```
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS
Vol., No., YEAR
https://doi.org/rmj.YEAR..PAGE
```


SOME SOLUTIONS TO q-STEP NONLINEAR RECURRENCE EQUATIONS

CHRISTOPHER S. WITHERS AND SARALEES NADARAJAH

$$
\begin{aligned}
& \text { ABSTRACT. Let } \mathscr{C} \text { be the complex numbers, and } q \text { any positive integer. Let } F\left(x_{1}, \ldots, x_{q}\right): \mathscr{C}^{q} \rightarrow \mathscr{C} \text { be } \\
& \text { a given function. Let } w \text { be any solution to } F(w, \ldots, w)=w \text {. Suppose that } F \text { is analytic in a neighbourhood } \\
& \text { of }(w, \ldots, w) \text {. For each such } w \text {, we give a solution to } \\
& \qquad x_{n}=F\left(x_{n-1}, \ldots, x_{n-q}\right) \\
& \text { of the form }
\end{aligned}
$$

$$
x_{n}(\alpha, w, r(w))=w+\sum_{i=1}^{\infty} A_{i}(w) \alpha^{i}[r(w)]^{n i}
$$

where α is arbitrary and $r(w)$ is any root of a certain polynomial that is not a root of 1 .

1. Introduction

Withers and Nadarajah [3] gave solutions to linear recurrence equations. Withers and Nadarajah [4, 5] gave solutions to nonlinear recurrence equations. Withers and Nadarajah [6] gave solutions to vector nonlinear recurrence equations. The aim of this note is to give solutions to q-step nonlinear recurrence equations.

Let \mathscr{C} denote the complex numbers. It is well known that the linear recurrence equation in \mathscr{C}, $x_{n}=\sum_{j=0}^{p} c_{j} x_{n-j}$, has a solution of the form $x_{n}=\sum_{i=1}^{p} a_{i} r_{i}^{n}$, where $\left\{r_{i}\right\}$ are the roots of $1=\sum_{j=0}^{p} c_{j} r^{-j}$ if distinct. Less known is its solution in terms of the Bell polynomials below, as given in Withers and Nadarajah [3]. In contrast there has been no theory giving exact solutions to non-linear recurrence equations until Withers and Nadarajah [4] gave solutions to the recurrence equation of order 1 ,

$$
x_{n+1}=F\left(x_{n}\right) .
$$

These are of the form

$$
\begin{gather*}
x_{n}(\alpha, w, r)=w+z_{n}, \tag{1}\\
z_{n}=\sum_{i=1}^{\infty} A_{i} \alpha^{i} r^{n i}, A_{1}=1,
\end{gather*}
$$

where

2020 Mathematics Subject Classification. 65H20.
Key words and phrases. Bell polynomial, Expansion, Root.
$r=F_{.1}(w), F_{. j}(z)$ is the j th derivative of $F(z)$, and w is any fixed point of F, that is, $w=F(w)$. The solutions holds for a given x_{0} if α can be chosen so that

$$
\begin{equation*}
x_{0}-w=\sum_{i=1}^{\infty} A_{i} \alpha^{i} \tag{2}
\end{equation*}
$$

that is, if $x_{0}-w$ is small enough to obtain α by Lagrange inversion, see Section 5 of Withers and Nadarajah [4].

In Section 3, we extend this to the additive recurrence equation of order q,

$$
\begin{equation*}
x_{n+1}=\sum_{k=0}^{q-1} F_{k}\left(x_{n-k}\right) . \tag{3}
\end{equation*}
$$

The solution has the form (1) with w any fixed point of $F(z)=\sum_{k=0}^{q-1} F_{k}(z)$, and $r=r(w)$ any root of a certain polynomial of degree q, excluding roots of 1 . So, if there are N fixed points w, say w_{i}, and for each w there are q such $r(w)$, then we have $q N$ solutions, say $r_{j}\left(w_{i}\right)$. One can then plot each $x_{n}\left(\alpha, w_{i}, r_{j}\left(w_{i}\right)\right)$ versus α for $n=0,1, \ldots, q-1$ to see which $\left(x_{0}, \ldots, x_{q-1}\right)$ are possible. This seems better than obtaining α from a given x_{0} by Lagrange inversion as above. A solution need not diverge if $|r(w)|>1$, see Examples 2.1 and 3.4 of Withers and Nadarajah [4]. A_{i} is given by an easily programmed recurrence equation in terms of w and the derivatives of F at (w, \ldots, w). Our examples give the first few A_{i} explicitly, but this can be a distraction. For each example, one can plot x_{0} or $\left(x_{1}, \ldots, x_{q}\right)$ against α for each of the $q N$ roots $r(w)$. Our method excludes the special cases

$$
\begin{equation*}
r=0 \Rightarrow x_{n} \equiv w, r^{I}=1 \Rightarrow x_{n+I}=x_{n} . \tag{4}
\end{equation*}
$$

Section 2 deals with (3) for $q=2$. Section 5 extends (3) to the general recurrence equation of order q,

$$
x_{n}=F\left(x_{n-1}, \ldots, x_{n-q}\right),
$$

beginning in Section 4 with $q=2$.
Example 4.1 is an example of a multiplicative recurrence equation of order q,

$$
\begin{equation*}
x_{n}=\prod_{k=1}^{q} F_{k}\left(x_{n-k}\right) . \tag{5}
\end{equation*}
$$

These results may be extended to a wider class of solutions, as in Withers and Nadarajah [5]. If $q \geq 2$, the solutions are special as they only have one free variable α, to match x_{0}, but not x_{1}.

We use the partial ordinary Bell polynomial $B_{i, j}=\widehat{B}_{i, j}(A)$. It is tabled on page 309 of Comtet [1] for $1 \leq i \leq 10$ and defined as follows. For r in \mathscr{C} and $A=\left(A_{1}, A_{2}, \ldots\right)$ any sequence in \mathscr{C}, set

$$
\begin{equation*}
S(r, A)=\sum_{i=1}^{\infty} A_{i} r^{i} \tag{6}
\end{equation*}
$$

Then $B_{i, j}$ is defined by

$$
\begin{equation*}
[S(r, A)]^{j}=\sum_{i=j}^{\infty} B_{i, j} r^{i} \tag{7}
\end{equation*}
$$

for $j=0,1, \ldots$ So,

$$
z_{n}^{j}=\sum_{i=j}^{\infty} B_{i, j} \alpha^{i} r^{n i}
$$

for z_{n} of (1). Taking the coefficient of r^{i} in $[S(r, A)]^{j}=[S(r, A)]^{j-1} S(r, A)$ gives

$$
B_{i, j}=\sum_{k=j-1}^{i-1} B_{k, j-1} A_{i-k}
$$

for $i \geq j \geq 1$. For subroutines for $B_{i, k}$ for various packages, see Note 1.1 of Withers and Nadarajah [4].
In our case, $A_{1}=1$ so that $B_{i, i}=1$.
The results here can be extended to x_{n} a vector, as done in Withers and Nadarajah [6]. Through, $I(A)$ denotes the indicator function.

2. The additive recurrence equation of order 2

In this section, we give solutions to (3) for $q=2$. Let us write (3) as

$$
\begin{equation*}
x_{n+1}=F\left(x_{n}\right)+G\left(x_{n-1}\right) . \tag{8}
\end{equation*}
$$

Choose any w such that $w=F(w)+G(w)$. For $j=0,1, \ldots$, set

$$
\begin{equation*}
f_{j}=F_{. j}(w) / j!, g_{j}=F_{. j}(w) / j!, h_{i, j}=f_{j}+g_{j} r^{-i} \tag{9}
\end{equation*}
$$

assuming that F and G are analytic at w. We seek a solution of the form $x_{n}=x_{n}(\alpha, w, r)$ of (1). We can write this as $z_{n}=S\left(\alpha r^{n}, A\right)$ for $S(r, A)$ of (6). So, by (7) and Taylor's expansion,

$$
\begin{align*}
& \sum_{i=1}^{\infty} A_{i}\left(\alpha r^{n+1}\right)^{i}=z_{n+1}=x_{n+1}-w=F\left(x_{n}\right)-F(w)+G\left(x_{n-1}\right)-G(w) \tag{10}\\
& =\sum_{j=1}^{\infty}\left(f_{j} z_{n}^{j}+g_{j} z_{n-1}^{j}\right)=\sum_{i=1}^{\infty} C_{i}\left(\alpha r^{n}\right)^{i}
\end{align*}
$$

where

$$
\begin{equation*}
C_{i}=\sum_{j=1}^{i} B_{i, j} h_{i, j}=A_{i} h_{i, 1}+E_{i}, E_{i}=\sum_{j=2}^{i} B_{i, j} h_{i, j}, E_{1}=0 . \tag{11}
\end{equation*}
$$

The coefficient of $\left(\alpha r^{n}\right)^{i}$ in (10) is

$$
A_{i} r^{i}=C_{i}=A_{i} h_{i, 1}+E_{i} .
$$

For $i=1$, this gives $r=h_{1,1}=f_{1}+g_{1} r^{-1}$, implying

$$
\begin{equation*}
r^{2}=f_{1} r+g_{1}, r=f_{1} / 2 \pm \delta^{1 / 2}=r_{1} \text { and } r_{2} \tag{12}
\end{equation*}
$$

say, for $\delta=f_{1}^{2} / 4+g_{1}$. For $i \geq 2$, it gives the recurrence equation for A_{i}, in terms of $h_{i, j}$ of (9),

$$
A_{1}=1, A_{i}=E_{i} / R_{i}=\sum_{j=2}^{i} B_{i, j} H_{i, j}, i \geq 2
$$

$$
\begin{align*}
& H_{i, j}=h_{i, j} / R_{i}, \tag{13}\\
& R_{i}=r^{i}-h_{i, 1}=U_{i} S_{i}, U_{i}=r^{i-1}-1, \tag{14}\\
& S_{i}=f_{1}+g_{1}\left(r^{-1}+r^{-i}\right)=h_{1,1}+g_{1} r^{-i}=r+g_{1} r^{-i} \tag{15}
\end{align*}
$$

This proves
Theorem 2.1. Let F, G be analytic functions. Let w be any root of $w=F(w)+G(w)$. Define f_{j}, g_{j}, $h_{i, j}$ by (9). Then for $r=r_{1}$ or r_{2} of (12) not a root of 1 , (1) is a solution of the recurrence equation (8), where A_{i} is given by the recurrence equation (13) in terms of R_{i} of (14) and $\alpha \in \mathscr{C}$ is arbitrary.

If $r^{I}=1$, then $R_{I+1}=R_{1}=0$ and the method fails. As noted in Section 1 , if $|r| \geq 1$, the series is likely to diverge. If $F(z)$ and $G(z)$ are polynomials of degree p or less, then $f_{j}=g_{j}=h_{i, j}=H_{i, j}=0$ for $j>p$. In Examples 2.1 to 2.4 and the second part of Example 2.5,F(z) and $G(z)$ are polynomials of degree 2 or 1 , so that $f_{j}=g_{j}=h_{i, j}=H_{i, j}=0$ for $j>2$, and for S_{i} of (15),

$$
\begin{aligned}
& h_{i, 1}=f_{1}+g_{1} r^{-i}, h_{i, 2}=f_{2}+g_{2} r^{-i}, H_{i, 2}=h_{i, 2} / R_{i}, R_{i}=r^{i}-h_{i, 1}=\left(r^{i-1}-1\right) S_{i}, \\
& A_{1}=1, A_{i}=B_{i, 2} H_{i, 2}
\end{aligned}
$$

where

$$
\begin{equation*}
B_{i, 2}=\sum_{j=1}^{i-1} A_{j} A_{i-j} . \tag{16}
\end{equation*}
$$

There are two choices of w, and for each there are two choices of r, giving four solutions. For each of these one can plot x_{0}, x_{1} versus α, to see which are possible.
Example 2.1. An extension of the Mandelbrot equation. Take $F(z)=z^{2}+c_{0}, G(z)=z^{2}+c_{1}$. Set $c=c_{0}+c_{1}$. Then

$$
\begin{aligned}
& w=2 w^{2}+c, w=\left(1 \pm \Delta^{1 / 2}\right) / 4, \Delta=1-8 c, f_{1}=g_{1}=2 w, f_{2}=g_{2}=1, \\
& r^{2}=2 w(r+1), r=w+v, \\
& h_{i, 1} / 2 w=h_{i, 2}=1+r^{-i}, H_{i, 2}=\left(1+r^{-i}\right) / R_{i}, S_{i}=2 w\left(1+r^{-1}+r^{-i}\right), \\
& R_{i}=r^{i}-2 w\left(1+r^{-i}\right)=\left(s_{i}+t_{i} v\right) / d_{i},
\end{aligned}
$$

where

$$
\begin{aligned}
& v= \pm \delta^{1 / 2}, \delta=w^{2}+2 w=(5 w-c) / 2 \\
& s_{2}=2 w^{2}-w-1, t_{2}=4 w^{3}-8 w^{2}+2 w+1, d_{2}=2 w^{2}+4 w+1 \\
& s_{3}=(2 w-1) w(2 w+3), t_{3}=(2 w+1)\left(2 w d_{3}+1\right), d_{3}=4 w^{4}+6 w^{3}+13 w^{2}+4 w+1 .
\end{aligned}
$$

Example 2.2. An extension of the logistic map. Take $F(z)=c_{0}\left(z-z^{2}\right), G(z)=c_{1}\left(z-z^{2}\right)$. Then

$$
\begin{aligned}
& w=c\left(w-w^{2}\right), \\
& f_{1} / c_{0}=g_{1} / c_{1}=1-2 w, 1-2 w_{1}=2 c^{-1}-1, f_{2} / c_{0}=g_{2} / c_{1}=-1, \\
& r=c_{0}(1-2 w) / 2 \pm \delta^{1 / 2}, h_{i, 1} /(1-2 w)=-h_{i, 2}=c_{0}+c_{1} r^{-i}, H_{i, 2}=-\left(c_{0}+c_{1} r^{-i}\right) / R_{i}, \\
& R_{i}=r^{i}-(1-2 w)\left(c_{0}+c_{1} r^{-i}\right), S_{i}=(1-2 w)\left[c_{0}+c_{1}\left(r^{-1}+r^{-i}\right)\right]
\end{aligned}
$$

$$
\text { for } c=c_{0}+c_{1}, w=0 \text { or } w=1-c^{-1}=w_{1} \text { say and } \delta=c_{0}^{2}(1-2 w)^{2} /\left(4 c_{1}\right)+1-2 w .
$$

The case $w=0$. Then

$$
\delta=c_{0}^{2} /\left(4 c_{1}\right)+1, r=c_{0} / 2 \pm \delta^{1 / 2}, R_{i}=r^{i}-c_{0}-c_{1} r^{-i} .
$$

The case $w=1-c^{-1}$. Then

$$
\begin{aligned}
& \delta=c_{0}^{2}\left(2 c^{-1}-1\right)^{2} /\left(4 c_{1}\right)+2 c^{-1}-1, r=c_{0}\left(2 c^{-1}-1\right) / 2 \pm \delta^{1 / 2} \\
& R_{i}=r^{i}-\left(2 c^{-1}-1\right)\left(c_{0}+c_{1} r^{-i}\right) .
\end{aligned}
$$

Example 2.3. Take $F(z)=c_{0}\left(z-z^{2}\right), G(z)=z^{2}+c_{1}$. If $c=1-c_{0} \neq 0$ then

$$
\begin{aligned}
& w=c w^{2}+c_{0} w+c_{1}, w^{2}-w+c_{2}=0, \\
& w=1 / 2 \pm\left(1 / 4-c_{2}\right)^{1 / 2}, f_{1}=c_{0}(1-2 w), g_{1}=2 w, f_{2}=-c_{0}, g_{2}=1, \\
& r=f_{1} / 2 \pm \delta^{1 / 2}=r_{1} \text { and } r_{2} \text { say, } \\
& h_{i, 1}=c_{0}(1-2 w)+2 w r^{-i}, R_{i}=r^{i}-h_{i, 1}, h_{i, 2}=-c_{0}+r^{-i}, H_{i, 2}=\left(-c_{0}+r^{-i}\right) / R_{i} \\
& \text { for } c_{2}=c_{1} / c \text { and } \delta=f_{1}^{2} / 4+g_{1} \text {. If } c_{0}=1 \text { then } w \text { is not defined so the method fails. }
\end{aligned}
$$

Example 2.4. Take $F(z)=z^{2}+c_{1}, G(z)=c_{0}\left(z-z^{2}\right)$. Then, if $c_{0} \neq 1, w$ is given by Example 2.3,

$$
\begin{aligned}
& f_{1}=2 w, g_{1}=c_{0}(1-2 w), f_{2}=1, g_{2}=-c_{0}, \\
& r=w \pm \delta^{1 / 2} \\
& h_{i, 1}=2 w+c_{0}(1-2 w) r^{-i}, R_{i}=r^{i}-h_{i, 1}, h_{i, 2}=1-c_{0} r^{-i}, H_{i, 2}=\left(-c_{0}+r^{-i}\right) / R_{i}
\end{aligned}
$$ for $\delta=w^{2}+c_{0}(1-2 w)$.

Example 2.5. Take $F(z)=z$. Then w is any root of $G(w)=0 . r=1 / 2 \pm \delta^{1 / 2}$ for $\delta=1 / 4+g_{1}$. $r \neq 0,1$ implies that $g_{1} \neq 0$. So, the method does not cover $G(x)=c x^{d}$ with $d>1$, but it does allow for $G(x)$ any quadratic with non-zero discriminant. In that case, A_{i} is given by (16) with $H_{i, 2}=g_{2} r^{-i} / R_{i}$, $R_{i}=r^{i}-1-g_{1} r^{-i}$.

3. The additive recurrence equation (3)

For $k, j \geq 0$, let $F_{k}(x)$ be an analytic function with j th derivative $F_{k, j}(x)$. Set

$$
\begin{equation*}
f_{k, j}=F_{k \cdot j}(w) / j!, h_{i, j}=\sum_{k=0}^{q-1} f_{k, j} r^{-i k}, F(x)=\sum_{k=0}^{q-1} F_{k}(x), \tag{17}
\end{equation*}
$$

where $q \geq 1$. Let w be any solution of $F(w)=w$. By (7) and Taylor's expansion, $x_{n}=w+z_{n}$ is a solution to (3) for $z_{n}=\sum_{i=1}^{\infty} A_{i} \alpha^{i} r^{\text {in }}$ if

$$
\sum_{i=1}^{\infty} a_{i} r^{i n+i}=z_{n+1}=x_{n+1}-F(w)=\sum_{k=0}^{q-1}\left[F_{k}\left(x_{n-k}\right)-F_{k}(w)\right]=\sum_{i=1}^{\infty} r^{i n} C_{i}
$$

for C_{i}, E_{i} of (11) and $h_{i, j}$ of (17). For $i=1$ and $\alpha \neq 0$ this gives

$$
\begin{equation*}
r=h_{1,1}=\sum_{k=0}^{q-1} f_{k, 1} r^{-k} . \tag{18}
\end{equation*}
$$

Multiplying by r^{q-1} gives a polynomial of degree q for r with roots r_{1}, \ldots, r_{q} say. For $i \geq 2$, it gives the recurrence equation (13) for A_{i} in terms of

$$
H_{i, j}=h_{i, j} / R_{i}, R_{i}=r^{i}-h_{i, 1},
$$

where

$$
h_{i, 1}=\sum_{k=0}^{q-1} f_{k, 1} r^{-i k} .
$$

If $r^{I}=1$, then $R_{I+1}=R_{1}=0$ and the method fails. This proves
Theorem 3.1. For $k=0,1, \ldots, q-1$, let F_{k} be any function. Choose any w such that $F(w)=w$, where $F(x)=\sum_{k=0}^{q-1} F_{k}(x)$. Suppose that $\left\{F_{k}\right\}$ are analytic at w. Define $f_{k, j}, h_{i, j}$ by (17), R_{i} by (14), and $H_{i, j}$ by (13). Then for r any root of (18) that is not a root of 1 , the additive recurrence equation (8) has solution (3), where A_{i} is given by the recurrence equation (13).

Again, α can be obtained from x_{0} by Lagrange inversion of (2), but doing that will fix the value of x_{1}. When $q=\infty, F(x)$ must be finite at w. If each $F_{k}(x)$ is a polynomial of degree p or less, then $h_{i, j}=H_{i, j}=0$ for $j>p$. For the case $q=1$, see Withers and Nadarajah [4].

Example 3.1. Take $q=\infty, F_{k}(x)=[G(x)]^{k}=c_{k}(G(x))$ for $c_{k}(G)=G^{k}$. So,

$$
F(x)=[1-G(x)]^{-1}
$$

when $|G(x)|<1$, and the fixed points are the roots of

$$
w[1-G(w)]=1
$$

when $\left|1-w^{-1}\right|=|G(w)|<1$. If w is real, this holds if and only if $w>1 / 2$. If $w=w_{0} e^{i \gamma}$ for $w_{0}>0$ and $i=\sqrt{-1}$, this holds if and only if $w_{0} \cos \gamma>1 / 2 . h_{i, j}$ of (17) needs the derivatives of $F_{k}(x)$ at w. These are given in terms of those of $G(x)$ at w by Faa di Bruno's chain rule, equation [4c], page 137 of Comtet [1]:

$$
\text { for } j \geq 1 \text {, where }
$$

$$
\begin{gathered}
j!f_{k, j}=F_{k, j}(w)=\sum_{i=1}^{j} B_{j, i}(G) c_{k, i} \\
c_{k, i}=c_{k \cdot i}(G(w))=(k)_{i}[G(w)]^{k-i}
\end{gathered}
$$

where $(k)_{i}=k(k-1) \cdots(k-i+1), B_{j, i}(G)$ is the partial exponential Bell polynomial in $G=\left(G_{1}, G_{2}, \ldots\right)$ and $G_{i}=G_{. i}(w)$. These polynomials are tabled on pages 307-308 of Comtet [1] for $1 \leq j \leq 12$. We now solve (18):

$$
f_{k, 1}=k G(w)^{k-1} G_{.1}(w)=k\left(1-w^{-1}\right)^{k-1} G_{.1}(w),
$$

which implies $r^{2}=w^{2} G_{.1}(w)$ which implies $r=1-w^{-1} \pm\left[G_{.1}(w)\right]^{1 / 2}$.
The case $G(x)=g x$, where $g \neq 0,1$. That is,

$$
x_{n+1}=\sum_{k=0}^{\infty}\left(g x_{n-k}\right)^{k}
$$

The fixed points are the roots of $w(1-g w)=1$, that is, $w=\left(1 \pm \Delta^{1 / 2}\right) /(2 g)$, where $\Delta=1-4 g$, and we require that $|g w|<1$. Also

$$
f_{k, j}=\binom{k}{j} g^{k} w^{k-j}, h_{i, j}=w^{-j} H_{j}\left(g w r^{-i}\right)
$$

where

$$
H_{j}(x)=\sum_{k=j}^{\infty}\binom{k}{j} x^{k}=x^{j}(1-x)^{-j-1}
$$

for $|x|<1$. So, by (18),

$$
r=h_{1,1}=H_{1}\left(g w r^{-1}\right) w^{-1},
$$

where $H_{1}(x)=x(1-x)^{-2}$, which implies $g=(r-g w)^{2}$ which implies $r=g w \pm g^{1 / 2}=r_{1}, r_{2}$ say. Set $D_{i}=r^{i}-g w, N_{i}=D_{i}^{2}-g$. Then $R_{i}=r^{i} N_{i} D_{i}^{-2}, h_{i, 1}=g r^{i} D_{i}^{-2}$. If $g=1 / 4$ then $r=1$.

Example 3.2. Take $q=\infty, F_{0}(x)=b+c_{0} x, F_{k}(x)=c_{k} x$ for $k \geq 1$. So, $F(x)=b+c x$ for finite $c=$ $\sum_{k=0}^{\infty} c_{k} \neq 1 . w=b /(1-c), f_{k, 1}=c_{k}, f_{k, j}=h_{i, j}=H_{i, j}=0$ for $j \geq 2, R_{i}=r^{i}-h_{i, 1}, h_{i, 1}=\sum_{k=0}^{\infty} c_{k} r^{-i k}$, $A_{i}=0$ for $i \geq 2$ and $x_{n}=w+\alpha r^{n}$, where $\alpha=x_{0}-w$ and r is any solution of

$$
r=h_{1,1}=\sum_{k=0}^{\infty} c_{k} r^{-k} .
$$

Example 3.3. Take $q=\infty, F_{k}(x)=b I(k=0)+c_{k} x+d_{k} x^{2}$ for $k \geq 0$. So, $F(x)=b+c x+d x^{2}$ for finite $c=\sum_{k=0}^{\infty} c_{k}, d=\sum_{k=0}^{\infty} d_{k}$. $d w^{2}+(c-1) w+b=0$ implies $w=\left(1-c \pm \delta^{1 / 2}\right) /(2 d)$, where $\delta=(1-c)^{2}-4 b d$ and r is any solution of $r=h_{1,1}$, where

$$
h_{1,1}=\sum_{k=0}^{\infty} f_{k, 1} r^{-i k}, f_{k, 1}=c_{k}+2 w d_{k} .
$$

For $i \geq 2, A_{i}=B_{i, 2} h_{i, 2} / R_{i}$, where $R_{i}=r^{i}-h_{i, 1}, h_{i, 2}=\sum_{k=0}^{\infty} f_{k, 2} r^{-i k}, f_{k, 2}=2 d_{k}$ and $B_{i, 2}=\sum_{j=1}^{i-1} A_{j} A_{i-j}$. So, $A_{2}=h_{2,2} / R_{2}, A_{3}=2 A_{2} h_{3,2} / R_{3}$, and so on.

4. The general two step recurrence equation

Let $F\left(x_{1}, x_{2}\right): \mathscr{C} \times \mathscr{C} \rightarrow \mathscr{C}$ be a given function. In this section, we extend Section 2 by finding solutions to

$$
\begin{equation*}
x_{n}=F\left(x_{n-1}, x_{n-2}\right) . \tag{19}
\end{equation*}
$$

Let w be any root of $F(w, w)=w$. Suppose that $F\left(x_{1}, x_{2}\right)$ is analytic in a neighbourhood of (w, w). For $j_{1}, j_{2}=0,1, \ldots$, set

$$
F_{j_{1}, j_{2}}\left(x_{1}, x_{2}\right)=\partial_{1}^{j_{1}} \partial_{2}^{j_{2}} F\left(x_{1}, x_{2}\right)
$$

for

$$
\partial_{i}=\partial / \partial x_{i}, f_{j_{1}, j_{2}}=F_{j_{1}, j_{2}}(w, w) / j!k!.
$$

Let us try again for a solution of the form (1). By (7),

$$
\begin{aligned}
& \sum_{i=1}^{\infty}\left(\alpha r^{n}\right)^{i} A_{i}=z_{n}=x_{n}-w=F\left(x_{n-1}, x_{n-2}\right)-F(w, w)=\sum_{j_{1}, j_{2}=0}^{\infty} z_{n-1}^{j_{1}} z_{n-2}^{j_{2}} f_{j_{1}, j_{2}} \\
& =\sum_{i_{1}, i_{2}=1}^{\infty}\left(\alpha r^{n-1}\right)^{i_{1}}\left(\alpha r^{n-2}\right)^{i_{2}} C\left(i_{1}, i_{2}\right),
\end{aligned}
$$

where

$$
C\left(i_{1}, i_{2}\right)=\sum_{j_{1}=0}^{i_{1}} \sum_{j_{2}=0}^{i_{2}} B_{i_{1}, j_{1}} B_{i_{2}, j_{2}} f_{j_{1}, j_{2}}
$$

excluding $j_{1}=j_{2}=0$. For $i \geq 1$, the coefficient of $\left(\alpha r^{n}\right)^{i}$ is

$$
A_{i}=C_{i},
$$

where

$$
C_{i}=\sum_{i_{1}+i_{2}=i} r^{-i_{1}-2 i_{2}} C_{i_{1}, i_{2}},
$$

implying

$$
\begin{equation*}
1=r^{-1} f_{1,0}+r^{-2} f_{0,1}, r=\left(f_{1,0} \pm \delta^{1 / 2}\right) / 2=r_{1}, r_{2} \text { say } \tag{20}
\end{equation*}
$$

where $\delta=f_{1,0}^{2}+4 f_{0,1}$. This holds since $B_{1,1}=A_{1}=1$. So, for r not a root of 1 ,

$$
\begin{equation*}
A_{i}=R_{i}^{-1} E_{i} \tag{21}
\end{equation*}
$$

for $i \geq 2$, where

$$
\begin{aligned}
& R_{i}=1-r^{-i} f_{1,0}-r^{-2 i} f_{0,1}, \\
& E_{i}=r^{-i} E_{i, 0}+r^{-2 i} E_{0, i}+J_{i}, E_{i, 0}=\sum_{j=2}^{i} B_{i, j} f_{j, 0}, E_{0, i}=\sum_{j=2}^{i} B_{i, j} f_{0, j}, \\
& J_{i}=\sum\left[r^{-i_{1}-2 i_{2}} C_{i_{1}, i_{2}}: i_{1}+i_{2}=i, i_{1} \geq 1, i_{2} \geq 1\right]=\sum_{i_{1}=1}^{i-1} r^{-2 i+i_{1}} C_{i_{1}, i-i_{1}}
\end{aligned}
$$

This proves
Theorem 4.1. Given $F\left(x_{1}, x_{2}\right): \mathscr{C} \times \mathscr{C} \rightarrow \mathscr{C}$ let w be any root of $F(w, w)=w$. Suppose that $F\left(x_{1}, x_{2}\right)$ is analytic in a neighbourhood of (w, w), and that r is either root of (20) but not a root of 1 . Then a solution of (19) is (1), where A_{i} is given by (21) in terms of E_{i} of (22).

Example 4.1. Suppose that (5) holds with $q=2$, and for $k=1,2, F_{k}\left(x_{k}\right)=x_{k}^{a_{k}} . S o$,

$$
f_{j_{1}, j_{2}}=\prod_{k=1}^{2} f_{k \cdot j_{k}}
$$

where

$$
\begin{aligned}
& f_{k \cdot j_{k}}=F_{k \cdot j_{k}}\left(w_{k}\right) / j_{k}!=\binom{a_{k}}{j_{k}} w^{a_{k}-j_{k}} \\
& w=w^{a}, a=a_{1}+a_{2}, w=0 \text { or } 1
\end{aligned}
$$

Then r is given by (20) in terms of

$$
f_{1,0}=a_{1} w^{a_{1}-1}, f_{0,1}=a_{2} w^{a_{2}-1}
$$

The case $w=0$. Suppose that $a_{1}, a_{2} \in \mathscr{N}$ so that both $F_{k}\left(x_{k}\right)$ are analytic at 0 . Then

$$
f_{1,0}=I\left(a_{1}=1\right), f_{0,1}=I\left(a_{2}=1\right), \delta=I\left(a_{1}=1\right)+4 I\left(a_{2}=1\right) .
$$

There are four subcases:
(i) If $F(x)=x_{1} x_{2}$, then $\delta=5, r=\left(1 \pm 5^{1 / 2}\right) / 2, R_{i}=1-r^{-i}-r^{-2 i}$.
(ii) If $F(x)=x_{1}$, then $\delta=1, r=0$ or 1, which are not allowed, see (4).
(iii) If $F(x)=x_{2}$, then $\delta=4, r= \pm 1$, and $R_{i}=1-r^{-2 i}$.
(iv) Otherwise $r=\delta=0, R_{i}=1$, see (4).

In each case, $f_{j_{1}, j_{2}}=0$ unless $\left(j_{1}, j_{2}\right)=(0,0),(1,0)$ or $(0,1)$, so that $A_{i}=E_{i}=0$ for $i \geq 2$, and $x_{n}=\alpha r^{n}$, where $\alpha=x_{0}$.

The case $w=1$. Then
$f_{j_{1}, j_{2}}=\prod_{k=1}^{2}\binom{a_{k}}{j_{k}}, f_{1,0}=a_{1}, f_{0,1}=a_{2}, R_{i}=1-r^{-i} a_{1}-r^{-2 i} a_{2}$,
$r=\left(a_{1} \pm \delta^{1 / 2}\right) / 2$,
$E_{2}=r^{-2}\binom{a_{1}}{2}+r^{-3} a_{1} a_{2}+r^{-4}\binom{a_{2}}{2}$,
$E_{3}=r^{-3}\left[2 A_{2}\binom{a_{1}}{2}+\binom{a_{1}}{3}\right]+r^{-4}\left[A_{2} a_{1}+\binom{a_{1}}{2}\right] a_{2}+r^{-5} a_{1}\left[A_{2} a_{2}+\binom{a_{2}}{2}\right]$
$+r^{-6}\left[2 A_{2}\binom{a_{2}}{2}+\binom{a_{2}}{3}\right]$,
$E_{4}=r^{-4}\left[B_{4,2}\binom{a_{1}}{2}+3 A_{2}\binom{a_{1}}{3}+\binom{a_{1}}{4}\right]+r^{-5}\left[A_{3} a_{1}+2 A_{2}\binom{a_{1}}{2}+\binom{a_{1}}{3}\right] a_{2}$
$+r^{-6}\left[A_{2}^{2} a_{1} a_{2}+A_{2}\left(a_{1}+a_{2}-2\right) a_{1} a_{2} / 2+\binom{a_{1}}{2}\binom{a_{2}}{2}\right]+r^{-7} a_{1}\left[A_{3} a_{2}+2 A_{2}\binom{a_{2}}{2}+\binom{a_{2}}{3}\right]$
$+r^{-8} a_{1}\left[B_{4,2}\binom{a_{2}}{2}+3 A_{2}\binom{a_{2}}{3}+\binom{a_{2}}{4}\right]$
for $\delta=a_{1}^{2}+4 a_{2}$ and $B_{4,2}=2 A_{3}+A_{2}^{2}$. Ocalan and Duman [2] gave a solution when $-a_{1}=a_{2}=p>0$.

5. General q step recurrence

Let $F\left(x_{1}, \ldots, x_{q}\right): \mathscr{C}^{q} \rightarrow \mathscr{C}$ be any function. We give solutions to

$$
\begin{equation*}
x_{n}=F\left(x_{n-1}, \ldots, x_{n-q}\right) . \tag{23}
\end{equation*}
$$

Let w be any root of $F(w, \ldots, w)=w$. Suppose that F is analytic in a neighbourhood of (w, \ldots, w). For $j_{1}, \ldots, j_{q}=0,1, \ldots$, set

$$
F_{j_{1}, \ldots, j_{q}}\left(x_{1}, \ldots, x_{q}\right)=\partial_{1}^{j_{1}} \ldots \partial_{q}^{j_{q}} F\left(x_{1}, \ldots, x_{q}\right)
$$

for

$$
\partial_{i}=\partial / \partial x_{i}, f\left(j_{1}, \ldots, j_{q}\right)=f_{j_{1}, \ldots, j_{q}}=F_{j_{1}, \ldots, j_{q}}(w, \ldots, w) / j_{1}!\cdots j_{q}!.
$$

Let us try again for a solution of the form (1). Since

$$
z_{n-k}^{j_{k}}=\sum_{i_{k}=j_{k}}^{\infty}\left(\alpha r^{n-k}\right)^{i_{k}} B_{i_{k}, j_{k}},
$$

we have

$$
\begin{aligned}
& \sum_{i=1}^{\infty}\left(\alpha r^{n}\right)^{i} A_{i}=z_{n}=x_{n}-F(w, \ldots, w) \\
& =F\left(x_{n-1}, \ldots, x_{n-q}\right)-F(w, \ldots, w)=\sum_{j_{1}, \ldots, j_{q}=0}^{\infty} f\left(j_{1}, \ldots, j_{q}\right) z_{n-1}^{j_{1}} \cdots z_{n-q}^{j_{q}} \\
& =\sum_{i_{1}, \ldots, i_{q}=1}^{\infty}\left(\alpha r^{n-1}\right)^{i_{1}} \cdots\left(\alpha r^{n-q}\right)^{i_{q}} C\left(i_{1}, \ldots, i_{q}\right), \\
& C\left(i_{1}, \ldots, i_{q}\right)=\sum_{j_{1}=0}^{i_{1}} \cdots \sum_{j_{q}=0}^{i_{q}} B_{i_{1}, j_{1}} \cdots B_{i_{q}, j_{q}} f\left(j_{1}, \ldots j_{q}\right),
\end{aligned}
$$

where
excluding $j_{1}=\cdots j_{q}=0$. Let e_{k} be the k th unit vector in \mathscr{C}^{q}. Set $|i|=i_{1}+\cdots+i_{q}$. For $I \geq 1$, the coefficient of $\left(\alpha r^{n}\right)^{I}$ in (24) is

$$
A_{I}=C_{I}
$$

where

$$
\begin{equation*}
C_{I}=\sum_{|i|=I} r^{-i_{1}-2 i_{2}-\cdots-q i_{q}} C\left(i_{1}, \ldots, i_{q}\right) . \tag{25}
\end{equation*}
$$

In particular,
implying

$$
\begin{gather*}
1=A_{1}=C_{1}=\sum_{k=1}^{q} r^{-k} C\left(e_{k}\right), C\left(e_{k}\right)=f\left(e_{k}\right), \\
1=\sum_{k=1}^{q} r^{-k} f\left(e_{k}\right), \tag{26}
\end{gather*}
$$

a polynomial of degree q in r^{-1} with solutions r_{1}, \ldots, r_{q} say. Let $\sum_{k}^{s^{\prime}}$ denote summation over $1 \leq k_{1}<$ $\cdots<k_{s} \leq q$, and \sum_{k}^{s} denote summation over $1 \leq k_{1} \leq \cdots \leq k_{s} \leq q$. For $J \geq 1$, set

$$
\begin{equation*}
S_{J}=\sum_{k=1}^{q} r^{-J k} f\left(e_{k}\right), R_{J}=1-S_{J} . \tag{27}
\end{equation*}
$$

If $r^{I}=1$, then $R_{I+1}=R_{1}=0$ and the method fails. Suppose that r is not a root of 1 . If $J=2$, then $i=e_{k_{1}}+e_{k_{2}}$ say, and $\sum_{k=1}^{q} k i_{k}=k_{1}+k_{2}$. So,

$$
\begin{align*}
& A_{2}=C_{2}=\sum_{1 \leq k_{1} \leq k_{2} \leq q} r^{-k_{1}-k_{2}} C\left(e_{k_{1}}+e_{k_{2}}\right), \\
& C\left(e_{k_{1}}+e_{k_{2}}\right)=B_{1, k_{1}} B_{1, k_{2}} f\left(e_{k_{1}}+e_{k_{2}}\right)=f\left(e_{k_{1}}+e_{k_{2}}\right), k_{1}<k_{2}, \\
& C\left(J e_{k_{1}}\right)=\sum_{j=1}^{J} B_{J, j} f\left(j e_{k}\right), C\left(2 e_{k_{1}}\right)=A_{2} f\left(e_{k}\right)+f\left(2 e_{k}\right) \tag{28}
\end{align*}
$$

which implies

$$
\begin{aligned}
& C_{2}=E_{2}+A_{2} S_{2} \\
& E_{2}=\sum_{1 \leq k_{1} \leq k_{2} \leq q} r^{-k_{1}-k_{2}} f\left(e_{k_{1}}+e_{k_{2}}\right) \\
& \text { and } R_{2} A_{2}=E_{2} \text { implies } A_{2}=R_{2}^{-1} E_{2} \text {. If } J=3 \text {, then } i=e_{k_{1}}+e_{k_{2}}+e_{k_{3}} \text { say, where } k_{1} \leq k_{2} \leq k_{3} \text {, and } \\
& \sum_{k=1}^{3} k i_{k}=k_{1}+k_{2}+k_{3} \text {. So, } \\
& A_{3}=C_{3}=\sum_{k}^{3} r^{-k_{1}-k_{2}-k_{3}} C\left(e_{k_{1}}+e_{k_{2}}+e_{k_{3}}\right)=C^{1,1,1}+\sum^{2} C^{2,1}+C^{3}, \\
& \text { where } \\
& C^{1,1,1}=\sum_{k}^{3^{\prime}} r^{-k_{1}-k_{2}-k_{3}} f\left(e_{k_{1}}+e_{k_{2}}+e_{k_{3}}\right), \\
& C^{2,1}=\sum_{k}^{2^{\prime}} r^{-2 k_{1}-k_{2}} C\left(2 e_{k_{1}}+e_{k_{2}}\right), \\
& C\left(2 e_{k_{1}}+e_{k_{2}}\right)=\sum_{j_{1}=1}^{2} B_{2, j_{1}} \sum_{j_{2}=1} B_{1, j_{2}} f\left(j_{1} e_{k_{1}}+j_{2} e_{k_{2}}\right)=A_{2} f\left(e_{k_{1}}+e_{k_{2}}\right)+f\left(2 e_{k_{1}}+e_{k_{2}}\right), \\
& C^{1,2}=\sum_{k}^{2^{\prime}} r^{-k_{1}-2 k_{2}}\left[A_{2} f\left(e_{k_{1}}+e_{k_{2}}\right)+f\left(e_{k_{1}}+2 e_{k_{2}}\right)\right], \\
& \text { where } \sum^{2} C^{2,1}=C^{2,1}+C^{1,2} \text {. Further, } \\
& C^{3}=\sum_{k=1}^{q} r^{-3 k} C\left(3 e_{k}\right), C\left(3 e_{k}\right)=A_{3} f\left(e_{k}\right)+2 A_{2} f\left(2 e_{k}\right)+f\left(3 e_{k}\right) \\
& \text { by (28), implying } \\
& C_{3}=E_{3}+A_{3} S_{3} \\
& \text { for } \\
& E_{3}=\sum_{k}^{3} r^{-k_{1}-k_{2}-k_{3}} f\left(e_{k_{1}}+e_{k_{2}}+e_{k_{3}}\right)+A_{2} \sum^{2} \sum_{k}^{2^{\prime}} r^{-2 k_{1}-k_{2}} f\left(e_{k_{1}}+e_{k_{2}}\right)+2 A_{2} \sum_{k=1}^{q} r^{-3 k} f\left(2 e_{k}\right) . \\
& R_{3} A_{3}=E_{3} \text { implies } A_{3}=R_{3}^{-1} E_{3} . \text { Further, } \\
& A_{4}=C_{4}=\sum_{k}^{4}=C^{1,1,1,1}+\sum^{3} C^{2,1,1}+C^{2,2}+\sum^{2} C^{3,1}+C^{4},
\end{aligned}
$$

where

$$
\begin{aligned}
& C^{1,1,1,1}=\sum_{k}^{4^{\prime}} r^{-k_{1}-k_{2}-k_{3}-k_{4}} f\left(\sum_{a=1}^{4} e_{k_{a}}\right), \\
& C^{2,1,1}=\sum_{k}^{3^{\prime}} r^{-2 k_{1}-k_{2}-k_{3}} C\left(2 e_{k_{1}}+e_{k_{2}}+e_{k_{3}}\right), \\
& C\left(2 e_{k_{1}}+e_{k_{2}}+e_{k_{3}}\right)=A_{2} f\left(e_{k_{1}}+e_{k_{2}}+e_{k_{3}}\right)+f\left(2 e_{k_{1}}+e_{k_{2}}+e_{k_{3}}\right), \\
& C^{2,2}=\sum_{k}^{2^{\prime}} r^{-2 k_{1}-2 k_{2}} C\left(2 e_{k_{1}}+2 e_{k_{2}}\right), \\
& C\left(2 e_{k_{1}}+2 e_{k_{2}}\right)=\sum_{j_{1}, j_{2}=1}^{2} B_{2, j_{1}} B_{2, j_{2}} f\left(j_{1} e_{k_{1}}+j_{2} e_{k_{2}}\right) \\
& =A_{2}^{2} f\left(e_{k_{1}}+e_{k_{2}}\right)+A_{2} \sum^{2} f\left(2 e_{k_{1}}+e_{k_{2}}\right)+f\left(2 e_{k_{1}}+2 e_{k_{2}}\right), \\
& C^{3,1}=\sum_{k}^{2^{\prime}} r^{-3 k_{1}-k_{2}} C\left(3 e_{k_{1}}+e_{k_{2}}\right), \\
& C\left(3 e_{k_{1}}+e_{k_{2}}\right)=\sum_{j_{1}=1}^{3} B_{3, j_{1}} f\left(j_{1} e_{k_{1}}+e_{k_{2}}\right) \\
& =A_{3} f\left(e_{k_{1}}+e_{k_{2}}\right)+2 A_{2} f\left(2 e_{k_{1}}+e_{k_{2}}\right)+f\left(3 e_{k_{1}}+e_{k_{2}}\right), \\
& C\left(4 e_{k}\right)=A_{4} f\left(e_{k}\right)+B_{4,2} f\left(2 e_{k}\right)+3 A_{2} f\left(3 e_{k}\right)+f\left(4 e_{k}\right) .
\end{aligned}
$$

Further,

$$
C^{4}=\sum_{k=1}^{q} r^{-4 k} C\left(4 e_{k}\right)=A_{4} S_{4}+E^{4}
$$

say, implying

$$
A_{4}=R_{4}^{-1} E_{4},
$$

where

$$
E_{4}=C^{1,1,1,1}+\sum^{3} C^{2,1,1}+C^{2,2}+\sum^{2} C^{3,1}+E^{4}
$$

Similarly, for $J \geq 2$,

$$
\begin{equation*}
A_{J}=R_{J}^{-1} E_{J} \tag{29}
\end{equation*}
$$

where $E_{J}=C_{J}-A_{J} S_{J}$. This proves
Theorem 5.1. Given $F\left(x_{1}, \ldots, x_{q}\right): \mathscr{C}^{q} \rightarrow \mathscr{C}$, let w be any root of $F(w, \ldots, w)=w$. Suppose that $F\left(x_{1}, \ldots, x_{q}\right)$ is analytic in a neighbourhood of (w, \ldots, w). Then a solution of (23) is (1), where A_{J} and R_{J} are given by (29) and (27), and r is any solution of (26) but not a root of 1 .
(25) is a polynomial in r^{-1}. If we started from $x_{n+1}=F\left(x_{n}, \ldots, x_{n-q+1}\right)$, as in Sections 2-3, rather than from (23), then the left hand side of (25) would be $r^{I} A_{I}$. Starting with (23) gives simpler equations.

References

[1] Comtet, L. (1974). Advanced Combinatorics. Reidel, Dordrecht.
[2] Ocalan, O. and Duman, O. (2019). On solutions of the recursive equations $x_{n+1}=x_{n-1}^{p} / x_{n}^{p},(p>0)$ via Fibonacci-type sequences. Electronic Journal of Mathematical Analysis and Applications, 7, 112-115.
[3] Withers, C. S. and Nadarajah, S. (2015). Solutions of linear recurrence equations. Applied Mathematics and Computation, 271, 768-776.
[4] Withers, C. S. and Nadarajah, S. (2021). Solutions to nonlinear recurrence equations. Rocky Mountain Journal of Mathematics, 52, 2153-2168.
[5] Withers, C. S. and Nadarajah, S. (2022). More solutions to nonlinear recurrence equations. Rocky Mountain Journal of Mathematics, 53, 579-587.
[6] Withers, C. S. and Nadarajah, S. (2023). Some solutions to vector nonlinear recurrence equations. Rocky Mountain Journal of Mathematics, 53, 969-981.

Callaghan Innovation, Lower Hutt, New Zealand

Email address: kit.withers@gmail.com
University of Manchester, Manchester M13 9PL, UK
Email address: mbbsssn2@manchester.ac.uk

