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Abstract

In domain theory, powerdomains play an important role in modeling the semantics of nondeterministic
functional programming languages. In this paper, we extend the notion of powerdomains to the cartesian
closed category of directed spaces. We define the notion of upper and lower powerspace of a directed space
by the way of free algebras. We show that the upper and lower powerspaces of any directed space exist and
give their concrete structures. Moreover, the upper and lower functors preserve the continuity of directed
spaces. The upper and lower powerspaces of c-spaces (resp., FS-spaces) are c-spaces (resp., FS-spaces).
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1. Introduction

The notion of powerdomains is one of the most important parts of domain theory. Powerdomains
are used to provide mathematical models for the semantics of nondeterministic functional programming
languages. There are three classical power structures in domain theory: the lower powerdomain, the
upper powerdomain, and the convex powerdomain. In recent years, a lot of generalizations were made
on these power structures [8, 19, 20, 21]. Generally speaking, these power structures are free algebras
generated by domains with respect to some binary operations. In 2015, I. Battenfeld and M. Schöder
[2] introduced a kind of power structures on general topological spaces, where the Boolean algebra 2 is
endowed with the Sierpinski topology as an observable structure. Then they defined the upper power
structure (observationally-induced upper powerspace) and lower power structure (observationally-induced
lower powerspace).

In an invited presentation at the 6th International Symposium in Domain Theory, Lawson gave evidence
from recent development in domain theory to highlight the intimate relationship between domains and
T0 spaces and called to develop the domain theory in T0 spaces. Directed spaces were introduced by Yu
and Kou [18], which are equivalent to T0 monotone determined spaces defined by Erné in [6]. Directed
spaces with continuous maps form a cartesian closed category, denoted by Dtop [18], and also contain
many objects in domain theory such as dcpos endowed with the Scott topology, posets endowed with the
Alexandroff topology, c-spaces and locally hypercompact spaces. In particular, the exponential objects and
categorical products in the category of dcpos coincide with those in Dtop by viewing dcpos as topological
spaces endowed with the Scott topology.

A c-space can be viewed as a continuous directed space just like domains as continuous dcpos [3, 16].
Recently, the notion of FS-domains, which form one of the most important cartesian closed categories in
domain theory, is extended to FS-spaces [16]. FS-spaces form a cartesian closed subcategory of directed
spaces and are contained in c-spaces. Besides, many other classical results about dcpos can be extended
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to directed spaces as well. For example, a directed space X is core compact iff for any directed space Y ,
the topological product of X and Y is equal to the categorical product in DTop of X and Y (see [3]).
Based on these facts, we believe that directed spaces are very suitable topological extensions of dcpos. It
is meaningful to investigate the power structures on directed spaces.

Like the category of dcpos and the category of topological spaces, the existence of the free algebras over
a directed space in the context of Dtop can be proved by the Adjoint Functor Theorem (see [1, 4]). We will
define the concept of upper and lower powerspaces of directed spaces through free algebras, and give the
concrete topological representations of the directed upper powerspace and the directed lower powerspace
over an arbitrary directed space. Moreover, we show that the upper and lower powerspaces of c-spaces
(resp., FS-spaces) are c-spaces (resp., FS-spaces) as well.

2. Preliminaries

We assume some basic knowledges in domain theory, topology, and category theory as in [1, 9, 10, 14].
Let P be a poset. Given any A ⊆ P , we denote ↓A = {x ∈ P : ∃a ∈ A, x ≤ a}, ↑A = {x ∈ P : ∃a ∈
A, a ≤ x}. We say that A is a lower set (upper set) if A = ↓A (A = ↑A). We denote by σ(P ) the Scott
topology on P . Let P, E be two posets, a map f : P −→ E is Scott continuous iff it is continuous with
respect to Scott topology σ(P ) and σ(E). The upper topology on P is denoted by υ(P ).

All topological spaces in this paper are supposed to be T0. A net of a topological space X is a map
ξ : J −→ X and is denoted by (xj)j∈J or (xj), where J is a directed set. Given x ∈ X, we say that (xj)
converges to x, denote by (xj) → x or x ≡ limxj , if (xj) is eventually in every open neighborhood of x, that
is, for any open neighborhood U of x, there exists a j0 ∈ J such that for every j ∈ J , j ≥ j0 ⇒ xj ∈ U .

Let X be a T0 topological space. Its topology is denoted by O(X), the specialization order ⊑ on X
is defined by x ⊑ y ⇔ x ∈ {y}, where {y} means the closure of {y}. From now on, the order of a T0

topological space always indicates the specialization order ⊑.

For any topological space X, a directed subset D ⊆ X can be regarded as a monotone net (d)d∈D. We
use D → x or x ≡ limD to denote that D converges to x. Define

D(X) = {(D,x) : x ∈ X, D is a directed subset of X and D → x}.

It is easy to verify that, for each x, y ∈ X, x ⊑ y ⇔ {y} → x. Therefore, if x ⊑ y then ({y}, x) ∈ D(X).
Next, we introduce the notion of a directed space, which is equivalent to the notion of a T0 monotone
determined space [6]. A subset U of X is called directed open if ∀(D,x) ∈ D(X), x ∈ U ⇒ D∩U ̸= ∅. All
directed open subsets from a topology, called the directed topology of X, denoted by d(X). Obviously, all
open subsets of X are directed open, and all directed open sets are upper sets.

Definition 2.1. [18] X is called a directed space if each directed open subset of X is an open subset, i.e.,
d(X) = O(X).

The following are some basic properties of directed spaces.

Proposition 2.2. [18] Let X be a T0 topological space. Then

(1) X equipped with d(X) is a T0 topological space such that ⊑d=⊑, where ⊑d is the specialization
order relative to d(X).

(2) For a directed subset D of X, D → x iff D →d x for all x ∈ X, where D →d x means that D
converges to x with respect to the topology d(X).

(3) (X, d(X)) is a directed space.

Directed spaces contain many important structures in domains theory such as dcpo endowed with the
Scott topology, c-spaces, and posets endowed with the Alexandroff topology (we refer to [3, 16, 18] for
directed spaces). In general, a dcpo with the upper topology is not a directed space.
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Example 2.3. Let N be the set of natural numbers. Denote by N⊤ the flat domain, i.e., the poset with
carrier set N ∪ {⊤} and x ≤ y iff y = ⊤ or x = y. It is easily seen that N⊤ is a dcpo. Given any upper
set U of N⊤, since any directed subset D of N⊤ must have a largest element, D → x for some x ∈ U iff
D ∩ U ̸= ∅. Thus, U is a directed open subset of (N⊤, υ(N⊤)). Let U = {2n : n ∈ N} ∩ {⊤}. Then, U is
an directed open set, but not an open subset of υ(N⊤)). Thus, (N⊤, υ(N⊤)) is not a directed space. The
directed topology of (N⊤, υ(N⊤)) is just the Scott topology.

Definition 2.4. Let X,Y be two T0 spaces. A map f : X −→ Y is called directed continuous if it is
monotone and preserves all limits of directed set of X, i.e., (D,x) ∈ D(X) implies (f(D), f(x)) ∈ D(Y ).

Proposition 2.5. [18] Let X,Y be two T0 spaces and f : X −→ Y be a map between X and Y .

(1) f is directed continuous if and only if ∀U ∈ d(Y ), f−1(U) ∈ d(X).

(2) If X,Y are directed spaces, then f is continuous if and only if it is directed continuous.

We now introduce the categorical product in Dtop, the category of all directed spaces together with
continuous maps as morphisms.

Suppose that X,Y are two directed spaces. Let X × Y denote the cartesian product of X and Y , then
we have a natural partial order on it, called the pointwise order: ∀(x1, y1), (x2, y2) ∈ X × Y ,

(x1, y1) ≤ (x2, y2) ⇐⇒ x1 ⊑ x2, y1 ⊑ y2.

Now, we define a topological space X ⊗ Y as follows:

1. The underlying set of X ⊗ Y is X × Y ;

2. The topology on X × Y is generated as follows: for each given ≤-directed set D ⊆ X × Y and
(x, y) ∈ X × Y ,

D → (x, y) ∈ X ⊗ Y ⇐⇒ π1D → x ∈ X,π2D → y ∈ Y.

That is, a subset U ⊆ X × Y is open if and only if for every directed subset D → (x, y), (x, y) ∈
U ⇒ U ∩D ̸= ∅.

Theorem 2.6. [18] Let X,Y, Z be directed spaces.

(1) The topological space X ⊗ Y defined as above is a directed space and satisfies the following properties:
the specialization order of X ⊗ Y is equal to the pointwise order on X × Y , i.e., ⊑=≤.

(2) A map f : X ⊗ Y −→ Z is continuous if and only if it is continuous in each variable separately.

(3) X ⊗ Y is the categorical product of X and Y in Dtop

Dtop is cartesian closed and contains all dcpos endowed with the Scott topology [18]. Directed spaces
are a very natural topological extended framework for dcpos in domain theory (see [3, 16, 18]).

3. The directed upper powerspaces of directed spaces

In the category of dcpos and the category of topological spaces, the existence of the free algebras can
be shown by the Adjoint Functor Theorem (see [1]). Recently, the free algebras over a directed space in
the context of Dtop were defined in a similar way as the free algebras over dpcos, and the existence of
the free algebras over any directed space was proved by the Adjoint Functor Theorem (see [4]). However,
the proof is not constructive. It is meaningful to construct the representation of the free algebra over a
directed space with respect to a concrete signature Σ and a set of inequalities E .

In classical domain theory, the concrete representation of the upper powerdomain over a dcpo is still
not known. In this section, we will give the concrete representation of the directed upper powerspace of
a directed space, which is a free algebra generated by the same signature and inequalities of the upper
powerdomains.
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Definition 3.1. Let X be a directed space.

(1) A binary operation ⊕ : X ⊗X → X on X is called a deflationary operation if it is continuous and
satisfies the following four conditions: ∀x, y, z ∈ X,

(a) x⊕ x = x,
(b) (x⊕ y)⊕ z = x⊕ (y ⊕ z),
(c) x⊕ y = y ⊕ x,
(d) x⊕ y ≤ x.

(2) If ⊕ is a deflationary operation on X, then (X,⊕) is called a directed deflationary semilattice, that
is, directed deflationary semilattices are those directed spaces with deflationary operations.

By Theorem 2.6(2), the operation ⊕ on a directed space X is continuous if and only if it is monotone
and for any x, y ∈ X and directed setD ⊆ X,D → x implies (D⊕y) → x⊕y. Here,D⊕y = {d⊕y : d ∈ D}.

Here are two simple examples of directed deflationary semilattices.

Example 3.2. (1) Suppose that P is a poset endowed with the Scott topology, and for each a, b ∈ P ,
the infimum of a and b exists in P (denote by a∧b). Then (P,∧) is a directed deflationary semilattice.

(2) Let I = [0, 1] (the unit interval) and T be the topology generated by {[0, a] : a ∈ I}. It is easy to
check that (I, T ) is a directed space, and (I,min) is a directed deflationary semilattice endowed with
topology T .

Definition 3.3. Suppose that (X,⊕) and (Y,⊎) are two directed deflationary semilattices. A map f :
(X,⊕) → (Y,⊎) is called a deflationary homomorphism between X and Y , if f is continuous and f(x⊕y) =
f(x) ⊎ f(y) holds for all x, y ∈ X.

Denote the category of all directed deflationary semilattices with deflationary homomorphisms byDdsl.
Then Ddsl is a subcategory of Dtop.

Lemma 3.4. Suppose that (X,⊕) is a directed deflationary semilattice. Then we have ⊕ = ∧⊑, where
x ∧⊑ y means the infimum of x and y with respect to the specialization order ⊑ on X (called the meet
operation). Conversely, suppose that X is a directed space and for any x, y ∈ X, x ∧⊑ y exists. Then the
continuity of ∧⊑ naturally implies that (X, ∧⊑) is a directed deflationary semilattice.

Proof. By Definition 3.1, for all x, y ∈ X, x⊕y ≤ x, y. Suppose that z is an another lower bound of {x, y}.
By Theorem 2.6(1), the pointwise order equals to the specialization order of X ⊗X. Thus (x, y) ⊑ (z, z).
By the continuity and idempotence of the deflationary operation, we have z ⊕ z = z ⊑ x ⊕ y. Therefore,
x ⊕ y is the infimum of {x, y}, i.e., x ⊕ y = x ∧⊑ y. Conversely, a continuous meet operation naturally
satisfies all conditions in Definition 3.1. 2

The above result shows that a directed deflationary semilattice (X,⊕) is just a directed space with
a continuous meet operation ∧⊑ satisfying ⊕ = ∧⊑. We omit the subscript ⊑ if there is no confusion.
Therefore, a directed deflationary semilattice can be represented by (X,∧), where X is a directed space,
and ∧ represents the continuous meet operation on X.

Next, we give the definition of a directed upper powerspace.

Definition 3.5. Let X be a directed space. A directed space Z is called the directed upper powerspace
over X if and only if the following two conditions are satisfied:

(1) Z is a directed deflationary semilattice, i.e., the meet operation ∧ on Z exists and is continuous;

(2) There is a continuous map i : X −→ Z satisfying: for any directed deflationary semilattice (Y, ∧)
and any continuous map f : X −→ Y , there exists a unique deflationary homomorphism f̄ : (Z,∧) →
(Y,∧) such that f = f̄ ◦ i.
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If directed deflationary semilattices (Z1,∧) and (Z2,∧) are both directed upper powerspaces of X,
then there exists a topological homomorphism which is also a deflationary homomorphism g : Z1 → Z2.
Therefore, up to isomorphism, the directed upper powerspace of a directed space is unique. Particularly,
we denote the directed upper powerspace of each directed space X by PU (X).

Next, we will give the concrete construction of the directed upper powerspace of a directed space X.

Let X be a directed space. Denote

UX = {↑F : F ⊆fin X},

where F ⊆fin X is an arbitrary nonempty finite subset of X. Define an order ≤U on UX as follows:

↑F1 ≤U ↑F2 ⇐⇒ ↑F2 ⊆ ↑F1.

Let F ⊆ UX be a directed set (with respect to order ≤U ) and ↑F ∈ UX. Define ⇒U convergence
as follows: F ⇒U ↑F iff there exist finite directed sets D1, . . . , Dn ⊆ X such that the following three
conditions (called the ⇒U convergence conditions ) are satisfied:

(1) F ∩ limDi ̸= ∅, ∀1 ≤ i ≤ n;

(2) F ⊆
n∪

i=1

limDi;

(3) ∀(d1, . . . , dn) ∈
n∏

i=1

Di, there exists some ↑F ′ ∈ F , such that ↑F ′ ⊆
n∪

i=1

↑ di.

A subset U ⊆ UX is called a ⇒U convergence open set of UX if and only if for each directed subset F
of UX and ↑F ∈ UX, F ⇒U ↑F ∈ U implies F ∩U ̸= ∅. Denote O⇒U (UX) the set of all ⇒U convergence
open set of UX.

Proposition 3.6. Let X be a directed space. Then the following statements hold

(1) (UX,O⇒U
(UX)) is a topological space, abbreviated as UX.

(2) The specialization order ⊑ of (UX, O⇒U (UX)) is equal to ≤U .

(3) (UX,O⇒U
(UX)) is a directed space.

Proof. (1) Obviously we have ∅, UX ∈ O⇒U
(UX). Suppose that U ∈ O⇒U

(UX), ↑F1 ≤ ↑F2, ↑F1 ∈ U ,
and F1 = {a1, . . . , an}. Then {↑F2} ⇒U ↑F1. We only need to take Di = {ai}, i = 1, . . . , n. Then,
{↑F2} ∩ U ̸= ∅, which means ↑F2 ∈ U , and U is an upper set respect to the order ≤U .

Let U1,U2 ∈ O⇒U (UX), and F ⊆ UX be a directed set with F ⇒U ↑F ∈ U1 ∩ U2. Then, there
exist some ↑F1 ∈ F ∩ U1 and ↑F2 ∈ F ∩ U2. Since F is directed, there exists some ↑F3 ∈ F such that
↑F3 ⊂ ↑F1, ↑F2. Then, ↑F3 ∈ F ∩U1 ∩U2. By the same way, we can prove that O⇒U (UX) is closed under
arbitrary unions. It follows that O⇒U

(UX) is a topology.

(2) Let ↑F1, ↑F2 ∈ UX. By (1), we know each ⇒U convergence open set is an upper set with respect
to ≤U . If ↑F1 ≤U ↑F2, then ↑F1 ∈ {↑F2}, that is, ↑F1 ⊑ ↑F2.

For the converse, suppose that ↑F1 ⊑ ↑F2. We need only to prove that {↑F ∈ UX : ↑F2 ⊆ ↑F} is a
closed subset of UX with respect to the topology O⇒U (UX) and contains ↑F1. Since {↑F ∈ UX : ↑F2 ⊆
↑F} = {↑F : ↑F ≤U ↑F2} ⊆ {↑F : ↑F ⊑ ↑F2} = {↑F2} and {↑F ∈ UX : ↑F2 ⊆ ↑F} is a closed set in UX
with respect to O⇒U (UX), then {↑F ∈ UX : ↑F ⊆ ↑F2} = {↑F2}. Thus, ↑F1 ≤U ↑F2.

Now, we prove that {↑F ∈ UX : ↑F2 ⊆ ↑F} is closed with respect to O⇒U
(UX). Equivalently,

U = UX \ {↑F ∈ UX : ↑F2 ⊆ ↑F} is a ⇒U convergence open set in UX. By contradiction, suppose that
U is not a ⇒U convergence open set. Then there exists a directed set F of UX with F ⇒U ↑F ∈ U and
U∩F = ∅. According to the definition of ⇒U convergence, there exists finite directed sets D1, . . . , Dn ⊆ X
such that

1. F ∩ limDi ̸= ∅, i = 1, 2, . . . , n;
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2. F ⊆
n∪

i=1

limDi;

3. ∀(d1, . . . , dn) ∈
n∏

i=1

Di, there exists some ↑F ′ ∈ F , such that ↑F ′ ⊆
n∪

i=1

↑di.

Since ↑F ∈ U , then ↑F2 * ↑F , and there exists some a ∈ F2 with a ̸∈ ↑F , then F ⊆ X\↓a. According
to 1 and 2, for arbitrary i ∈ {1, 2, . . . , n}, Di ∩ (X\↓a) ̸= ∅. For each i, pick di ∈ Di ∩ (X\↓a). Then
(d1, d2, . . . , dn) ∈

n∏
i=1

Di and a ̸∈
n∪

i=1

↑di. Since F ∩ U = ∅, then ∀F ′ ∈ F , ↑F2 ⊆ ↑F ′, and ↑F ′ ̸⊆
n∪

i=1

↑di,

which contradicts to 3. Therefore, U is a ⇒U convergence open set in UX.

(3) For an arbitrary topological space X, O(X) ⊆ d(X) holds. Then O⇒U
(UX) ⊆ d(UX). On the

other hand, according to the definition of ⇒U convergence topology, if a directed set F ⊆ UX satisfies
F ⇒U ↑F , then F convergents to ↑F respect to O⇒U

(UX). Thus, by the definition of directed open set,
F ⇒F ↑F ∈ U ∈ d(UX) will imply U ∩F ̸= ∅. Then U ∈ O⇒U

(UX). It follows that O⇒U
(UX) = d(UX),

that is, (UX, O⇒U
(UX)) is a directed space. 2

Proposition 3.7. Let X,Y be two directed spaces. Then a map f : (UX,O⇒U
(UX)) −→ Y is continuous

if and only if for each directed set F ⊆ UX and ↑F ∈ UX, F ⇒U ↑F implies f(F) → f(↑F ).

Proof. The necessity is obvious. We only prove the sufficiency. Firstly, we check that f is monotone.
If ↑F1, ↑F2 ∈ UX and ↑F1 ≤U ↑F2, then {↑F2} ⇒U ↑F1. By the hypothesis, {f(↑F2)} → f(↑F1), thus
f(↑F2) ⊑ f(↑F1). Suppose U is an open set of Y and the directed set F ⇒U ↑F ∈ f−1(U), then f(F) is
a directed set of Y and f(F) → f(↑F ) ∈ U . Thus, there exists an ↑F ∈ D such that f(↑F ) ∈ U . That is,
↑F ∈ F ∩ f−1(U). According to the definition of ⇒U convergence open set, f−1(U) ∈ O⇒U (UX), i.e., f
is continuous. 2

Define a binary operation ∪ on UX : ∀ ↑F1, ↑F2 ∈ UX, ↑F1 ∪ ↑F2 = ↑(F1 ∪ F2). Suppose ↑F1 =
↑F2, ↑G1 = ↑G2 with F1 ̸= F2, G1 ̸= G2. Then F1 ∪ G1 ⊆ ↑(F2 ∪ G2) implies ↑(F1 ∪G1) ⊆ ↑(F2 ∪ G2).
Similarly, the opposite containment holds. Thus, ∪ is well-defined.

Theorem 3.8. Let X be a directed space. Then (UX,O⇒U (UX)) with the set union operation ∪ is a
directed deflationary semilattice.

Proof. By Proposition 3.6, (UX,O⇒U
(UX)) is a directed space. We need only to prove that ∪ is a

deflationary operation. For arbitrary ↑F1, ↑F2 ∈ UX, ↑F1 ∪↑F2 = ↑(F1 ∪F2) ∈ UX. Obviously, ∪ satisfies
the conditions (a), (b), (c), (d) in Definition 3.1, we now prove the continuity of ∪. The monotonicity of ∪ is
obvious. By Theorem 2.6(2) and Proposition 3.7, we only need to prove that, for each directed set F ⊆ UX
and ↑F, ↑G ∈ UX, F ⇒U ↑F will imply G∪F ⇒U ↑G∪↑F = ↑(G∪F ). Here, G∪F = {↑(G∪F ′) : ↑F ′ ∈ F}
is still a directed set. According to the definition of ⇒U convergence, there exist finite directed sets
D1, . . . , Dk ⊆ X satisfying the conditions for F ⇒U ↑F . Let G = {a1, . . . , an}, and Dk+1 = {a1}, Dk+2 =
{a2}, . . . , Dk+n = {an}. It is straightward to verify that, D1, D2, . . . , Dk, Dk+1, . . . , Dk+n satisfy all
the conditions for G ∪ F ⇒U (↑G ∪ ↑F ). It follows that (UX,∪) is a directed deflationary semilattice. 2

Theorem 3.9. Let X be a directed space. Then (UX, O⇒U
(UX)) with the set union operation ∪ is the

directed upper powerspace over X.

Proof. Define map i : X → UX with ∀x ∈ X, i(x) = ↑x. We prove the continuity of i. It is evident that i is
monotone. Suppose that there exist a directed setD ⊆ X and an x ∈ X withD → x. Let D = {↑d : d ∈ D},
then D is a directed set in UX and D ⇒U ↑x. Since i(D) = D, then i(D) ⇒U ↑x = i(x). By Proposition
2.5, i is continuous.

Let (Y,∧) be an arbitrary directed deflationary semilattice and f : X → Y be a continuous map. Define
f̄ : UX → Y as follows: ∀ ↑F ∈ UX (suppose that F = {a1, a2, . . . , an}),

f̄(↑F ) = f(a1) ∧ f(a2) ∧ · · · ∧ f(an) =
∧
a∈F

f(a).
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Particularly, we write f̄(↑F ) as ∧f(F ). If ↑F = ↑G with F ̸= G, then f(F ) ⊆ ↑f(G) implies ∧f(G) ≤
∧f(F ), that is f̄(↑G) ≤ f̄(↑F ). Similarly, we have f̄(↑F ) ≤ f̄(↑G). Therefore, f̄ is well-defined.

(1) f = f̄ ◦ i.
For arbitrary x ∈ X, (f̄ ◦ i)(x) = f̄(i(x)) = f̄(↑x) = f(x).

(2) f̄ is a deflationary homomorphism, that is, f̄ is continuous and for arbitrary ↑F1, ↑F2 ∈ UX,
f̄(↑F1 ∪ ↑F2) = f̄(↑F1) ∧ f̄(↑F2).

First, we prove that f̄ preserves the union operation. Suppose ↑F1, ↑F2 ∈ UX. Then f̄(↑F1 ∪ ↑F2) =
f̄(↑(F1 ∪ F2)) = ∧f(F1 ∪ F2) = (∧f(F1) ∧ (∧f(F2)) = f̄(↑F1) ∧ f̄(↑F2). Next, we prove the continuity of
f̄ . Since ∧ is the meet operation, f̄ is evidently monotone. Suppose that F ⊆ UX is a directed set and
F ⇒U ↑F ∈ UX. By the definition of ⇒U , there exist finite directed sets D1, . . . , Dn ⊆ X such that

1. F ∩ limDi ̸= ∅, i = 1, 2, . . . , n;

2. F ⊆
n∪

i=1

limDi;

3. ∀(d1, . . . , dn) ∈
n∏

i=1

Di, there exists some ↑F ′ ∈ F , such that ↑F ′ ⊆
n∪

i=1

↑di.

Let F = {b1, b2, . . . , bk}. By 1, for each 1 ≤ i ≤ n, there exists some bi ∈ F such that Di → bi.
If F \ {b1, . . . , bn} ̸= ∅, we let G = {a1, a2 . . . , as} = F \ {b1, . . . , bn}. By 2, For each aj ∈ G, there
exists 1 ≤ ij ≤ n such that Dij → aj . By the continuity of f , f(Di) → f(bi) for each i = 1, . . . , n and
f(Dij ) → f(aj) for each j = 1, 2, . . . , s. Since the meet operation ∧ on Y is continuous, the following
convergence holds:

f(D1) ∧ · · · ∧ f(Dn) ∧ f(Di1) ∧ · · · ∧ f(Dis) → f(b1) ∧ · · · ∧ f(bn) ∧ f(ai1) ∧ · · · ∧ f(ais). (∗)

Here, f(D1) ∧ · · · ∧ f(Dn) ∧ f(Di1) ∧ · · · ∧ f(Dis) = {f(d1) ∧ · · · ∧ f(dn) ∧ f(di1) ∧ · · · ∧ f(dis) :

(d1, . . . , dk, di1 , . . . , dis) ∈ (
n∏

i=1

Di) × (
s∏

j=1

Dij )}. Let U be an arbitrary open neighborhood of ∧f(F ).

By (∗), there exists some (d1, . . . , dn, di1 , . . . , dis) ∈ (
n∏

i=1

Di)× (
s∏

j=1

Dij ) such that f(d1)∧ · · · ∧ f(dn)∧

f(di1) ∧ · · · ∧ f(dis) ∈ U .

Since Dij repeats Di and each Di is directed, there exists some (d′1, d′2, . . . , d′n) ∈
n∏

i=1

Di such that

f(d′1) ∧ · · · ∧ f(d′n) ⊒ f(d1) ∧ · · · ∧ f(dn) ∧ f(di1) ∧ · · · ∧ f(dis). By 3, there exists some ↑F ′ ∈ F such

that ↑F ′ ⊆
n∪

i=1

↑d′i. Thus f̄(↑F ′) = ∧f(F ′) ⊒ f(d′1) ∧ · · · ∧ f(d′n). Since U is an upper set, it follows that

∧f(F ′) = f̄(↑F ′) ∈ U , then f̄(F) = {∧f(F ′) : ↑F ′ ∈ F} → ∧f(F ). By Proposition 3.7, f̄ is continuous.

(3) Homomorphism f̄ is unique.

Suppose we have a deflationary homomorphism g : (UX,∪) → (Y,∧) such that f = g ◦ i, then
g(↑x) = f(x) = f̄(↑x). For each ↑F ∈ UX with F = (a1, . . . , an),

g(↑F ) = g(↑a1 ∪ ↑a2 ∪ · · · ∪ ↑an)
= g(↑a1) ∧ g(↑a2) ∧ · · · ∧ g(↑an)
= f̄(↑a1) ∧ f̄(↑a2) ∧ · · · ∧ f̄(↑an)
= f̄(↑a1 ∪ ↑a2 ∪ · · · ∪ ↑an)
= f̄(↑F ).

Thus f̄ is unique.

In conclusion, according to definition 3.1, endowed with topology O⇒U
(UX), the directed deflationary

semilattice (UX,∪) is the directed upper powerspace of X, that is, PU (X) ∼= (UX,∪). 2

Suppose that X,Y are two directed spaces and f : X → Y is a continuous map. Define map PU (f) :
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PU (X) → PU (Y ) as follows:
∀↑F ∈ UX, PU (f)(↑F ) = ↑f(F ).

Then PU (f) is well-defined and order preserving. It is easy to check that PU (f) is a deflationary homo-
morphism. If idX is the identity map and g : Y → Z is an arbitrary continuous map from Y to a directed
space Z, then PU (idX) = idPU (X), PU (g ◦f) = PU (g)◦PU (f). Thus, PU : Dtop → Ddsl is a functor from
Dtop to Ddsl. Let U : Ddsl → Dtop be the forgetful functor. By Theorem 3.9, we have the following
result.

Corollary 3.10. PU is a left adjoint of the forgetful functor U , that is, Ddsl is a reflective subcategory
of Dtop.

4. Relations between upper powerspaces

In this section, we will discuss the relations between the upper powerdomains, the observationally-
induced upper powerspaces and the directed upper powerspaces.

Let (X,O(X)) be a topological space. We say that a nonempty set A ⊆ X is a saturated set, if
A =

∩
{U ∈ O(X) : A ⊆ U}. Denote Q(X) the set of all nonempty compact saturated sets of X. For each

U ∈ O(X), let
[U ] = {K ∈ Q(X) : K ⊆ U}.

Denote BX = {[U ] : U ∈ O(X)}. The upper Vietoris topology on Q(X) is generated by the subbase BX ,
denote by VU (Q(X)). Particularly, for a dcpo endowed with the Scott topology, the compact saturated
sets are just the compact upper sets.

Theorem 4.1. [2] Suppose X is a sober and locally compact space, (Q(X), VU (Q(X))) is order isomorphic
and topological homomorphic to the observationally-induced upper space of X with respect to the union
operation of sets. Under this condition, we have VU (Q(X)) = σ(Q(X)). Here, Q(X) is endowed with the
order reverse to containment, and σ(Q(X)) denotes the Scott topology.

Theorem 4.2. [9] Let P be a continuous domain. Then (Q(P ),⊇), endowed with the Scott topology, is
isomorphic to the upper powerdomain S(P ) over P (which is also called Smyth powerdomain ). Besides,
the following statements hold:

(1) (Q(P ),⊇) is a continuous meet semilattice;

(2) ∀K ∈ Q(P ), K =
∩
{↑F : 1 ≤ |F | < ω & K ⊆ (↑F )◦}.

According to the two theorems above, for each continuous domain endowed with the Scott topology,
its observationally-induced upper powerspace is isomorphic to the upper powerdomain. Next, we discuss
the directed upper powerspaces of continuous domains endowed wit the Scott topology.

Let X be a continuous domain. Then (X,σ(X)) is a directed space, and each upper set generated by a
finite set is a compact saturated set. Thus, UX ⊆ Q(X). Denote σ(Q(X))|UX the induced topology from
the Scott topology on Q(X).

Proposition 4.3. Let X be a continuous domain endowed with the Scott topology σ(X).

(1) For each given directed set F ⊆ UX and ↑F ∈ UX, we have F ⇒U ↑F ⇔
∩
{↑G : ↑G ∈ F} ⊆ ↑F .

(2) O⇒U
(UX) = σ(Q(X))|UX .

Proof. (1) Suppose that F ⊆ UX is a directed set of UX, ↑F ∈ UX, and F ⇒U ↑F . By definition, there
exist finite directed sets D1 . . . , Dn ⊆ X such that

1. F ∩ limDi ̸= ∅, i = 1, 2, . . . , n;

2. F ⊆
n∪

i=1

limDi;
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3. ∀(d1, . . . , dn) ∈
n∏

i=1

Di, there exists some ↑ F
′ ∈ F , such that ↑ F

′ ⊆
n∪

i=1

↑ di.

By contradiction, suppose
∩
{↑G : ↑G ∈ F} ̸⊆ ↑F . Then there exists some a ∈

∩
{↑G : ↑G ∈ F} such

that a ̸∈ ↑F . Thus, F ⊆ X\↓a. By 1 and 2, for each i, there exists some di ∈ Di such that di ∈ X\↓a.
By 3, there exists some ↑F ′ ∈ F such that ↑F ′ ⊆

n∪
i=1

↑di, which contradicts with a ̸∈
n∪

i=1

↑di. Thus∩
{↑G : ↑G ∈ F} ⊆ ↑F .

On the other hand, suppose that
∩
{↑G : ↑G ∈ F} ⊆ ↑F . Let F = {a1, a2, . . . , an}. Since X is

a continuous domain, then each ↓↓ai is directed and ai =
∨
↓↓ai for i = 1, 2, . . . , n. Let Di = ↓↓ai amd

Di → ai. Then, each Di satisfy 1 and 2 in the definition of ⇒U . For arbitrary (d1, d2, . . . , dn) ∈
n∏

i=1

Di, we

have ↑F ⊆
n∪

i=1

↑↑di = (
n∪

i=1

↑di)◦. Since each continuous domain is well-filtered, it follows that there exists

some ↑G ∈ F such that ↑G ⊆ (
n∪

i=1

↑di)◦, and then, 3 in the definition of ⇒U holds. Therefore F ⇒U ↑F .

(2) Suppose U ∈ O⇒U (UX). Let UQ = {K ∈ Q(X) : ∃↑F ∈ U , K ⊆ ↑F}. Obviously, U = UQ ∩ Q(X).
Let K ⊆ Q(X) be a directed set with respect to the reverse inclusion order and

∩
{K : K ∈ K} ∈ UQ.

There exists some ↑F ∈ U such that
∩
{K : K ∈ K} ⊆ ↑F . Let F = {a1, a2, . . . , an}. Since X is a

continuous domain, then each ↓↓ai is directed and ai =
∨
↓↓ai for i = 1, 2, . . . , n. Let F = {

∪n
i=1 ↑di : di ≪

ai, i = 1, 2, . . . , n}. Since X is a continuous domain, then Q(X) is a continuous domain. We have ↑F ⊆
(
∪n

i=1 ↑di)◦ ⊆
∪n

i=1 ↑di for i = 1, 2, . . . , n. Besides, ∩F = ↑F . By (1), F ⇒U ↑F . Thus, there exists some
(d1, d2, . . . , dn) ∈

∏
1≤i≤n ↓↓ai such that

∪n
i=1 ↑di ∈ U . Noticing that

∩
{K : K ∈ K} ⊆ ↑F ⊆ (

∪n
i=1 ↑di)◦,

there exists some K ∈ K such that K ⊆ (
∪n

i=1 ↑di)◦. By the definition of UQ, we have K ∈ U , that is, UQ

is a Scott open set in Q(X). Therefore, O⇒U
(UX) ⊆ σ(Q(X))|UX .

On the other hand, let V ∈ σ(Q(X)), and F ⊆ UX be a directed set with F ⇒U ↑F ∈ V ∩ UX. By
(1),

∩
{↑G : ↑G ∈ F} ∈ V, there exists some ↑G ∈ F ∩ V, that is, F ∩ V ∩ UX ̸= ∅. Thus, σ(Q(X))|UX ⊆

O⇒U (UX). 2

Example 4.4. Let X = Rn be the n-dimensional Euclidean space. Then X is a locally compact T2 space,
thus a locally compact sober space. Denote the observationally-induced upper space over X by PO(X).
By Theorem 4.1, PO(X) = {K ⊆ X : K is a nonempty compact set of X } for which the topology is the
Scott topology. It is easy to check that, PO(X) is a continuous domain and for each nonempty compact
set K ⊆ X, {{a} : a ∈ K} is a compact saturated set of PO(X). It follows that, for the directed space
PO(X), its directed upper powerspace PU (PO(X)) ̸= Q(PO(X)).

5. The directed lower powerspaces of directed spaces

In this section, we introduce the directed lower powerspace of a directed space, which is a free algebra
generated by the inflationary operation of the directed space. These results can be found in [15]. And the
proofs are similar to the directed upper powerspaces. We just represent some results as basic knowledge
for the following work.

Definition 5.1. [15] Let X be a directed space.

(1) A binary operation ⊕ : X ⊗X → X on X is called an inflationary operation if it is continuous and
satisfies the following four conditions: ∀x, y, z ∈ X,

(a) x⊕ x = x,
(b) (x⊕ y)⊕ z = x⊕ (y ⊕ z),
(c) x⊕ y = y ⊕ x,
(d) x⊕ y ≥ x.
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(2) If ⊕ is a inflationary operation on X, then (X,⊕) is called a directed inflationary semilattice, that
is, directed inflationary semilattices are those directed spaces with inflationary operations.

By Theorem 2.6(2), the operation ⊕ on a directed space X is continuous if and only if it is monotone
and for each given x, y ∈ X and directed set D ⊆ X, x ≡ limD implies x ⊕ y ≡ lim(D ⊕ y). Here,
D ⊕ y = {d⊕ y : d ∈ D}.

Definition 5.2. [15] Let (X,⊕), (Y,⊎) be two directed inflationary semilattices, f : (X,⊕) → (Y,⊎) is
called an inflationary homomorphism between X and Y , if f is continuous and ∀x, y ∈ X, f(x ⊕ y) =
f(x) ⊎ f(y).

Denote the category of all directed inflationary semilattices and inflationary homomorphisms by Disl.
Then Disl is a subcategory of Dtop.

Lemma 5.3. [15] Suppose that (X,⊕) is a directed inflationary semilattice. Then ⊕ = ∨⊑. Here, x ∨⊑ y
means the supremum of x and y with respect to the specialization order ⊑ of X (called the sup operation).
Conversely, suppose that X is a directed space such that for each x, y ∈ X, x ∨⊑ y exists. Continuity of
∨⊑ will naturally imply that (X,∨⊑) is a directed inflationary semilattice.

We see that a directed inflationary semilattice (X,⊕) is just a directed space with a continuous sup
operation satisfy ⊕ = ∨⊑. We use the symbol ∨ instead of ∨⊑ if there is no confusion. Therefore, a directed
inflationary semilattice can be represented by a tuple of the form (X,∨), where X is a directed space and
∨ represents the continuous sup operation on X.

Next, we give the definition of a directed lower powerspace.

Definition 5.4. [15] Suppose that X is a directed space. A directed space Z is called the directed lower
powerspace over X if and only if the following two conditions are satisfied:

(1) Z is a directed inflationary semilattice, i.e., the sup operation ∨ on Z exists and is continuous,
(2) There is a continuous map i : X −→ Z satisfying: for any directed inflationary semilattice (Y,∨) and

any continuous map f : X −→ Y , there exists a unique inflationary homomorphism f̄ : (Z,∨) →
(Y,∨) such that f = f̄ ◦ i.

Let X be a directed space. Set LX = {↓F : F ⊆fin X}, where F ⊆fin X is an arbitrary nonempty
finite subset of X. Define an order ≤L on LX as follows:

↓F1 ≤L ↓F2 ⇐⇒ ↓F1 ⊆ ↓F2.

Let D ⊆ LX be a directed set (respect to order ≤L) and ↓F ∈ LX. Define a convergence relation ⇒L as
follows:

D ⇒L ↓F ⇐⇒ ∀a ∈ F, there exists a directed set Da of X such that Da ⊆
∪
D and Da → a.

A subset U ⊆ LX is called a ⇒L convergence open set of LX if and only if for each directed subset D of
LX and ↓F ∈ LX, D ⇒L ↓F ∈ U implies D ∩ U ̸= ∅. Denote all ⇒L convergence open sets of LX by
O⇒L

(LX).

Theorem 5.5. [15] Let X be a directed space. Then (LX,O⇒L
(LX)) is the lower powerspace of X.

The lower powerspace is unique up to isomorphism, we denote the lower powerspace of each directed
space X by PL(X) = (LX, ∪).

Suppose that X,Y are two directed spaces and f : X → Y is a continuous map. Define the map PL(f) :
PL(X) → PL(Y ) as follows: ∀↓F ∈ LX, PL(f)(↓F ) = ↓f(F ). It is evident that PL(f) is well-defined and
order preserving. According to 5.5, it is easy to check that PL(f) is an inflationary homomorphism between
the two directed lower powerspaces.

10

16 Jan 2023 20:51:56 PST
220929-HuiKou Version 2 - Submitted to Rocky Mountain J. Math.



Proposition 5.6. [15] PL is a left adjoint of the forgetful functor U , that is, Disl is a reflective subcategory
of Dtop.

6. Properties preserved by directed power functors

We first introduce the notion of a c-space and an FS-space.

Definition 6.1. A T0 topological space X is called a c-space if for any open subset V of X and x ∈ V ,
there exists a y ∈ V such that x ∈ (↑y)◦ ⊆ ↑y.

The c-spaces have another characterization by a generalized way-below relation on topological spaces
called d-approximation.

Definition 6.2. We say that x d-approximates y, denoted by x ≪d y, if for any directed subset D ⊆ X,
D → y implies x ⊑ d for some d ∈ D. A topological space X is called a continuous space if it is a directed
space such that ↓↓dx is directed and ↓↓dx → x for all x ∈ X, where ↓↓dx = {y ∈ X : y ≪d x}.

Proposition 6.3. [16] A T0 topological space is a c-space iff it is a continuous space.

Definition 6.4. [16] An approximate identity for a directed space X is a directed set D ⊆ [X → X]
satisfying D → 1X , where 1X is the identity map of X, and D → 1X means the pointwise convergence,
i.e., ∀x ∈ X, (f(x))f∈D → x ∈ X.

Definition 6.5. [16] A continuous map δ : X → X on a directed space X is called finitely separating if
there exists a finite set Fδ such that for each x ∈ X, there exists a y ∈ Fδ such that δ(x) ≤ y ≤ x. A
directed space is finitely seperated if there is an approximate identity for X consisting of finitely seperating
maps. A finitely separated directed space is called an FS-space.

All FS-spaces with continuous maps form a category denoted by FS. Denote the category of all c-
spaces by CS. They are very natural extensions for FS-domains and continuous domains. Moreover, FS
is cartesian closed [16]. Thus, as in domain theory, it is meaningful to investigate the directed powerspaces
over FS-spaces and c-spaces. In [4], it was shown that the free algebras (in the category Dtop) over
c-spaces are still c-spaces by a categorical method. As concrete examples of free algebras, the directed
upper powerspaces and directed lower powerspaces of c-spaces will be c-spaces. Here, we prove this by a
topological method, which is more concrete and easier to understand.

Let X be a directed space. Given any element ↓F of LX, we denote by
x(↓F ) the upper subset of

LX generated by the element ↓F . That is,
x(↓F ) = {↓G ∈ LX : ↓F ≤L ↓G}. For a subset {↓Fi : i ∈ I}

of LX, denote by
x{↓Fi : i ∈ I} the upper subset of LX generated by {↓Fi : i ∈ I}. The same, for any

↑F ∈ UX,
x(↑F ) = {↑G ∈ UX : ↑F ≤U ↑G}}.

Proposition 6.6. Let X be a c-space and D0 = {d1, . . . , dn} be any finite subset of X.

(1) Define V1
D0

=
x {↓{x1, . . . , xn} : xi ∈ int(↑di), i = 1, . . . , n.} . Then V1

D0
⊆

x{↓{d1, . . . , dn}} and V1
D0

is an open subset of PL(X).

(2) Define V2
D0

=
x{

↑F : F ⊆fin X,F ⊆
∪

d∈D0
int(↑d)

}
. Then V2

D0
⊆

x{↑{d1, . . . , dn}} and V2
D0

is an
open subset of PU (X).

Proof. (1) The inclusion relation is obvious. We need only to prove that V1
D0

is a directed open subset of
PL(X). Supposet that D ⇒L ↓F ∈ V1

D0
. Let F = {a1, . . . , am}. By the definition of ⇒L convergence, we

know that there exist finite directed subsets D1, . . . , Dm of X satisfying

Dj → aj , 1 ≤ j ≤ m. (∗)

Since ↓F ∈ V1
D0

, there exist some xi ∈ int(↑di) for each 1 ≤ i ≤ n such that ↓{x1 . . . .xn} ⊆ ↓F . Thus for
any 1 ≤ i ≤ n, there exists some a′i ∈ F such that xi ≤ a′i. Denote the corresponding directed subsets in
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(∗) as D′
i. Then D′

i → a′i, 1 ≤ i ≤ n. By a′i ∈ int(↑di), there exists d′i ∈ int(↑di) for each 1 ≤ i ≤ n. By the
definition of ⇒L convergence, we know that Di ⊆ ∪D. Since D is directed, there exists a ↓F1 ∈ D such
that ↓{d′

1, . . . , d
′

n} ⊆ ↓F1, i.e., ↓F ∈ V1
D0

∩ D. Thus, V1
D0

is an open subset of PL(X).

(2) The inclusion relation is obvious. We need to show that V2
D0

is a directed open subset of PU (X).
Assume that F ⇒U ↑F ∈ V2

D0
. Let F = {a1, . . . , am}. By the definition of ⇒U convergence, there exist

finite directed subsets D1, . . . , Dm of X satisfying

Dj → aj , 1 ≤ j ≤ m. (∗∗)

Since ↑F ∈ V2
D0

, there exists a finite subset G = {x1, . . . , xk} ⊆
∪

d∈D0
int(↑d) in X such that ↑F ⊆

↑{x1 . . . .xk}. Thus, for any 1 ≤ j ≤ m, there exits an x′
j ∈ {x1, . . . , xk} such that x′

j ≤ aj .

• if {x1, . . . , xk} \ {x′
1, . . . , x

′
m} ̸= ∅, By (∗∗), for any 1 ≤ j ≤ m, there exits some d′j ∈ Dj ∩

∪d∈D0 int(↑d), 1 ≤ j ≤ m. By condition 2 of definition of ⇒U convergence, we have that for
↑{d′1, . . . , d′m}, there exists some ↑F1 ∈ D such that ↑F1 ⊆ ↑{d′1, . . . , d′m}. By the construction of
V2
D0

, ↑F1 ∈ D ∩ V2
D0

. Thus V2
D0

is open in PU (X).

• If {x′
1, . . . , x

′
m} has already covered by {x1, . . . , xk}, then for any 1 ≤ i ≤ k, there exists a′i ∈ F such

that xi ≤ a′i. At this time, we have k ≤ m. Let F \ {a′1, . . . , a′k} = {a′′1 , . . . , a′′s}, 0 ≤ s. Denote
D′

1, . . . , D
′
k, D

′′
1 , . . . , D

′′
s the corresponding directed subset in (∗∗), thenD′

i → a′i, 1 ≤ i ≤ k;D′′
t → a′′t ,

0 ≤ t ≤ s.

Since a′i, a
′′
t ∈ ∪d∈D0 int(↑d), 1 ≤ i ≤ k, 0 ≤ t ≤ s, there exist

d′i ∈ D′
i ∩

∪
d∈D0

int(↑d), 1 ≤ i ≤ k,

d′′t ∈ D′′
t ∩

∪
d∈D0

int(↑d), 0 ≤ t ≤ s.

By condition 2 in defintion of ⇒U convergence, for any ↑{d′1, . . . , d′k, d′′1 , . . . , d′′s}, there exists some
↑F1 ∈ D such that ↑F1 ⊆ ↑{d′1, . . . , d′k, d′′1 , . . . , d′′s}. By the construction of V2

D0
, we know that

↑F1 ∈ D ∩ V2
D0

, and V2
D0

is open in PU (X). 2

Theorem 6.7. If X is a c-space, then PL(X) and PU (X) are both c-spaces.

Proof. (1) Let X be a c-space. To prove that PL(X) is a c-space, for any directed open subset U of
PL(X) and ↓F = ↓{a1, . . . , an} ∈ U , we need to find out a ↓F ′ ∈ U such that ↓F ∈ int

(x(↓F ′)
)
⊆ U .

Since X is a c-space, for any ai ∈ F , there exists a directed subset Dai of X such that Dai → ai, where
∀d ∈ Dai , ai ∈ int(↑d), i = 1, . . . , n. Let

D =

{
↓{d1, . . . , dn} : (d1, . . . , dn) ∈

n∏
i=1

Dai

}
.

Then it is a directed subset in PL(X), by the definition of ⇒L convergence, we can see that D ⇒L ↓F .
Thus there exists ↓{d1, . . . , dn} ∈ D ∩ U and ↓F ∈

x{↓{d1, . . . , dn}} ⊆ U . We need only to prove that

↓F ∈ int
(x{↓{d1, . . . , dn}}).

Let D0 = {d1, . . . , dn}, By Proposition 6.6, V1
D0

is open in PL(X) and ↓F ∈ V1
D0

⊆
x{↓{d1, . . . , dn}},

i.e., ↓F ∈ int
(x{↓{d1, . . . , dn}}).

(2) To prove that PU (X) is a c-space, for any directed open subset U of PU (X) and ↑F = ↑{a1, . . . , an} ∈
U , we need to find out a ↑F ′ ∈ U such that ↑F ∈ int

(x(↑F ′)
)
⊆ U .
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Since X is a c-space, for any ai ∈ F , there exists a directed subset Dai
of X such that Dai

→ ai, where
∀d ∈ Dai , ai ∈ int(↑d), i = 1, . . . , n. Let

D =

{
↑{d1, . . . , dn} : (d1, . . . , dn) ∈

n∏
i=1

Dai

}
.

Then it is a directed subset in PU (X), by the definition of ⇒U convergence, we can see that D ⇒U ↑F by
letting those Di in the convergence conditions to be those Dai . Thus there exists ↑{d1, . . . , dn} ∈ D ∩ U
and ↑F ∈

x{↑{d1, . . . , dn}} ⊆ U . We need only to prove that ↑F ∈ int
(x{↑{d1, . . . , dn}}).

Let D0 = {d1, . . . , dn}, By Proposition 6.6, V2
D0

is open in PU (X) and ↑F ∈ V2
D0

⊆
x{↑{d1, . . . , dn}},

i.e., ↑F ∈ int
(x{↑{d1, . . . , dn}}). 2

Now, we show that the directed upper powerspace and the directed lower powerspace of an FS-space
are FS-spaces.

Theorem 6.8. Let X be a directed space, D = {fi}i∈I ⊆ [X → X] be a directed subset and D → f ∈
[X → X]. Then PL(D) → PL(f), PU (D) → PU (f), i.e., functors PL and PU are continuous.

Proof. Let X be a directed space and the directed subset D and f satisfying the supposed condition.

(1) For PL: PL(D) = {PL(fi) : fi ∈ D} is a directed subset in [PL(X) → PL(X)]. PL(f)(↓F ) = ↓f(F ).
We need only to prove that PL(D) ⇒L PL(f). It is equivalent to showing that

{↓fi(F )}i∈I ⇒L ↓f(F ), ∀↓F ∈ PL(X).

Given any ↓F ∈ PL(X) with F = {a1, . . . , an}, let Dj = {fi(aj)}i∈I . Then it is a directed subset of X
and

Dj → f(aj), j = 1, . . . , n.

This means that {↓fi(F )}i∈I ⇒L ↓f(F ).

(2) For PU : similarly with (1), we need only to show that

{↑fi(F )}i∈I ⇒U ↑f(F ), ∀↑F ∈ PU (X).

Given any ↑F ∈ PU (X) with F = {a1, . . . , an}, let Dj = {fi(aj)}i∈I . Then it is a directed subset of X
and

Dj → f(aj), j = 1, . . . , n.

For any (fi1(a1), . . . , fin(an)) ∈
∏n

j=1 Dj , since D is directed, we can pick i0 ∈ I such that fi ≤ fi0 , i =
i1, . . . , in. Thus,

↑(fi0(a1), . . . , fi0(an)) ⊆ ↑(fi1(a1), . . . , fin(an)).

This means that {↑fi(F )}i∈I ⇒U ↑f(F ).

Theorem 6.9. Let X be a directed space. If δ is a finitely separable map on X, then PL(f) and PU (f)
are finitely separable maps on PL(X) and PU (X) respectively.

Proof. We verify that PL(δ) is a finitely separate map on PL(X), i.e., there exists a finite subset Gδ of
PL(X) such that ∀↓F ∈ PL(X), there exists a ↓F ′ ∈ Gδ such that

PL(δ)(↓F ) ≤ ↓F ′ ≤ ↓F.

Let Fδ be the finitely separate set of δ on X. Let Gδ = {↓A : A ⊆ Fδ}. We claim that Gδ satisfies the
needs. For any ↓F ∈ PL(X) with F = {a1, . . . , an}, we have PL(δ)(↓F ) = ↓δ(F ). There exists some
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yi ∈ Fδ such that δ(ai) ≤ yi ≤ ai, 1 ≤ i ≤ n. Thus,

↓δ(F ) ⊆ ↓(y1, . . . , yn) ⊆ ↓F

Thus we have PL(δ)(F ) ≤ ↓(y1, . . . , yn) ≤ ↓F , proved. For PU (δ), the proof is similar, so we omit it. 2

By Theorem 6.8 and Theorem 6.9, we have the following statement.

Theorem 6.10. Let X be a directed space. If X is an FS-space, then PL(X) and PU (X) are both FS-
spaces.
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