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Abstract

In domain theory, powerdomains play an important role in modeling the semantics of nondeterministic

functional programming languages. In this paper, we extend the notion of powerdomains to the cartesian

closed category of directed spaces. We define the notion of upper and lower powerspace of a directed space

by the way of free algebras. We show that the upper and lower powerspaces of any directed space exist and

give their concrete structures. Moreover, the upper and lower functors preserve the continuity of directed

spaces. The upper and lower powerspaces of c-spaces (resp., FS-spaces) are c-spaces (resp., FS-spaces).
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1. Introduction

The notion of powerdomains is one of the most important parts of domain theory. Powerdomains
are used to provide mathematical models for the semantics of nondeterministic functional programming
languages. There are three classical power structures in domain theory: the lower powerdomain, the
upper powerdomain, and the convex powerdomain. In recent years, a lot of generalizations were made
on these power structures [8, 09, 20, Z1]. Generally speaking, these power structures are free algebras
generated by domains with respect to some binary operations. In 2015, I. Battenfeld and M. Schoéder
[?] introduced a kind of power structures on general topological spaces, where the Boolean algebra 2 is
endowed with the Sierpinski topology as an observable structure. Then they defined the upper power
structure (observationally-induced upper powerspace) and lower power structure (observationally-induced
lower powerspace).

In an invited presentation at the 6th International Symposium in Domain Theory, Lawson gave evidence
from recent development in domain theory to highlight the intimate relationship between domains and
Ty spaces and called to develop the domain theory in T spaces. Directed spaces were introduced by Yu
and Kou [I¥], which are equivalent to Tp monotone determined spaces defined by Erné in [f]. Directed
spaces with continuous maps form a cartesian closed category, denoted by Dtop [[¥], and also contain
many objects in domain theory such as dcpos endowed with the Scott topology, posets endowed with the
Alexandroff topology, c-spaces and locally hypercompact spaces. In particular, the exponential objects and
categorical products in the category of dcpos coincide with those in Dtop by viewing dcpos as topological
spaces endowed with the Scott topology.

A c-space can be viewed as a continuous directed space just like domains as continuous dcpos [3, [6].
Recently, the notion of FS-domains, which form one of the most important cartesian closed categories in
domain theory, is extended to FS-spaces [I6]. FS-spaces form a cartesian closed subcategory of directed
spaces and are contained in c-spaces. Besides, many other classical results about dcpos can be extended
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to directed spaces as well. For example, a directed space X is core compact iff for any directed space Y,
the topological product of X and Y is equal to the categorical product in DTop of X and Y (see [3]).
Based on these facts, we believe that directed spaces are very suitable topological extensions of dcpos. It
is meaningful to investigate the power structures on directed spaces.

Like the category of dcpos and the category of topological spaces, the existence of the free algebras over
a directed space in the context of Dtop can be proved by the Adjoint Functor Theorem (see [, &]). We will
define the concept of upper and lower powerspaces of directed spaces through free algebras, and give the
concrete topological representations of the directed upper powerspace and the directed lower powerspace
over an arbitrary directed space. Moreover, we show that the upper and lower powerspaces of c-spaces
(resp., FS-spaces) are c-spaces (resp., FS-spaces) as well.

2. Preliminaries

We assume some basic knowledges in domain theory, topology, and category theory as in [0, @, 00, [4].
Let P be a poset. Given any A C P, we denote JA={zr € P:Ja€ A, z<a},tA={z € P:3Jac
A, a < x}. We say that A is a lower set (upper set) if A = A (A =1A). We denote by o(P) the Scott
topology on P. Let P, E be two posets, a map f : P — FE is Scott continuous iff it is continuous with
respect to Scott topology o(P) and o(E). The upper topology on P is denoted by v(P).

All topological spaces in this paper are supposed to be Ty. A net of a topological space X is a map
¢ :J — X and is denoted by (z;);es or (z;), where J is a directed set. Given z € X, we say that (z;)
converges to x, denote by (z;) — x or x = lim xj, if (z;) is eventually in every open neighborhood of z, that
is, for any open neighborhood U of z, there exists a jo € J such that for every j € J, j > jo = z; € U.

Let X be a Tj topological space. Its topology is denoted by O(X), the specialization order C on X
is defined by z C y < z € {y}, where {y} means the closure of {y}. From now on, the order of a Tj
topological space always indicates the specialization order C.

For any topological space X, a directed subset D C X can be regarded as a monotone net (d)gep. We
use D — x or = lim D to denote that D converges to x. Define

D(X)={(D,z):x € X, D is a directed subset of X and D — z}.

It is easy to verify that, for each z,y € X, « C y < {y} — . Therefore, if  C y then ({y},z) € D(X).
Next, we introduce the notion of a directed space, which is equivalent to the notion of a Ty monotone
determined space [6]. A subset U of X is called directed open if V(D,z) € D(X), x € U = DNU # 0. All
directed open subsets from a topology, called the directed topology of X, denoted by d(X). Obviously, all
open subsets of X are directed open, and all directed open sets are upper sets.

Definition 2.1. [[8] X is called a directed space if each directed open subset of X is an open subset, i.e.,
d(X)=0(X).

The following are some basic properties of directed spaces.

Proposition 2.2. [(8] Let X be a T topological space. Then

(1) X equipped with d(X) is a Ty topological space such that C,;=C, where C, is the specialization
order relative to d(X).

(2) For a directed subset D of X, D — z iff D —4 x for all x € X, where D —4 = means that D
converges to x with respect to the topology d(X).

(3) (X,d(X)) is a directed space.

Directed spaces contain many important structures in domains theory such as depo endowed with the
Scott topology, c-spaces, and posets endowed with the Alexandroff topology (we refer to [, I8, IR] for
directed spaces). In general, a dcpo with the upper topology is not a directed space.
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Example 2.3. Let N be the set of natural numbers. Denote by NT the flat domain, i.e., the poset with
carrier set NU{T} and z <y iff y = T or z = y. It is easily seen that NT is a dcpo. Given any upper
set U of N7, since any directed subset D of N7 must have a largest element, D — x for some z € U iff
DNU # 0. Thus, U is a directed open subset of (N7, 0(NT)). Let U = {2n:n € N} N {T}. Then, U is
an directed open set, but not an open subset of v(NT)). Thus, (N7, v(N")) is not a directed space. The
directed topology of (NT,v(NT)) is just the Scott topology.

Definition 2.4. Let X,Y be two Tj spaces. A map f : X — Y is called directed continuous if it is
monotone and preserves all limits of directed set of X, i.e., (D, x) € D(X) implies (f(D), f(z)) € D(Y).

Proposition 2.5. [I¥] Let X,Y be two Tp spaces and f: X — Y be a map between X and Y.

(1) f is directed continuous if and only if VU € d(Y), f~1(U) € d(X).
(2) If X,Y are directed spaces, then f is continuous if and only if it is directed continuous.

We now introduce the categorical product in Dtop, the category of all directed spaces together with
continuous maps as morphisms.

Suppose that X, Y are two directed spaces. Let X x Y denote the cartesian product of X and Y, then
we have a natural partial order on it, called the pointwise order: ¥(z1, y1), (22, y2) € X XY,

(1, 11) < (2, ¥2) <= 21 C 22, y1 C yo.

Now, we define a topological space X ® Y as follows:

1. The underlying set of X @ Y is X x Y
2. The topology on X x Y is generated as follows: for each given <-directed set D C X x Y and
(z,y) € X XY,
D—(z,y) e XQY <= mD —szxeX,mD—->ycY.

That is, a subset U C X x Y is open if and only if for every directed subset D — (x,y), (z,y) €
U=UnD #0.

Theorem 2.6. [IR] Let X, Y, Z be directed spaces.

(1) The topological space X @Y defined as above is a directed space and satisfies the following properties:
the specialization order of X ® Y is equal to the pointwise order on X XY, i.e., C=<.

(2) Amap f: X®Y — Z is continuous if and only if it is continuous in each variable separately.

(3) X ®Y is the categorical product of X andY in Dtop

Dtop is cartesian closed and contains all depos endowed with the Scott topology [IR]. Directed spaces
are a very natural topological extended framework for dcpos in domain theory (see [3, 06, IR]).

3. The directed upper powerspaces of directed spaces

In the category of dcpos and the category of topological spaces, the existence of the free algebras can
be shown by the Adjoint Functor Theorem (see [0]). Recently, the free algebras over a directed space in
the context of Dtop were defined in a similar way as the free algebras over dpcos, and the existence of
the free algebras over any directed space was proved by the Adjoint Functor Theorem (see [d]). However,
the proof is not constructive. It is meaningful to construct the representation of the free algebra over a
directed space with respect to a concrete signature X and a set of inequalities £.

In classical domain theory, the concrete representation of the upper powerdomain over a dcpo is still
not known. In this section, we will give the concrete representation of the directed upper powerspace of
a directed space, which is a free algebra generated by the same signature and inequalities of the upper
powerdomains.
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Definition 3.1. Let X be a directed space.

(1) A binary operation @ : X ® X — X on X is called a deflationary operation if it is continuous and
satisfies the following four conditions: Vz,y, z € X,
(a) @z =z,
(b) z@y) ®z=20(yo2),
() roy=you,
d) zdy <z
(2) If @ is a deflationary operation on X, then (X, ®) is called a directed deflationary semilattice, that
is, directed deflationary semilattices are those directed spaces with deflationary operations.

By Theorem ET0(2), the operation @ on a directed space X is continuous if and only if it is monotone
and for any z,y € X and directed set D C X, D — « implies (D®y) — z®y. Here, Dy = {d®y : d € D}.

Here are two simple examples of directed deflationary semilattices.

Example 3.2. (1) Suppose that P is a poset endowed with the Scott topology, and for each a,b € P,

the infimum of @ and b exists in P (denote by aAb). Then (P, A) is a directed deflationary semilattice.

(2) Let I = [0,1] (the unit interval) and T be the topology generated by {[0,a] : a € I}. It is easy to

check that (I, T) is a directed space, and (I, min) is a directed deflationary semilattice endowed with
topology 7.

Definition 3.3. Suppose that (X, ®) and (Y, W) are two directed deflationary semilattices. A map f :
(X, ®) — (Y,W) is called a deflationary homomorphism between X and Y, if f is continuous and f(z®y) =
f(@) W f(y) holds for all z,y € X.

Denote the category of all directed deflationary semilattices with deflationary homomorphisms by Ddsl.
Then Ddsl is a subcategory of Dtop.

Lemma 3.4. Suppose that (X, ®) is a directed deflationary semilattice. Then we have & = Ac, where
x Az y means the infimum of x and y with respect to the specialization order T on X (called the meet
operation). Conversely, suppose that X is a directed space and for any z,y € X, x Ar y exists. Then the
continuity of Ac naturally implies that (X, Ac) is a directed deflationary semilattice.

Proof. By Definition B, for all z,y € X, x®y < z,y. Suppose that z is an another lower bound of {z, y}.
By Theorem ETB(1), the pointwise order equals to the specialization order of X ® X. Thus (z,y) C (z, 2).
By the continuity and idempotence of the deflationary operation, we have z ® z = z C = @ y. Therefore,
x @y is the infimum of {z,y}, i.e., x &y = = Ac y. Conversely, a continuous meet operation naturally
satisfies all conditions in Definition B. O

The above result shows that a directed deflationary semilattice (X, ®) is just a directed space with
a continuous meet operation A satisfying & = Ac. We omit the subscript C if there is no confusion.
Therefore, a directed deflationary semilattice can be represented by (X, A), where X is a directed space,
and A represents the continuous meet operation on X.

Next, we give the definition of a directed upper powerspace.

Definition 3.5. Let X be a directed space. A directed space Z is called the directed upper powerspace
over X if and only if the following two conditions are satisfied:

(1) Z is a directed deflationary semilattice, i.e., the meet operation A on Z exists and is continuous;

(2) There is a continuous map i : X — Z satisfying: for any directed deflationary semilattice (Y, A)
and any continuous map f : X — Y, there exists a unique deflationary homomorphism f : (Z, A) —
(Y,A) such that f = foi.
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If directed deflationary semilattices (Z1,A) and (Z2,A) are both directed upper powerspaces of X,
then there exists a topological homomorphism which is also a deflationary homomorphism g : Z; — Zs.
Therefore, up to isomorphism, the directed upper powerspace of a directed space is unique. Particularly,
we denote the directed upper powerspace of each directed space X by Py (X).

Next, we will give the concrete construction of the directed upper powerspace of a directed space X.
Let X be a directed space. Denote
UX ={tF:F Cy, X},
where F' Cyy, X is an arbitrary nonempty finite subset of X. Define an order <y on UX as follows:
T <y tF <= 1t C1r.

Let 7 C UX be a directed set (with respect to order <y) and 1F € UX. Define =y convergence
as follows: F =y TF iff there exist finite directed sets Di,...,D, C X such that the following three
conditions (called the = convergence conditions ) are satisfied:

(1) FNlimD; # 0, V1 <i<n;
n

(2) FC |JlimD;;
=1

1=
n n

(3) Y(dy,...,dn) € [] D, there exists some TF’ € F, such that 1F' C |J 71 d;.
i=1 i=1
A subset Y C UX is called a = convergence open set of UX if and only if for each directed subset F
of UX and 1F € UX, F =y TF € U implies F NU # ). Denote O, (UX) the set of all =y convergence
open set of UX.

Proposition 3.6. Let X be a directed space. Then the following statements hold

(1) (UX,0,(UX)) is a topological space, abbreviated as UX.
(2) The specialization order C of (UX, O, (UX)) is equal to <y .
(3) (UX,0,(UX)) is a directed space.

Proof. (1) Obviously we have §, UX € O, (UX). Suppose that U € O, (UX), tFy < tF,, TF € U,
and Fy = {ai1,...,an}. Then {TF2} =y TF;. We only need to take D; = {a;}, i« = 1,...,n. Then,
{1F>} NU # (0, which means 1F» € U, and U is an upper set respect to the order <.

Let Uy, Us € O, (UX), and F C UX be a directed set with F =y tF € U; NUy. Then, there
exist some 1F; € F NU;, and 1TF, € F NU. Since F is directed, there exists some 1F3 € F such that
1F3 C TF1,1Fy. Then, 1F5 € FNU; NUz. By the same way, we can prove that O, (UX) is closed under
arbitrary unions. It follows that O, (UX) is a topology.

(2) Let 1Fy, TF, € UX. By (1), we know each = convergence open set is an upper set with respect
to <p. If tF) <y 1Fz, then 1F; € {1Fy}, that is, 1F| C 1F5.

For the converse, suppose that 1F; C 1F;. We need only to prove that {1F € UX : 1F, C 1F} is a
closed subset of UX with respect to the topology O, (UX) and contains TF;. Since {1F € UX : 1F; C
YF} = {1F :1F <y 1Fy} C {1F : 1F C1Fy} = {1F>} and {1F € UX : 1F, C 1F} is a closed set in UX
with respect to O, (UX), then {tF € UX : tF C1Fy} = {1Fy}. Thus, 1Fy <y 1Fs.

Now, we prove that {tF € UX : tF, C 1F} is closed with respect to O=,(UX). Equivalently,
U=UX\{tF e UX :1F, C1F} is a =y convergence open set in UX. By contradiction, suppose that
U is not a =y convergence open set. Then there exists a directed set F of UX with F =y TF € U and
UNF = 0. According to the definition of =y convergence, there exists finite directed sets D1,..., D, € X
such that

1. FNlimD; #0, i=1, 2,...,n;
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n
i=1

3. Y(dy,...,d,) € T] D, there exists some 1F’ € F, such that 1F' C |J 1d;.
i=1

i=1

Since TF € U, then 1F, ¢ 1F, and there exists some a € F» with a ¢ 1F, then F C X\]a. According

to 1 and 2, for arbltrary i€ {l, 2, REEE n}, D; N (X\Ja) # 0. For each i, pick d; € D; N (X\]a). Then
(di, do, ...,dy,) € HD and a & U 1d;. Since F NU = ), then VF' € F, T1Fy CTF’, and TF' ¢ Ule,
1=1 =1 1=

which contradicts to 3. Therefore, L{ is a =y convergence open set in UX.

(3) For an arbitrary topological space X, O(X) C d(X) holds. Then O, (UX) C d(UX). On the
other hand, according to the definition of =y convergence topology, if a directed set F C UX satisfies
F =y 1F, then F convergents to TF respect to O, (UX). Thus, by the definition of directed open set,
F=rtF el ecdUX) will imply UNF # 0. Then U € O, (UX). It follows that O=, (UX) = d(UX),
that is, (UX, O, (UX)) is a directed space. O

Proposition 3.7. Let X,Y be two directed spaces. Then a map [ : (UX,0,(UX)) — Y is continuous
if and only if for each directed set F CUX and TF € UX, F =y 1F implies f(F) — f(1F).

Proof. The necessity is obvious. We only prove the sufficiency. Firstly, we check that f is monotone.
If TFl,TFQ € UX and TFl <y TFQ, then {TFQ} =U TFI By the hypothesis, {f(TFQ)} — f(TFl), thus
f(TFy) C f(1F)). Suppose U is an open set of Y and the directed set F =y 1F € f~1(U), then f(F) is
a directed set of Y and f(F) — f(1F) € U. Thus, there exists an 1F € D such that f(1F) € U. That is,
tF € FN f~1(U). According to the definition of = convergence open set, f~*(U) € O, (UX), i.e., f
is continuous. O

Define a binary operation U on UX : V 1F,1Fy, € UX, TF, UTF, = 1(F1 U Fy). Suppose TF; =
TFQ, TGI = TGQ with F1 7é FQ, Gl 7é GQ. Then F1 ] G1 g T(FQ @] Gg) 1mphes T(Fl U Gl) Q T(FQ U GQ)
Similarly, the opposite containment holds. Thus, U is well-defined.

Theorem 3.8. Let X be a directed space. Then (UX,O,, (UX)) with the set union operation U is a
directed deflationary semilattice.

Proof. By Proposition B8, (UX,O-,(UX)) is a directed space. We need only to prove that U is a
deflationary operation. For arbitrary 1Fy,1Fy € UX, 1Fy UTFy, = 1(F1 U Fy) € UX. Obviously, U satisfies
the conditions (a), (b), (c), (d) in Definition BT, we now prove the continuity of U. The monotonicity of U is
obvious. By Theorem PT8(2) and Proposition BZ2, we only need to prove that, for each directed set F C UX
and tF,1G € UX, F =y 1F will imply GUF =y tTGUTF = t(GUF). Here, GUF = {N(GUF’) : tF' € F}
is still a directed set. According to the definition of =y convergence, there exist finite directed sets
Dy, ..., Dy C X satisfying the conditions for F =y 1F. Let G = {a1,...,a,}, and Dgy1 = {a1}, Dgia =
{as}, ..., Diyn ={an}. It is straightward to verify that, Dy, Da, ..., Dy, Dyi1, ..., Dy, satisfy all
the conditions for G U F =y (1G U1TF). It follows that (UX,U) is a directed deflationary semilattice. O

Theorem 3.9. Let X be a directed space. Then (UX, O, (UX)) with the set union operation U is the
directed upper powerspace over X.

Proof. Definemap i : X — UX with Vo € X, i(z) = to. We prove the continuity of ¢. It is evident that ¢ is
monotone. Suppose that there exist a directed set D C X and anz € X with D — z.Let D = {{d : d € D},
then D is a directed set in UX and D =y fz. Since ¢(D) = D, then i(D) =y ta = i(z). By Proposition
3, 7 is continuous.

Let (Y, A) be an arbitrary directed deflationary semilattice and f : X — Y be a continuous map. Define
f:UX — Y as follows: ¥V 1F € UX (suppose that F = {a1, a2, ..., a,}),

FOF) = fla) A flaz) A=+ A flan) = N\ fla

a€F
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1f(G) implies Af(G) <
1S

Particularly, we write f(1F) as Af(F). If 1F = 1G with F # G, then f(F)
< well-defined.

) C
Af(F), that is f(1G) < f(1F). Similarly, we have f(1F) < f(1G). Therefore, f i
(1) f=Ffoi.
For arbitrary z € X, (foi)(z) = f(i(z)) = f(12) = f(x).

(2 fis a deflationary homomorphism, that is, f is continuous and for arbitrary 1/, 1Fy € UX,
JAFLUTEy) = f(TF) A f(TF). )
_ First, we prove that f preserves the union operation. Suppose 1F;,1F, € UX. Then f(1F; U1Fy) =
J(FLU Fy)) = Af(FL U Fy) = (Af(F) A (Af(F2)) = f(TFL) A f(TF2). Next, we prove the continuity of
f. Since A is the meet operation, f is evidently monotone. Suppose that 7 C UX is a directed set and
F =y TF € UX. By the definition of =, there exist finite directed sets D1,..., D, C X such that

1. FNlimD; #0, i =1,2,...,n;

2. FC {J limD;

i=1
3. Y(dy,...,d,) € [[ D;, there exists some 1F € F, such that 1F C U 1d;.
i=1 i=1

Let F = {b1, ba,...,bi}. By 1, for each 1 < i < n, there exists some b; € F such that D; — b;.
If F\{by,....bn} # 0, welet G ={a1, az..., as} = F\ {b1,...,b,}. By 2, For each a; € G, there
exists 1 < i; < n such that D;; — a;. By the continuity of f, f(D ) — f(b;) for each ¢ =1,...,n and

f(Di;) — f(a;) for each j = 1,2,...,s. Since the meet operation A on Y is continuous, the following
convergence holds:

SO NN (D) A f(Diy) N A f(Ds,) = f(br) A A f(bn) A flai) Ao A flai,). (%)
Here, f(D1) A -+ A f( n) A f(Di) Ao A f(Ds) = {f(d) Ao A fldn) A f(diy) Ao A fldi,) -
(di, ..y dg, diy, ..., di,) € (I] Di) x (I] Ds;)}. Let U be an arbitrary open neighborhood of Af(F).

i=1 j=1
By (*), there exists some (d1, ..., dn, di, ..., di,) € (I] Ds) x ([] Ds,) such that f(di) A---A f(d,) A
i=1 j=1

fldi) Nee- AN f(di,) €U
Since D;, repeats D; and each D; is directed, there exists some (d, dj, ..., d;) € H D; such that
f(dy) A -~-/\f(d’) 3 fdi) AN+ A fldn) A f(diy) A+ A f(di,). By 3, there exists some TF' € F such
that 1 C U td.. Thus f(1F') = Af(F") 3 f(dy) A--- A f(d.,). Since U is an upper set, it follows that
Nf(F') = f(TF’) € U, then f(F) = {Af(F'): 1F" € F} — Af(F). By Proposition B, f is continuous.
(3) Homomorphism f is unique.

Suppose we have a deflationary homomorphism g : (UX,U) — (Y,A) such that f = g o, then
g(Tz) = f(z) = f(1z). For each 1F € UX with F = (a1,...,a,),

g(tF) = g(taiUtagU---U Tan)
= g(tar) /\Q(Taz) A g(tas)
= f(Tal)f\f(Taz) A f(tan)
= f(ta1UtazU---U Tan)
FOIF).

Thus f is unique.
In conclusion, according to definition B, endowed with topology O, (UX), the directed deflationary
semilattice (UX,U) is the directed upper powerspace of X, that is, Py(X) = (UX,U). O

Suppose that X,Y are two directed spaces and f : X — Y is a continuous map. Define map Py(f) :
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Py(X) — Py(Y) as follows:
VIF e UX, Py(f)(1F) =1/(F).

Then Py (f) is well-defined and order preserving. It is easy to check that Py(f) is a deflationary homo-
morphism. If idx is the identity map and g : Y — Z is an arbitrary continuous map from Y to a directed
space Z, then Py (idx) = idp,(x), Pu(gof) = Pu(g)oPy(f). Thus, Py : Dtop — Ddsl is a functor from
Dtop to Ddsl. Let U : Ddsl — Dtop be the forgetful functor. By Theorem B, we have the following
result.

Corollary 3.10. Py is a left adjoint of the forgetful functor U, that is, Ddsl is a reflective subcategory
of Dtop.

4. Relations between upper powerspaces

In this section, we will discuss the relations between the upper powerdomains, the observationally-
induced upper powerspaces and the directed upper powerspaces.

Let (X,0(X)) be a topological space. We say that a nonempty set A C X is a saturated set, if
A={U € O(X) : ACU}. Denote Q(X) the set of all nonempty compact saturated sets of X. For each
U e OX), let

[U={KeQ(X): KCU}
Denote Bx = {[U] : U € O(X)}. The upper Vietoris topology on Q(X) is generated by the subbase By,

denote by Vi (Q(X)). Particularly, for a decpo endowed with the Scott topology, the compact saturated
sets are just the compact upper sets.

Theorem 4.1. [2] Suppose X is a sober and locally compact space, (Q(X), Vu(Q(X))) is order isomorphic
and topological homomorphic to the observationally-induced upper space of X with respect to the union
operation of sets. Under this condition, we have Vi (Q(X)) = o(Q(X)). Here, Q(X) is endowed with the
order reverse to containment, and o(Q(X)) denotes the Scott topology.

Theorem 4.2. [4] Let P be a continuous domain. Then (Q(P), D), endowed with the Scott topology, is
isomorphic to the upper powerdomain S(P) over P (which is also called Smyth powerdomain ). Besides,
the following statements hold:

(1) (Q(P),D) is a continuous meet semilattice;
(2) VK e Q(P), K=N1F:1<|F|<w & K C (1F)°}.

According to the two theorems above, for each continuous domain endowed with the Scott topology,
its observationally-induced upper powerspace is isomorphic to the upper powerdomain. Next, we discuss
the directed upper powerspaces of continuous domains endowed wit the Scott topology.

Let X be a continuous domain. Then (X, (X)) is a directed space, and each upper set generated by a
finite set is a compact saturated set. Thus, UX C Q(X). Denote o(Q(X))|ux the induced topology from
the Scott topology on Q(X).

Proposition 4.3. Let X be a continuous domain endowed with the Scott topology o(X).
(1) For each given directed set F CUX and TF € UX, we have F =y tF & ({1G:1G € F} C1F.
(2) 0=, (UX) = o(Q(X))|ux-

Proof. (1) Suppose that F C UX is a directed set of UX, 1F € UX, and F =y 1TF. By definition, there
exist finite directed sets D ..., D, C X such that

1. FNlimD; #0, i=1,2,..., n;
2. F C | lim D;;
=1

1=
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n , , n
3. V(di,...,dy) € [ D, there exists some + F € F, such that 1 F* C |J 1 d;.

i=1 i=1

By contradiction, suppose (J{1G : 1G € F} € 1F. Then there exists some a € ({1G : G € F} such
that @ ¢ TF. Thus, F C X\]a. By 1 and 2, for each i, there exists some d; € D; such that d € X\la.

By 3, there exists some 1F € F such that 1F C U 1d;, which contradicts with a & U 1d;. Thus

NG :1G € F} C1F.
On the other hand, suppose that (\{1G : 1G € F} C tF. Let F = {a1, as,...,a,}. Since X is

a continuous domain, then each [a; is directed and a; = \/¢ai for i = 1,2,...,n. Let D; = Ja; amd
n

D; — a;. Then, each D; satisfy 1 and 2 in the definition of = ;. For arbitrary (d1,ds, ..., d,) € [] D;, we
i=1

n n
have 1F C |J #d; = (| 1d;)°. Since each continuous domain is well-filtered, it follows that there exists

some 1G € F such that TG C ( U 1d;)°, and then, 3 in the definition of = holds. Therefore F =y 1F.

(2) Suppose U € O, (UX). Let L{Q ={K e Q(X):NF elU, K C1F}. Obviously, U = Uy N Q(X).
Let K C Q(X) be a directed set with respect to the reverse inclusion order and (\{K : K € K} € Ug.

There exists some TF € U such that ({K : K € K} C tF. Let F = {a1,a2,..., a,}. Since X is a
continuous domain, then each Ja; is directed and a; = \/ Ja; for i =1,2,...,n. Let F = {{J_, 1d; : d; <
a;, i =1,2,...,n}. Since X is a continuous domain, then Q(X) is a continuous domain. We have 1F C

(UiZ, 1d)° C Ul td; for i = 1,2,...,n. Besides, \F = 1F. By (1), F =y 1F. Thus, there exists some
(di,dg,...,dn) € [T <i<n $ai such that J;_, Td; € U. Noticing that ({K : K € K} C1F C (U;, 1di)°,
there exists some K € K such that K C ({J;_, 1d;)°. By the definition of Ug, we have K € U, that is, Ug
is a Scott open set in Q(X). Therefore, O= ,(UX) C o(Q(X))|vx-

On the other hand, let V € o(Q(X)), and F C UX be a directed set with F =y 1F € VNUX. By
(1), {1G : 1G € F} € V, there exists some G € FNV, that is, FNVNUX # (. Thus, o(Q(X))|lux C
O-,UX). O

Example 4.4. Let X = R” be the n-dimensional Euclidean space. Then X is a locally compact 15 space,
thus a locally compact sober space. Denote the observationally-induced upper space over X by Pp(X).
By Theorem B, Po(X) = {K C X : K is a nonempty compact set of X } for which the topology is the
Scott topology. It is easy to check that, Po(X) is a continuous domain and for each nonempty compact
set K C X, {{a} : a € K} is a compact saturated set of Po(X). It follows that, for the directed space
Pp(X), its directed upper powerspace Py (Po(X)) # Q(Po(X)).

5. The directed lower powerspaces of directed spaces

In this section, we introduce the directed lower powerspace of a directed space, which is a free algebra
generated by the inflationary operation of the directed space. These results can be found in [I5]. And the
proofs are similar to the directed upper powerspaces. We just represent some results as basic knowledge
for the following work.

Definition 5.1. [[H] Let X be a directed space.

(1) A binary operation @ : X ® X — X on X is called an inflationary operation if it is continuous and
satisfies the following four conditions: Vz, vy, z € X,
(a) zdz =z,
(b) z@y)®z=2d(y®2),
() zoy=yaur,
d) zdy > .
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(2) If @ is a inflationary operation on X, then (X, ®) is called a directed inflationary semilattice, that
is, directed inflationary semilattices are those directed spaces with inflationary operations.

By Theorem PTB(2), the operation @ on a directed space X is continuous if and only if it is monotone
and for each given z, y € X and directed set D C X, z = lim D implies z @ y = lim(D @ y). Here,
Dey={dsoy:de D}

Definition 5.2. [I5] Let (X, ®), (Y,W) be two directed inflationary semilattices, f : (X, ®) — (Y, W) is
called an inflationary homomorphism between X and Y, if f is continuous and Vz,y € X, f(z @ y) =

f(@)W f(y).

Denote the category of all directed inflationary semilattices and inflationary homomorphisms by Disl.
Then Disl is a subcategory of Dtop.

Lemma 5.3. [[H] Suppose that (X, ®) is a directed inflationary semilattice. Then & = V. Here, x Vc y
means the supremum of x and y with respect to the specialization order T of X (called the sup operation).
Conversely, suppose that X is a directed space such that for each x,y € X, vV y exists. Continuity of
Ve will naturally imply that (X,Vc) is a directed inflationary semilattice.

We see that a directed inflationary semilattice (X, ®) is just a directed space with a continuous sup
operation satisfy @& = V. We use the symbol V instead of Vi if there is no confusion. Therefore, a directed
inflationary semilattice can be represented by a tuple of the form (X, V), where X is a directed space and
V represents the continuous sup operation on X.

Next, we give the definition of a directed lower powerspace.

Definition 5.4. [I5] Suppose that X is a directed space. A directed space Z is called the directed lower
powerspace over X if and only if the following two conditions are satisfied:

(1) Z is a directed inflationary semilattice, i.e., the sup operation V on Z exists and is continuous,

(2) There is a continuous map i : X — Z satisfying: for any directed inflationary semilattice (Y, V) and
any continuous map f : X — Y, there exists a unique inflationary homomorphism f : (Z,V) —
(Y,V) such that f = foi.

Let X be a directed space. Set LX = {|F : F Cy;, X}, where F' Cy;, X is an arbitrary nonempty
finite subset of X. Define an order <j on LX as follows:

1P <p By <= [ C k.

Let D C LX be a directed set (respect to order <p) and |F € LX. Define a convergence relation =, as
follows:

D=y |F < Va€ F, there exists a directed set D, of X such that D, C |JD and D, — a.

A subset U C LX is called a =, convergence open set of LX if and only if for each directed subset D of
LX and |F € LX, D= [F € U implies DNU # (). Denote all = convergence open sets of LX by
O, (LX).
Theorem 5.5. [4] Let X be a directed space. Then (LX,O ,(LX)) is the lower powerspace of X.
The lower powerspace is unique up to isomorphism, we denote the lower powerspace of each directed
space X by Pr(X) = (LX, U).
Suppose that X, Y are two directed spaces and f : X — Y is a continuous map. Define the map Pr(f) :
Pr(X) — Pr(Y) as follows: VI F' € LX, P(f)({F) = Lf(F). It is evident that Pr(f) is well-defined and

order preserving. According to B3, it is easy to check that Pr(f) is an inflationary homomorphism between
the two directed lower powerspaces.

10
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Proposition 5.6. [14] Py, is a left adjoint of the forgetful functor U, that is, Disl is a reflective subcategory
of Dtop.

6. Properties preserved by directed power functors

We first introduce the notion of a c-space and an FS-space.

Definition 6.1. A T topological space X is called a c-space if for any open subset V of X and xz € V,
there exists a y € V such that « € (Ty)° C 1y.

The c-spaces have another characterization by a generalized way-below relation on topological spaces
called d-approximation.

Definition 6.2. We say that « d-approzimates y, denoted by z <4 y, if for any directed subset D C X,
D — y implies « C d for some d € D. A topological space X is called a continuous space if it is a directed
space such that | x is directed and | — for all x € X, where 44T = {lye X :y<gqz}.

Proposition 6.3. [I6] A T, topological space is a c-space iff it is a continuous space.

Definition 6.4. [[6G] An approximate identity for a directed space X is a directed set D C [X — X]
satisfying D — 1x, where 1x is the identity map of X, and D — 1x means the pointwise convergence,
ie, Ve e X, (f(z))fep > v € X.

Definition 6.5. [[6] A continuous map 6 : X — X on a directed space X is called finitely separating if
there exists a finite set Fs such that for each € X, there exists a y € Fy such that d(z) <y < z. A
directed space is finitely seperated if there is an approximate identity for X consisting of finitely seperating
maps. A finitely separated directed space is called an FS-space.

All FS-spaces with continuous maps form a category denoted by FS. Denote the category of all c-
spaces by CS. They are very natural extensions for FS-domains and continuous domains. Moreover, F'S
is cartesian closed [I6]. Thus, as in domain theory, it is meaningful to investigate the directed powerspaces
over FS-spaces and c-spaces. In [d], it was shown that the free algebras (in the category Dtop) over
c-spaces are still c-spaces by a categorical method. As concrete examples of free algebras, the directed
upper powerspaces and directed lower powerspaces of c-spaces will be c-spaces. Here, we prove this by a
topological method, which is more concrete and easier to understand.

Let X be a directed space. Given any element |F' of LX, we denote by T(iF ) the upper subset of
LX generated by the element |F'. That is, T(LF) ={lG e LX : |F <y |G}. For a subset {/F; :i € I}
of LX, denote by T{lF; : i € I} the upper subset of LX generated by {|F; : i € I}. The same, for any
TFeUX, T(TF) ={1G e UX :1F <y 1G}}.

Proposition 6.6. Let X be a c-space and Do = {dy,...,d,} be any finite subset of X.

(1) Define Vi, =T {l{x1,...,zn} 1 2y € int(tdy),i = 1,...,n.}. Then Vp, C T{l{d1,...,dn}} and Vp,
is an open subset of Pr(X).

(2) Define V3, = 1{tF : F Cpin X,F C Uyep, int(td)}. Then V C T{t{ds,...,dn}} and V3 is an
open subset of Py(X).

Proof. (1) The inclusion relation is obvious. We need only to prove that V},  is a directed open subset of
Pp(X). Supposet that D =, |[F € V}JO. Let F = {a1,...,an}. By the definition of = convergence, we
know that there exist finite directed subsets Dy, ..., D,, of X satisfying

D; —a;,1<j<m. (%)

Since |F' € V},[ﬂ there exist some z; € int(1d;) for each 1 < ¢ < n such that [{z;....2,} C JF. Thus for
any 1 <4 < n, there exists some a; € F such that x; < a;. Denote the corresponding directed subsets in
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(%) as D}. Then D} — a},1 <i < n. By a} € int(1d;), there exists d € int(1d;) for each 1 <4 < n. By the
definition of = convergence, we know that D; C UD. Since D is directed, there exists a |F; € D such
that J{d;,...,d,} ClFy,ie, |F € Vll)o N D. Thus, V})O is an open subset of Pr(X).

(2) The inclusion relation is obvious. We need to show that V3, is a directed open subset of Py(X).
Assume that F =y TF € V%O. Let F = {a1,...,an}. By the definition of = convergence, there exist
finite directed subsets D, ..., D,, of X satisfying

Dj%aj,lgjgm. (**)

Since TF € V3, , there exists a finite subset G = {x1,..., 2%} € Ugep, int(1d) in X such that 1F C
M1 ....xp}. Thus, for any 1 < j < m, there exits an :z:; € {x1,...,xx} such that :r; < aj;.

o if {w1,...,2p} \ {27,...,25,} # 0, By (), for any 1 < j < m, there exits some d; € D; N
Udep,int(1d),1 < j < m. By condition 2 of definition of =y convergence, we have that for
Hdy,...,d.,}, there exists some 1F; € D such that 1F; C t{d},...,d,,}. By the construction of
V%O, TFLeDnN V,%O. Thus V,%O is open in Py (X).

o If {«),... 2/ } has already covered by {x1,..., 2}, then for any 1 <14 < k, there exists a} € F such

rrm
that x; < a). At this time, we have &k < m. Let F \ {a},...,a.} = {af,...,a’}, 0 < s. Denote
Di,...,D;,DY,..., DY the corresponding directed subset in (sx), then D} — a},1 < i < k; D} — af,
0<t<s.

Since a}, ay € Ugep,int(1d),1 <i < k,0 <t < s, there exist

d; € D;n | J int(1d),1<i <k,
de Dy

d/ e D/ n | int(1d),0 <t <s.
deDg

By condition 2 in defintion of =y convergence, for any 1{d,...,d},d{,...,d!}, there exists some

1Fy, € D such that 1Fy C M{d},...,d,.d{,...,d’}. By the construction of VJQDO, we know that
TFy € DNV}, and V}, is open in Py(X). O

Theorem 6.7. If X is a c-space, then Pr(X) and Py(X) are both c-spaces.

Proof. (1) Let X be a c-space. To prove that Pr(X) is a c-space, for any directed open subset U of
Pr(X) and |F = [{a1,...,an} €U, we need to find out a |F’ € U such that LF € int (](LF)) CU.

Since X is a c-space, for any a; € F, there exists a directed subset D,, of X such that D,, — a;, where
Vd € D,,, a; € int(1d),i =1,...,n. Let

D= {Hdl,...,dn}:(dl,...,dn) eHDai}.
=1

Then it is a directed subset in Pr,(X), by the definition of = convergence, we can see that D = |F.
Thus there exists |{d1,...,d,} € DNU and |F € T{i{dl, ...ydp}} C U. We need only to prove that

LF eint (T{{dy,...,dn}}).
Let Do = {di,...,d,}, By Proposition 68, Vp, is open in Pr(X) and |F € V}, C [{{{d1,...,dn}},
ie., LF €int (T{i{dh ce dn}})

(2) To prove that Py (X) is a c-space, for any directed open subset U of Py (X) and tF = t{a1,...,an} €
U, we need to find out a 1F’ € U such that 1F € int (T(1F')) C U.

12
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Since X is a c-space, for any a; € F, there exists a directed subset D,, of X such that D,, — a;, where
Vd € D,,, a; € int(1d),i =1,...,n. Let

D= {T{dl,...7dn}:(dl,...,dn) EHD%}.
i=1

Then it is a directed subset in Py (X), by the definition of =; convergence, we can see that D = 1F by
letting those D; in the convergence conditions to be those D,,. Thus there exists 1{d1,...,d,} € DNU
and 1F € T{T{dl, ..., dn}} CU. We need only to prove that TF € int (T{T{dl, e dn}}).

Let Do = {dx,...,d,}, By Proposition BB, V3, is open in Py(X) and 1F € V}, C HM{dy, ... dn}},
i, 1F € int (T{1{d1,...,dn}}). O

Now, we show that the directed upper powerspace and the directed lower powerspace of an FS-space
are FS-spaces.

Theorem 6.8. Let X be a directed space, D = {f;}ier C [X — X]| be a directed subset and D — f €
[X — X]. Then P(D) — Pr(f), Pu(D) — Py(f), i.e., functors P, and Py are continuous.

Proof. Let X be a directed space and the directed subset D and f satisfying the supposed condition.
(1) For Pr: P(D) ={PL(f;): fi; € D} is a directed subset in [Pr(X) — Pr(X)]. PL(f)(LF) = 1f(F).
We need only to prove that Pr(D) =, Pr(f). It is equivalent to showing that
WP ier =0 LA(F), YIF € Pr(X).

Given any [F € Pp(X) with F = {a1,...,a,}, let D; = {fi(aj)}ier. Then it is a directed subset of X
and
Dj — f(aj), j: 1,...771.

This means that {}f;(F)}ier =1 L f(F).

(2) For Py: similarly with (1), we need only to show that

{1fi(F)}ier =v 1f(F), VIF € Py(X).

Given any TF € Py(X) with F = {a1,...,an}, let D; = {fi(a;)}icr. Then it is a directed subset of X
and
Dj — f(aj), j: 1,...,n.

For any (fi,(a1), ..., fi,(an)) € [[;=; D;, since D is directed, we can pick 99 € I such that f; < fi,, i =
il, SN ,in. Thus,

T(f@o (a’l)’ R fzg(an)) - T(fu (a’l)’ R fin (an))
This means that {1f;(F)}ier =uv Tf(F).

Theorem 6.9. Let X be a directed space. If & is a finitely separable map on X, then Pr(f) and Py(f)
are finitely separable maps on Pr(X) and Py(X) respectively.

Proof. We verify that Pr(d) is a finitely separate map on Pr(X), i.e., there exists a finite subset G5 of
Pr(X) such that V| F € Pr(X), there exists a JF’ € G5 such that

PL(0)(LF) < |F' < |F.

Let Fs be the finitely separate set of 6 on X. Let Gs = {JA : A C F5}. We claim that Gj satisfies the
needs. For any |F € Pr(X) with F = {a1,...,a,}, we have Pr(0)(}F) = L0(F). There exists some
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y; € Fy such that 6(a;) <y; <a;, 1 <i<mn. Thus,

V6(F) € L3+ - 4m) C LF
Thus we have Pr,(0)(F) < (y1,-..,yn) < JF, proved. For Py (4), the proof is similar, so we omit it. O
By Theorem BB and Theorem B9, we have the following statement.

Theorem 6.10. Let X be a directed space. If X is an FS-space, then Pr(X) and Py(X) are both FS-
spaces.
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