Laplacian system, and generalize the order of the fractional operators in [25] from same

to different. Be different from using the direct method of moving planes as [18], which the regularity

of solution for the system was weakened. By the method of moving planes combined with integral

inequality, we can handle the general right terms f and g of the nonlinear fractional Laplacian system.

Be different from the process in [25], the more detailed and careful calculations should be given to the

fractional Laplacian system with different order, and a similar Liouville type result (Theorem 1.3) is

obtained for some more general conditions of f and g.

The paper is organized as follows. In Section 2, we collect some basic knowledge, and give the proof

of some integral inequalities. Theorem 1.1 is proved in Section 3 which using the method of moving

planes. Section 4 is devoted to obtain the Liouville type results (Theorem 1.2 and Theorem 1.3) with

some assumptions of nonlinear terms f and g.

2 Preliminaries

In this section, we use some commonly notations to introduce the preliminaries. The index s can be

chosen as α or β which without cause confusion. Di Nezza, Palatucci and Valdinoci [9] given the some

relations of the fractional Sobolev spaces, which define W s,p as follows

W s,p(Ω) := {u ∈ Lp(Ω) :
|u(x) − u(y)|

|x − y|
n
p +s

∈ Lp(Ω ×Ω)}.

This fractional Sobolev spaces is a Banach space between the classical Sobolev spaces Lp(Ω) and

W1,p(Ω), which use the norm

‖u‖W s,p(Ω) := (
∫

Ω

|u(x)|dx +

∫
Ω

∫
Ω

|u(x) − u(y)|p

|x − y|n+sp dxdy)
1
p ,
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here

[u]W s,p(Ω) := (
∫

Ω

∫
Ω

|u(x) − u(y)|p

|x − y|n+sp dxdy)
1
p

is the so called Gagliardo smeinorm.

The fractional Sobolev space W s,p is a Hilbert space, where p = 2, and its denoted as Hs. This space

can also be defined by the Fourier transform

Hs(Rn) = {u ∈ L2(Rn) :
∫
Rn

(1 + |ξ|2s)|F u(ξ)|2dξ < ∞},

where F u is the Fourier transform of u.

In [9], authors also proved that

[u]2
Hs(Rn) = 2C(n, s)−1

∫
Rn
|ξ|2s|F u(ξ)|2dξ = 2C(n, s)−1‖(−∆)

s
2 u‖

2
L2(Rn).

In this paper, we don’t care the concrete value of constant C(n, s), so we use the notation as [24], that

Ḣs(Rn) is the completion of C∞0 (Rn) under the quadratic form

‖u‖2Ḣs(Rn) =

∫
Rn
|ξ|2s|F u(ξ)|2dξ = ‖(−∆)

s
2 u‖

2
L2(Rn).

In fact, the two definitions of fractional Sobolev spaces in [9] are equivalent. And the extension principle

of [4] also works out in Ḣs(Rn). In [24], authors studied the variational problem

S = inf{
∫
H

ya|∇φ(x, y)|2dxdy : φ ∈ C∞0 (H),
∫
∂H
|φ(x, 0)|

2n
n−1+a dx = 1}. (2.1)

The constant S of problem (2.1) is well defined, due to the trace inequality∫
∂H
|φ(x, 0)|

2n
n−1+a dx ≤ Cn,a

∫
H

ya|∇φ(x, y)|2dxdy, ∀φ ∈ C∞0 (H), (2.2)

where Cn,a is a positive constant depending only on n and a, here s = 1−a
2 . This result can also be seen in

Frank et al. [11, 12], which introduced the sharp trace inequality

‖(−∆)
s
2 Tu‖

2
2 ≤ Cn,a

∫
H

ya|∇u(x, y)|2dxdy, (2.3)

where T is a trace operator, such that Tu(x) = u(x, 0).

Now we list the comparison principle in [24].

Lemma 2.1. Let Ω ⊂ H be an open set with a part of flat boundary Γ ⊂ ∂H. Let u ≥ 0, u . 0, be

classical solution to equation 
div(ya∇u(x, y)) = 0, in Ω,

lim
y→0+

yauy(x, y) ≤ 0, x ∈ Γ,
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Then

u > 0 on Ω ∪ Γ.

Indeed, this conclusion also works on the system (1.4) on Ω, which is a strong maximum principle

for the system (1.4) on H.

Let (U,V) be nonnegative, we give their Kelvin transform in H which centered at zero as

w(X) =
1

|X|n−2αU(
X

|X|2
), z(X) =

1

|X|n−2βV(
X

|X|2
), X = (x, y) ∈ H \ {0}. (2.4)

Obviously, w and z are continuous and nonnegative in H \ {0}. It is easy to check that

Lemma 2.2. Let (U,V) ∈ W1,2
loc (H)∩C(H)×W1,2

loc (H)∩C(H) be a nonnegative (weak) solution of system:

div(y1−2α∇U(x, y)) = 0, in H,

lim
y→0+

y1−2α ∂U(x, y)
∂y

= − f (V(x, 0)), on ∂H \ {0},

div(y1−2β∇V(x, y)) = 0, in H,

lim
y→0+

y1−2β ∂V(x, y)
∂y

= −g(U(x, 0)), on ∂H \ {0}.

Then (w, z) satisfies (weakly) the following system:

div(y1−2α∇w(x, y)) = 0, in H,

lim
y→0+

y1−2α ∂w(x, y)
∂y

= −
1

|x|n+2α f (|x|n−2βz(x)), on ∂H \ {0},

div(y1−2β∇z(x, y)) = 0, in H,

lim
y→0+

y1−2β ∂z(x, y)
∂y

= −
1

|x|n+2β g(|x|n−2αw(x)), on ∂H \ {0}.

(2.5)

Moreover, w and z have decay at infinity as

lim
|X|→∞

|X|n−2αw(X) = U(0), lim
|X|→∞

|X|n−2βz(X) = V(0), (2.6)

and hence w ∈ L
q

n−2α (Σλ), z ∈ L
q

n−2β (Σλ) for any n + 1 < q ≤ ∞.

Let λ ∈ R and X = (x1, x2, · · · , xn, y) ∈ H. Without loss of generality, we may assume that

Tλ = {X ∈ H : x1 = λ},

and

Σλ = {X ∈ H : x1 > λ},

8
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and denote

pλ = (2λ, 0, · · · , 0, 0) ∈ ∂H, Xλ = (2λ − x1, x2, · · · , xn, y).

Define the reflected functions

wλ(X) = w(Xλ), zλ(X) = z(Xλ).

Let

Wλ(X) = w(X) − w(Xλ), Zλ(X) = z(X) − z(Xλ).

The key integral inequalities will be shown in following which will be employed in the method of

moving planes.

Lemma 2.3. For any fixed λ > 0, w ∈ L
2n

n−2α (Σλ), z ∈ L
2n

n−2β (Σλ), such that∫
Σλ

y1−2α
∣∣∣∇W+

λ

∣∣∣2dX ≤ Cλ(
∫
∂H∩∂A1

λ

z
2n

n−2β (x)dx)
2α+2β

n

∫
Σλ

y1−2β
∣∣∣∇Z+

λ

∣∣∣2dX, (2.7)

∫
Σλ

y1−2β
∣∣∣∇Z+

λ

∣∣∣2dX ≤ Cλ(
∫
∂H∩∂A2

λ

w
2n

n−2α (x)dx)
2α+2β

n

∫
Σλ

y1−2α
∣∣∣∇W+

λ

∣∣∣2dX, (2.8)

where A1
λ = {X ∈ Σλ : Zλ(X) ≥ 0}, A2

λ = {X ∈ Σλ : Wλ(X) ≥ 0}, W+
λ = max{Wλ, 0}, Z+

λ = max{Zλ, 0},

and Cλ > 0 is a constant which is bounded when λ is away from zero.

Proof. Here we only show the inequality (2.7), the proof of (2.8) is similar. For any fixed λ > 0, then w

and W+
λ ≤ w belong to space L

2n
n−2α (Σλ).

For ε > 0 small, we introduce a cut-off function ηε ∈ C∞0 (H), where 0 ≤ ηε ≤ 1,

ηε(X) = 1, for 2ε ≤ |X − pλ| ≤ ε−1,

ηε = 0, for |X − pλ| ≤ ε or |X − pλ| ≥ 2ε−1,

and |∇ηε| ≤ Cε−1 for ε ≤ |X − pλ| ≤ 2ε, |∇ηε| ≤ Cε for ε−1 ≤ |X − pλ| ≤ 2ε−1, here C > 0 is independent

of ε. For h(t) =
f (t)

t
n+2α
n−2β

, if X ∈ Σλ, we rewrite (2.5) as


div(y1−2α∇w(x, y)) = 0, in H,

lim
y→0+

y1−2α ∂w(x, y)
∂y

= −h(|x|n−2βz(x))z
n+2α
n−2β (x), on ∂H \ {0},

(2.9)

and 
div(y1−2α∇wλ(x, y)) = 0, in H,

lim
y→0+

y1−2α ∂wλ(x, y)
∂y

= −h(|xλ|n−2βzλ(x))z
n+2α
n−2β
λ (x), on ∂H \ {pλ}.

(2.10)
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Multiply (2.9) and (2.10) by φε = W+
λ η

2
ε, we get that∫

Σλ∩{2ε≤|X−pλ |≤ε−1}

y1−2α
∣∣∣∇W+

λ

∣∣∣2dX

≤

∫
Σλ

y1−2α
∣∣∣∇(W+

λ ηε)
∣∣∣2dX

=

∫
Σλ

y1−2α∇W+
λ · ∇φεdX +

∫
Σλ

y1−2α
∣∣∣W+

λ

∣∣∣2|∇ηε|2dX

=I + Iε. (2.11)

Firstly we estimate Iε. Write Rr = {X ∈ H : r ≤ |X − pλ| ≤ 2r} for r > 0, then

Iε ≤ Cε−2
∫

Σλ∩Rε
y1−2α

∣∣∣W+
λ

∣∣∣2dX + Cε2
∫

Σλ∩Rε−1

y1−2α
∣∣∣W+

λ

∣∣∣2dX

≤ Cε−2
∫

Σλ∩Rε
y1−2α((w − wλ)+)2dX + Cε2

∫
Σλ∩Rε−1

y1−2α((w − wλ)+)2dX

≤ Cε−2
∫

Rε
y1−2αw2dX + Cε2

∫
Rε−1

y1−2αw2dX,

where C > 0 independent of ε. For ε > 0 sufficiently small, we derive from (2.6) that

ε−2
∫

Rε
y1−2αw2dX ≤ Cλε

−2
∫
{X∈H : |X−pλ |≤2ε}

y1−2αdX = O(εn−2α),

and

ε2
∫

Rε−1

y1−2αw2dX ≤ Cλε
2
∫
{X∈H : ε−1≤|X−pλ |≤2ε−1}

y1−2α|X|2(2α−n)dX

≤ Cλε
2+2(n−2α)

∫
{X∈H : |X−pλ |≤2ε−1}

y1−2αdX

= O(εn−2α),

for some constants Cλ > 0. Therefore, as ε→ 0, we claim

Iε = O(εn−2α)→ 0. (2.12)

And then we estimate I. Since |x| > |xλ|, and h is nonincreasing, if z(x) ≥ z(xλ) ≥ 0, then

−h(|xλ|n−2αzλ(x)) ≥ −h(|x|n−2αz(x)).
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By (2.9) and (2.10), we deduce

I =

∫
Σλ

y1−2α∇W+
λ · ∇φεdX

=

∫
∂(Σλ∩suppηε)

y1−2αφε∇W+
λ · νdx

=

∫
{x∈Rn : x1>λ, ε≤|X−pλ |≤2ε−1}

(h(|x|n−2βz(x))z
n+2α
n−2β (x) − h(|xλ|n−2βzλ(x))z

n+2α
n−2β
λ (x))φεdx

≤

∫
{x∈Rn : x1>λ, ε≤|X−pλ |≤2ε−1}

h(|x|n−2βz(x))(z
n+2α
n−2β (x) − z

n+2α
n−2β
λ (x))φεdx

≤ C′λ

∫
∂H∩∂A1

λ

z
n+2α
n−2β−1(x)(z − zλ)+(w − wλ)+dx

≤ C′λ(
∫
∂H∩∂A1

λ

z
2n

n−2β dx)
α+β

n (
∫
∂H∩∂Σλ

((z − zλ)+)
2n

n−2β dx)
n−2β

2n (
∫
∂H∩∂Σλ

((w − wλ)+)
2n

n−2α dx)
n−2α

2n

where C′λ := 2α+2β
n−2β supx1>λ

h(|x|n−2βz(x)). By the results of (2.6), if |x| → ∞, then |x|n−2βz(x) → v(0). So

C′λ →
2α+2β
n−2β h(v(0)) > 0 as λ → ∞, which implies that C′λ is bounded for λ being away from zero. The

trace inequality (2.2) shows that

S (
∫
∂H∩∂Σλ

((w − wλ)+)
2n

n−2α dx)
n−2α

n ≤

∫
Σλ

y1−2α(∇(w − wλ)+)2dX

and

S (
∫
∂H∩∂Σλ

((z − zλ)+)
2n

n−2β dx)
n−2β

n ≤

∫
Σλ

y1−2β(∇(z − zλ)+)2dX,

where S is the constant defined in (2.1). Hence,

I ≤ Cλ(
∫
∂H∩∂A1

λ

z
2n

n−2β dx)
α+β

n (
∫

Σλ

y1−2β(∇W+
λ )2dX)

1
2 (
∫

Σλ

y1−2α(∇Z+
λ )2dX)

1
2 , (2.13)

where Cλ is a positive constant which is bounded when λ is away from zero. By using dominated

convergence, letting ε→ 0 in (2.11), combine (2.12) and (2.13), we know that (2.7) holds. �

3 Proof of Theorem 1.1

Step 1 Moving planes from the infinity.

Lemma 3.1. There exist λ0 > 0 such that for all λ ≥ λ0, Wλ(X) ≤ 0 and Zλ(X) ≤ 0 for any X ∈ Σλ.

Proof. If λ > 0 is large enough, since w ∈ L
2n

n−2α (Σλ), z ∈ L
2n

n−2β (Σλ), we have

Cλ(
∫
∂H∩∂A1

λ

z
2n

n−2β dx)
2α+2β

n < 1, for all λ ≥ λ0,
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and

Cλ(
∫
∂H∩∂A2

λ

w
2n

n−2α dx)
2α+2β

n < 1, for all λ ≥ λ0.

By Lemma 2.3, we deduce that ∫
Σλ

y1−2α
∣∣∣∇W+

λ

∣∣∣2dX = 0

and ∫
Σλ

y1−2β
∣∣∣∇Z+

λ

∣∣∣2dX = 0

for all λ ≥ λ0. For λ > 0 large enough, we obtain that Wλ(X) ≤ 0 and Zλ(X) ≤ 0, for any X ∈ Σλ �

Step 2 Step 1 provides a starting point, and then we can go on moving the planes to its limits position.

Define

Λ = inf{λ > 0 | Wµ(X) ≤ 0, Zµ(X) ≤ 0, ∀X ∈ Σµ, µ > λ}. (3.1)

Lemma 3.2. If Λ > 0 then WΛ(X) ≡ 0 and ZΛ(X) ≡ 0 for any X ∈ ΣΛ.

Proof. By the continuity of W and Z, we have WΛ(X) ≤ 0 and ZΛ(X) ≤ 0 for any X ∈ ΣΛ.

Suppose on the contrary, if WΛ(X) . 0 in ΣΛ, then for any point (x, 0) ∈ ∂H ∩ ∂ΣΛ, we have

h(|x|n−2βz(x))z
n+2α
n−2β (x) =

f (|x|n−2βz(x))

|x|n+2α

≤
f (|x|n−2βzΛ(x))

|x|n+2α

≤
f (|xΛ|

n−2βzΛ(x))

|xΛ|
n+2α

= h(|xΛ|
n−2βzΛ(x))z

n+2α
n−2β

Λ
(x).

Applying Lemma 2.1 to WΛ(X), we claim that WΛ(X) ≤ 0. The strong maximum principle implies that

WΛ(X) < 0 in ΣΛ. The strict inequality shows that the characteristic function X∂A2
λ
→ 0 a.e. in Rn as

λ→ Λ. The dominated convergence theorem indicates

lim
λ→Λ

Cλ(
∫
∂H∩∂A2

λ

w
2n

n−2α dx)
2α+2β

n = 0,

and hence for any λ ∈ (Λ − δ,Λ)

Cλ(
∫
∂H∩∂A1

λ

z
2n

n−2β dx)
2α+2β

n Cλ(
∫
∂H∩∂A2

λ

w
2n

n−2α dx)
2α+2β

n < 1,

where δ is a sufficiently small positive constant. Recalling the previous argument, which implies that

Wλ(X) ≤ 0 and Zλ(X) ≤ 0 for any X ∈ Σλ, which against the definition of Λ in (3.1). �
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If Λ = 0, for any (x1, x2, · · · , xn, y) ∈ Σ0, we get

w(x1, x2, · · · , xn, y) ≤ w(−x1, x2, · · · , xn, y)

and

z(x1, x2, · · · , xn, y) ≤ z(−x1, x2, · · · , xn, y).

We also can moving the planes from the left to right, and obtain that

w(x1, x2, · · · , xn, y) ≥ w(−x1, x2, · · · , xn, y)

and

z(x1, x2, · · · , xn, y) ≥ z(−x1, x2, · · · , xn, y).

Hence, we have

w(x1, x2, · · · , xn, y) = w(−x1, x2, · · · , xn, y)

and

z(x1, x2, · · · , xn, y) = z(−x1, x2, · · · , xn, y).

Therefore, we know that w(x, y) = w(|x| , y) and z(x, y) = z(|x| , y).

Since any point can be chosen as the center point of Kelvin transform, then w and z must be indepen-

dent of x. That is, U and V are only dependent of y. For u and v, we have that (u, v) = (c1, c2) for some

constants c1 and c2 with f (c2) = g(c1) = 0.

If Λ > 0, we see that w = wΛ and z = zΛ. Those imply that w and z are regular at the origin, that is,

U and V are regular at infinity. Since w = wΛ and z = zΛ, from (2.9) and (2.10) we have

h(|x|n−2βz(x)) = h(|xΛ|
n−2βzΛ(x)).

Noting that for any x, the inequality |x| > |xΛ| holds, and h is nonincreasing, it follows that the function

h must be constant, i.e., there exist a positive constant A such that h(t) = A. And we also know that there

exist a positive constant B such that g(t) = b. In this case, the above Lemmas show that w and z are

symmetric about some point for the variable x, so does to U and V . Therefore, we obtain that (u, v) is

radially symmetric about some point.
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4 Proof of Theorem 1.2 and 1.3

We use the notations as in Section 2. Let (U,V) ∈ W1,2
loc (H) ∩ C(H) ×W1,2

loc (H) ∩ C(H) be a positive

(weak) solution of system (1.4), then (w, z) satisfies (weakly) the following system:

div(y1−2α∇w(x, y)) = 0, in H,

lim
y→0+

y1−2α ∂w(x, y)
∂y

= −
1

|x|n+2α f (|x|n−2αw(x), |x|n−2βz(x)), on ∂H \ {0},

div(y1−2β∇z(x, y)) = 0, in H,

lim
y→0+

y1−2β ∂z(x, y)
∂y

= −
1

|x|n+2β g(|x|n−2αw(x), |x|n−2βz(x)), on ∂H \ {0},

(4.1)

and then 

div(y1−2α∇wλ(x, y)) = 0, in H,

lim
y→0+

y1−2α ∂wλ(x, y)
∂y

= −
1

|xλ|n+2α f (|xλ|n−2αwλ(x), |xλ|n−2βzλ(x)), on ∂H \ {pλ},

div(y1−2β∇zλ(x, y)) = 0, in H,

lim
y→0+

y1−2β ∂zλ(x, y)
∂y

= −
1

|xλ|n+2β g(|xλ|n−2αwλ(x), |xλ|n−2βzλ(x)), on ∂H \ {pλ}.

(4.2)

Lemma 4.1. For any fixed λ > 0, w ∈ L
2n

n−2α (Σλ), z ∈ L
2n

n−2β (Σλ), such that∫
Σλ

y1−2α
∣∣∣∇W+

λ

∣∣∣2dX ≤Cλ(
∫
∂H∩∂A2

λ

1
x2n dx)

2α
n

∫
Σλ

y1−2α
∣∣∣∇W+

λ

∣∣∣2dX

+ Cλ(
∫
∂H∩∂A1

λ∩∂A2
λ

1
x2n dx)

α+β
n (

∫
Σλ

y1−2α
∣∣∣∇W+

λ

∣∣∣2dX)
1
2 (
∫

Σλ

y1−2β
∣∣∣∇Z+

λ

∣∣∣2dX)
1
2 , (4.3)

∫
Σλ

y1−2β
∣∣∣∇Z+

λ

∣∣∣2dX ≤Cλ(
∫
∂H∩∂A1

λ

1
x2n dx)

2β
n

∫
Σλ

y1−2β
∣∣∣∇Z+

λ

∣∣∣2dX

+ Cλ(
∫
∂H∩∂A1

λ∩∂A2
λ

1
x2n dx)

α+β
n (

∫
Σλ

y1−2β
∣∣∣∇Z+

λ

∣∣∣2dX)
1
2 (
∫

Σλ

y1−2α
∣∣∣∇W+

λ

∣∣∣2dX)
1
2 , (4.4)

where A1
λ = {X ∈ Σλ : Zλ(X) ≥ 0}, A2

λ = {X ∈ Σλ : Wλ(X) ≥ 0}, W+
λ = max{Wλ, 0}, Z+

λ = max{Zλ, 0},

Cλ > 0 is a constant which is bounded when λ is away from zero.

Proof. We also just prove (4.3), the proof of (4.4) is omit. For any fixed constant λ > 0, thus w and

W+
λ ≤ w belong to L

2n
n−2α (Σλ). For ε > 0 small, choose a suitable cut-off function ηε ∈ C∞0 (H) such that

0 ≤ ηε ≤ 1,

ηε(X) = 1, for 2ε ≤ |X − pλ| ≤ ε−1,
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ηε = 0, for |X − pλ| ≤ ε or |X − pλ| ≥ 2ε−1,

and |∇ηε| ≤ Cε−1 for ε ≤ |X − pλ| ≤ 2ε, |∇ηε| ≤ Cε for ε−1 ≤ |X − pλ| ≤ 2ε−1, here C > 0 independent

of ε. The test function φε = W+
λ η

2
ε be used in (4.1) and (4.2). Hence one can assume w ≥ wλ. So that

|x|n+2αw ≥ |xλ|n+2αwλ for any λ > 0.

If z ≤ zλ, by assumptions of f in Theorem 1.2, we obtain that

f (|xλ|n−2αwλ(x), |xλ|n−2βzλ(x)) ≥ f (|xλ|n−2αwλ(x), |xλ|n−2βz(x)
wλ(x)
w(x)

)

≥ f (|x|n−2αw(x), |x|n−2βz(x))
|xλ|n+2α

|x|n+2α (
wλ(x)
w(x)

)p1+q1 ,

and then

−(
∂w
∂να
−
∂wλ

∂να
) ≤

1

|x|n+2α f (|x|n−2αw(x), |x|n−2βz(x))(1 − (
wλ(x)
w(x)

)
n+2α
n−2α )

≤
1

|x|n+2α f (|x|n−2αw(x), |x|n−2βz(x))
n + 2α
n − 2α

(1 −
wλ(x)
w(x)

)

=
n + 2α
n − 2α

f (|x|n−2αw(x), |x|n−2βz(x))

|x|n−2αw(x)
1

|x|4α
(w(x) − wλ(x))

≤
Cλ

|x|4α
(w(x) − wλ(x)), (4.5)

for some constant Cλ.

If z ≥ zλ, we know that

f (|xλ|n−2αwλ(x), |xλ|n−2βzλ(x)) ≥ f (|x|n−2αw(x), |x|n−2βz(x))(
|xλ|n−2αwλ(x)

|x|n−2αw(x)
)p1(
|xλ|n−2βzλ(x)

|x|n−2βz(x)
)q1

= f (|x|n−2αw(x), |x|n−2βz(x))
|xλ|n+2α

|x|n+2α (
wλ(x)
w(x)

)p1(
zλ(x)
z(x)

)q1 ,

and then

−(
∂w
∂να
−
∂wλ

∂να
) ≤

1

|x|n+2α f (|x|n−2βw(x), |x|n−2βz(x))(1 − (
wλ(x)
w(x)

)p1(
zλ(x)
z(x)

)q1)

≤
1

|x|n+2α f (|x|n−2αw(x), |x|n−2βz(x))(1 − (
wλ(x)
w(x)

)
n+2α
n−2α (

zλ(x)
z(x)

)
n+2β
n−2β )

≤
1

|x|n+2α f (|x|n−2αw(x), |x|n−2βz(x))(
n + 2α
n − 2α

(1 −
wλ(x)
w(x)

) +
n + 2β
n − 2β

(1 −
zλ(x)
z(x)

))

=
n + 2α
n − 2α

f (|x|n−2αw(x), |x|n−2βz(x))

|x|n−2sw(x)
1

|x|4α
(w(x) − wλ(x))

+
n + 2β
n − 2β

f (|x|n−2αw(x), |x|n−2βz(x))

|x|n−2βz(x)
1

|x|2α+2β (z(x) − zλ(x))

≤
Cλ

|x|4α
(w(x) − wλ(x)) +

Cλ

|x|2α+2β (z(x) − zλ(x)). (4.6)
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Hence, combine (4.5) and (4.6), for w ≥ wλ, we have

−(
∂w
∂να
−
∂wλ

∂να
) ≤

Cλ

|x|4α
(w(x) − wλ(x))+ +

Cλ

|x|2α+2β (z(x) − zλ(x))+.

Here we also have (2.11), and the estimate of Iε can refer to Lemma 2.3. Next, we give the estimate

of I.

I =

∫
Σλ

y1−2s∇W+
λ · ∇φεdX

=

∫
∂(Σλ∩suppηε)

y1−2sφε∇W+
λ · νdx

≤

∫
{x∈Rn : x1>λ, ε≤|X−pλ |≤2ε−1}

(
Cλ

|x|4α
(w(x) − wλ(x))+ +

Cλ

|x|2α+2β (z(x) − zλ(x))+)φεdx

≤Cλ

∫
∂H∩∂A2

λ

(
1

|x|4α
(W+

λ )2 +
1

|x|2α+2βW+
λ Z+

λ )dx

≤Cλ(
∫
∂H∩∂A2

λ

1

|x|2n dx)
2α
n (

∫
∂H∩∂Σλ

(W+
λ )

2n
n−2α dx)

n−2α
n

+ Cλ(
∫
∂H∩∂A2

λ∩∂A1
λ

1

|x|2n dx)
α+β

n (
∫
∂H∩∂Σλ

(W+
λ )

2n
n−2α dx)

n−2α
2n (

∫
∂H∩∂Σλ

(Zλ)+)
2n

n−2β dx)
n−2β

2n .

Therefore, by the trace inequality (2.2), we finish the proof. �

Lemma 4.2. There exist λ0 > 0 such that for all λ ≥ λ0, Wλ(X) ≤ 0 and Zλ(X) ≤ 0 for any X ∈ Σλ.

Proof. Since 1
|X|2n ∈ L1(Σλ), as λ→ +∞ then∫

∂H∩∂A2
λ∩∂A1

λ

1

|x|2n ≤

∫
Σλ

1

|X|2n → 0.

It follows that there exists λ0 > 0, for all λ ≥ λ0 such that

Cλ(
∫
∂H∩∂A2

λ

1

|x|2n dx)
2α
n < 1,

and

Cλ(
∫
∂H∩∂A1

λ∩∂A2
λ

1

|x|2n dx)
α+β

n < 1.

By Lemma 4.2, we deduce ∫
Σλ

y1−2α
∣∣∣∇W+

λ

∣∣∣2dX = 0

and ∫
Σλ

y1−2β
∣∣∣∇Z+

λ

∣∣∣2dX = 0

for all λ ≥ λ0. Thus for λ ≥ λ0 and any X ∈ Σλ, Wλ(X) ≤ 0 and Zλ(X) ≤ 0 hold. �

As the definition of Λ in Section 3, we get the following lemma.
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Lemma 4.3. If Λ > 0 then WΛ(X) ≡ 0 and ZΛ(X) ≡ 0 for any X ∈ ΣΛ.

Proof. By the continuity, we claim that if w = wΛ at some point X0 ∈ ΣΛ, then it holds in a neighborhood

of X0, and hence w = wΛ in ΣΛ.

In fact, by continuity of W and Z, we see WΛ(X) ≤ 0 and ZΛ(X) ≤ 0 for X ∈ ΣΛ. Since w(X0) =

wΛ(X0), we have |X|n−2αw(X0) > |XΛ|
n−2αwΛ(X0) for X ∈ Br(X0) a neighborhood of X0. Using the same

arguments as Lemma 4.1 and the fact that if t1 > t′1, t2 > t′2, we know

f (t′1, t
′
2) ≥ f (t1, t2)(

t′1
t1

)p1(
t′2
t2

)q1 ,

and

g(t′1, t
′
2) ≥ g(t1, t2)(

t′1
t1

)p2(
t′2
t2

)q2 .

And then

f (|xΛ|
n−2αwΛ(x), |xΛ|

n−2βz(x)) ≥ f (|x|n−2αw(x), |x|n−2βz(x))(
|xΛ|

n−2αwΛ(x)

|x|n−2αw(x)
)p1(
|xΛ|

n−2βz(x)

|x|n−2βz(x)
)q1

= f (|x|n−2αw(x), |x|n−2βz(x))
|xΛ|

n+2α

|x|n+2α (
wΛ(x)
w(x)

)p1 ,

therefore,

−(
∂w
∂να
−
∂wΛ

∂να
) =

1

|x|n+2α f (|x|n−2αw(x), |x|n−2βz(x)) −
1

|xΛ|
n+2α f (|xΛ|

n−2αwΛ(x), |xΛ|
n−2βzΛ(x))

≤
1

|x|n+2α f (|x|n−2αw(x), |x|n−2βz(x)) −
1

|xΛ|
n+2α f (|xΛ|

n−2αwΛ(x), |xΛ|
n−2βz(x))

≤
1

|x|n+2α f (|x|n−2αw(x), |x|n−2βz(x))(1 − (
wΛ(x)
w(x)

)p1)

≤ −C(w(x) − wΛ(x)), in Br(X0),

for some constant C > 0 which depending on X0 and r. Hence,

div(y1−2α∇WΛ(x, y)) = 0

lim
y→0+

y1−2α ∂WΛ(x, y)
∂y

+ CWΛ ≤ 0

WΛ ≤ 0,WΛ(X0) = 0 in Br(X0).

The strong maximum principle shows that WΛ(X) ≡ 0 in Br(X0).

Now we claim that WΛ(X) ≡ 0 implies ZΛ(X) ≡ 0. In fact, by the equations (4.1) and (4.2), we see
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that

1

|x|n+2α f (|x|n−2αw(x), |x|n−2βz(x)) =
1

|xΛ|
n+2α f (|xΛ|

n−2αw(x), |xΛ|
n−2βzΛ(x))

≥
1

|xΛ|
(n−2β)q1 |x|(n−2α)p1

f (|x|n−2αw(x), |xΛ|
n−2βzΛ(x))

>
1

|x|n+2α f (|x|n−2αw(x), |xΛ|
n−2βzΛ(x)).

Since f (t1, t2) is nondecreasing in t2, by the above inequality, we deduce that

|x|n−2βz(x) > |xΛ|
n−2βzΛ(x). (4.7)

By the assumption of f (t1, t2),

1

|x|n+2α f (|x|n−2αw(x), |x|n−2βz(x)) =
1

|xΛ|
n+2α f (|xΛ|

n−2αw(x), |xΛ|
n−2βzΛ(x))

≥
1

|xΛ|
n+2α f (|x|n−2αw(x), |xΛ|

n−2βz(x))

≥
1

|x|n+2α f (|x|n−2αw(x), |x|n−2βz(x)),

i.e.,

1

|x|n+2α f (|x|n−2αw(x), |x|n−2βz(x)) =
1

|xΛ|
n+2α f (|xΛ|

n−2αw(x), |xΛ|
n−2βzΛ(x))

=
1

|xΛ|
n+2α f (|x|n−2αw(x), |xΛ|

n−2βz(x)), (4.8)

hence
f (|x|n−2αw(x), |x|n−2βz(x))

(|x|n−2αw(x))p1(|x|n−2βz(x))q1
=

f (|xΛ|
n−2αw(x), |xΛ|

n−2βz(x))
(|xΛ|

n−2αw(x))p1(|xΛ|
n−2βz(x))q1

. (4.9)

It follows from (4.7), that

|x|n−2αw(x) ≥ |xΛ|
n−2αw(x),

and

|x|n−2βz(x) ≥ |xΛ|
n−2βzΛ(x) ≥ |xΛ|

n−2βz(x).

By (4.9) and assumption (ii) of Theorem 1.2, we have

f (|x|n−2αw(x), |x|n−2βz(x))
(|x|n−2αw(x))p1(|x|n−2βz(x))q1

=
f (|xΛ|

n−2αw(x), |xΛ|
n−2βzΛ(x))

(|xΛ|
n−2αw(x))p1(|xΛ|

n−2βzΛ(x))q1
. (4.10)

As a consequence of (4.8) and (4.10), zq1 = zq1
Λ

is holds, and hence z = zΛ since q1 > 0.
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Suppose that WΛ(X) . 0 and ZΛ(X) . 0 in ΣΛ, then w(X) < wΛ(X) and z(X) < zΛ(X) in ΣΛ. Let

χS be the characteristic function of set S . Then 1
|x|2nχ∂A2

λ
converges pointwisely to zero as λ → Λ in

H \ (TΛ ∪ {pΛ}). Hence, if 0 < Λ − δ < Λ (here δ sufficiently small), then 1
|x|2nχ∂A2

λ
≤ 1
|X|2nχΣΛ−δ ∈ L1(Σλ).

By the dominate convergence, as λ→ Λ, we have∫
∂H∩∂A2

λ

1

|x|2n → 0,

then

Cλ(
∫
∂H∩∂A2

λ

1

|x|2n dx)
2α
n < 1

and

Cλ(
∫
∂H∩∂A1

λ∩∂A2
λ

1

|x|2n dx)
α+β

n < 1

for all λ ∈ (Λ − δ,Λ), which implies that

Cλ(
∫
∂H∩∂A1

λ

1

|x|2n dx)
2β
n < 1, ∀ λ ∈ (Λ − δ,Λ).

By Lemma 4.1, we claim that ∫
Σλ

y1−2α
∣∣∣∇W+

λ

∣∣∣2dX = 0

and ∫
Σλ

y1−2β
∣∣∣∇Z+

λ

∣∣∣2dX = 0

for all λ ≥ Λ − δ, which implies that

Wλ ≤ 0 and Zλ ≤ 0 in Σλ for any λ ≥ Λ − δ,

this contradicts with the definition of Λ. �

Proof of Theorem 1.2: By the assumption that (u, v) is a positive solution of (1.1). Take the Kelvin

transform about point p ∈ H and definition Λ in Section 3. If Λ = 0, for all p, we know that (w, z) is a

radially symmetric with respect to all p, then (w, z) must to be constant, so does to (u, v). If Λ > 0, we

have (w, z) is radially symmetric about some point, that is (u, v) should be radially symmetric about some

point. �

Proof of Theorem 1.3: We claim that the key estimates in the proof of Lemma 4.1 also hold. The

rest of the processes are as same as the Theorem 1.2 with some necessary modifications. In fact, the
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condition (ii)′ holds. For any fixed λ > 0, |x|n+2α ≥ |xλ|n+2α, it follows that if z ≤ zλ, and following the

nonincreasing condition γ =
wλ(x)
w(x) ( |xλ |

|x| )
n−2α ≤ 1

−(
∂w
∂να
−
∂wλ

∂να
) =

1

|x|n+2α f (|x|n−2αw(x), |x|n−2βz(x)) −
1

|xλ|n+2α f (|xλ|n−2αwλ(x), |xλ|n−2βzλ(x))

≤
1

|x|n+2α f (|x|n−2αw(x), |x|n−2βz(x)) −
1

|xλ|n+2α f (|xλ|n−2αwλ(x), |xλ|n−2βz(x)
wλ(x)
w(x)

)

≤
1

|x|n+2α f (|x|n−2αw(x), |x|n−2βz(x))(1 − (
wλ(x)
w(x)

)
n+2α
n−2α )

≤
Cλ

|x|4α
(w(x) − wλ(x)),

If z ≥ zλ,

−(
∂w
∂να
−
∂wλ

∂να
) =

1

|x|n+2α f (|x|n−2αw(x), |x|n−2βz(x)) −
1

|xλ|n+2α f (|xλ|n−2αwλ(x), |xλ|n−2βzλ(x))

≤
1

|x|n+2α f (|x|n−2αw(x), |x|n−2βz(x)) −
1

|xλ|n+2α f (|xλ|n−2αwλ(x)zλ(x)
z(x)

, |xλ|n−2βwλ(x)zλ(x)
w(x)

)

≤
1

|x|n+2α f (|x|n−2αw(x), |x|n−2βz(x))(1 − (
wλ(x)
w(x)

)
n+2α
n−2α (

zλ(x)
z(x)

)
n+2β
n−2β )

≤
Cλ

|x|2α+2β [(w(x) − wλ(x)) + (z(x) − zλ(x)],

where we use the condition with γ =
wλ(x)
w(x) ( |xλ |

|x| )
n−2α zλ(x)

z(x) ( |xλ |
|x| )

n−2β ≤ 1.

The condition (ii) holds. For any fixed λ > 0, |x|n+2α ≥ |xλ|n+2α always right, if z ≤ zλ, the proof must

be same as (ii)′.
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If z ≥ zλ,

−(
∂w
∂να
−
∂wλ

∂να
) =

1

|x|n+2α ( f (|x|n−2αw(x), |x|n−2βz(x)) −
1

|xλ|n+2α f (|xλ|n−2αwλ(x), |xλ|n−2βzλ(x))

≤
1

|x|n+2α ( f (|x|n−2αw(x), |x|n−2βz(x)) − f (|x|n−2αwλ(x), |x|n−2βzλ(x)))

=
1

|x|n+2α ( f (|x|n−2αw(x), |x|n−2βz(x)) − f (|x|n−2αw(x), |x|n−2βzλ(x)))

+
1

|x|n+2α ( f (|x|n−2αw(x), |x|n−2βzλ(x)) − f (|x|n−2αwλ(x), |x|n−2βzλ(x)))

≤
1

|x|n+2α [L(m)|x|n−2β(z(x) − zλ(x)) + f (|x|n−2αw(x), |x|n−2βzλ(x))

− f (|x|n−2αwλ(x), |x|n−2βzλ(x)
wλ(x)
w(x)

)]

≤
1

|x|n+2α [L(m)|x|n−2β(z(x) − zλ(x)) + f (|x|n−2αw(x), |x|n−2βzλ(x))(1 − (
wλ(x)
w(x)

)
n+2α
n−2α )]

≤
1

|x|n+2α [L(m)|x|n−2β(z(x) − zλ(x)) + f (|x|n−2αw(x), |x|n−2βz(x))(1 − (
wλ(x)
w(x)

)
n+2α
n−2α )]

≤
Cλ

|x|2α+2β [(w(x) − wλ(x)) + (z(x) − zλ(x)].

The same arguments as in Lemma 4.1, we know that the key inequalities are hold. �
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