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o DECOMPOSING A FIXED POINT PROBLEM INTO MULTIPLE FIXED POINT
o PROBLEMS
7
? RICHARD AVERY, DOUGLAS ANDERSON, AND JOHNNY HENDERSON
9
10 ABSTRACT. We decompose an operator associated to a right focal boundary value problem, whose fixed
? points are solutions of the boundary value problem, into multiple fixed point problems. We provide
— conditions for the original boundary value problem to have a solution that can be found by iteration using
2 the decomposition.
13
14
15 1. Introduction

g A standard approach to showing the existence of solutions to boundary value problems, and iterating
o to find solutions of boundary value problems, is to convert the boundary value problem to a fixed point
o problem. Consider the second order right focal boundary value problem given by

20 (1) V(1) +g(y(t)) =0, 1€(0,1),

22 (2) y(0)=y'(1)=0,

2 where g : [0,00) — [0, 00) is differentiable. The Green’s function for (1), (2) is given by

25 G(t,s) = min{z,s};

z% and every solution of (1), (2) is a fixed point of the operator H : C[0, 1] — C?[0, 1] defined by

28 1
o @ Hy(0) = [ Glt.5)g(3(s)) ds

%0 where the norm || - || on C[0, 1] is the usual supremum norm. There are many different results in the
%1 literature giving conditions and techniques to verify the existence of solutions as well as iterative
%2 techniques for the right focal boundary value problem (1), (2). See [1, 2, 3, 4, 8, 9] for some interesting
% approaches and techniques that are currently in the literature. Converting the operator fixed point
% problem to a real valued fixed point problem is significanlty different than any of the arguments

% currently in the literature. If we let
36
37 P={yeC[0,1] : y(0)=0 and y is non-decreasing},

% then it is a trivial exercise to verify that H : P — P, and that verification of the existence of solutions,

%9 or the finding and iterating to solutions of the boundary value problem (1), (2), has been converted to

40
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finding fixed points of the operator H since for any y € P and ¢ € (0,1),

1
2 / 1

B (1)) = [ 503(5)) ds.

4

- (Hy)" (1) = —g(»(1)),

5 and

Ea (Hy)(0) = 0= (Hy)'(1).

s The operator H is a completely continuous operator, thus if there is an R > 0 with
2@ Pr={yeP: |yl <R}

10

o such that

A H: PR i PR,

12
13 then H has a fixed point in Pg by Schauder’s Fixed Point Theorem [12].

" Lemmal. LetR€R. Ifg: [0,R] — [0,2R], then
15

; H:PR—>PR,

E and H has a fixed point in Pg which is a solution of (1), (2).

18
o Proof. Letting y € Pg, where Py is given in (4), it follows that

7 1

“ iy = max | [ Gle.s)80() ds
21 t€[0,1] |Jo

22 1

o = | 61580 ds
24 1

= = [ ss0) ds

26 1

27 < 2R/0 sds =R.

28

29
0 Therefore H : Pr — Pg and Pk is a closed, convex subset of the Banach space of E = C[0, 1] with the
5 Sup norm, hence by Schauder’s fixed point theorem (see [13] for a modern statement and proof of this
. classical result), H has a fixed point in Pg. Furthermore, since any fixed point of H is a solution of (1),

. (2), we have verified the existence of at least one solution in P. O

34 One can look at alternative types of sets in which the operator H is invariant, such as the Leggett-
35 Williams [11] functional wedges using concave and convex functionals to have less restrictive con-
36 ditions in showing existence of solutions to boundary value problems or as is the purpose of this
37 manuscript to develop an iterative scheme converging to a solution. There are many types of existence
38 of solutions arguments, however there is a limited collection of iterative techniques which converge to
39 actual solutions. In this paper we will outline a new iterative technique converting a boundary value
40 problem into a fixed point of a real valued function problem. Functional wedges are the foundation of
41 Leggett-Williams [11] arguments. The beauty of the Leggett-Williams arguments is in showing that
42 there is a fixed point in the underlying set even though the operator is not necessarily invariant on this
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1 set, but in our argument we need the operator to be invariant on the functional wedge so we can verify
2 that our sequence of iterates remains in the underlying set. For y € P let

o aly) = min () :yGt)’

— 1€[z.1]

% and for 0 < r < R define the functional wedge P(a,r,R) by

70 Pla.rR)={y€P : r<a(y) and |y| <R},
% which is a closed, convex subset of P.

E Lemma 2. Let ,Rc RwithO <r < %R, and suppose
11

16
12 g:[0,R] — [0,2R] with g(y) > Trfory € [nR].
% Then

. H:P(a,nR)— P(o,rR),

16 and H has a fixed point in P(o,r,R) which is a solution of (1), (2), for P(a,r,R) given in (6).

" Proof. Given R > 0, we must have 0 < r < %R under the assumption that ITW < g(y) <2R. Let
B ye P(a,r,R) as defined in (6). Thus by Lemma 1 we know Hy € Pg. Since Hy is non-decreasing, and

9 using (5), we have
20

21 o(Hy) = min

22 te[}.1]

[ 609565

= - GG) $((s)) ds

. > [ () st as

- 1
27 4

- (
(

30
— >
31 -

32
. - (3)
34

z% Therefore H : P(o,r,R) — P(o,r,R), and P(a,r,R) is a closed, convex subset of the Banach space
— E = C[0, 1] with the sup norm. Hence by Schauder’s fixed point theorem, H has a fixed point in
. P(a,r,R), and since any fixed point of H is a solution of (1), (2), we have verified the existence of at
5o least one solution in P(o,nR). O

g Note that one may want to define the concave functional & on a different interval which would lead
41 to different bounds that the nonlinear function g would need to meet in order to be able to apply the
42 main techniques that follow.
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2. Preliminaries

FornRe Rwith0 < r < %R, let
1
0= { yeC L? 1} : yis non-negative and non—decreasing} )

which is a cone in the Banach space B, = C [l 1} with the sup norm, that is, for y € B, let
[¥lle = max [y(z)].

te 4,1]

Furthermore, let

[Bfefe|~]ofoa]s]e]n]-

1
1 S= {y eC {O, A_J : y is non-negative, non-decreasing and y(0) = 0} ,
12

3 which is a cone in the Banach space By, = C [O, }1] with the sup norm, that is, for y € By, let
14

- [yllv = max |y(r)].

N te 0

16

— Let

17 1

8 Q[r,R]:{yEQ:rgy(t)ngoralltE[Z,l]}
% and

20 1

o SR:{yGS:y(t)ngoralltE[O,Z]}.
22 Our decomposition will involve operators Al 1§ — § defined by

23

2 (7) Ap(t) / G(1,5)g(y(s)) ds+11

25

o6 for each non-negative real number /, and operators D,, : Q — Q defined by
27

s (8) =m+ / (t,5)g ) ds

2 .
2 for each non-negative real number m.
30

51 Lemma3. LetRe R 1€ [0,38], ¢:[0,R] — [0,2R] be differentiable, a; o =0, and define the recursive
30 Sequence

eE a1 = A,
34 for Ay givenin (7). If T € (0,32) such that

s lg'(a)] <7< 32
36

5, foralla € [0,R], then
38
39 Moreover;

40 ai = Ajay,
41 and
42 aj, (t) = —g(ap.(1))

ajn — ajx € Sg.
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forallt € (0, 4—1¥) with a;,(0) = 0. Furthermore, for k, = 35 we have that

1
2 k" RK"

% law —apully < - a1 —aiolly < —

E Proof. Lety e Sgand ! € [O, 3—2R] , following a similar argument as in Lemma 1, we have
6

— 1

by

z 4l = max | [*Gles)g0(s) ds+ 1

8 ref0,3] |0

9 i

i 1 1 )

10 = G| -,s s))ds+—

) [6(Gs) st ast g

- 1

12 7 3R TR

E < /0 2Rs ds+ < =16

% thus A; : Sg — Sg. Let y,z € Sg thus for each s € [0, 1], let w(s) be between y(s) and z(s) such that
16 g(v(s)) —g(z(s)) = &'(w(s)) ((s) —z(s))

17

. by the mean value theorem (note that we assumed that g was a differentiable function). Hence
19 1 i

20 [Ay—Agzlly = max / G(1,5)g(y(s)) ds+11 —/ G(t,5)g(z(s)) ds — It
a ZE[O,%} 0 0

21

22 1

" < max [*G(t,9)|g(v(s) ~ g(e(s)] ds

2 1€[0,3]/0

24 1

— z

2 < [7slg s (5) — 2(s))] s

26 0 1

27 3 Tlly—zllv

7 < o [Cslly =zl ds = TR

29 thus A; : Sg — Sg is contractive with constant k, = 312 < 1. Let a;p =0, and define the recursive

%0 sequence

31
o A nr1 =Aagp.
33 We have that {a;}_, C Sg since A; : Sg — Sg. Since A, is contractive on Sg, by the Banach Fixed
34 Point Theorem [5] there is a unique a;. € Sk such that a; , — a;,. Note that we are technically applying
35 Banachs Corollary of the Banach Contraction Principle, see Granas-Dugundji [6] for details concerning
36 the corollary and see [13] for a modern, unified treatment of the Banach Contraction Principle with its

37 corollary embedded in the statement of the principle. Thus
38

® an (1) = /O‘l‘ G(t,5)g(ap(s)) ds+1l, t € [0, ﬂ .

40
41 Clearly

42 alx (0) =0
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1 since G(0,s) =0 forall s € [O, }1] ,and fort € (O, %) we have
2 1
_ 4
o (1) = [ glar() ds+1
t
4
"5 and
5 i, (1) = —g(ar.(1)).
7 Also, for any natural numbers n and j by mathematical induction we have
8 ,
o larnsje1 = aintjlly < kallanj —arnrj-illy < - < Kllani —aallv
E hence, for any natural numbers » and p, applying the triangle inequality, we have
11
2 p—l
E Hal,n—&—p_al,nHv < Z Hal,n—&-j—s—l _al,n-i-ij
14 J=0
15 =1
6 < Y kil —arally
© =
7 o
8 < Y Kllagner —aiallv
19 =0
20 1
21 = <H) ||al,n+l _al,nHv
2 o
23 < (1_“k ) a1 —arpllv-
21 a
25
o6  Hence letting p — oo we have that
27 k" Rk
25 lars —appllv < <1—aka> a1 —aiollv < 1_7%.
2% This ends the proof. O

?Z Lemmad4. LetnRE R with0 < r< %R, me [0,&], g:[0,R] — [0,2R] be differentiable, 176’ <g(y)
2 forally € [1,R], byo = r, and define the recursive sequence

33
67 bm,n-l—l — Dmbm,n
eEfor Dy, givenin (8). If u € (0, ‘;‘—g) such that

36

. 32
o O <p <

38
S Jforallbe [,R], then

40 bmn — by € O[1,R].

41 Moreover,

42 bm* = Dmbm*
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1 and
2
= (1) = —g (b (1))
" | ;o s
2 forallt € (3,1) and b}, (1) = 0. Furthermore, for k, = 35 we have that
5
6 k} RE}
7 bm*_bmn u< b bm _bm u< b .
- o=l < (12 ) loma =l <
8
9 Proof. Lety € Q[r,R] andm € [O, 1’%] , thus following a similar argument as in Lemma 2, we have
10
" . 1
; a(D,y) = min lm+ [, G(1.9)s(3(s)) ds
c te(z,1] i
w = mt [ 6(35) s s

1 4
15 Py
16 1\ /!
" = m+ <Z) /i 8(y(s)) ds

= >+1/11—6rd
9 —m4%3s

20
() E)w
2o 4)\4 3 ’
23

z% and following a similar argument as in Lemma 1 we have

26 1

7 1Dwsle = max |mt | Gle.5)g((5)) ds
- te(z,1] 1

% 1

29 = m—l—/1 G(1,s)g(y(s))ds

30 !

31 1

. = m+ﬁ sg(y(s)) ds

% ’

SE < m+ : 2Rs ds

2 ISR

36 _

o = m+ 16 <R

38

*° thus D,y : Q[r,R] — Q[r,R]. Let y,w € Q[r,R], for each s € [%, 1], let w(s) be between y(s) and z(s)
% such that

42 g(y(s)) — g(w(s)) = g'(z(s)) (¥(s) — w(s))
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1 by the mean value theorem. Hence
2
3 1 1
: IDwy=Duclls = max | [ G(r.5)80(5)) ds— [ Glt,9)g(as)) ds
s te[z 111V 7
- 1
- < max [ Gle,s)lgly(s)) — g(z(s))| ds
-’ SENEE
8 L
; </, sl )6 ~2)] ds
> e 15ully—z]
11 HNY —Z|u
11 < — ds =7 =14
il <, sl el = S

13

' thus D, : O[r,R] — Q[r,R] is contractive with constant k, = 135—2“ < 1. Let by, 0 = r, and define the

~_recursive sequence
16

17

18 bm,n+l = Dmbm,n-

19
20 We have that {b,, ,};>_, C O[r,R] since D,, : Q[r,R] — Q[r,R]. Since D,, is contractive on Q|[r,R], by
21 the Banach Fixed Point Theorem [5] there is a unique by, € Q[r,R] such that b,, , — by, Thus

22

23

o b (1) :m—}—ﬁl G(t,5)g(bms (s)) ds, t € [}11]

25

26
»7 Since

28

2 , ‘
= (10) e(t) = [ glbws(s)) ds

31

% clearly b/, (1) = 0 and

2% bgw(l‘) = _g(bm*(t»'

36
37 Just like in Lemma 3, for any natural numbers 7 and j by mathematical induction we have

38

39

o ||bm,n+j+1 _bm,n+j||u < kb||bm,n+j _bm,n+j—1||u <..- < klj,.||bm7n+l _bm,nHu
40

41
‘E hence, for any natural numbers » and p, applying the triangle inequality, we have
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o

2 p=1

E ||bm7n+p - bm7n||u < Z ||bm7n+j+1 - bm,n—O—jHu

4 i=0

5 N

? < Z kabmJH-l - bm,nHu

i j=0

7 o

i S klj,||bm,n+l - bm,n”u

o 0

10 1

5 = (125 ) 1own =Bl
12

0 < (722 b~ ol
o — 1 _ kb 9 9

i

" Hence letting p — co we have that

E kﬂ n
17 B = bnllu < | =2 ) |1bmt — bmollu < —2—.
" o= bl < (122 ) 1t =Bl < 125
19 This ends the proof. (|
20

o Forl e [O, %} and a natural number p let
1

zz m =/0‘1‘G<}t,s> g(al*(s))ds:/()4sg(al*(s)) ds,

24 ! {
- 1 1 1

25 my , = / G (—,s) glay p(s)) ds = / sg(app(s)) ds,
26 0 4 0

>, and define the real valued function £ by

28 1

= an WD) = [ glbwy-(5)) ds.

v 1

30

—  Note that m; is a quantity that is the result of a limiting process, whereas m ,, is a real number that

°1 can be calculated through iteration. In the following lemma we provide a bound on ||b;,« — by I
°2_ which is one of the error bounds we will need to calculate a bound on the error of our approximate

% solution of our boundary value problem. In Theorem 4 we will need to approximate i(/) by
34

2 [ &b s

36 1

SZ so we will define the function

38
39 (12) h(l,p) =

40
41 LemmaS5. LerrrRe RwithO<r< %R, my; € [0, 1%], ue (0, ?—g), and t € (0,32) such that

22 (A1) g:[0,R] — [0,2R] is differentiable;

g(bmz,p* (5)) ds.

th
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(A2) §F <g(y) forally € [1,R];
(A3) |¢'(a)| <t <32forallac|0,r];
Ad) [g'(b)| < u <32 forallbe [rR].

Fork, = % and a natural number p,

TRKY

b *_b * < .
Bme = bm el < (32— 15u) (1 —kg)

[efe|~]ofo]s]e]n]-

% Proof. For each s € [0, 1], let w(s) be between a;,(s) and a; ,(s) such that

12

13 gla(s)) — glarp(s)) = g (w(s))(ar(s) — ap(s))

14

15
o by the mean value theorem, thus from Lemma 3 we have

17
18
19 i i
- m=m,| = | ["sglan9) ds— [ sglar, () ds
2 I
i
= < [V slstan) - glarp(s)] ds
23 0
- 1
24 1
2 < [ slg ) @) —an,(s)] ds
% }
2 < 7 [ sllan —ayllv ds
28
25 _ 7||as. 3_2al,p||v
30
— TRKY
31 < .
5 32(1 —kg)
3
3 By Lemma 4 there exist by, by, ,« € Q[r, R] such that
35
36
37 bm,* = Dm,bm,* and bml‘p* = Dml’pmePw
38

% Foreachs ¢ [1,1], let z(s) be between by, «(s) and by, ,+(s) such that
40 ’

41

42 &by () = 8(bmy (8)) = &' (2(5)) (D (5) = by (5))
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by the mean value theorem, hence
by — by x|l = max

P 1
t€(z,1]

Iy — my.p| + max / ' G(1,s) 50 () = 8(bm 1 (5))| ds

1
re[3.1]/7

gl 4 [ g/ 60) i 5) — g 51) s

m; + ﬁl G(t,5)8(bmy«(s)) ds —my , — /11 G(t,s)g(bmlﬁp*(s)) ds

1

IN

IN

=
N

1
lmy —my p| +‘u/1 S|\ by — by i llu ds
1

1518 )|ymysc — by i
32

< TRKY RTTA[ _bmz,p*Hu

= 32(1—ky) 32 '

44 4
[@[R[=]3]e]e|~]o]als]e]|r]|-

= |m—my,|l+

—
IS

-
515

17
18 Therefore

19 p

TRk,
20 ||bm1* _bml’p*Hu < .
o (32—15u)(1 — k)

22 This ends the proof. O
23

24

s In what follows we convert an operator fixed point problem into a real valued function fixed point

s problem.

% Theorem 1. If 0 € [O, %R} and 6 = h(0), then

29

30 _ [ ae(t)
32
33 I8 a solution of (1), (2).

B— O

IA IA
IA IA
— -

34
35 Proof. Since
36

1
- e:h(e):/l 2(bugs(5)) ds

38

39

= and

40

— 1

% me = /04 G (th,s) glagy(s)) ds= /0‘ll sg(ag«(s)) ds,
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we have that

El 0 - e, S)g(an.(s)) ds-+10 0<r< ]
. Y mo+ [ Glt,5)g(bugs(s) ds §<r<1
° ) { F Gl1.9)g(a.(5)) ds +1 ] glbme(s)) ds 0<r <]
B o4 G(3,9)8 (de*(S))+f11G(f=S)g(bm9*(S))ds 1<t<1
12 _ { foZ G(t,5)g(y«(s )ds—i—f] G(t,5)g(y«(s)) ds Ogtg}1
% Jo G(t,5)g(y (S)+f1 G(t,5)g(y«(s))ds  ;<t<1

)
0 ( )g(y*(s)) ds 0<t<3%
(y«(s5)) ds 1§t§1

—_ =
==
|
<
*
)
~
~—

16

" Therefore y, is a fixed point of the operator H and thus a solution of the boundary value problem (1),

'8 (2). This ends the proof. ]
19

20

o1 3. Main results

22 Now that we have converted our operator fixed point problem into a real valued fixed point problem we
23 need to show that our real valued fixed point problem is going to have a fixed point and the first step to
24 showing that is to show that the function /4 is uniformly continuous so we can apply the intermediate
25 value theorem and a bisection method.

26

2 Lemma 6. Let r,R € Rwith0 < r < 8 , 7€ (0,32), u € (0, %) and suppose that

28

o9 (Al) g:[0,R] — [0,2R] is differentiable;

o (A2) 16’ <g(y)forally€ [r,R];

2 (A3) |g( )]<’C<32f0ralla€[0 r];

»  (A4) |g(b )|§[.L< foralle[r,R].

% Then the Junction h given in (11) is uniformly continuous on [O, 3—2R]
34

® Proof. Ifweletl,je [O, %R], then by Lemma 3 there exist a;,,a ;. € Sg such that
36

37
:g [ :Ala[* and A jx :Ajaj*.

39
40 Foreach s € [0, }1] , let w(s) be between a;,(s) and a.(s) such that

41

42 8lar(s)) — glaju(s)) = g (w(s)) (a1 (s) — aju(s))
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1 by the mean value theorem, thus

2 ,

B Jor.=aell = max / G(1,5)g(ar (s ))ds+tl—/4G(t,s)g(aj*(s))ds—tj
4 0

= - : =
6 < max [ G(1,s)|g(an(s) — glaj(s))| ds+—= )
- r€[0,4] /0

-— 1

8 L 1= j|

2 < _

b < [ sl o) anls) —aj (o)) ds+

10 : 1—j

1 < ’C/O sllar —aj«||v ds+|4—]|

12 :

— _ e —ajdlv [l

= N 4

14

15 Therefore

16 8|71l

o lar. —ajllv <

17 J v 32_T

18 and for

19 i 3

23 m1:/0 sg(aj«(s))ds and mj:/o sg(aj(s)) ds
" we have

5 | %

— my—mj| = '/ sg(al*(s))ds—/ sg(aj.(s)) ds
24 0 0

25 1

- 4

2 < /Slg(az*(S)) g(aju(s))| ds

27 0

— 1

2
30 %
" < o[ sllar —aglv ds
?i _ ‘L’Hal*—aj*Hv
3 32
34 .
il 7|l — j|
<
® = 4(32-1)
36

37 By Lemma 4 there exist by, b € Q[r, R] such that
38
39

0 For each s € [3—“ 1], let z(s) be between by« (s) and bm;«(s) such that
41

2 < ["slg ) @) =ap(s)

|ds

— by« = Dby, and bmj* = ijbmj*.

42 8(bm(5)) = &(bm ;4 (5)) = &' (2(5)) (b (5) — bm(s))

13
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18
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28

29

31 Theorem 2. Let ,R € R with0 < r < %R, 7€ (0,32), u € (0, %) and suppose that

32
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by the mean value theorem, hence

Hbml*_bmj*Hu = max
re[d1)

IN

1
mi+ [ Gle,s)g
7

|m; —m |+ max

z

reld1)
1
< =gl + [, 5[/C) By 8) = by 5))] s
7
1
< =l 4 [, Sl byl s
7
IS.UHbml*_bmj*Hu
_ -l N ISN”bml*_bmj‘*Hu‘
= 4(32-1) 32
Therefore szll—
|l —j
b *_b ik < )
1B = bmgellu = (32—1)(32—15u)
and
] 1 1
WD) ~h()| = | [ 8lbue() ds— [, glbm,-(s)) ds
14 4

32
15ut|l—j|

= 4(32—1)(32—15u)

27 Therefore h is uniformly continuous on [O, %} This ends the proof.

1
(b (5)) ds —m; — [ G(t,5)8(bmya(5)) ds

1
/l G(t,5) |g(bmy+(s)) — g(bum;+())| ds

14

O

In the following Theorem we show how to apply the bisection method to the real valued fixed point
5o Problem now that we have that / is continuous.

(A1) g:[0,R] — [0,2R] is differentiable;
(A2) 1§ <g(y) forall y € [r,R];

(A3) |¢'(a)| <t <32forallac|0,r];
(A4) |g'(b)| < u < 2 forallb e [r,R].

5, Then there exists a 6 € [0, 3—2R] such that h(0) = 6 for hin (11), and thus

1
v (1) = { ao:(1) <=3

38

39

40

41

42

bugi(t) §<t<1
3R

is a solution of (1), (2). Moreover, there is a sequence {6, }7_, C [O, 7] such that

6,— 0
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with IR

Proof. 1f we let I € [0, 3R], then

‘ L 16r
4 3
and 1 1 .
WD) = [, elbw- () ds < [, 2Rds ==
3 3

1

4
Slefe|[~lofala]e]|r]-~

11 Hence h: [O, %R} — [O, %R} is a continuous real valued function. By the intermediate value theorem
12 applied to

5 £x) = h(x) .
14 there exists a 6 € [0, %R} such that f(6) = 0, which implies that

15

~ h(6)=20

" (8)

17 and by Lemma 1

8 0<r<l

E *t:{ae*(t) - —4

19 (1) bgs(t) §<1<1

20 is a solution of (1), (2). Let

o1 3R d

217 C():O,d():—and 90:C0—|— 0

22 2 2

o5 then recursively define the sequences {c, }_, {dn}p_o and {6, }_ by
o4 Cnt1+dy
o Cnt1 =0y, dp1 =dyand 6,41 = iam AR
25 2

26 if h(6,) > 6, and

27 Cnt1+d
g Cnt1 = Cpydpy1 = 0, and 6,1 = %
29 if h(6,) < 6,. Observe that for each natural number n that

80 h(cy) > ¢y and h(d,) < d,

31

5, thus by the intermediate value theorem there is 6 € [c,,dy] such that ~(0) = 6. By induction we have
43 that

i dyp-1—cp—1 _do—co 3R

34 dp —Cn = 2 T on T on+tl

% _ and since 6, is the midpoint of the interval [c,,d,] and 6 € [c,,d,] we have that

36

— 3R

57 60— 6, < iz

38

o This ends the proof. O

g Below we summarize the previous results that under some less restrictive conditions than what is in
41 the literature currently regarding the bounds on the derivative to apply Banachs Theorem, there is an
42 iterative process that converges to a solution of boundary value problem (1), (2).
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Theorem 3. Let r,R € Rwith0 < r < %, 7€ (0,32), u € (0, %) and suppose that

1
2 (A1) g:[0,R] — [0,2R] is differentiable;

2 (A2) & <g(y) forally € [rR];

4 (A3) |g(a)| <t <32forallac|0,r];

5 (A4) |g(b)| <u<3Eforallb e [rR).

5 Then there exists an iterative scheme converging to a solution of (1), (2).

7

s Proof. For natural numbers » and p let

o ag,(t) 0<t<1}

10 Yn,p(t) = { mb 1,

- bmg, ,,(t) z<t<1

. From the work in Lemma 6 we have

o 8|6 — 6,

13 n

= agx —ag«lly < —5——

= [ Iy < =

15 and from the work on Lemma 3 we have

16 %4 RKL
v g, = an,pll < (72 ) I, ~ an,ally < 1

18
— thus we have
19

2 lag. —ag,pllv < llag. —ag,s v+ a,. — ag, pllv
21 - 810 —6,]  RKY

22 - 32—1 1—k,

23

24 From the work in Lemma 6 we have

o mg, — bl < sl Ol

<o me, me, . llu = — —

p (32—-1)(32—15u)
og and from the work in Lemma 5 we have

29 TRKY

i Hbmen* _bmgn,p*Hu S (32_ 15”)(1 —ka)
31 and from the work in Lemma 4 we have

> . i, <

o Moy px — Mgy p oy U= 537

” P PP 1—k

35 thus we have

:% Hbme* _bmenﬁp’p HM < ||bm9* - bmen* HM + ||bm9n* _bmen,p*Hu + ||bm9n7p* - bmﬂn,p,p Hu
- < 876 — 6, N TRKY N Rkl

39 — (32—1)(32—15u)  (B2—15u)(1 —k,) 11—k

40

41 Therefore

42 [y = ynpll < max{||ag. — aGn,pHW ([Dig _bme,,ﬁ,,,,,Hu}-
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For ¢, = % let N,, be a natural number such that

8T|9—9Nn| 8|9_0Nn| &,
max , < —=
(32—1)(32—15u)” 32—1 2

and let P, be a natural number such that

- TRKL: N RKk;"  RKD _&
X -
(32— 15u)(1—ky)  1—ky' 1=k [ 2

For every natural number n define

Zn = YN,,P,

44
=3]ele|~]ofa]a|e]|r]-~

1o thus

13 [y = 2zal| < max{[|ag. —agy, p, [|v: [[Bmgs —b

14

5 S0 {zn} is a sequence of functions that converges to y, a solution of (1), (2).

. This ends the proof. O

17

lu} < &

m
Ny, Pa, Py

It is not a trivial exercise to provide an approximation of 6 where 1(0) = 0 since for each whole
'8 number n to determine ¢, 1,dy+1 and 6,41 we need to determine if 4(6,) > 6, or if h(6,) < 6,.

" Forle [O, %R} and a natural number p we have

20
1

z; m; = /0‘lt G <4—11,s> g(ai(s)) ds = /0456’(611*(5)) ds,

23
1

- o= [ 6 (o) st ds = [ setersio) s

25

% Forle [O, %R} the real valued function 4 is defined by
27

1
i% h(l) = ﬁ g(bymys(5)) ds

30 . .
S8 approximated by

oL 1
32 h(l,p) = /1 8(bm, ,+(s)) ds
33 1

34 and since we need to approximate h(l, p) by

35 1

0 |, #lbw,,, (5 ds

37 4

38 we will define a new real valued function by

39 |

w (13) Wl.pop) = |, 8lbm,,(5)) ds
4 4

‘E The following Lemma is essential for finding the sequence {6, }.
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Lemma 7. Let n be a whole number and p be a natural number and suppose that

’h(en) _h(enapap)’ S |h(0n7pvp) - On’

~
Iyl
Q
S

if/’t(en,p,p) > 6, then h(en) >0,

_.
[Bfefe]~]ofoa]s]e]n]-
2
S
&

—_
—_

e ifh(empap) < 6, then h(9n> < 0,.
12
13 Proof. Either h(6,,p,p) > 6, or h(6,,p,p) < 6.

™ Claim 1: if h(6,, p, p) > 6, then h(6,) > 6,. Since
15

16

- 60— (6, p; p) < 1(6,) = 1(6h, p,p) < 1(6n, p, p) — 6,

18
19 we have 6, < h(6,).

23 Claim 2: if h(6,, p, p) < 6, then h(6,) < 6,. Since
21

z% h(6y, p,p) — 6, < h(6,) — h(6y, p, p) < 6, —h(6,,p,p)

24
o5 We have h(6,) <6,.
e This ends the proof.

27
2E For every whole number n and every natural number p we have that
29

30

by

1
7
::% meg, :/0 sg(ag,«(s)) ds and mg, , :/0 sg(ag, p(s)) ds

33
— as well as
34

35 1

37 4 4 4

Z% Theorem 4. Let n be a whole number and p be a natural number then

o (64— 151)TRK,  4RKD™
i - TR

o 1(6,) — h(8,,p, p)| < e (2%

o h0) = [ by (5) ds, 1(Op) = [ (b)) ds and 1, p.p) = [ 5o, (1)) ds.

18
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1 Proof. From Lemma 4 we have
2 1 1
S (O Oup D) = | [ b, (5)) ds— [ 8lbm,,, (5)) ds
4 3 3
o 1/ 1/
- = 4AG 7 g(bmamp*(s))ds—/z11 G 7 8(bmg, ,,(s)) ds
7 e
8 = 4’1’)19,1,]7‘}‘% G(Zas> g(bmen,p*(s)) ds
i 41 1
0 — (ma= [ 6(55) om0 5)
11 4
2 = &g, o (1/4) = b, . (1/4)]
13
E S 4Hbm9nql7*_bm9n«,l’«,l’+l u
15
- p+1
N _4RK
17 - 1—k
'8 and from Lemma 5 we have
19
— 1 1
D O ~hOup)] = | [, 8lbu () ds— | slbmg,,(5)) ds

4 1

22 71 L /1
5 _ 4AG ) g(b,,,e*(s))ds—/}t G (525 ) 8(bmg, (5)) ds
24 S
25 = 4‘mgn+ 1 G(Z,s>g(bm6n*(s))ds
26 4
27 (1
. — ([ 6(55) el 60 d5) = g, ~ma, )
o 4
. _ 4‘19,,19"*(1/4)—bmenﬂp*(l/4)—(mgn—mgmp)‘
i < 4 bmen* - bmemp* +4‘m9n - m@,,,p|
32 u
QE - ATRKD N TRKY _ (64— 15u)TRKL .
" = 321501 —ka) | 8(1—ka)  8(32— 15)(1 —ka)
35
%6 Therefore
Ci
38 1(6n) = h(6n, p, )| < |h(6n) = h(6n, p)| + [1(6n, p) — h(6n, p, P)]
® _ (64— 15u)TRAE ARKPT!
f% = 82— 15u)(1—ka)  1—ky

‘E This ends the proof. =
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Note that for every whole number n we have that

lim |1(6,,) — h(6, p, p)| = 0.
p—©

Remark 1. The iterative technique presented in this paper can be applied to the operator correspond-
ing to a right focal boundary value problem when the standard Banach fixed point theorem and the
monotone iterative techniques don’t apply thus expanding the collection of problems in which iteration
can be applied. This technique is not nearly as easy to apply as other iterative techniques. Creating
the sequence {6,} requires iteration at every stage before one can iterate to approximate an actual
solution. There are lots of research opportunities related to this technique, but none greater than a
comparison with other techniques and the creation of computer code which can be used to apply the
1 technique.

—_
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