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GEHMAN DENDRITE G4 AS GENERALIZED INVERSE LIMIT ON [0,1] WITH
SINGLE UPPER SEMI-CONTINUOUS BONDING FUNCTION

FARUQ A. MENA

ABSTRACT. In this paper we prove that the Gehman dendrite G4 can be obtained as a generalized inverse
limit space with a single upper semi-continuous bonding function on [0,1]. This answers a question of
Farhan and Mena, [3]. Moreover, we find an uncountable family of inverse sequences on [0,1] whose
inverse limit spaces are homeomorphic to the Gehman dendrite G4.

1. Introduction and Definitions

Generalized inverse limits, where bonding maps are replaced by upper semi-continuous set valued
functions, were first introduced by Mahavier [7]. The paper [4] and book [6] by Mahavier and Ingram
helped popularize the subject in the continuum theory community and beyond. Since this beginning
hundreds of papers on the subject have been published. One aspect about generalized inverse limits
that generated a great deal of interest is their ability to produce a wide variety of exotic continua, using
simple bonding functions on [0,1], which could not be obtained using traditional inverse limits. One
such example, [5, Example 2.22], Ingram showed that the inverse limit space obtained when the graph
of the bonding function looks like the letter “H” on it’s side is a dendroid having all ramification points
being of order 3 and the set of endpoints is a Cantor set. Charatonik and Mena, [2], gave conditions on
bonding functions that guaranteed that the inverse limit space is locally connected. This result implies
that Ingram’s example is a dendrite, in particular, the Gehman dendrite, G3. In a recent paper Farhan
and Mena, [3], showed that there is an uncountably infinite family of inverse sequences that have
G3 as the inverse limit. They also showed examples of inverse limit spaces that are dendrites having
ramification points of orders both 3 and 4. They asked if it was possible to obtain the Gehman dendrite
G4, that is a dendrite having all ramification points of order 4 and the set of endpoints being the Cantor
set. In this paper, we obtain an uncountable family of inverse limit sequences, each having a single
upper semi-continuous bonding function defined on [0,1], which have as their inverse limit space G4.
We generalized this results to not requiring a single bonding function in the inverse sequences.

A continuum is a non-empty, compact, connected, metric space. A subset of a continuum X which
itself a continuum is called subcontinuum of X . A continuum X is said to be locally connected
continuum if whenever x ∈ X and each neighborhood N of x, the component of N to which x belongs
is neighborhood of x. Let X and Y be continua, a set valued function f : X → 2Y , where 2Y is the
hyperspace of all closed subsets of Y , is upper semi-continuous at x provided that for any open set V
in Y which contains f (x), there exist an open set U in X with x ∈U such that if t ∈U , then f (t)⊆V .
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If a function f : X → 2Y is upper semi-continuous at x for each x ∈ X , we say that f is an upper
semi-continuous. Let X and Y be compact metric spaces and f : X → 2Y be a set valued function, then
f is an upper semi-continuous if and only if the graph of f , G( f ) = {(x,y) : x ∈ X ,y ∈ f (x)}, is closed
in X×Y [5, p. 3]. Let (Xi)i∈N be a sequence of continua and for each i ∈ N, let fi : Xi+1→ 2Xi be an
upper semi-continuous function. The generalized inverse limit of the sequence {Xi, fi} is denoted by
lim←−{Xi, fi} and defined by lim←−{Xi, fi}= {(xi)

∞

i=1 : xi ∈ Xi,xi ∈ fi (xi+1) for all i ∈ N}.
We denote the projection from the inverse limit space onto the nth factor space by πn. All inverse

limits considered in this paper will be generalized inverse limits. In this paper, we will have for
all i ∈ N, Xi = I = [0,1] and we denote the inverse limit space by lim←−{I, fi}. The topology is the
subspace topology of the Hilbert cube or equivalently the metric topology given by the metric d(x,y) =
∑

∞
i=1
|xi−yi|

2i , where x = (x1,x2, . . .) and y = (y1,y2, . . .). Additionally, if fi = f for all i we denote the
inverse limit space by lim←−{I, f} and say f is the single bonding function of the inverse limit. If p
is a point and S is a set, the distance from p to S is defined as inf{d(x,y) : y ∈ S}. The open ball of
radius r centered at p is Br(p) = {x : d(p,x)< r}. More information about generalized inverse limits
of continua with upper semi-continuous bonding functions can be found in [6] and [5].

A dendrite is a locally connected continuum that contains no simple closed curve. Let p be a point
in a dendrite D. Then p is an endpoint of D in the classical sense if p is not the only intersection point
of any two different arcs. The point p is an ordinary point of D if D\{p} has exactly two components,
and p is a ramification point of D if D\{p} has more than two components. The order of a point p in a
dendrite D is n, n ∈N∪{ω}, if D\{p} has exactly n components. We denote the set of endpoints of D
by E(D), the set of ordinary point of D by O(D) and the set of ramification points of D by R(D). The
Gehman dendrite Gn is the dendrite having all ramification points of order n and the set of endpoints is
homeomorphic to the Cantor set [1, Theorem 4.1].

2. Main Theorem

Let A be a non-empty finite subset of (0,1) of cardinality |A| ≥ 2, C = {0,1} and α ∈ (0,1) such
that α /∈ A and there exist β1,β2 ∈ A such that β1 < α < β2. Given A, α , and r ∈C define the upper
semi-continuous function f = fAαr : [0,1]→ 2[0,1] by f (x) = A∪{r} if x ∈ [0,α), f (x) = [0,1] if
x = α , and f (x) = A∪ (C \{r}) if x ∈ (α,1]. Let Q be the family of all such upper semi-continuous
functions. The main theorem of the paper is the following.

Theorem 2.1. If f ∈Q then lim←−{I, f}= G4.

Proof. Let D = lim←−{I, f}. As in [3, Theorem 2.1], D is a dendrite. To prove the D is homeomorphic to
G4, all that is left to show is that all of the ramification points are of order 4 and the set of endpoints is a
Cantor set. Because f (C∪A)⊆C∪A and f−1(α) = {α}, points in D must be of one of the following
three forms: (R): (t1, t2, ..., tn,α,α, . . .), where ti ∈C∪A, i 6= n and tn ∈ A, (O): (t1, t2, ..., tn,y,α,α, ...)
where y ∈ [0,1]\A, ti ∈C∪A, n ∈ N∪{0}, and (E): (t1, t2, . . .) where ti ∈C∪A.

We claim that any point of the form (O) is an ordinary point of D. To see this, let y be a fixed
value not in A and let p = (t1, t2, ..., tn,y,α,α, ...) where ti ∈ C ∪ A, n ∈ N∪ {0}. First, if y /∈ C
then the set K = {t1}× {t2}× . . .×{tn}× (tym , tyM)×{α}× {α}× . . . where tym = max{ti : ti <
y and ti ∈C∪A∪{α}} and tyM = min{ti : ti > y and ti ∈C∪A∪{α}} is an open arc in D containing
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p = (t1, t2, . . . , tn,y,α,α, . . .). Moreover, if for each i, 1 ≤ i ≤ n, we let εi = min{|ti− k| : k ∈ (C∪
A∪{α}) \ {ti}}, then H = (t1− ε1, t1 + ε1)× . . .× (tn− εn, tn + εn)× (tym , tyM)×Π∞

i=1I, is an open
neighborhood of p in the product Π∞

i=1I such that K∩H = K. If y ∈C, then y is either 0 or 1. In both
cases we have f−1(y) = [0,α] or f−1(y) = [α,1]. We consider the case y = 1 and f−1(y) = [α,1]
and remaining cases are similar. Let K1 = {t1}×{t2}× . . .×{tn}×{1}× [α, tyM)×{α}×{α}× . . .
where tyM = min{ti : ti > α and ti ∈ A}. Then K1 is a segment in D and p ∈ E(K1). Let K2 =
{t1}×{t2}× . . .×{tn}× (tym ,1]×{α}×{α}× . . . where tym = max{ti : ti < y and ti ∈ A}. Then K2
is a segment in D with p ∈ E(K2). So K = K1∪K2 in an open neighborhood of p in D. Moreover, if
for each i, 1≤ i≤ n, we let εi = min{|ti− k| : k ∈ (A∪{α})\{ti}}, then H = (t1− ε1, t1 + ε1)× . . .×
(tn− εn, tn + εn)× (1− εn+1,1]× (t, tyM)×Π∞

i=1I, where t = max{ti : ti < α and ti ∈ A}, is an open
neighborhood of p such that K∩H = K.

Next, we claim that any point of the form (R) is a ramification point of D. Let p=(t1, t2, ..., tn,α,α, . . .)∈
D and where ti ∈C∪A, i 6= n and tn ∈ A. Note that e1 = {t1}×{t2}× . . .×{tn}× (tym , tyM)×{α}×
{α}× . . . where tym = max{t j : t j < α and t j ∈ C ∪ A} and tyM = min{t j : t j > α and t j ∈ C ∪ A}
is a segment in D containing p. Also, if we let εi = min{|ti− k| : k ∈ (C ∪A∪ {α})\{ti}} then
e2 = {t1}×{t2}× . . .× ((tn− εn, tn + εn)∩ I)×{α}×{α}× . . . is also a segment in D containing p.
Let X = e1∪ e2. Moreover, then U = (t1− ε1, t1 + ε1)× . . .× (tn− εn, tn + εn)× (tym , tyM)×Π∞

i=1I, is
an open neighborhood of p such that X ∩U = X and contains no ramification points of D other than p.

To show that the above ramification point is of order at least four, we have two cases: Case 1: If
tn−1 ∈C and tn ∈ A. Suppose without loss of generality tn−1 = 0. The point p = (t1, t2, ...,0, tn,α,α, ...)
is an interior ordinary point of the segment e2 = (t1, t2, ..., tn−1 = 0, t,α,α, ...), t is either in [0,α] or in
[α,1] and the segment e1 = (t1, t2, ...,0, tn,s,α,α, ...), s ∈ [0,1]. Case 2: If tn−1, tn ∈ A. The point p =
(t1, t2, ..., tn−1, tn,α,α, ...) is the interior ordinary point of the segment e1 =(t1, t2, ..., tn−1, tn,s,α,α, ...),
where s ∈ [0,1] and the ordinary interior point of the segment e2 = (t1, t2, ..., tn−1, t,α,α,α, ...), where
t ∈ [0,1].

To show that ramification points are of order four, note that if 0 < r < min{|πk(p)− t| : t ∈C∪A∪
{α} and πk(p) 6= t} and ε = r/2n+2 then for any x ∈ D∩Bε(p), πn+2(x) = α and πk(x) = πk(p) if
k 6= n,n+1. Thus if x ∈ D∩Bε(p) then x must lie on e1 or e2.

We next prove that any point of the form (E) is an endpoint of D. Since D is a dendrite, there
is a unique arc between any two points in D. If z is a point in D of the form (O) or (R) then for
some n, z = (t1, t2, . . . , tn,yn+1,α, . . .) where yn+1 ∈ [0,1] \ {α}. Then [(α,α, . . .),(t1,α,α, . . .)]∪
[(t1,α,α, . . .),(t1, t2,α,α, . . .)]∪ . . .∪ [(t1, t2, . . . , tn,α, . . .),(t1, t2, . . . , tn,yn+1,α, . . .)] is the unique arc
joining z to a. If z is a point of the form (E) then [(α,α, ...),(t1,α...)]∪ [(t1,α, ...),(t1, t2,α, ...)]∪ ...∪
{(t1, t2, t3, ...)} is the unique arc from a to z. Suppose there is a point p = (t1, t2, ...) ∈ (E) and p is
not an endpoint of D. Let J be the unique arc from a to p. Since p is not an endpoint of D, there is a
second arc K starting at p and disjoint from J except for p. Then there is a point y in K \ J. If y is of
the form (E) then y = (t ′1, t

′
2, . . .) where t ′i ∈C∪A for all i. Then for some n , tn 6= t ′n. It follows that if L

is the unique arc from a to y then L 6⊆ J and J 6⊆ L. Thus there are two different arcs from a to y in
D, a contradiction. If y is of the form (O) or (R) then y = (t ′1, t

′
2, . . . , t

′
n,yn+1,α . . .). If ti = t ′i for all i,

1≤ i≤ n then y ∈ J, a contradiction. If ti 6= t ′i for some i, 1≤ i≤ n then again there are two different
arcs from a to y in D, a contradiction.
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To finish the proof, we need to show that E(D) is a Cantor Set. The idea is similar to the proof given
in [3, Theorem 2.1]. We include it to show why there needed to be the βi’s in the definition of the
bonding functions. It is enough to prove that E(D) is closed, perfect and totally disconnected. First, we
show that E(D) is closed. Let p = (p1, p2, . . .) be in D\E(D). Then there is n such that pn 6∈ A∪C. If
d is the minimum distance from pn to A∪C then the distance from p to E(D) is at least d/2n. So p is
not a limit point of E(D). Hence E(D) is closed. Next, we show that E(D) is perfect, i.e., every point
in E(D) is a limit point of E(D). Let p = (p1, p2, . . .) ∈ E(D) and ε > 0 be given. Then there is an n
such that 1/2n < ε . Since f−1(pn−1) ∈ {[0,α], [α,1], [0,1]}, so f−m(pn−1),m ≥ 2 contains at least
two points of A∪C. Let p

′
n+m ∈ (A∪C)\{pn+m}. Let p′ = (p′1, p′2, . . .) ∈ E(D) be such that pi = p′i

for i 6= n+m and pn+m 6= p′n+m. Then the distance between p and p′ is less than ε so p is a limit point
of E(D). Finally, to prove that E(D) is totally disconnected, let p and q be elements in E(D) such that
p 6= q. There exits n ∈N such that πn(p) 6= πn(q). Since A∪C is finite, there exist disjoint open sets U
and V in I such that U contains πn(p) and V contains (A∪C)\{πn(p)}. So π−1

n (U) and π−1
n (V ) are

disjoint open sets in D containing p and q respectively and their union contains E(D). We obtain that
E(D) is totally disconnected. Hence E(D) is a Cantor set and D is homeomorphic to G4. �

Example 2.2. Let f : [0,1]→ 2[0,1] be an upper semi-continuous function defined as in Q, where r = 0,
A = {β1,β2} and 0 < β1 < α < β2 < 1. Using Theorem 2.1, lim←−{I, f} homeomorphic to G4 and the
representation of the inverse limit is shown in Figure 1. In the Figure 1 we have labeled some ordinary
points such as (α,α,α, . . .), (0,0,α, . . .), and (β1,1,α, . . .) and we labeled some ramification points
such as (0,β1,α, . . .) and (1,1,β2,α, . . .).

FIGURE 1. G4 as an inverse limit space

We may generalize Theorem 2.1 by considering a sequence of bonding functions ( fi) instead of
having just a single bonding function. In particular, let Γ = (αi) be a sequence of numbers in (0,1),
(Ai) be a sequence of finite subsets of (0,1) such that for all i, 2 ≤ |Ai| < ∞, C = {0,1}, α j 6∈

⋃
Ai,

and there exist β1i,β2i ∈ Ai such that β1i < αi < β2i. Given ri ∈C, define the upper semi-continuous
function fi = fAiαiri in the same manner as fAαr was defined before Theorem 2.1.

Theorem 2.3. For any sequence of ( fi) defined above, lim←−{I, fi}= G4.

Proof. Note that fi(C∪Ai+1) = C∪Ai and f−1(αi) = {αi+1}. So, except for notation, the proof is
essentially the same as that of Theorem 2.1. �
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