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SOME SOLUTIONS TO q-STEP NONLINEAR RECURRENCE EQUATIONS

CHRISTOPHER S. WITHERS AND SARALEES NADARAJAH

ABSTRACT. Let C be the complex numbers, and q any positive integer. Let F (x1, . . . ,xq) : C q → C be
a given function. Let w be any solution to F(w, . . . ,w) = w. Suppose that F is analytic in a neighbourhood
of (w, . . . ,w). For each such w, we give a solution to

xn = F (xn−1, . . . ,xn−q)

of the form

xn (α,w,r(w)) = w+
∞

∑
i=1

Ai(w) α
i [r(w)]ni ,

where α is arbitrary and r(w) is any root of a certain polynomial that is not a root of 1.

1. Introduction

Withers and Nadarajah [3] gave solutions to linear recurrence equations. Withers and Nadarajah [4, 5]
gave solutions to nonlinear recurrence equations. Withers and Nadarajah [6] gave solutions to vector
nonlinear recurrence equations. The aim of this note is to give solutions to q-step nonlinear recurrence
equations.

Let C denote the complex numbers. It is well known that the linear recurrence equation in C ,
xn = ∑

p
j=0 c jxn− j, has a solution of the form xn = ∑

p
i=1 airn

i , where {ri} are the roots of 1 = ∑
p
j=0 c jr− j

if distinct. Less known is its solution in terms of the Bell polynomials below, as given in Withers and
Nadarajah [3]. In contrast there has been no theory giving exact solutions to non-linear recurrence
equations until Withers and Nadarajah [4] gave solutions to the recurrence equation of order 1,

xn+1 = F (xn) .

These are of the form

xn(α,w,r) = w+ zn,(1)

where

zn =
∞

∑
i=1

Ai α
irni, A1 = 1,

2020 Mathematics Subject Classification. 65H20.
Key words and phrases. Bell polynomial, Expansion, Root.

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

1

http://msp.org/
https://doi.org/rmj.YEAR.-
https://doi.org/rmj.YEAR..PAGE


SOME SOLUTIONS TO q-STEP NONLINEAR RECURRENCE EQUATIONS 2

r = F�1(w), F� j(z) is the jth derivative of F(z), and w is any fixed point of F , that is, w = F(w). The
solutions holds for a given x0 if α can be chosen so that

x0 −w =
∞

∑
i=1

Ai α
i,(2)

that is, if x0 −w is small enough to obtain α by Lagrange inversion, see Section 5 of Withers and
Nadarajah [4].

In Section 3, we extend this to the additive recurrence equation of order q,

xn+1 =
q−1

∑
k=0

Fk (xn−k) .(3)

The solution has the form (1) with w any fixed point of F(z) = ∑
q−1
k=0 Fk(z), and r = r(w) any root

of a certain polynomial of degree q, excluding roots of 1. So, if there are N fixed points w, say wi,
and for each w there are q such r(w), then we have qN solutions, say r j (wi). One can then plot
each xn (α,wi,r j (wi)) versus α for n = 0,1, . . . ,q−1 to see which

(
x0, . . . ,xq−1

)
are possible. This

seems better than obtaining α from a given x0 by Lagrange inversion as above. A solution need not
diverge if |r(w)|> 1, see Examples 2.1 and 3.4 of Withers and Nadarajah [4]. Ai is given by an easily
programmed recurrence equation in terms of w and the derivatives of F at (w, . . . ,w). Our examples
give the first few Ai explicitly, but this can be a distraction. For each example, one can plot x0 or
(x1, . . . ,xq) against α for each of the qN roots r(w). Our method excludes the special cases

r = 0 ⇒ xn ≡ w, rI = 1 ⇒ xn+I = xn.(4)

Section 2 deals with (3) for q = 2. Section 5 extends (3) to the general recurrence equation of order q,

xn = F (xn−1, . . . ,xn−q) ,

beginning in Section 4 with q = 2.
Example 4.1 is an example of a multiplicative recurrence equation of order q,

xn =
q

∏
k=1

Fk (xn−k) .(5)

These results may be extended to a wider class of solutions, as in Withers and Nadarajah [5]. If
q ≥ 2, the solutions are special as they only have one free variable α , to match x0, but not x1.

We use the partial ordinary Bell polynomial Bi, j = B̂i, j(A). It is tabled on page 309 of Comtet [1]
for 1 ≤ i ≤ 10 and defined as follows. For r in C and A = (A1,A2, . . .) any sequence in C , set

S(r,A) =
∞

∑
i=1

Airi.(6)

Then Bi, j is defined by

[S(r,A)] j =
∞

∑
i= j

Bi, j ri(7)

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42



SOME SOLUTIONS TO q-STEP NONLINEAR RECURRENCE EQUATIONS 3

for j = 0,1, . . .. So,

z j
n =

∞

∑
i= j

Bi, j α
irni

for zn of (1). Taking the coefficient of ri in [S(r,A)] j = [S(r,A)] j−1 S(r,A) gives

Bi, j =
i−1

∑
k= j−1

Bk, j−1 Ai−k

for i ≥ j ≥ 1. For subroutines for Bi,k for various packages, see Note 1.1 of Withers and Nadarajah [4].
In our case, A1 = 1 so that Bi,i = 1.

The results here can be extended to xn a vector, as done in Withers and Nadarajah [6]. Through, I(A)
denotes the indicator function.

2. The additive recurrence equation of order 2

In this section, we give solutions to (3) for q = 2. Let us write (3) as

xn+1 = F (xn)+G(xn−1) .(8)

Choose any w such that w = F(w)+G(w). For j = 0,1, . . ., set

f j = F� j(w)/ j!, g j = F� j(w)/ j!, hi, j = f j +g jr−i,(9)

assuming that F and G are analytic at w. We seek a solution of the form xn = xn(α,w,r) of (1). We
can write this as zn = S (αrn,A) for S(r,A) of (6). So, by (7) and Taylor’s expansion,

∞

∑
i=1

Ai
(
αrn+1)i

= zn+1 = xn+1 −w = F (xn)−F(w)+G(xn−1)−G(w)

=
∞

∑
j=1

(
f jz j

n +g jz
j
n−1

)
=

∞

∑
i=1

Ci (αrn)i ,(10)

where

Ci =
i

∑
j=1

Bi, jhi, j = Aihi,1 +Ei, Ei =
i

∑
j=2

Bi, jhi, j, E1 = 0.(11)

The coefficient of (αrn)i in (10) is

Airi =Ci = Aihi,1 +Ei.

For i = 1, this gives r = h1,1 = f1 +g1r−1, implying

r2 = f1r+g1, r = f1/2±δ
1/2 = r1 and r2(12)

say, for δ = f 2
1 /4+g1. For i ≥ 2, it gives the recurrence equation for Ai, in terms of hi, j of (9),

A1 = 1, Ai = Ei/Ri =
i

∑
j=2

Bi, jHi, j, i ≥ 2,

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42



SOME SOLUTIONS TO q-STEP NONLINEAR RECURRENCE EQUATIONS 4

where

Hi, j = hi, j/Ri,(13)

Ri = ri −hi,1 =UiSi, Ui = ri−1 −1,(14)

Si = f1 +g1
(
r−1 + r−i)= h1,1 +g1r−i = r+g1r−i.(15)

This proves

Theorem 2.1. Let F, G be analytic functions. Let w be any root of w = F(w)+G(w). Define f j, g j,
hi, j by (9). Then for r = r1 or r2 of (12) not a root of 1, (1) is a solution of the recurrence equation (8),
where Ai is given by the recurrence equation (13) in terms of Ri of (14) and α ∈ C is arbitrary.

If rI = 1, then RI+1 = R1 = 0 and the method fails. As noted in Section 1, if |r| ≥ 1, the series is
likely to diverge. If F(z) and G(z) are polynomials of degree p or less, then f j = g j = hi, j = Hi, j = 0
for j > p. In Examples 2.1 to 2.4 and the second part of Example 2.5, F(z) and G(z) are polynomials
of degree 2 or 1, so that f j = g j = hi, j = Hi, j = 0 for j > 2, and for Si of (15),

hi,1 = f1 +g1r−i, hi,2 = f2 +g2r−i, Hi,2 = hi,2/Ri, Ri = ri −hi,1 =
(
ri−1 −1

)
Si,

A1 = 1, Ai = Bi,2Hi,2,

where

Bi,2 =
i−1

∑
j=1

A jAi− j.(16)

There are two choices of w, and for each there are two choices of r, giving four solutions. For each of
these one can plot x0, x1 versus α , to see which are possible.

Example 2.1. An extension of the Mandelbrot equation. Take F(z) = z2 + c0, G(z) = z2 + c1. Set
c = c0 + c1. Then

w = 2w2 + c, w =
(

1±∆
1/2
)
/4, ∆ = 1−8c, f1 = g1 = 2w, f2 = g2 = 1,

r2 = 2w(r+1), r = w+ν ,

hi,1/2w = hi,2 = 1+ r−i, Hi,2 =
(
1+ r−i)/Ri, Si = 2w

(
1+ r−1 + r−i) ,

Ri = ri −2w
(
1+ r−i)= (si + tiν)/di,

where

ν =±δ
1/2, δ = w2 +2w = (5w− c)/2,

s2 = 2w2 −w−1, t2 = 4w3 −8w2 +2w+1, d2 = 2w2 +4w+1,

s3 = (2w−1)w(2w+3), t3 = (2w+1)(2wd3 +1) , d3 = 4w4 +6w3 +13w2 +4w+1.
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SOME SOLUTIONS TO q-STEP NONLINEAR RECURRENCE EQUATIONS 5

Example 2.2. An extension of the logistic map. Take F(z) = c0
(
z− z2

)
, G(z) = c1

(
z− z2

)
. Then

w = c
(
w−w2) ,

f1/c0 = g1/c1 = 1−2w, 1−2w1 = 2c−1 −1, f2/c0 = g2/c1 =−1,

r = c0(1−2w)/2±δ
1/2, hi,1/(1−2w) =−hi,2 = c0 + c1r−i, Hi,2 =−

(
c0 + c1r−i)/Ri,

Ri = ri − (1−2w)
(
c0 + c1r−i) , Si = (1−2w)

[
c0 + c1

(
r−1 + r−i)]

for c = c0 + c1, w = 0 or w = 1− c−1 = w1 say and δ = c2
0(1−2w)2/(4c1)+1−2w.

The case w = 0. Then

δ = c2
0/(4c1)+1, r = c0/2±δ

1/2, Ri = ri − c0 − c1r−i.

The case w = 1− c−1. Then

δ = c2
0
(
2c−1 −1

)2
/(4c1)+2c−1 −1, r = c0

(
2c−1 −1

)
/2±δ

1/2,

Ri = ri −
(
2c−1 −1

)(
c0 + c1r−i) .

Example 2.3. Take F(z) = c0
(
z− z2

)
, G(z) = z2 + c1. If c = 1− c0 ̸= 0 then

w = cw2 + c0w+ c1, w2 −w+ c2 = 0,

w = 1/2± (1/4− c2)
1/2 , f1 = c0(1−2w), g1 = 2w, f2 =−c0, g2 = 1,

r = f1/2±δ
1/2 = r1 and r2 say,

hi,1 = c0(1−2w)+2wr−i, Ri = ri −hi,1, hi,2 =−c0 + r−i, Hi,2 =
(
−c0 + r−i)/Ri

for c2 = c1/c and δ = f 2
1 /4+g1. If c0 = 1 then w is not defined so the method fails.

Example 2.4. Take F(z) = z2 + c1, G(z) = c0
(
z− z2

)
. Then, if c0 ̸= 1, w is given by Example 2.3,

f1 = 2w, g1 = c0(1−2w), f2 = 1, g2 =−c0,

r = w±δ
1/2,

hi,1 = 2w+ c0(1−2w)r−i, Ri = ri −hi,1, hi,2 = 1− c0r−i, Hi,2 =
(
−c0 + r−i)/Ri

for δ = w2 + c0(1−2w).

Example 2.5. Take F(z) = z. Then w is any root of G(w) = 0. r = 1/2± δ 1/2 for δ = 1/4+ g1.
r ̸= 0,1 implies that g1 ̸= 0. So, the method does not cover G(x) = cxd with d > 1, but it does allow for
G(x) any quadratic with non-zero discriminant. In that case, Ai is given by (16) with Hi,2 = g2r−i/Ri,
Ri = ri −1−g1r−i.

3. The additive recurrence equation (3)

For k, j ≥ 0, let Fk(x) be an analytic function with jth derivative Fk� j(x). Set

fk, j = Fk� j(w)/ j!, hi, j =
q−1

∑
k=0

fk, j r−ik, F(x) =
q−1

∑
k=0

Fk(x),(17)
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SOME SOLUTIONS TO q-STEP NONLINEAR RECURRENCE EQUATIONS 6

where q ≥ 1. Let w be any solution of F(w) = w. By (7) and Taylor’s expansion, xn = w+ zn is a
solution to (3) for zn = ∑

∞
i=1 Aiα

irin if
∞

∑
i=1

airin+i = zn+1 = xn+1 −F(w) =
q−1

∑
k=0

[Fk (xn−k)−Fk(w)] =
∞

∑
i=1

rinCi

for Ci, Ei of (11) and hi, j of (17). For i = 1 and α ̸= 0 this gives

r = h1,1 =
q−1

∑
k=0

fk,1 r−k.(18)

Multiplying by rq−1 gives a polynomial of degree q for r with roots r1, . . . ,rq say. For i ≥ 2, it gives
the recurrence equation (13) for Ai in terms of

Hi, j = hi, j/Ri, Ri = ri −hi,1,

where

hi,1 =
q−1

∑
k=0

fk,1 r−ik.

If rI = 1, then RI+1 = R1 = 0 and the method fails. This proves

Theorem 3.1. For k = 0,1, . . . ,q−1, let Fk be any function. Choose any w such that F(w) = w, where
F(x) = ∑

q−1
k=0 Fk(x). Suppose that {Fk} are analytic at w. Define fk, j, hi, j by (17), Ri by (14), and Hi, j

by (13). Then for r any root of (18) that is not a root of 1, the additive recurrence equation (8) has
solution (3), where Ai is given by the recurrence equation (13).

Again, α can be obtained from x0 by Lagrange inversion of (2), but doing that will fix the value
of x1. When q = ∞, F(x) must be finite at w. If each Fk(x) is a polynomial of degree p or less, then
hi, j = Hi, j = 0 for j > p. For the case q = 1, see Withers and Nadarajah [4].

Example 3.1. Take q = ∞, Fk(x) = [G(x)]k = ck (G(x)) for ck(G) = Gk. So,

F(x) = [1−G(x)]−1

when |G(x)|< 1, and the fixed points are the roots of

w [1−G(w)] = 1

when
∣∣1−w−1

∣∣= |G(w)|< 1. If w is real, this holds if and only if w > 1/2. If w = w0eiγ for w0 > 0
and i =

√
−1, this holds if and only if w0 cosγ > 1/2. hi, j of (17) needs the derivatives of Fk(x) at w.

These are given in terms of those of G(x) at w by Faa di Bruno’s chain rule, equation [4c], page 137 of
Comtet [1]:

j! fk, j = Fk� j(w) =
j

∑
i=1

B j,i(G)ck,i

for j ≥ 1, where

ck,i = ck�i (G(w)) = (k)i [G(w)]k−i ,
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SOME SOLUTIONS TO q-STEP NONLINEAR RECURRENCE EQUATIONS 7

where (k)i = k(k−1) · · ·(k−i+1), B j,i(G) is the partial exponential Bell polynomial in G=(G1,G2, . . .)
and Gi = G�i(w). These polynomials are tabled on pages 307-308 of Comtet [1] for 1 ≤ j ≤ 12. We
now solve (18):

fk,1 = kG(w)k−1G�1(w) = k
(
1−w−1)k−1

G�1(w),

which implies r2 = w2G�1(w) which implies r = 1−w−1 ± [G�1(w)]
1/2.

The case G(x) = gx, where g ̸= 0, 1. That is,

xn+1 =
∞

∑
k=0

(gxn−k)
k .

The fixed points are the roots of w(1−gw) = 1, that is, w =
(
1±∆1/2

)
/(2g), where ∆ = 1−4g, and

we require that |gw|< 1. Also

fk, j =

(
k
j

)
gkwk− j, hi, j = w− jH j

(
gwr−i) ,

where

H j(x) =
∞

∑
k= j

(
k
j

)
xk = x j(1− x)− j−1

for |x|< 1. So, by (18),

r = h1,1 = H1
(
gwr−1)w−1,

where H1(x) = x(1− x)−2, which implies g = (r−gw)2 which implies r = gw±g1/2 = r1,r2 say. Set
Di = ri −gw, Ni = D2

i −g. Then Ri = riNiD−2
i , hi,1 = griD−2

i . If g = 1/4 then r = 1.

Example 3.2. Take q = ∞, F0(x) = b+ c0x, Fk(x) = ckx for k ≥ 1. So, F(x) = b+ cx for finite c =

∑
∞
k=0 ck ̸= 1. w = b/(1−c), fk,1 = ck, fk, j = hi, j = Hi, j = 0 for j ≥ 2, Ri = ri−hi,1, hi,1 = ∑

∞
k=0 ckr−ik,

Ai = 0 for i ≥ 2 and xn = w+αrn, where α = x0 −w and r is any solution of

r = h1,1 =
∞

∑
k=0

ck r−k.

Example 3.3. Take q = ∞, Fk(x) = bI(k = 0)+ ckx+ dkx2 for k ≥ 0. So, F(x) = b+ cx+ dx2 for
finite c = ∑

∞
k=0 ck, d = ∑

∞
k=0 dk. dw2 + (c− 1)w+ b = 0 implies w =

(
1− c±δ 1/2

)
/(2d), where

δ = (1− c)2 −4bd and r is any solution of r = h1,1, where

h1,1 =
∞

∑
k=0

fk,1 r−ik, fk,1 = ck +2wdk.

For i ≥ 2, Ai = Bi,2hi,2/Ri, where Ri = ri−hi,1, hi,2 = ∑
∞
k=0 fk,2r−ik, fk,2 = 2dk and Bi,2 = ∑

i−1
j=1 A jAi− j.

So, A2 = h2,2/R2, A3 = 2A2h3,2/R3, and so on.
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SOME SOLUTIONS TO q-STEP NONLINEAR RECURRENCE EQUATIONS 8

4. The general two step recurrence equation

Let F (x1,x2) : C ×C → C be a given function. In this section, we extend Section 2 by finding
solutions to

xn = F (xn−1,xn−2) .(19)

Let w be any root of F(w,w) = w. Suppose that F (x1,x2) is analytic in a neighbourhood of (w,w). For
j1, j2 = 0,1, . . ., set

Fj1, j2 (x1,x2) = ∂
j1

1 ∂
j2

2 F (x1,x2)

for

∂i = ∂/∂xi, f j1, j2 = Fj1, j2(w,w)/ j!k!.

Let us try again for a solution of the form (1). By (7),

∞

∑
i=1

(αrn)i Ai = zn = xn −w = F (xn−1,xn−2)−F(w,w) =
∞

∑
j1, j2=0

z j1
n−1z j2

n−2 f j1, j2

=
∞

∑
i1,i2=1

(
αrn−1)i1 (

αrn−2)i2 C (i1, i2) ,

where

C (i1, i2) =
i1

∑
j1=0

i2

∑
j2=0

Bi1, j1Bi2, j2 f j1, j2 ,

excluding j1 = j2 = 0. For i ≥ 1, the coefficient of (αrn)i is

Ai =Ci,

where

Ci = ∑
i1+i2=i

r−i1−2i2 Ci1,i2 ,

implying

1 = r−1 f1,0 + r−2 f0,1, r =
(

f1,0 ±δ
1/2
)
/2 = r1,r2 say,(20)

where δ = f 2
1,0 +4 f0,1. This holds since B1,1 = A1 = 1. So, for r not a root of 1,

Ai = R−1
i Ei(21)
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SOME SOLUTIONS TO q-STEP NONLINEAR RECURRENCE EQUATIONS 9

for i ≥ 2, where

Ri = 1− r−i f1,0 − r−2i f0,1,

Ei = r−iEi,0 + r−2iE0,i + Ji, Ei,0 =
i

∑
j=2

Bi, j f j,0, E0,i =
i

∑
j=2

Bi, j f0, j,(22)

Ji = ∑
[
r−i1−2i2 Ci1,i2 : i1 + i2 = i, i1 ≥ 1, i2 ≥ 1

]
=

i−1

∑
i1=1

r−2i+i1 Ci1,i−i1 .

This proves

Theorem 4.1. Given F (x1,x2) : C ×C → C let w be any root of F(w,w) = w. Suppose that F (x1,x2)
is analytic in a neighbourhood of (w,w), and that r is either root of (20) but not a root of 1. Then a
solution of (19) is (1), where Ai is given by (21) in terms of Ei of (22).

Example 4.1. Suppose that (5) holds with q = 2, and for k = 1,2, Fk (xk) = xak
k . So,

f j1, j2 =
2

∏
k=1

fk� jk ,

where

fk� jk = Fk� jk (wk)/ jk! =
(

ak

jk

)
wak− jk ,

w = wa, a = a1 +a2, w = 0 or 1.

Then r is given by (20) in terms of

f1,0 = a1wa1−1, f0,1 = a2wa2−1.

The case w = 0. Suppose that a1,a2 ∈ N so that both Fk (xk) are analytic at 0. Then

f1,0 = I (a1 = 1) , f0,1 = I (a2 = 1) , δ = I (a1 = 1)+4I (a2 = 1) .

There are four subcases:

(i) If F(x) = x1x2, then δ = 5, r =
(
1±51/2

)
/2, Ri = 1− r−i − r−2i.

(ii) If F(x) = x1, then δ = 1, r = 0 or 1, which are not allowed, see (4).
(iii) If F(x) = x2, then δ = 4, r =±1, and Ri = 1− r−2i.
(iv) Otherwise r = δ = 0, Ri = 1, see (4).

In each case, f j1, j2 = 0 unless ( j1, j2) = (0,0), (1,0) or (0,1), so that Ai = Ei = 0 for i ≥ 2, and
xn = αrn, where α = x0.
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The case w = 1. Then

f j1, j2 =
2

∏
k=1

(
ak

jk

)
, f1,0 = a1, f0,1 = a2, Ri = 1− r−ia1 − r−2ia2,

r =
(

a1 ±δ
1/2
)
/2,

E2 = r−2
(

a1

2

)
+ r−3a1a2 + r−4

(
a2

2

)
,

E3 = r−3
[

2A2

(
a1

2

)
+

(
a1

3

)]
+ r−4

[
A2a1 +

(
a1

2

)]
a2 + r−5a1

[
A2a2 +

(
a2

2

)]
+ r−6

[
2A2

(
a2

2

)
+

(
a2

3

)]
,

E4 = r−4
[

B4,2

(
a1

2

)
+3A2

(
a1

3

)
+

(
a1

4

)]
+ r−5

[
A3a1 +2A2

(
a1

2

)
+

(
a1

3

)]
a2

+ r−6
[

A2
2a1a2 +A2 (a1 +a2 −2)a1a2/2+

(
a1

2

)(
a2

2

)]
+ r−7a1

[
A3a2 +2A2

(
a2

2

)
+

(
a2

3

)]
+ r−8a1

[
B4,2

(
a2

2

)
+3A2

(
a2

3

)
+

(
a2

4

)]
for δ = a2

1+4a2 and B4,2 = 2A3+A2
2. Ocalan and Duman [2] gave a solution when −a1 = a2 = p > 0.

5. General q step recurrence

Let F (x1, . . . ,xq) : C q → C be any function. We give solutions to

xn = F (xn−1, . . . ,xn−q) .(23)

Let w be any root of F(w, . . . ,w) = w. Suppose that F is analytic in a neighbourhood of (w, . . . ,w). For
j1, . . . , jq = 0,1, . . ., set

Fj1,..., jq (x1, . . . ,xq) = ∂
j1

1 · · ·∂ jq
q F (x1, . . . ,xq)

for

∂i = ∂/∂xi, f ( j1, . . . , jq) = f j1,..., jq = Fj1,..., jq(w, . . . ,w)/ j1! · · · jq!.

Let us try again for a solution of the form (1). Since

z jk
n−k =

∞

∑
ik= jk

(
αrn−k

)ik
Bik, jk ,
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SOME SOLUTIONS TO q-STEP NONLINEAR RECURRENCE EQUATIONS 11

we have
∞

∑
i=1

(αrn)i Ai = zn = xn −F(w, . . . ,w)

= F (xn−1, . . . ,xn−q)−F(w, . . . ,w) =
∞

∑
j1,..., jq=0

f ( j1, . . . , jq) z j1
n−1 · · ·z

jq
n−q

=
∞

∑
i1,...,iq=1

(
αrn−1)i1 · · ·

(
αrn−q)iq C (i1, . . . , iq) ,(24)

where

C (i1, . . . , iq) =
i1

∑
j1=0

. . .
iq

∑
jq=0

Bi1, j1 · · ·Biq, jq f ( j1, . . . jq) ,

excluding j1 = · · · jq = 0. Let ek be the kth unit vector in C q. Set |i| = i1 + · · ·+ iq. For I ≥ 1, the
coefficient of (αrn)I in (24) is

AI =CI,

where

CI = ∑
|i|=I

r−i1−2i2−···−qiq C (i1, . . . , iq) .(25)

In particular,

1 = A1 =C1 =
q

∑
k=1

r−kC (ek) , C (ek) = f (ek) ,

implying

1 =
q

∑
k=1

r−k f (ek) ,(26)

a polynomial of degree q in r−1 with solutions r1, . . . ,rq say. Let ∑
s′
k denote summation over 1 ≤ k1 <

· · ·< ks ≤ q, and ∑
s
k denote summation over 1 ≤ k1 ≤ ·· · ≤ ks ≤ q. For J ≥ 1, set

SJ =
q

∑
k=1

r−Jk f (ek) , RJ = 1−SJ.(27)

If rI = 1, then RI+1 = R1 = 0 and the method fails. Suppose that r is not a root of 1. If J = 2, then
i = ek1 + ek2 say, and ∑

q
k=1 kik = k1 + k2. So,

A2 =C2 = ∑
1≤k1≤k2≤q

r−k1−k2C
(
ek1 + ek2

)
,

C
(
ek1 + ek2

)
= B1,k1B1,k2 f

(
ek1 + ek2

)
= f

(
ek1 + ek2

)
, k1 < k2,

C
(
Jek1

)
=

J

∑
j=1

BJ, j f ( jek) , C
(
2ek1

)
= A2 f (ek)+ f (2ek)(28)
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which implies

C2 = E2 +A2S2

for

E2 = ∑
1≤k1≤k2≤q

r−k1−k2 f
(
ek1 + ek2

)
and R2A2 = E2 implies A2 = R−1

2 E2. If J = 3, then i = ek1 + ek2 + ek3 say, where k1 ≤ k2 ≤ k3, and
∑

3
k=1 kik = k1 + k2 + k3. So,

A3 =C3 =
3

∑
k

r−k1−k2−k3C
(
ek1 + ek2 + ek3

)
=C1,1,1 +

2

∑C2,1 +C3,

where

C1,1,1 =
3′

∑
k

r−k1−k2−k3 f
(
ek1 + ek2 + ek3

)
,

C2,1 =
2′

∑
k

r−2k1−k2C
(
2ek1 + ek2

)
,

C
(
2ek1 + ek2

)
=

2

∑
j1=1

B2, j1 ∑
j2=1

B1, j2 f
(

j1ek1 + j2ek2

)
= A2 f

(
ek1 + ek2

)
+ f

(
2ek1 + ek2

)
,

C1,2 =
2′

∑
k

r−k1−2k2
[
A2 f

(
ek1 + ek2

)
+ f

(
ek1 +2ek2

)]
,

where ∑
2C2,1 =C2,1 +C1,2. Further,

C3 =
q

∑
k=1

r−3k C (3ek) , C (3ek) = A3 f (ek)+2A2 f (2ek)+ f (3ek)

by (28), implying

C3 = E3 +A3S3

for

E3 =
3

∑
k

r−k1−k2−k3 f
(
ek1 + ek2 + ek3

)
+A2

2

∑
2′

∑
k

r−2k1−k2 f
(
ek1 + ek2

)
+2A2

q

∑
k=1

r−3k f (2ek) .

R3A3 = E3 implies A3 = R−1
3 E3. Further,

A4 =C4 =
4

∑
k
=C1,1,1,1 +

3

∑C2,1,1 +C2,2 +
2

∑C3,1 +C4,
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where

C1,1,1,1 =
4′

∑
k

r−k1−k2−k3−k4 f

(
4

∑
a=1

eka

)
,

C2,1,1 =
3′

∑
k

r−2k1−k2−k3C
(
2ek1 + ek2 + ek3

)
,

C
(
2ek1 + ek2 + ek3

)
= A2 f

(
ek1 + ek2 + ek3

)
+ f

(
2ek1 + ek2 + ek3

)
,

C2,2 =
2′

∑
k

r−2k1−2k2C
(
2ek1 +2ek2

)
,

C
(
2ek1 +2ek2

)
=

2

∑
j1, j2=1

B2, j1B2, j2 f
(

j1ek1 + j2ek2

)
= A2

2 f
(
ek1 + ek2

)
+A2

2

∑ f
(
2ek1 + ek2

)
+ f

(
2ek1 +2ek2

)
,

C3,1 =
2′

∑
k

r−3k1−k2C
(
3ek1 + ek2

)
,

C
(
3ek1 + ek2

)
=

3

∑
j1=1

B3, j1 f
(

j1ek1 + ek2

)
= A3 f

(
ek1 + ek2

)
+2A2 f

(
2ek1 + ek2

)
+ f

(
3ek1 + ek2

)
,

C (4ek) = A4 f (ek)+B4,2 f (2ek)+3A2 f (3ek)+ f (4ek) .

Further,

C4 =
q

∑
k=1

r−4kC (4ek) = A4S4 +E4

say, implying

A4 = R−1
4 E4,

where

E4 =C1,1,1,1 +
3

∑C2,1,1 +C2,2 +
2

∑C3,1 +E4.

Similarly, for J ≥ 2,

AJ = R−1
J EJ,(29)

where EJ =CJ −AJSJ . This proves

Theorem 5.1. Given F (x1, . . . ,xq) : C q → C , let w be any root of F(w, . . . ,w) = w. Suppose that
F (x1, . . . ,xq) is analytic in a neighbourhood of (w, . . . ,w). Then a solution of (23) is (1), where AJ and
RJ are given by (29) and (27), and r is any solution of (26) but not a root of 1.

(25) is a polynomial in r−1. If we started from xn+1 = F
(
xn, . . . ,xn−q+1

)
, as in Sections 2-3, rather

than from (23), then the left hand side of (25) would be rIAI . Starting with (23) gives simpler equations.

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42



SOME SOLUTIONS TO q-STEP NONLINEAR RECURRENCE EQUATIONS 14

References

[1] Comtet, L. (1974). Advanced Combinatorics. Reidel, Dordrecht.
[2] Ocalan, O. and Duman, O. (2019). On solutions of the recursive equations xn+1 = xp

n−1/xp
n ,(p > 0) via Fibonacci-type

sequences. Electronic Journal of Mathematical Analysis and Applications, 7, 112-115.
[3] Withers, C. S. and Nadarajah, S. (2015). Solutions of linear recurrence equations. Applied Mathematics and Computa-

tion, 271, 768-776.
[4] Withers, C. S. and Nadarajah, S. (2021). Solutions to nonlinear recurrence equations. Rocky Mountain Journal of

Mathematics, 52, 2153-2168.
[5] Withers, C. S. and Nadarajah, S. (2022). More solutions to nonlinear recurrence equations. Rocky Mountain Journal

of Mathematics, 53, 579-587.
[6] Withers, C. S. and Nadarajah, S. (2023). Some solutions to vector nonlinear recurrence equations. Rocky Mountain

Journal of Mathematics, 53, 969-981.

CALLAGHAN INNOVATION, LOWER HUTT, NEW ZEALAND

Email address: kit.withers@gmail.com

UNIVERSITY OF MANCHESTER, MANCHESTER M13 9PL, UK
Email address: mbbsssn2@manchester.ac.uk

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42


	1. Introduction
	2. The additive recurrence equation of order 2
	3. The additive recurrence equation (3)
	4. The general two step recurrence equation
	5. General q step recurrence
	References

