х

ROCKY MOUNTAIN JOURNAL OF MATHEMATICS

Vol., No., YEAR

https://doi.org/rmj.YEAR..PAGE

SOME SOLUTIONS TO q-STEP NONLINEAR RECURRENCE EQUATIONS

CHRISTOPHER S. WITHERS AND SARALEES NADARAJAH

ABSTRACT. Let \mathscr{C} be the complex numbers, and q any positive integer. Let $F(x_1, \ldots, x_q)$: $\mathscr{C}^q \to \mathscr{C}$ be a given function. Let w be any solution to $F(w, \ldots, w) = w$. Suppose that F is analytic in a neighbourhood of (w, \ldots, w) . For each such w, we give a solution to

$$x_n = F\left(x_{n-1}, \ldots, x_{n-q}\right)$$

of the form

$$\mathcal{L}_n(\alpha, w, r(w)) = w + \sum_{i=1}^{\infty} A_i(w) \ \alpha^i \left[r(w) \right]^{ni},$$

where α is arbitrary and r(w) is any root of a certain polynomial that is not a root of 1.

1. Introduction

Withers and Nadarajah [3] gave solutions to linear recurrence equations. Withers and Nadarajah [4, 5] gave solutions to nonlinear recurrence equations. Withers and Nadarajah [6] gave solutions to vector nonlinear recurrence equations. The aim of this note is to give solutions to q-step nonlinear recurrence equations.

Let \mathscr{C} denote the complex numbers. It is well known that the linear recurrence equation in \mathscr{C} , $x_n = \sum_{j=0}^{p} c_j x_{n-j}$, has a solution of the form $x_n = \sum_{i=1}^{p} a_i r_i^n$, where $\{r_i\}$ are the roots of $1 = \sum_{j=0}^{p} c_j r^{-j}$ if distinct. Less known is its solution in terms of the Bell polynomials below, as given in Withers and Nadarajah [3]. In contrast there has been no theory giving exact solutions to non-linear recurrence equations until Withers and Nadarajah [4] gave solutions to the *recurrence equation of order* 1,

$$x_{n+1} = F(x_n).$$

 $\frac{32}{33}$ These are of the form

$$x_n(\alpha, w, r) = w + z_n,$$

36 where

37 38

35

30

31

40

 $z_n = \sum_{i=1}^{\infty} A_i \ \alpha^i r^{ni}, A_1 = 1,$

^{41 2020} Mathematics Subject Classification. 65H20.

⁴² *Key words and phrases.* Bell polynomial, Expansion, Root.

1 $r = F_1(w)$, $F_j(z)$ is the *j*th derivative of F(z), and *w* is any *fixed point* of *F*, that is, w = F(w). The 2 solutions holds for a given x_0 if α can be chosen so that

$$x_0 - w = \sum_{i=1}^{\infty} A_i \ \alpha^i,$$

⁶ that is, if $x_0 - w$ is small enough to obtain α by Lagrange inversion, see Section 5 of Withers and 7 Nadarajah [4].

8 In Section 3, we extend this to the *additive recurrence equation of order q*,

$$x_{n+1} = \sum_{k=0}^{q-1} F_k(x_{n-k})$$

The solution has the form (1) with w any fixed point of $F(z) = \sum_{k=0}^{q-1} F_k(z)$, and r = r(w) any root of a certain polynomial of degree q, excluding roots of 1. So, if there are N fixed points w, say w_i , 14 and for each w there are q such r(w), then we have qN solutions, say $r_i(w_i)$. One can then plot 15 each $x_n(\alpha, w_i, r_i(w_i))$ versus α for $n = 0, 1, \dots, q-1$ to see which (x_0, \dots, x_{q-1}) are possible. This 16 seems better than obtaining α from a given x_0 by Lagrange inversion as above. A solution need not 17 diverge if |r(w)| > 1, see Examples 2.1 and 3.4 of Withers and Nadarajah [4]. A_i is given by an easily 18 programmed recurrence equation in terms of w and the derivatives of F at (w, \ldots, w) . Our examples 19 give the first few A_i explicitly, but this can be a distraction. For each example, one can plot x_0 or 20 (x_1,\ldots,x_q) against α for each of the qN roots r(w). Our method excludes the special cases 21

22 (4)
$$r = 0 \Rightarrow x_n \equiv w, r^I = 1 \Rightarrow x_{n+I} = x_n$$

Section 2 deals with (3) for q = 2. Section 5 extends (3) to the general recurrence equation of order q,

$$x_n = F(x_{n-1}, \ldots, x_{n-q})$$

beginning in Section 4 with q = 2.

0

25

Example 4.1 is an example of a *multiplicative recurrence equation of order q*,

$$x_{n} = \prod_{k=1}^{q} F_{k}(x_{n-k})$$

These results may be extended to a wider class of solutions, as in Withers and Nadarajah [5]. If $q \ge 2$, the solutions are special as they only have one free variable α , to match x_0 , but not x_1 .

We use the *partial ordinary Bell polynomial* $B_{i,j} = \widehat{B}_{i,j}(A)$. It is tabled on page 309 of Comtet [1] for $1 \le i \le 10$ and defined as follows. For r in \mathscr{C} and $A = (A_1, A_2, ...)$ any sequence in \mathscr{C} , set

$$\frac{\frac{36}{37}}{\frac{38}{38}}(6) \qquad \qquad S(r,A) = \sum_{i=1}^{\infty} A_i r^i$$

³⁹ Then $B_{i,j}$ is defined by

where

2 3 4 $H_{i,i} = h_{i,i}/R_i,$ (13)

4 (14)
$$R_i = r^i - h_{i,1} = U_i S_i, \ U_i = r^{i-1} - 1,$$

$$S_{i} = f_{1} + g_{1} \left(r^{-1} + r^{-i} \right) = h_{1,1} + g_{1} r^{-i} = r + g_{1} r^{-i}.$$

$$S_{i} = f_{1} + g_{1} \left(r^{-1} + r^{-i} \right) = h_{1,1} + g_{1} r^{-i} = r + g_{1} r^{-i}.$$
This proves

This proves

⁹ **Theorem 2.1.** Let *F*, *G* be analytic functions. Let *w* be any root of w = F(w) + G(w). Define f_i , g_i , 10 $h_{i,i}$ by (9). Then for $r = r_1$ or r_2 of (12) not a root of 1, (1) is a solution of the recurrence equation (8), ¹¹ where A_i is given by the recurrence equation (13) in terms of R_i of (14) and $\alpha \in \mathcal{C}$ is arbitrary.

If $r^{I} = 1$, then $R_{I+1} = R_{1} = 0$ and the method fails. As noted in Section 1, if $|r| \ge 1$, the series is 13 likely to diverge. If F(z) and G(z) are polynomials of degree p or less, then $f_i = g_i = h_{i,j} = H_{i,j} = 0$ 14 for j > p. In Examples 2.1 to 2.4 and the second part of Example 2.5, F(z) and G(z) are polynomials 15 of degree 2 or 1, so that $f_j = g_j = h_{i,j} = H_{i,j} = 0$ for j > 2, and for S_i of (15), 16

12

18 19

20

$$h_{i,1} = f_1 + g_1 r^{-i}, \ h_{i,2} = f_2 + g_2 r^{-i}, \ H_{i,2} = h_{i,2}/R_i, \ R_i = r^i - h_{i,1} = (r^{i-1} - 1)S_i,$$

 $A_1 = 1, \ A_i = B_{i,2}H_{i,2},$

where 21

22

$$B_{i,2} = \sum_{j=1}^{i-1} A_j A_{i-j}$$

 $v = \pm \delta^{1/2}, \ \delta = w^2 + 2w = (5w - c)/2,$

25 There are two choices of w, and for each there are two choices of r, giving four solutions. For each of 26 these one can plot x_0, x_1 versus α , to see which are possible. 27

Example 2.1. An extension of the Mandelbrot equation. Take $F(z) = z^2 + c_0$, $G(z) = z^2 + c_1$. Set 28 29 $c = c_0 + c_1$. Then 30

31 32

33

34 35

36 37 where

38

39 40 41

 $w = 2w^2 + c, w = \left(1 \pm \Delta^{1/2}\right)/4, \Delta = 1 - 8c, f_1 = g_1 = 2w, f_2 = g_2 = 1,$ $r^2 = 2w(r+1), r = w + v,$ $h_{i,1}/2w = h_{i,2} = 1 + r^{-i}, H_{i,2} = (1 + r^{-i})/R_i, S_i = 2w(1 + r^{-1} + r^{-i}),$ $R_{i} = r^{i} - 2w \left(1 + r^{-i} \right) = \left(s_{i} + t_{i} v \right) / d_{i},$

 $s_3 = (2w-1)w(2w+3), t_3 = (2w+1)(2wd_3+1), d_3 = 4w^4 + 6w^3 + 13w^2 + 4w + 1.$

 $s_2 = 2w^2 - w - 1$, $t_2 = 4w^3 - 8w^2 + 2w + 1$, $d_2 = 2w^2 + 4w + 1$.

4

1 Example 2.2. An extension of the logistic map. Take $F(z) = c_0(z-z^2)$, $G(z) = c_1(z-z^2)$. Then $w = c \left(w - w^2 \right)$. $f_1/c_0 = g_1/c_1 = 1 - 2w, \ 1 - 2w_1 = 2c^{-1} - 1, \ f_2/c_0 = g_2/c_1 = -1.$ $r = c_0(1-2w)/2 \pm \delta^{1/2}, h_{i,1}/(1-2w) = -h_{i,2} = c_0 + c_1 r^{-i}, H_{i,2} = -(c_0 + c_1 r^{-i})/R_i,$ $R_i = r^i - (1 - 2w) (c_0 + c_1 r^{-i}), S_i = (1 - 2w) [c_0 + c_1 (r^{-1} + r^{-i})]$ for $c = c_0 + c_1$, w = 0 or $w = 1 - c^{-1} = w_1$ say and $\delta = c_0^2 (1 - 2w)^2 / (4c_1) + 1 - 2w$. The case w = 0. Then $\delta = c_0^2/(4c_1) + 1$, $r = c_0/2 \pm \delta^{1/2}$, $R_i = r^i - c_0 - c_1 r^{-i}$. **The case** $w = 1 - c^{-1}$. *Then* $\delta = c_0^2 (2c^{-1} - 1)^2 / (4c_1) + 2c^{-1} - 1, r = c_0 (2c^{-1} - 1) / 2 \pm \delta^{1/2}$ $R_i = r^i - (2c^{-1} - 1)(c_0 + c_1r^{-i}).$ **Example 2.3.** Take $F(z) = c_0 (z - z^2)$, $G(z) = z^2 + c_1$. If $c = 1 - c_0 \neq 0$ then $w = cw^2 + c_0w + c_1$, $w^2 - w + c_2 = 0$. $w = 1/2 \pm (1/4 - c_2)^{1/2}, f_1 = c_0(1 - 2w), g_1 = 2w, f_2 = -c_0, g_2 = 1,$ $r = f_1/2 \pm \delta^{1/2} = r_1$ and r_2 say. $h_{i,1} = c_0(1-2w) + 2wr^{-i}, R_i = r^i - h_{i,1}, h_{i,2} = -c_0 + r^{-i}, H_{i,2} = (-c_0 + r^{-i})/R_i$ for $c_2 = c_1/c$ and $\delta = f_1^2/4 + g_1$. If $c_0 = 1$ then w is not defined so the method fails. **Example 2.4.** Take $F(z) = z^2 + c_1$, $G(z) = c_0(z - z^2)$. Then, if $c_0 \neq 1$, w is given by Example 2.3, $f_1 = 2w, g_1 = c_0(1-2w), f_2 = 1, g_2 = -c_0,$ $r = w \pm \delta^{1/2}$.

$$h_{i,1} = 2w + c_0(1-2w)r^{-i}, R_i = r^i - h_{i,1}, h_{i,2} = 1 - c_0r^{-i}, H_{i,2} = (-c_0 + r^{-i})/R_i$$

 $\int \frac{1}{31}$ for $\delta = w^2 + c_0(1-2w)$.

 $\begin{array}{c}
2\\
3\\
4\\
5\\
6\\
7\\
8\\
9\\
10\\
11\\
12\\
13\\
14
\end{array}$

15

16 17

18 19

20

21 22

23

24

25 26

27 28

29 30

37

38

32 **Example 2.5.** Take F(z) = z. Then w is any root of G(w) = 0. $r = 1/2 \pm \delta^{1/2}$ for $\delta = 1/4 + g_1$. $r \neq 0, 1$ implies that $g_1 \neq 0$. So, the method does not cover $G(x) = cx^d$ with d > 1, but it does allow for 34 G(x) any quadratic with non-zero discriminant. In that case, A_i is given by (16) with $H_{i,2} = g_2 r^{-i}/R_i$, 35 $R_i = r^i - 1 - g_1 r^{-i}.$ 36

3. The additive recurrence equation (3)

For k, $j \ge 0$, let $F_k(x)$ be an analytic function with *j*th derivative $F_{k,j}(x)$. Set 40 $f_{k,j} = F_{k,j}(w)/j!, \ h_{i,j} = \sum_{k=0}^{q-1} f_{k,j} \ r^{-ik}, \ F(x) = \sum_{k=0}^{q-1} F_k(x),$ **41** (17) 42

$$\sum_{i=1}^{\infty} a_i r^{in+i} = z_{n+1} = x_{n+1} - F(w) = \sum_{k=0}^{q-1} \left[F_k(x_{n-k}) - F_k(w) \right] = \sum_{i=1}^{\infty} r^{in} C_i$$

for C_i , E_i of (11) and $h_{i,i}$ of (17). For i = 1 and $\alpha \neq 0$ this gives

$$r = h_{1,1} = \sum_{k=0}^{q-1} f_{k,1} r^{-k}.$$

10 Multiplying by r^{q-1} gives a polynomial of degree q for r with roots r_1, \ldots, r_q say. For $i \ge 2$, it gives ¹¹ the recurrence equation (13) for A_i in terms of

$$H_{i,j} = h_{i,j}/R_i, R_i = r^i - h_{i,j}$$

14 where

12 13

15

16 17

32

38 39

$$h_{i,1} = \sum_{k=0}^{q-1} f_{k,1} r^{-ik}.$$

If $r^{I} = 1$, then $R_{I+1} = R_{1} = 0$ and the method fails. This proves 18

19 **Theorem 3.1.** For k = 0, 1, ..., q - 1, let F_k be any function. Choose any w such that F(w) = w, where $F(x) = \sum_{k=0}^{q-1} F_k(x)$. Suppose that $\{F_k\}$ are analytic at w. Define $f_{k,j}$, $h_{i,j}$ by (17), R_i by (14), and $H_{i,j}$ 21 22 23 by (13). Then for r any root of (18) that is not a root of 1, the additive recurrence equation (8) has solution (3), where A_i is given by the recurrence equation (13).

Again, α can be obtained from x_0 by Lagrange inversion of (2), but doing that will fix the value 24 of x₁. When $q = \infty$, F(x) must be finite at w. If each $F_k(x)$ is a polynomial of degree p or less, then $h_{i,j} = H_{i,j} = 0$ for j > p. For the case q = 1, see Withers and Nadarajah [4]. 26

27 **Example 3.1.** Take $q = \infty$, $F_k(x) = [G(x)]^k = c_k(G(x))$ for $c_k(G) = G^k$. So, 28 29 $F(x) = [1 - G(x)]^{-1}$

30 when |G(x)| < 1, and the fixed points are the roots of 31

$$w[1 - G(w)] = 1$$

33 when $|1 - w^{-1}| = |G(w)| < 1$. If w is real, this holds if and only if w > 1/2. If $w = w_0 e^{i\gamma}$ for $w_0 > 0$ 34 and $i = \sqrt{-1}$, this holds if and only if $w_0 \cos \gamma > 1/2$. $h_{i,i}$ of (17) needs the derivatives of $F_k(x)$ at w. 35 These are given in terms of those of G(x) at w by Faa di Bruno's chain rule, equation [4c], page 137 of 36 37 *Comtet* [1]:

$$j!f_{k,j} = F_{k,j}(w) = \sum_{i=1}^{j} B_{j,i}(G)c_{k,i}$$

40 41 for $j \geq 1$, where 42

$$c_{k,i} = c_{k,i}(G(w)) = (k)_i [G(w)]^{k-i}$$

1 where $(k)_i = k(k-1)\cdots(k-i+1)$, $B_{i,i}(G)$ is the partial exponential Bell polynomial in $G = (G_1, G_2, \ldots)$ ² and $G_i = G_{i}(w)$. These polynomials are tabled on pages 307-308 of Comtet [1] for $1 \le j \le 12$. We **3** now solve (18):

$$f_{k,1} = kG(w)^{k-1}G_{.1}(w) = k\left(1 - w^{-1}\right)^{k-1}G_{.1}(w),$$

4 5 6 7 8 9 10 which implies $r^2 = w^2 G_{1}(w)$ which implies $r = 1 - w^{-1} \pm [G_{1}(w)]^{1/2}$. The case G(x) = gx, where $g \neq 0$, 1. That is,

$$x_{n+1} = \sum_{k=0}^{\infty} \left(gx_{n-k}\right)^k.$$

¹² The fixed points are the roots of w(1-gw) = 1, that is, $w = (1 \pm \Delta^{1/2})/(2g)$, where $\Delta = 1-4g$, and ¹³ we require that |gw| < 1. Also

$$f_{k,j} = \binom{k}{j} g^k w^{k-j}, \ h_{i,j} = w^{-j} H_j \left(g w r^{-i} \right),$$

16 17 18 where

11

14 15

19 20

23 24

31 32 33

38 39 40 $H_j(x) = \sum_{k=j}^{\infty} \binom{k}{j} x^k = x^j (1-x)^{-j-1}$

21 22 for |x| < 1. So, by (18),

$$r = h_{1,1} = H_1 \left(g w r^{-1} \right) w^{-1}$$

²⁵ where $H_1(x) = x(1-x)^{-2}$, which implies $g = (r - gw)^2$ which implies $r = gw \pm g^{1/2} = r_1, r_2$ say. Set ²⁶ $D_i = r^i - gw, N_i = D_i^2 - g$. Then $R_i = r^i N_i D_i^{-2}$, $h_{i,1} = gr^i D_i^{-2}$. If g = 1/4 then r = 1.

Example 3.2. Take $q = \infty$, $F_0(x) = b + c_0 x$, $F_k(x) = c_k x$ for $k \ge 1$. So, F(x) = b + cx for finite $c = c_0 x$ 29 $\sum_{k=0}^{\infty} c_k \neq 1$. w = b/(1-c), $f_{k,1} = c_k$, $f_{k,j} = h_{i,j} = H_{i,j} = 0$ for $j \ge 2$, $R_i = r^i - h_{i,1}$, $h_{i,1} = \sum_{k=0}^{\infty} c_k r^{-ik}$, $\overline{a_0}$ $A_i = 0$ for $i \ge 2$ and $x_n = w + \alpha r^n$, where $\alpha = x_0 - w$ and r is any solution of

$$r = h_{1,1} = \sum_{k=0}^{\infty} c_k r^{-k}.$$

34 **Example 3.3.** Take $q = \infty$, $F_k(x) = bI(k = 0) + c_k x + d_k x^2$ for $k \ge 0$. So, $F(x) = b + cx + dx^2$ for 35 finite $c = \sum_{k=0}^{\infty} c_k$, $d = \sum_{k=0}^{\infty} d_k$. $dw^2 + (c-1)w + b = 0$ implies $w = (1 - c \pm \delta^{1/2})/(2d)$, where 36 37 $\delta = (1-c)^2 - 4bd$ and r is any solution of $r = h_{1,1}$, where

$$h_{1,1} = \sum_{k=0}^{\infty} f_{k,1} r^{-ik}, f_{k,1} = c_k + 2wd_k.$$

41 For $i \ge 2$, $A_i = B_{i,2}h_{i,2}/R_i$, where $R_i = r^i - h_{i,1}$, $h_{i,2} = \sum_{k=0}^{\infty} f_{k,2}r^{-ik}$, $f_{k,2} = 2d_k$ and $B_{i,2} = \sum_{i=1}^{i-1} A_j A_{i-j}$. 42 So, $A_2 = h_{2,2}/R_2$, $A_3 = 2A_2h_{3,2}/R_3$, and so on.

 $\begin{array}{c|c} 1 \\ 2 \\ \hline 3 \\ \hline 4 \\ \hline 5 \\ \hline 6 \\ \hline 7 \\ \hline 8 \\ 9 \\ \hline 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ \hline 15 \\ 16 \\ \hline 17 \\ 18 \end{array}$ Let $F(x_1,x_2): \mathscr{C} \times \mathscr{C} \to \mathscr{C}$ be a given function. In this section, we extend Section 2 by finding solutions to (19) $x_n = F(x_{n-1}, x_{n-2}).$ Let w be any root of F(w, w) = w. Suppose that $F(x_1, x_2)$ is analytic in a neighbourhood of (w, w). For $j_1, j_2 = 0, 1, \dots,$ set $F_{i_1,i_2}(x_1,x_2) = \partial_1^{j_1} \partial_2^{j_2} F(x_1,x_2)$ for $\partial_i = \partial/\partial x_i, f_{i_1,i_2} = F_{i_1,i_2}(w,w)/j!k!.$ Let us try again for a solution of the form (1). By (7), $\sum_{i=1}^{\infty} (\alpha r^{n})^{i} A_{i} = z_{n} = x_{n} - w = F(x_{n-1}, x_{n-2}) - F(w, w) = \sum_{i_{1}}^{\infty} \sum_{j_{2}=0}^{\infty} z_{n-1}^{j_{1}} z_{n-2}^{j_{2}} f_{j_{1}, j_{2}}$ 19 20 $=\sum_{i=1}^{\infty} (\alpha r^{n-1})^{i_1} (\alpha r^{n-2})^{i_2} C(i_1,i_2),$ 21 22 23 24 25 26 where $C(i_1, i_2) = \sum_{i_1=0}^{i_1} \sum_{j_2=0}^{i_2} B_{i_1, j_1} B_{i_2, j_2} f_{j_1, j_2},$ 27 excluding $j_1 = j_2 = 0$. For $i \ge 1$, the coefficient of $(\alpha r^n)^i$ is 28 29 30 $A_i = C_i$, 31
32
33
34
35
36
37
38 where $C_i = \sum_{i_1+i_2=i} r^{-i_1-2i_2} C_{i_1,i_2},$ implying $1 = r^{-1} f_{1,0} + r^{-2} f_{0,1}, r = \left(f_{1,0} \pm \delta^{1/2} \right) / 2 = r_1, r_2$ say, (20)39 40 where $\delta = f_{1,0}^2 + 4f_{0,1}$. This holds since $B_{1,1} = A_1 = 1$. So, for *r* not a root of 1, 41 42 $A_i = R_i^{-1} E_i$ (21)

4. The general two step recurrence equation

for $i \ge 2$, where $\frac{1}{2} \quad \text{for } l \ge 2, \text{ with} l \ge 2, \text{$ $R_i = 1 - r^{-i} f_{1,0} - r^{-2i} f_{0,1},$ $E_i = r^{-i}E_{i,0} + r^{-2i}E_{0,i} + J_i, \ E_{i,0} = \sum_{i=2}^i B_{i,j}f_{j,0}, \ E_{0,i} = \sum_{i=2}^i B_{i,j}f_{0,j},$ $J_{i} = \sum \left[r^{-i_{1}-2i_{2}} C_{i_{1},i_{2}} : i_{1}+i_{2}=i, i_{1} \geq 1, i_{2} \geq 1 \right] = \sum_{i_{1}=1}^{i-1} r^{-2i+i_{1}} C_{i_{1},i-i_{1}}.$ 11 ¹² **Theorem 4.1.** Given $F(x_1, x_2)$: $\mathscr{C} \times \mathscr{C} \to \mathscr{C}$ let w be any root of F(w, w) = w. Suppose that $F(x_1, x_2)$ 13 is analytic in a neighbourhood of (w, w), and that r is either root of (20) but not a root of 1. Then a 14 solution of (19) is (1), where A_i is given by (21) in terms of E_i of (22). 15 **Example 4.1.** Suppose that (5) holds with q = 2, and for k = 1, 2, $F_k(x_k) = x_k^{a_k}$. So, 17 18 $f_{j_1,j_2} = \prod_{k=1}^2 f_{k,j_k},$ 19 20 21 where 22 23 24 $f_{k,j_k} = F_{k,j_k}(w_k) / j_k! = \binom{a_k}{j_k} w^{a_k - j_k},$ 25 $w = w^a$, $a = a_1 + a_2$, w = 0 or 1. 26 27 Then r is given by (20) in terms of 28 29 $f_{1,0} = a_1 w^{a_1 - 1}, \ f_{0,1} = a_2 w^{a_2 - 1}.$ 30 31 **The case** w = 0. Suppose that $a_1, a_2 \in \mathcal{N}$ so that both $F_k(x_k)$ are analytic at 0. Then 32 33 $f_{1,0} = I(a_1 = 1), f_{0,1} = I(a_2 = 1), \delta = I(a_1 = 1) + 4I(a_2 = 1).$ 34 35 There are four subcases: 36 (i) If $F(x) = x_1 x_2$, then $\delta = 5$, $r = (1 \pm 5^{1/2})/2$, $R_i = 1 - r^{-i} - r^{-2i}$. 37 (ii) If $F(x) = x_1$, then $\delta = 1$, r = 0 or 1, which are not allowed, see (4). 38 (iii) If $F(x) = x_2$, then $\delta = 4$, $r = \pm 1$, and $R_i = 1 - r^{-2i}$. 39 (iv) Otherwise $r = \delta = 0$, $R_i = 1$, see (4). 40 41 In each case, $f_{j_1,j_2} = 0$ unless $(j_1, j_2) = (0,0)$, (1,0) or (0,1), so that $A_i = E_i = 0$ for $i \ge 2$, and 42 $x_n = \alpha r^n$, where $\alpha = x_0$.

The case w = 1. Then $f_{j_{1},j_{2}} = \prod_{k=1}^{2} {a_{k} \choose j_{k}}, f_{1,0} = a_{1}, f_{0,1} = a_{2}, R_{i} = 1 - r^{-i}a_{1} - r^{-2i}a_{2},$ $r = (a_{1} \pm \delta^{1/2})/2,$ $E_{2} = r^{-2} {a_{1} \choose 2} + r^{-3}a_{1}a_{2} + r^{-4} {a_{2} \choose 2},$ $E_{3} = r^{-3} \left[2A_{2} {a_{1} \choose 2} + {a_{1} \choose 3} \right] + r^{-4} \left[A_{2}a_{1} + {a_{1} \choose 2} \right] a_{2} + r^{-5}a_{1} \left[A_{2}a_{2} + {a_{2} \choose 2} \right]$ $+ r^{-6} \left[2A_{2} {a_{2} \choose 2} + {a_{2} \choose 3} \right],$ $E_{4} = r^{-4} \left[B_{4,2} {a_{1} \choose 2} + 3A_{2} {a_{1} \choose 3} + {a_{1} \choose 4} \right] + r^{-5} \left[A_{3}a_{1} + 2A_{2} {a_{1} \choose 2} + {a_{1} \choose 3} \right] a_{2}$ $+ r^{-6} \left[A_{2}^{2}a_{1}a_{2} + A_{2} (a_{1} + a_{2} - 2)a_{1}a_{2}/2 + {a_{1} \choose 2} {a_{2} \choose 2} \right] + r^{-7}a_{1} \left[A_{3}a_{2} + 2A_{2} {a_{2} \choose 2} + {a_{2} \choose 3} \right]$ $+ r^{-8}a_{1} \left[B_{4,2} {a_{2} \choose 2} + 3A_{2} {a_{2} \choose 3} + {a_{2} \choose 4} \right]$ $for \delta = a_{1}^{2} + 4a_{2} and B_{4,2} = 2A_{3} + A_{2}^{2}. Coclan and Duman [2] gave a solution when <math>-a_{1} = a_{2} = p > 0.$ E_{4} $E_{4} Er \left(x_{1}, \dots, x_{q} \right) : \mathcal{C}^{q} \to \mathcal{C}$ be any function. We give solutions to E_{4} $(23) \qquad x_{n} = F \left(x_{n-1}, \dots, x_{n-q} \right).$ 28 29 Let w be any root of F(w, ..., w) = w. Suppose that F is analytic in a neighbourhood of (w, ..., w). For 30 31 $j_1, \ldots, j_q = 0, 1, \ldots,$ set 32 33 34 35 $F_{j_1,\ldots,j_q}(x_1,\ldots,x_q) = \partial_1^{j_1}\cdots\partial_q^{j_q}F(x_1,\ldots,x_q)$ for 36 37 $\partial_i = \partial/\partial x_i, \ f(j_1,\ldots,j_q) = f_{j_1,\ldots,j_q} = F_{j_1,\ldots,j_q}(w,\ldots,w)/j_1!\cdots j_q!.$ 38 39 Let us try again for a solution of the form (1). Since 40 $z_{n-k}^{j_k} = \sum_{i_k=i_k}^{\infty} \left(\alpha r^{n-k}\right)^{i_k} B_{i_k,j_k},$ 41 42

we have

$$\sum_{i=1}^{\infty} (\alpha r^{n})^{i} A_{i} = z_{n} = x_{n} - F(w, ..., w)$$

$$= F(x_{n-1}, ..., x_{n-q}) - F(w, ..., w) = \sum_{j_{1}, ..., j_{q}=0}^{\infty} f(j_{1}, ..., j_{q}) z_{n-1}^{j_{1}} \cdots z_{n-q}^{j_{q}}$$

$$= \sum_{i_{1}, ..., i_{q}=1}^{\infty} (\alpha r^{n-1})^{i_{1}} \cdots (\alpha r^{n-q})^{i_{q}} C(i_{1}, ..., i_{q}),$$

where

$$C(i_1,...,i_q) = \sum_{j_1=0}^{i_1} \dots \sum_{j_q=0}^{i_q} B_{i_1,j_1} \cdots B_{i_q,j_q} f(j_1,...,j_q),$$

 $\begin{array}{c}
1\\
2\\
3\\
4\\
5\\
6\\
7\\
8\\
9\\
10\\
11\\
12\\
13\\
14
\end{array}$ excluding $j_1 = \cdots = j_q = 0$. Let e_k be the *k*th unit vector in \mathscr{C}^q . Set $|i| = i_1 + \cdots + i_q$. For $I \ge 1$, the coefficient of $(\alpha r^n)^I$ in (24) is 15

 $A_I = C_I$,

 $C_{I} = \sum_{|i|=I} r^{-i_{1}-2i_{2}-\cdots-qi_{q}} C(i_{1},\ldots,i_{q}).$

17 18

where

19 20 (25)

16

37 38

39

21 22 23 24 In particular,

$$1 = A_1 = C_1 = \sum_{k=1}^{q} r^{-k} C(e_k), \ C(e_k) = f(e_k),$$

25 26 implying

$$1 = \sum_{k=1}^{q} r^{-k} f(e_k)$$

a polynomial of degree q in r^{-1} with solutions r_1, \ldots, r_q say. Let $\sum_{k}^{s'}$ denote summation over $1 \le k_1 < \frac{30}{31} \cdots < k_s \le q$, and \sum_{k}^{s} denote summation over $1 \le k_1 \le \cdots \le k_s \le q$. For $J \ge 1$, set

³²
³³ (27)
$$S_J = \sum_{k=1}^{q} r^{-Jk} f(e_k), R_J = 1 - S_J.$$

³⁴₃₅ If $r^I = 1$, then $R_{I+1} = R_1 = 0$ and the method fails. Suppose that *r* is not a root of 1. If J = 2, then ³⁵₃₆ $i = e_{k_1} + e_{k_2}$ say, and $\sum_{k=1}^{q} ki_k = k_1 + k_2$. So,

$$A_2 = C_2 = \sum_{1 \le k_1 \le k_2 \le q} r^{-k_1 - k_2} C\left(e_{k_1} + e_{k_2}\right),$$

$$C\left(e_{k_{1}}+e_{k_{2}}\right) = B_{1,k_{1}}B_{1,k_{2}}f\left(e_{k_{1}}+e_{k_{2}}\right) = f\left(e_{k_{1}}+e_{k_{2}}\right), \ k_{1} < k_{2},$$

$$\frac{40}{41} (28) \qquad C(Je_{k_1}) = \sum_{j=1}^{J} B_{J,j}f(je_k), C(2e_{k_1}) = A_2f(e_k) + f(2e_k)$$

which implies

$$\frac{2}{2}$$
which implies

$$\frac{2}{2}$$
for

$$E_{2} = E_{2} + A_{2}S_{2}$$

$$E_{2} = \sum_{1 \le k_{1} \le k_{2} \le q} r^{-k_{1}-k_{2}} f(e_{k_{1}} + e_{k_{2}})$$

$$E_{2} = \sum_{1 \le k_{1} \le k_{2} \le q} r^{-k_{1}-k_{2}} f(e_{k_{1}} + e_{k_{2}})$$
and $R_{2}A_{2} = E_{2}$ implies $A_{2} = R_{2}^{-1}E_{2}$. If $J = 3$, then $i = e_{k_{1}} + e_{k_{2}} + e_{k_{3}}$ say, where $k_{1} \le k_{2} \le k_{3}$, and

$$\frac{11}{12}$$

$$A_{3} = C_{3} = \sum_{k}^{3} r^{-k_{1}-k_{2}-k_{3}}C(e_{k_{1}} + e_{k_{2}} + e_{k_{3}}) = C^{1,1,1} + \sum_{k}^{2} C^{2,1} + C^{3},$$
where

$$C^{1,1,1} = \sum_{k}^{3} r^{-k_{1}-k_{2}-k_{3}} f(e_{k_{1}} + e_{k_{2}} + e_{k_{3}}),$$

$$C^{2,1} = \sum_{k}^{2} r^{-2k_{1}-k_{2}}C(2e_{k_{1}} + e_{k_{3}}),$$

$$C^{2,1} = \sum_{k}^{2} r^{-2k_{1}-k_{2}}C(2e_{k_{1}} + e_{k_{3}}),$$

$$C^{2,1} = \sum_{k}^{2} r^{-2k_{1}-k_{2}}C(2e_{k_{1}} + e_{k_{3}}) + f(e_{k_{1}} + e_{k_{2}}) = A_{2}f(e_{k_{1}} + e_{k_{2}}) + f(2e_{k_{1}} + e_{k_{2}}),$$

$$C^{1,2} = \sum_{k}^{2} r^{-k_{1}-k_{2}}A_{2}f(2e_{k_{1}} + e_{k_{3}}) + f(e_{k_{1}} + 2e_{k_{2}})],$$
where $\sum^{2} C^{2,1} = C^{2,1} + C^{1,2}.$ Further,

$$C^{3} = \sum_{k=1}^{q} r^{-3k} C(3e_{k}), C(3e_{k}) = A_{3}f(e_{k}) + 2A_{2}f(2e_{k}) + f(3e_{k})$$

$$C_{1} = \sum_{k=1}^{2} r^{-k_{1}-k_{2}-k_{3}}f(e_{k_{1}} + e_{k_{2}} + e_{k_{3}}) + A_{2}\sum_{k=1}^{2} r^{-2k_{1}-k_{2}}f(e_{k_{1}} + e_{k_{2}}) + f(3e_{k})$$

$$C_{1} = \sum_{k=1}^{3} r^{-k_{1}-k_{2}-k_{3}}f(e_{k_{1}} + e_{k_{2}} + e_{k_{3}}) + A_{2}\sum_{k=1}^{2} r^{-2k_{1}-k_{2}}f(e_{k_{1}} + e_{k_{2}}) + 2A_{2}\sum_{k=1}^{q} r^{-3k} f(2e_{k}).$$

$$C_{1} = \sum_{k=1}^{3} r^{-k_{1}-k_{2}-k_{3}}f(e_{k_{1}} + e_{k_{2}} + e_{k_{3}}) + A_{2}\sum_{k=1}^{2} r^{2} r^{-2k_{1}-k_{2}}f(e_{k_{1}} + e_{k_{2}}) + 2A_{2}\sum_{k=1}^{q} r^{-3k} f(2e_{k}).$$

$$C_{1} = \sum_{k=1}^{3} r^{-k_{1}-k_{2}-k_{3}}f(e_{k_{1}} + e_{k_{2}} + e_{k_{3}}) + 2\sum_{k=1}^{2} r^{2} r^{-2k_{1}-k_{2}}f(e_{k_{1}} + e_{k_{2}}) + 2A_{2}\sum_{k=1}^{q} r^{-3k} f(2e_{k}).$$

$$C_{1} = \sum_{k=1}^{3} r^{-1} r$$

where $C^{1,1,1,1} = \sum_{k}^{4'} r^{-k_1 - k_2 - k_3 - k_4} f\left(\sum_{k=1}^{4} e_{k_k}\right),$ $C^{2,1,1} = \sum_{k=1}^{3'} r^{-2k_1-k_2-k_3} C\left(2e_{k_1}+e_{k_2}+e_{k_3}\right),$ $C(2e_{k_1}+e_{k_2}+e_{k_3}) = A_2f(e_{k_1}+e_{k_2}+e_{k_3}) + f(2e_{k_1}+e_{k_2}+e_{k_3}),$ $C^{2,2} = \sum_{k=1}^{2'} r^{-2k_1 - 2k_2} C\left(2e_{k_1} + 2e_{k_2}\right),$ $C\left(2e_{k_1}+2e_{k_2}\right) = \sum_{i_1,i_2=1}^{2} B_{2,j_1}B_{2,j_2}f\left(j_1e_{k_1}+j_2e_{k_2}\right)$ $=A_{2}^{2}f(e_{k_{1}}+e_{k_{2}})+A_{2}\sum^{2}f(2e_{k_{1}}+e_{k_{2}})+f(2e_{k_{1}}+2e_{k_{2}}),$ $C^{3,1} = \sum_{l}^{2'} r^{-3k_1 - k_2} C\left(3e_{k_1} + e_{k_2}\right),$ $C(3e_{k_1}+e_{k_2})=\sum_{j=1}^{3}B_{3,j_1}f(j_1e_{k_1}+e_{k_2})$ $= A_3 f(e_{k_1} + e_{k_2}) + 2A_2 f(2e_{k_1} + e_{k_2}) + f(3e_{k_1} + e_{k_2}),$ 22 $C(4e_k) = A_4f(e_k) + B_{4,2}f(2e_k) + 3A_2f(3e_k) + f(4e_k).$ 23 24 Further. 25 $C^{4} = \sum_{k=1}^{q} r^{-4k} C(4e_{k}) = A_{4}S_{4} + E^{4}$ 26 27 28 say, implying 29 $A_4 = R_4^{-1} E_4,$ 30 31 where $E_4 = C^{1,1,1,1} + \sum_{i=1}^{3} C^{2,1,1} + C^{2,2} + \sum_{i=1}^{2} C^{3,1} + E^4.$ 32 33 34 Similarly, for $J \ge 2$, 35 $A_I = R_I^{-1} E_I$ (29)36 where $E_J = C_J - A_J S_J$. This proves

Theorem 5.1. Given $F(x_1,...,x_q)$: $\mathscr{C}^q \to \mathscr{C}$, let w be any root of F(w,...,w) = w. Suppose that $F(x_1,...,x_q)$ is analytic in a neighbourhood of (w,...,w). Then a solution of (23) is (1), where A_J and R_J are given by (29) and (27), and r is any solution of (26) but not a root of 1.

(25) is a polynomial in r^{-1} . If we started from $x_{n+1} = F(x_n, \dots, x_{n-q+1})$, as in Sections 2-3, rather than from (23), then the left hand side of (25) would be $r^I A_I$. Starting with (23) gives simpler equations.

References

2	[1]	Comtet, L.	1974). Advanced	Combinatorics.	Reidel.	Dordrecht.

- [2] Ocalan, O. and Duman, O. (2019). On solutions of the recursive equations $x_{n+1} = x_{n-1}^p / x_n^p$, (p > 0) via Fibonacci-type sequences. *Electronic Journal of Mathematical Analysis and Applications*, **7**, 112-115.
- [3] Withers, C. S. and Nadarajah, S. (2015). Solutions of linear recurrence equations. *Applied Mathematics and Computation*, **271**, 768-776.
- [4] Withers, C. S. and Nadarajah, S. (2021). Solutions to nonlinear recurrence equations. *Rocky Mountain Journal of Mathematics*, **52**, 2153-2168.
- [5] Withers, C. S. and Nadarajah, S. (2022). More solutions to nonlinear recurrence equations. *Rocky Mountain Journal of Mathematics*, **53**, 579-587.
- [6] Withers, C. S. and Nadarajah, S. (2023). Some solutions to vector nonlinear recurrence equations. *Rocky Mountain Journal of Mathematics*, 53, 969-981.
- CALLAGHAN INNOVATION, LOWER HUTT, NEW ZEALAND
- Email address: kit.withers@gmail.com

UNIVERSITY OF MANCHESTER, MANCHESTER M13 9PL, UK

Email address: mbbsssn2@manchester.ac.uk