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Abstract. Some supercongruences in the (E.3) and (F.3) conjectures of Swisher were
proved by the author and Zudilin, and by Jana and Kalita. In this paper we confirm the
remaining cases of these two conjectures by using the method of ‘creative microscoping’
in a new way. Meanwhile, we confirm two related supercongruences conjectured by the
author early.

1. Introduction

In 1997, Van Hamme [17] developed p-adic analogues of Ramanujan’s or Ramanujan-
like series for 1/π. He observed 13 supercongruences, such as
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≡ (−1)(p−1)/4p (mod p3), for p ≡ 1 (mod 4), (1.3)

where p is an odd prime, (a)n = a(a+1) · · · (a+n−1) is the Pochhammer symbol. Different
proofs of (1.1) were later given in [12, 13, 20]. Swisher [16] proved 4 supercongruences of
Van Hamme, including (1.2) and (1.3) (i.e., the tagged (E.2) and (F.2) supercongruences
in [17]). He [7] established a generalization of (1.2).

In [16, Conjectures (E.3)] Swisher proposed the following conjectures: for any prime
p ≡ 1 (mod 3) and integer r > 1,
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and for any prime p ≡ 2 (mod 3) and even integer r > 2,
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)3
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(mod p3r−2). (1.5)

Recently, the authors [6] confirmed (1.4) by establishing its q-analogue and as a conclusion
they also proved (1.5) modulo p2r. In this note, we shall completely confirm (1.5) by
showing the following q-analogue.

Theorem 1.1. Let n be a positive integer with n ≡ 5 (mod 6) and let r > 2 be even.
Then, modulo [nr]q2

∏r
j=2 Φnj(q2)2,

(nr−1)/d∑

k=0

(−1)k[6k + 1]q2

(q2; q6)3
k(−q3; q6)k

(q6; q6)3
k(−q5; q6)k

qk

≡ q1−n2

[n2]q2

(nr−2−1)/d∑

k=0

(−1)k[6k + 1]q2n2

(q2n2
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)3
k(−q3n2

; q6n2
)k

(q6n2 ; q6n2)3
k(−q5n2 ; q6n2)k

qn2k, (1.6)

where d = 1, 3.

Here and throughout the paper, (a; q)n = (1− a)(1− aq) · · · (1− aqn−1) is the q-shifted
factorial, [n] = [n]q = (1 − qn)/(1 − q) is the q-integer, and Φn(q) denotes the n-th
cyclotomic polynomial in q, i.e.,

Φn(q) =
∏

16k6n
gcd(k,n)=1

(q − ζk),

where ζ is a n-th primitive root of unity. It is well known that Φn(q) is an irreducible
polynomial in Z[q], and Φn(q) divides 1− qm if and only if n divides m. For some recent
work on q-congruences, we refer the reader to [4–6,9–11,14,15,18,19,21].

It should be mentioned that the right-hand side of (1.6) is a rational function of qn2
.

There are no such q-supercongruences in the paper [6]. To the best of the author’s
knowledge, there are only two papers [15, 22] on q-supercongruences related to rational

functions of qn2
. But the results in those two papers do not have parametric generalizations

(at least we do not know up to now), and the proofs of theorems are quite different from
our proofs here.

Note that Theorem 1.1 also holds for n > 1 and n ≡ 1 (mod 6). This can be easily
deduced from repeatedly using [6, Theorem 3.5] twice.

It is not difficult to see that, when n = p and q → 1, the q-supercongruence (1.6)
for d = 3 reduces to (1.5), and it for d = 1 confirms the second supercongruence in [3,
Conjecture 5.3]. Moreover, letting n = p and q → −1 in (1.6), we arrive at the following
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new Dwork-type supercongruence: for p ≡ 2 (mod 3) and even r > 2,
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(mod p3r−2), (1.7)

where d = 1, 3.
Swisher [16, Conjectures (F.3)] also proposed the following conjectures: for any prime

p ≡ 1 (mod 4) and integer r > 1,

(pr−1)/4∑

k=0
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(mod p3r), (1.8)

and for any prime p ≡ 3 (mod 4) and even integer r > 2,

(pr−1)/4∑

k=0
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≡ p2
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4
)3
k

k!3
(mod p3r−2). (1.9)

Recently, the authors [6] confirmed (1.8) through the method of ‘creative microscoping’
and also proved (1.9) modulo p2r. In this note, we shall completely confirm (1.9) by
establishing the following q-analogue.

Theorem 1.2. Let n be a positive integer with n ≡ 3 (mod 4) and let r > 2 be even.
Then, modulo [nr]

∏r
j=2 Φnj(q)2,

(nr−1)/d∑

k=0

(−1)k[8k + 1]
(q; q4)3

k(−q2; q4)k

(q4; q4)3
k(−q3; q4)k

qk

≡ q(1−n2)/2[n2]

(nr−2−1)/d∑

k=0

(−1)k[8k + 1]qn2

(qn2
; q4n2

)3
k(−q2n2

; q4n2
)k

(q4n2 ; q4n2)3
k(−q3n2 ; q2n2)k

qn2k, (1.10)

where d = 1, 4.

Theorem 1.2 also holds for n > 1 and n ≡ 1 (mod 4), which can be deduced from
applying [6, Theorem 3.6] twice.

It is easy to see that, when n = p and q → 1, the q-supercongruence (1.10) reduces to
(1.9) when d = 4, and confirms the fourth supercongruence in [3, Conjecture 5.3] when
d = 1.

2. Proof of Theorem 1.1

In order to prove Theorem 1.1, we need to establish the following parametric gener-
alization. The proof is similar to that of [6, Theorem 3.5]. In order to make the paper
self-contained, we give the whole proof here.
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Theorem 2.1. Let n be a positive integer with n ≡ 5 (mod 6) and let r > 2 be even.
Then, modulo

[nr]q2

(nr−2−1)/d∏
j=0

(1− aq(6j+2)n2

)(a− q(6j+2)n2

),

we have
(nr−1)/d∑

k=0

(−1)k[6k + 1]q2

(aq2, q2/a, q2,−q3; q6)k

(aq6, q6/a, q6,−q5; q6)k

qk

≡ q1−n2

[n2]q2

(nr−2−1)/d∑

k=0

(−1)k[6k + 1]q2n2

(aq2n2
, q2n2

/a, q2n2
,−q3n2

; q6n2
)k

(aq6n2 , q6n2/a, q6n2 ,−q5n2 ; q6n2)k

qn2k, (2.1)

where d = 1, 3.

Proof. First note that [5, Theorem 4.2] can be generalized as follows: modulo [n](1 −
aqn)(a− qn),

(n−1)/d∑

k=0

[2mk + 1]
(aq, q/a, q/c, q; qm)k

(aqm, qm/a, cqm, qm; qm)k

ckq(m−2)k

≡ (c/q)(n−1)/m(q2/c; qm)(n−1)/m

(cqm; qm)(n−1)/m

[n] for n ≡ 1 (mod m), (2.2)

where d = 1 or m. It is worth mentioning that, in order to prove (2.2) modulo [n], we
need to show that

n−1∑

k=0

[2mk + 1]
(aq, q/a, q/c, q; qm)k

(aqm, qm/a, cqm, qm; qm)k

ckq(m−2)k ≡ 0 (mod Φn(q))

is true for all integers n > 1 satisfying gcd(m,n) = 1. Then we use the same arguments
as [5, Theorems 1.2 and 1.3] to handle the modulus [n] case (see [4, Lemma 2.2] for a
clearer interpretation).

We put m = 3, q 7→ q2 and c = −q−1 in (2.2) to get

(n−1)/d∑

k=0

(−1)k[6k + 1]q2

(aq2, q2/a, q2,−q3; q6)k

(aq6, q6/a, q6,−q5; q6)k

qk

≡ (−q)1−n[n]q2 (mod [n]q2(1− aq2n)(a− q2n)) for n ≡ 1 (mod 3), (2.3)

where d = 1, 3.
For n ≡ 5 (mod 6), we have nr ≡ nr−2 ≡ 1 (mod 6). In view of (2.3) with n replaced

by nr, we see that the left-hand side of (2.1) is congruent to 0 modulo [nr]q2 . On the

other hand, replacing n by nr−2 and q by qn2
in (2.3), we conclude that the summation

on the right-hand side of (2.1) is congruent to 0 modulo [nr−2]q2n2 . Further, since n is

odd, it is easy to see that [n2]q2 is relatively prime to the denominators of the sum on
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the right-hand side of (2.1). Thus we have proved that the right-hand side of (2.1) is
congruent to 0 modulo [n2]q2 [nr−2]q2n2 = [nr]q2 . Therefore, the q-congruence (2.1) is true

modulo [nr].
To show it also holds modulo

(nr−2−1)/d∏
j=0

(1− aq(6j+2)n2

)(a− q(6j+2)n2

), (2.4)

it suffices to prove that both sides of (2.1) are equal when we take the value a = q−(6j+2)n2

or a = q(6j+2)n2
for any j with 0 6 j 6 (nr−2 − 1)/d, that is,

(nr−1)/d∑

k=0

(−1)k[6k + 1]q2

(q2−(6j+2)n2
, q2+(6j+2)n2

, q2,−q3; q6)k

(q6−(6j+2)n2 , q6+(6j+2)n2 , q6,−q5; q6)k

qk

≡ q1−n2

[n2]q2

(nr−2−1)/d∑

k=0

(−1)k[6k + 1]q2n2

(q−6jn2
, q(6j+4)n2

, q2n2
,−q3n2

; q6n2
)k

(q(4−6j)n2 , q(6j+8)n2 , q6n2 ,−q5n2 ; q6n2)k

qn2k.

(2.5)

It is easy to see that (nr − 1)/d > ((3j + 1)n2 − 1)/3 for 0 6 j 6 (nr−2 − 1)/d, and

(q2−(6j+2)n2
; q6)k = 0 for k > ((3j + 1)n2 − 1)/3. By (2.3), the left-hand side of (2.5) is

equal to

(−q)1−(3j+1)n2

[(3j + 1)n2]q2 .

For the same reason, the right-hand side of (2.5) is equal to

q1−n2

[n2]q2 · (−qn2

)1−(3j+1)[3j + 1]q2n2 = (−q)1−(3j+1)n2

[(3j + 1)n2]q2 .

This proves (2.5). Namely, the q-congruence (2.1) holds modulo (2.4). Since [nr]q2 is
relatively prime to (2.4), we complete the proof of (2.1). ¤

Proof of Theorem 1.1. Let bxc denote the integer part of a real number x. It is not hard
to see that the a = 1 case of (2.4) has the factor

{∏r
j=2 Φnj(q2)2nr−j

if d = 1,
∏r

j=2 Φnj(q2)2b(nr−j+2)/3c if d = 3.

Note that the denominator of the left-hand side of (2.1) is divisible by that of the right-
hand side of (2.1). Since gcd(n, 6) = 1, the factor related to a of the former is

(aq6; q6)(nr−1)/d(q
6/a; q6)(nr−1)/d.

When a = 1 it only has the factor
{∏r

j=2 Φnj(q2)2nr−j−2 if d = 1,
∏r

j=2 Φnj(q2)2b(nr−j−1)/3c if d = 3,
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related to Φn2(q2), Φn3(q2), . . . , Φnr(q2). Hence, letting a → 1 in (2.1) we conclude that
(1.6) is true modulo Φn(q2)

∏r
j=2 Φnj(q2)3, where one product

∏r
j=1 Φnj(q2) comes from

[nr]q2 .
Finally, the proof of (2.1) modulo [nr]q2 is valid for a = 1 as well. Since the least

common multiple of Φn(q2)
∏r

j=2 Φnj(q2)3 and [nr]q2 is just [nr]q2

∏r
j=2 Φnj(q2)2, we finish

the proof of (1.6). ¤

3. Proof of Theorem 1.2

The proof is similar to that of Theorem 1.1. This time we take m = 4 and c = −q−1 in
(2.2) to get

(n−1)/d∑

k=0

(−1)k[8k + 1]
(aq, q/a, q,−q2; q4)k

(aq4, q4/a, q4,−q3; q4)k

qk

≡ (−1)(n−1)/4q(1−n)/2[n] (mod Φn(q)(1− aqn)(a− qn)) for n ≡ 1 (mod 4),

where d = 1, 4. Employing this q-congruence, we can produce a generalization of (1.10)
with an extra parameter a: for n ≡ 3 (mod 4) and even r > 2, modulo

[nr]

(nr−2−1)/d∏
j=0

(1− aq(4j+1)n2

)(a− q(4j+1)n2

),

we have

(nr−1)/d∑

k=0

(−1)k[8k + 1]
(aq, q/a, q,−q2; q4)k

(aq4, q4/a, q4,−q3; q4)k

qk

≡ q(1−n2)/2[n2]

(nr−2−1)/d∑

k=0

(−1)k[8k + 1]qn2

(aqn2
, qn2

/a, qn2
,−q2n2

; q4n2
)k

(aq4n2 , q4n2/a, q4n2 ,−q3n2 ; q2n2)k

qn2k, (3.1)

where d = 1, 4.
Furthermore, the a = 1 case of

(nr−2−1)/d∏
j=0

(1− aq(4j+1)n2

)(a− q(4j+1)n2

),

contains the factor {∏r
j=2 Φnj(q)2nr−j

if d = 1,
∏r

j=2 Φnj(q)2b(nr−j+3)/4c if d = 4.

The factor related to a of the denominator of the left-hand side of (3.1) is

(aq4; q4)(nr−1)/d(q
4/a; q4)(nr−1)/d
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of which the a = 1 case contains the factor
{∏r

j=2 Φnj(q)2nr−j−2 if d = 1,
∏r

j=2 Φnj(q)2b(nr−j−1)/4c if d = 4,

related to Φn2(q), Φn3(q), . . . , Φnr(q). The proof then follows by taking a = 1 in (3.1).

4. Concluding remarks

Recently, Wang and Yue [18] gave a uniform generalization of (1.4) and (1.7) by using
the same method given in [6]. We also have such a generalization of Theorems 1.1 and
1.2 as follows:

Let m > 2 be an integer. Let n > 1 be an odd integer with n ≡ −1 (mod m) and let
r > 2 be even. Then, modulo [nr]q2

∏r
j=2 Φnj(q2)2,

(nr−1)/d∑

k=0

(−1)k[2mk + 1]q2

(q2; q2m)3
k(−qm; q2m)k

(q2m; q2m)3
k(−qm+2; q2m)k

q(m−2)k

≡ q1−n2

[n2]q2

(nr−2−1)/d∑

k=0

(−1)k[2mk + 1]q2n2

(q2n2
; q2mn2

)3
k(−qmn2

; q2mn2
)k

(q2mn2 ; q2mn2)3
k(−q(m+2)n2 ; q2mn2)k

q(m−2)n2k,

(4.1)

where d = 1,m.
For n prime, letting q → 1 in (4.1), we get the following supercongruence: for any

integer m > 1, prime p ≡ −1 (mod m), and even r > 2,

(pr−1)/d∑

k=0

(−1)k(2mk + 1)
( 1

m
)3
k

k!3
≡ p2

(pr−2−1)/d∑

k=0

(−1)k(2mk + 1)
( 1

m
)3
k

k!3
(mod p3r−2),

where d = 1,m. Moreover, for odd m, letting n be a prime and q → −1 in (4.1), we are
led to the following generalization of (1.7): for any odd integer m > 1, prime p ≡ −1
(mod m), and even r > 2,

(pr−1)/d∑

k=0

(2mk + 1)
( 1

m
)3
k(

1
2
)k

k!3(m+2
2m

)k

≡ p2

(pr−2−1)/d∑

k=0

(2mk + 1)
( 1

m
)3
k(

1
2
)k

k!3(m+2
2m

)k

(mod p3r−2),

where d = 1,m.
At last, we noticed that the third supercongruence in [16, (F.3)] was confirmed by Jana

and Kalita [8]. Therefore, all the supercongruences in [16, (F.3)] have been proven by
now.
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