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9 ABSTRACT. Let € be the complex numbers, and ¢ any positive integer. Let F (x1,...,x4) : €9 — € be
10 a given function. Let w be any solution to F (w,...,w) = w. Suppose that F is analytic in a neighbourhood
o of (w,...,w). For each such w, we give a solution to
E xn:F(xi1—17"'7xn—q)
13 of the form
% Xn (0, W, r(w)) =w+ ZAi(w) ol [r(w)}"i7
15 i=1
16 where a is arbitrary and r(w) is any root of a certain polynomial that is not a root of 1.
17
18
19 i
- 1. Introduction
20

21 Withers and Nadarajah [3] gave solutions to linear recurrence equations. Withers and Nadarajah [4, 5]
22 gave solutions to nonlinear recurrence equations. Withers and Nadarajah [6] gave solutions to vector
23 nonlinear recurrence equations. The aim of this note is to give solutions to g-step nonlinear recurrence
24 equations.

25 Let € denote the complex numbers. It is well known that the linear recurrence equation in %,
25 Xy = 2?:0 ¢jxu— j, has a solution of the form x, = Y7, a;r”, where {r;} are the roots of 1 = Z?:O cjr
27 if distinct. Less known is its solution in terms of the Bell polynomials below, as given in Withers and
28 Nadarajah [3]. In contrast there has been no theory giving exact solutions to non-linear recurrence
29 equations until Withers and Nadarajah [4] gave solutions to the recurrence equation of order 1,

30

3T Xn+1 :F(xn)

32
= These are of the form

Si(l) xn(OC,W,r>:W+Z”,
35

36 where
37

38 =Y A a'r A =1,
i=1

39

40
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r=F(w), Fj(z) is the jth derivative of F(z), and w is any fixed point of F, that is, w = F (w). The

1
2> solutions holds for a given x if o can be chosen so that

B _

ERC) xo—w=Y A d,

5 i=1

‘6 that is, if xo — w is small enough to obtain « by Lagrange inversion, see Section 5 of Withers and
7 Nadarajah [4].

'8 In Section 3, we extend this to the additive recurrence equation of order g,

9 il

10 (3) X1 =Y Fi (X))

11 k=0

. The solution has the form (1) with w any fixed point of F(z) = ZZ;(I) Fi(z), and r = r(w) any root
" of a certain polynomial of degree ¢, excluding roots of 1. So, if there are N fixed points w, say w;,
- and for each w there are g such r(w), then we have gN solutions, say r;(w;). One can then plot
. each x, (o, w;, 7 (w;)) versus a forn =0,1,...,qg — 1 to see which (xo, ... ,xq,l) are possible. This
- seems better than obtaining ¢ from a given xy by Lagrange inversion as above. A solution need not
o diverge if |r(w)| > 1, see Examples 2.1 and 3.4 of Withers and Nadarajah [4]. A; is given by an easily
— programmed recurrence equation in terms of w and the derivatives of F at (w,...,w). Our examples
— give the first few A; explicitly, but this can be a distraction. For each example, one can plot xy or

o (x1,...,x4) against ¢ for each of the gN roots r(w). Our method excludes the special cases

22(4) r:O:>anw,rI:1:>xn+1:xn.

23
o, Section 2 deals with (3) for ¢ = 2. Section 5 extends (3) to the general recurrence equation of order g,

25 Xp=F (Xn—1,..-,Xn—q)

26
-, beginning in Section 4 with g = 2.
-5  Example 4.1 is an example of a multiplicative recurrence equation of order q,

29 q
:; (5) Xp = HFk (xn,k) .

o k=1

32 These results may be extended to a wider class of solutions, as in Withers and Nadarajah [5]. If
33 ¢ > 2, the solutions are special as they only have one free variable ¢, to match xp, but not x;.

34 Weuse the partial ordinary Bell polynomial B; ; = §,~7 j(A). It is tabled on page 309 of Comtet [1]
35 for 1 <i< 10 and defined as follows. For rin % and A = (A;,A»,...) any sequence in %, set

36 o0
37 (6) S(rA) =Y A
38 i=1

39 Then B, j is defined by

40

‘E (7) [S(I",A)]J = iBiJ ri
42 i=j
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for j=0,1,.... So,
gh=) Bijo'r"
=
for z, of (1). Taking the coefficient of  in [S(r,A)])) = [S(r,A))! "' S(r,A) gives

i—1

Bij= Y, Brj-1Aik
k=j—1

@|~[ofofs]e]n]-

9 fori> j > 1. For subroutines for B;  for various packages, see Note 1.1 of Withers and Nadarajah [4].
10 Inourcase, A = 1 so that B;; = 1.

" The results here can be extended to x, a vector, as done in Withers and Nadarajah [6]. Through, /(A)
12 denotes the indicator function.

13
E 2. The additive recurrence equation of order 2
% In this section, we give solutions to (3) for g = 2. Let us write (3) as

7(8) Xt = F (%) + G (1)

% Choose any w such that w = F(w) + G(w). For j =0,1,..., set

20 (9) [i=Fjw)/jt gj=Fjw)/jl hij=fi+gr™

. assuming that F and G are analytic at w. We seek a solution of the form x,, = x,(a,w,r) of (1). We
z% can write this as z, = S (ar",A) for S(r,A) of (6). So, by (7) and Taylor’s expansion,

24 ZAi (Otr’“’l)l =Znt1 =Xnt1 —W=F (x,) = F(w) + G (x,—1) — G(w)

25 i=1
26 oo
> (10) =
2? =
o9 Where

% i i
5 1D C= ZBi,jhi?j =Ahi1+E;, E; = ZBiJhi,ja E; =0.
i =1 =

J

(fJ'ZngZi,_]) =Y G (ar),
i=1

1

32
33 The coefficient of (")’ in (10) is

3 A,-ri =Ci=Ahi1 +E;.
35

36 Fori=1,this gives r=h; | = fi +gir!

, implying
o (12) Vz:fu’—l—g], r:f1/2j:51/2:r1 and rp
38

39 say, for 6 = f12 /4+g1. Fori > 2, it gives the recurrence equation for A;, in terms of h; j of (9),
40

i
41 Ay =1,A;=E;/Ri=Y B Hj i>2,

42 Jj=2
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1 where
2
5 (13) H;j=hi /R,
4 (14 Ri=r—h=US;, Ui=r""—1,
- 15 Si=fita(r ' +r ) =h +gri=r+gr.

" This proves
8

9 Theorem 2.1. Let F, G be analytic functions. Let w be any root of w = F (w) + G(w). Define fj, gj,
10 h; i by (9). Then for r = ry or rp of (12) not a root of 1, (1) is a solution of the recurrence equation (8),
11 where A; is given by the recurrence equation (13) in terms of R; of (14) and o € € is arbitrary.

12

13 Ifrf =1, then R;y1 = Ry = 0 and the method fails. As noted in Section 1, if |r| > 1, the series is
14 likely to diverge. If F(z) and G(z) are polynomials of degree p or less, then fj =g;j=h; j=H; ;=0
15 for j > p. In Examples 2.1 to 2.4 and the second part of Example 2.5, F(z) and G(z) are polynomials
16 of degree 2 or 1, so that f; = g; = h; j = H; j = 0 for j > 2, and for §; of (15),

17

18 hin=fi+gr ", hia=fo+gr™, Ha=hia/Ri, Ri=r'—hiy = (¥ = 1),
E Ay =1,A;=B;H;,

20

>, Where

22 i1

2 (16) Biz =) AjAij.

24 J=1

25 . . .. .
. There are two choices of w, and for each there are two choices of r, giving four solutions. For each of
o these one can plot xg, x; versus «, to see which are possible.

28 Example 2.1. An extension of the Mandelbrot equation. Take F(z) = 7>+ co, G(z) = 2> +¢|. Set

2 c=co+cy. Then

30

:1 W:2W2+C,W:<1iA1/2)/4,A:1—8C’ f1:g1:2W, fz:gzzl,
32

33 r2:2w(r—|—1), r=w+yv,

34 /’l,’71/2W=/’Li,2 = 1+r*’., H;, = (l—l—r*’.) /Ri, S; :ZW(1+F71—|—F4),
> Ri=r—2w(l+r')= d

" =T — W( +r )—(Si—l—tiV)/ i

" \where

38

i v=+482 §=w2w=(Sw—0)/2,

40

o so=2wr—w—1,6=4w’ —8w? +2w+1, db =2w?> +4w+1,

42 s3=02w—1Dw2w+3), 5= 2w+ 1) 2wds + 1), d3 = 4w* + 6w’ + 13w? + 4w+ 1.
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Example 2.2. An extension of the logistic map. Take F(z) = co (z— ZZ), G(z)=ci(z— z%). Then

1
2 w=c(w—w?),

% fi/co=g1/c1 =1=2w, 1 =2w, =211, fa/co=g2/c1 =—1,

B r=co(1—2w)/248"% hiy/(1=2w) = —hip =co+c1r, Hiy = — (co+c1r™) /Ry,
% Ri=r— (1—2w) (co+clr*"), Si=(1-2w) [co+cl (fl +r*")}

EforC:co—l—cl, w=0o0rw=1—c"'=wjsayand § = (1 —2w)?/(4c1) +1—2w.

9 The case w = 0. Then

% 5:C(2)/(46‘1)+1, r:c0/2:|:51/2, Ri=r —co—cyr .

12 Thecasew=1—c"'. Then

= 5=c3 (2 —1)*/(der) +2¢7 1, r=co (2c7 = 1) 24 82,

Ri=r— (2c_1 — 1) (co—i—clr_i) .

.
=]

% Example 2.3. Take F(z) =co (z—2%), G(z) = 2> +c1. If c = 1—co # 0 then

18 w=cw?+cow+cr, w—w+cy =0,

;% w=1/2+(1/4—c)"?, fi=co(1-2w), g1=2w, fo=—co, g2=1,

o r:f1/2j:51/2:r1 and ry say,

22 hi1 = co(l —2w) +2wr ™ R = ri—hi71, hir = —co4r7", Hir = (—co—i—r*") /R;
23

oy forca=ci/cand 6 = f12/4 +g1. If co = 1 then w is not defined so the method fails.

25 Example 2.4. Take F(z) = 7> +c1, G(z) = ¢ (z— ). Then, if co # 1, w is given by Example 2.3,
26

27 f1:2W, ngCO(l_ZW),f2:17 g2:_C07
2E r=w+8'2
29

o hl'71 = 2W—|—C0(1 —2W)I‘_i, R, = ri—hi71, hl‘72 =1 —Cor_i, Hi72 = (—Co—{—r_i) /R,'

:>Zf0r 8 =w?+co(1—2w).

% Example 2.5. Take F(z) = z. Then w is any root of G(w) =0. r=1/2+8'2 for § = 1/4 +g.
“ r#0,1 implies that g # 0. So, the method does not cover G(x) = cx? with d > 1, but it does allow for

Z% G(x) any quadratic with non-zero discriminant. In that case, A; is given by (16) with H; » = gr /R,
e Ri=r-1 —glr_i.

3 3. The additive recurrence equation (3)

38

3E For k, j > 0, let Fi(x) be an analytic function with jth derivative Fj,;(x). Set
40 -1 . q-1

4 (17) fei=Fyw)/jl hij=Y fjr ™ Fx) =Y F(x),
42 k=0 k=0
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1 where ¢ > 1. Let w be any solution of F(w) = w. By (7) and Taylor’s expansion, x, = w+z, is a
"2 solution to (3) for z, = Y2 | A;a'r™ if

i > -] <

4 Za,-r"“” =Znt1 =Xpp1 — F(w) = Z [Fi (xp—x) — Fe(w)] = Z r"C;

5 i=1 k=0 i=1

s forC;, E; of (11) and h; j of (17). For i = 1 and o # O this gives

7 -1

8 (18) r= h171 = kaJ rk.

9 k=0

10 Multiplying by 7~! gives a polynomial of degree ¢ for r with roots r1,.. ., rq say. Fori > 2, it gives

11 the recurrence equation (13) for A; in terms of

12 ;

. Hij=hij/Ri, Ri=r"—hiy,
14 where

15 q—1 "
16 hi,l - ka,l r
k=0

17
18 Ifrf =1, then R;+1 = Ry = 0 and the method fails. This proves

' Theorem 3.1. Fork = 0,1,...,q9— 1, let F be any function. Choose any w such that F (w) = w, where

20 F(x) = ZZ;(]) Fi(x). Suppose that {Fi.} are analytic at w. Define f j, h; ; by (17), R; by (14), and H; j
2t by (13). Then for r any root of (18) that is not a root of 1, the additive recurrence equation (8) has

2 solution (3), where A; is given by the recurrence equation (13).

22 Again, o can be obtained from xy by Lagrange inversion of (2), but doing that will fix the value
25 of x;. When g = oo, F/(x) must be finite at w. If each F;(x) is a polynomial of degree p or less, then
26 hi,j = H; ; = 0 for j > p. For the case g = 1, see Withers and Nadarajah [4].

27
o5 Example 3.1. Take g = oo, Fi(x) = [G(X)]* = cx (G(x)) for ek (G) = G*. So,

& F(x)=[1-G()] ™!
;i when |G(x)| < 1, and the fixed points are the roots of
32 w[l—Gw)] =1

% when ‘1 —w_1| = |G(w)| < 1. If wis real, this holds if and only if w > 1/2. If w = woe'Y for wo > 0
% and i = /=1, this holds if and only if wycosy > 1/2. hi.j of (17) needs the derivatives of Fi(x) at w.
% These are given in terms of those of G(x) at w by Faa di Bruno’s chain rule, equation [4c], page 137 of
2 Comtet [1]:

2% J = Fijw) =Y Bji(G)er,

ﬂforj > 1, where

41 .

o ci = exi (G(w)) = (k)i [GwW)] ™,

~.
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1 where (k)i=k(k—1)---(k—i+1), B;(G) is the partial exponential Bell polynomial in G = (G1,G»,...)
2 and G; = G.;(w). These polynomials are tabled on pages 307-308 of Comtet [1] for 1 < j < 12. We
3 now solve (18):

4 _ NS

5 fia =kGW) G (w)=k(1—w™ )" G(w),
6 . . ) .. , . -1 1/2

— which implies r* = w”G.1(w) which implies r = 1—w™" £[G.1(w)] /"

5 The case G(x) = gx, where g # 0, 1. That is,

s - k

10 Xnt+1 = Z (8%n—k)" -

T k=0
11

E The fixed points are the roots of w(1 — gw) = 1, that is, w = (1 :i:Al/z) /(2g), where A=1—4g, and
13 we require that |gw| < 1. Also

14

- k . . —i
15 fk,j: <.>gkwk j7 hi,j:W JH] (gWI‘ )a
16 J

" Where

18

o 0= ¥ (4)# =
20 =N

21

o5 Jor |x| < 1. So, by (18),

23 r=hy 1 =H (gwr_l)w_l,

24

25 where Hy(x) = x(1 —x) 2, which implies g = (r — gw)? which implies r = gw £ g'/?

26 D;=r —gw, N;= Dl-2 —g. ThenR; = r’N,-D;Z, hiyx = gr"sz. Ifg=1/4thenr=1.

27

os Example 3.2. Take g = oo, Fy(x) = b+ cox, Fr(x) = cpx for k > 1. So, F(x) = b+ cx for finite ¢ =
20 Yo ock#Lw=b/(1-¢), fir=ck fxj=hij=Hij=0for j>2, Ri=r—hiy, hiy =Y _ocxr X,
30 A; =0fori>?2andx, =w-+ ar", where o« = xo —w and r is any solution of

=ry, say. Set

31

32 V:h171 = ch rk.
k=0

33
% Example 3.3. Take q = oo, Fi(x) = bl(k = 0) + c;x + dpx® for k > 0. So, F(x) = b+ cx+dx* for
% finite c = ¥ gcr d = Y5 odr. dw? + (c — 1)w+b = 0 implies w = (1—c=+ 51/2) /(2d), where
® 5= (1—c)? —4bd and r is any solution of r = hy 1, where

37

38 - —ik

P hyy = ka,l r ", fin = o+ 2wdy.
> k=0

40

dz Fori Z 2, Al' = B,’72hl‘72/R,', where R,’ = ri - /’ll‘71, /’l,’72 = Zzo:() fk727‘_ik, fk72 = de and Bi’2 = Zi‘_:ll AJ'Ai_j.
ﬂi So, Az = h2,2/R2, A3 = 2A2h372/R3, and so on.
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1 4. The general two step recurrence equation

2 LetF (x1,x2) : € x € — € be a given function. In this section, we extend Section 2 by finding

3 .
— solutions to
4

519 Xn=F (Xp—1,Xn-2) .
6

7 Let w be any root of F(w,w) = w. Suppose that F (x1,x;) is analytic in a neighbourhood of (w,w). For

8 j1,j2=0,1,..., set
9
. Fj jp (x1,x2) = &1]182]2117 (x1,x2)
11
1o for

13
I ai:(?/ax,-, fjl,jzszl,jz(WaW)/j!k!'

® Letus try again for a solution of the form (1). By (7),
16

17

18
— i
19

- oo

20, = Y (e )" (ar"2)2 Clir,in),
21 i1,ir=1

22
> where

(") Ai=zn=x0—w=F (_1,002) —F(wow) = Y 2" 22 £ 5
1 J1,J2=0

™

QZ i\ i
25 C(ilviZ) = Z Z Biy j\Biy,jp S
26 J1=0j2=0

27

28

29
= A =C:
30 l 1y

31 where

32

_ —i1—2i
33 C,‘— Z r ' 2Ci1,i27

34 i1+ip=i

.
e implying

excluding j; = j» = 0. Fori > 1, the coefficient of (ar”)i is

87 -1 ) 1/2
a8 (20) 1=r f170+r f071,r:(f|70:|:5 )/2:r1,rzsay,

39
20 Where 6= fﬁo +4fo,1. This holds since By = Ay = 1. So, for r not a root of 1,

41
(1) Ai=RE;
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for i > 2, where
R 1 pif 2
i=1=r"fio—r " for,
' y i i
(22) E;=r"Ejo+r "Eo;+Ji, Eio=Y Bijfio, Eoi=Y Bijfo,,
= =2

i—1
—i—2i L . it
Ji:Z[I’ e Cipipt 1 +i2 =1, 112171221} = ZI’ ke Ciiviy-

i1=1

4
Slefe|[~lofals]e]|r]-

This proves

11

E Theorem 4.1. Given F (x1,x3) : € X € — € let w be any root of F (w,w) = w. Suppose that F (x1,x3)
18 is analytic in a neighbourhood of (w,w), and that r is either root of (20) but not a root of 1. Then a
14 solution of (19) is (1), where A, is given by (21) in terms of E; of (22).

15

E Example 4.1. Suppose that (5) holds with g = 2, and for k = 1,2, F (x¢) = x;*. So,

17

18

2
19 fleZZka'jk’
k=1

20

21 where
22

23 . ag _i
— frije = Fej (wi) [ k! = < . )W“" Ik,
24 Jk

25 w=w* a=a;+ay, w=0or1.

26

2Z Then r is given by (20) in terms of
28

1

1 _
A0 for = aaw™ .

30

29 fio=aiw

31 The case w = 0. Suppose that ay,a, € A so that both Fy (x;) are analytic at 0. Then
32

33 fio=I(a=1), for=I(ax=1),6=1(a1=1)+4(ax=1).

34

35 There are four subcases:

36 . .
o O FF(x)=xix, then§=5r=(1=£ SY2)J2, Ri=1—r"1 =%
. (ii) If F(x) = x1, then 6 = 1, r =0 or 1, which are not allowed, see (4).
o () IfF(x)=x, then § =4, r=+1, and R = 1—r7".

o (iv) Otherwiser =06 =0, R; =1, see (4).

‘E In each case, fj, j, =0 unless (ji,j2) = (0,0), (1,0) or (0,1), so that A; = E; =0 for i > 2, and
42 x, = ar", where o, = x.
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The case w = 1. Then

2

a . .
fini =11 <jk>, fio=ai, for=az, Ri=1—r"a;—r *a,
k

k=1
r=(a£o 2
< 1 1/2)/ :

Ey=r"? (6121> +r2ajar+rt (6122> ,

Ez=r" [2142 (6;1) + (C;IH +rt {Azal + <a21>] a+ra {Azaz%— <6122>:|
refe(3)(5)]

e ) 8- (] ) (4

17 +r° [A%al@ +As (a1 +ax—2)ajar /2 + (2) <azz>} +ra [A3a2+2A2 <azz> + (22)]
) (99

ﬂfor o= a% +4ay and B4y = 2A3 —l—A%. Ocalan and Duman [2] gave a solution when —a; = ap, = p > 0.
22

I
[2[@[s[=]3]e]e]~]o]a]s]e]|r]|-~

-
2]

23

s 5. General g step recurrence

2 Let F (x1,...,x4) : €9 — € be any function. We give solutions to
26

77 (23) 3w = F (a1, 3n ).
28

29 Let w be any root of F(w,...,w) = w. Suppose that F is analytic in a neighbourhood of (w, ..., w). For

30 . .
= Jty---5Jg=0,1,.., set
31

32

j J
g Fjlv""jq (xl,...,xq) = 8{‘ ---8qu (xl,... ,xq)
Sifor
Gi
36 . . . .
37 al = a/a‘xl’ f(-]17’-]q) :f]l77]q :F]h’]q(w”w)/]l‘]q'

38
o Let us try again for a solution of the form (1). Since

40 0

. i
Jk —k .
41 Lk = Z (arn ) Blkv]k’

42 k=Jk
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1 we have
2 > .
e Z(Ocr”)lAi:zn:xn—F(w,...,w)
= =1
- ’ - o
5 =F (Xp—1,...,%n—g) —F(w,...,w) = Z ft,-iq) z#_l'--zi[’_q
i j]7---7jq:0
7 - i CaNig .
5 (24 = Y (o) (o) Ciy,. i),
— i1 yensig=1
9
10 Where
1"
E C ll7 -1 Z ZBIIJI : lq,Jq f(jla"‘jq)7
E J1=0 jq:
14 excluding j; = --- j, = 0. Let ¢ be the kth unit vector in €4. Set |i| =ij+---+1i,. ForI>1, the
E coefficient of (o)’ in (24) is
E AI = C17
17
15 Where
19(25) Cr=Y ri2 4 C(iy,..ig).
20 li[=I
21 .
“ In particular,
23 1:A1:C1:Zr_kC(ek),C(ek):f(ek),
Zi k=1
25 implying
& .
27 (26) 1=Y r*fle),
28 k=1
? a polynomial of degree g in ! with solutions 7y, ... ,rq say. Let Zi, denote summation over 1 < kj <
0o < ks < g, and Zi denote summation over 1 < k; <--- <k; <gq. ForJ > 1, set
31
— q
2% 27) S;=Y r’fle), Ry =1-5,.
k=1

il If / = 1, then R;11 = R; = 0 and the method fails. Suppose that r is not a root of 1. If J = 2, then
P i = e, +ex, say, and X_ ki = ki +ka. So,

36

37 Ay =0 = Z Te (ekl —|—ek2) ,

38 1<k <ko<gq

39 C (ex, +€k2) =B, Bijof (ex, Ter) = f (e, +ex,), ki <k,
40

41 (28) C(Jey,) = ZBJ,jf Jex), C(2exr,) = Aof (ex) + f (2ex)

42
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which implies

G =E+A)S

E, = Z rikl 7k2f (ekl + ekz)

1<k <k <gq

@[~vfofalafe]m]~
=
=}
=

12

~ and RyA, = E; implies Ay = RZ_IEZ. If J = 3, then i = e, + ey, + ek, say, where k; < kp < k3, and

% Y3, kix =k +k + k3. So,

11 3 z

E A3 _ C3 — Zr*klszfk_gC(ekl +ek2 +ek3) :C17171 +ZC2,1 +C3,
E k

14 where

3 X

16 ct =Y b (o +e, +er),

17 k

18 2

o cH = Zr_Zk‘ ke (2ex, +ex,) s

o T

C Cleten) = X By X Bund Gren + daee) = Aof (e + o) + f (20 +e1).
22 =1 =1

- ) J1 B2

Zi C1,2 — Zr*k1*2k2 [AZf (ekl —|—ek2) +f(ek1 +2€k2)] y

25 k

26
p— where ZZ C>! = C>' +C'2. Further,

q
z% C = Y r3KC(3er), C(3er) = Asf (ex) + 2421 (2ex) + f (3ex)
k=1

30
31 by (28), implying

32 Cy =E3+A3S
3 3 =E3+A353
34 for

35

2 2

37
38
39 R3A3 = E3 implies A3 = R; 1E3. Further,

40

4 3 2
41 A4:C4:Z:C1,1,1,1+ZC2,1,1+C2,2+ZC3,1+C47

k=1

42 k

3 q
36 Es= Zr‘k‘ —ha—ks ¢ (ekl +ep, + ek3) —|—A222r_2k‘ i (ekl +ek2) +2A, Z r3k f(2er).
k k
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1 where
2 1,1,1,1 s ki —ky—k3—k u
. C777:Zr*1*2*3*4f Zeka ’
- k a=1

4
o 3

5 2,11 _ —2ky—ky—k
. C —;r =2 3C(2ek1+ek2+ek3),

7
I’y C (2ek1 +ek, + ek3) =Arf (ekl ek, + ek3) +f (2ek1 +ep, + ek3) )
9 22 , —2k;—2k
o C —zk:r 17220 (2, +2ex,)
il 2
12 C (Zekl —|—2€k2) = Z By By, f (jlekl +j2€k2)
13 J1:2=1
" , 2
15 =A3f (ekl +ek2) +A42 Zf (Zekl +ek2) +f (2ek1 +2€k2) )
1 y

17 Al = Zr‘3k‘ e (3ekl +ek2) ,
. k
19 3 ,
o C(3e, +ey) = Y, Bsjif (jrew +er,)

. =1
» i1
- =Asf (ekl + €k2) +2A,f (Zekl + €k2) +f (3ek1 + ekz) ,
o3 C (4ek) =Ayf (er) +B4rf (2ex) +3A2f (3ex) + f (dex) .
24 Further,
25 q
26 ct= Z ke (de) = A4Sy +E*
27 k=1
og say, implying
29 Ay = RZ1E4,
30

— where
o 3 2
32 E4:C1’1’1’1+ZC2’1’1+C2’2+ZC3’1+E4.
33
ez Similarly, for J > 2,
5 (29) A;=R;'Ej,
% where Ej;=Cj—A;S;. This proves
37

55 Theorem 5.1. Given F (xi,...,x;) : €1 — €, let w be any root of F(w,...,w) = w. Suppose that
o F(x1,...,x4) is analytic in a neighbourhood of (w, ..., w). Then a solution of (23) is (1), where Ay and

39
20 Ry are given by (29) and (27), and r is any solution of (26) but not a root of 1.

E (25) is a polynomial in 7~ !. If we started from x,,, | = F (x,,, S ), as in Sections 2-3, rather
42 than from (23), then the left hand side of (25) would be r'A;. Starting with (23) gives simpler equations.

13
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