NOVEL RESULTS OF AN ORTHOGONAL $(\alpha - F)$ -CONVEX CONTRACTION MAPPINGS

GUNASEKARAN NALLASELLI 1 , ARUL JOSEPH GNANAPRAKASAM 2 , GUNASEELAN MANI 3 , OZGUR EGE 4,*

ABSTRACT. The main goal of this article is to introduce the idea of $(\alpha_{\perp} - F)$ -convex contraction in the context of orthogonal metric spaces and to provide some novel fixed point results in that recently described spaces. Additionally, we offer a case study to illustrate the originality of the outcomes. As an application of our key finding, we investigate the solution of a nonlinear Volterra integral equation.

1. Introduction

In 1971, \acute{C} iri \acute{c} [1] investigated a class of generalized contractions, which includes the Banach's contractions and the mappings which satisfy

$$d(Tx, Ty) \le a(d(x, Tx) + d(y, Ty)), \ 0 < a < \frac{1}{2}.$$

In 1974, \acute{C} iri \acute{c} [2] introduced the quasi-contraction

$$d(Tx,Ty) \leq q \max\{d(x,y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)\}$$

for some q < 1. Also, he proved some fixed point results in these quasi-contraction of the above all possible values (self-map on a metric space). In 1981, Istrătescu [3] introduced a "convexity condition" by proving the generalization of the Banach contraction principle. In 2011, Alghamdi et al. [4] obtained the generalization of the Banach contraction principle to the class of convex contractions on non-normal cone metric spaces. Ghorbanian et al. [5] proved some ordered fixed point results for convex contractions and special mappings which satisfy some contraction conditions and are not necessarily continuous. Khan et al. [6] recently addressed the concepts of the (α, p) -convex contraction and asymptotically T2-regular sequence and showed that the (α, p) -convex contraction reduces to two-sided convex contraction. Additionally, they demonstrated through instances the independence between the concepts of asymptotically T-regular and T2-regular sequences. We refer readers to the researchers in [7] [10] for additional details in this manner.

In 2012, Wardowski [11] introduced a new type of contraction called F-contraction and prove a new fixed point theorem concerning F-contraction. Samet et al. [12] introduced a new concept of (α, ψ) -contractive type mappings and established fixed point theorems for such mappings in complete metric spaces. Further, more details (see [13]- [21]). Very recently, Gordji et al. [22] introduced the orthogonal set (in short, O-set) and its properties. Many researchers proved fixed point results used in the O-sets in various metric spaces, see

²⁰¹⁰ Mathematics Subject Classification. Primary 47H10; Secondary 54H25.

Key words and phrases. O-set, O-sequence, \perp -continuous, α_{\perp} -admissible, $(\alpha_{\perp} - F)$ -convex contraction.

^{*:} Corresponding author.

([23]-[31]). Touail and Moutawakil [31] introduced generalized orthogonal sets and $\perp_{\Psi F}$ -contractions. They proved some fixed point theorems and gave an application to a differential equation. Mehmood et al. [32] proved some fixed point results for self-maps in the setting of two metrics satisfying F-Lipschitzian conditions of rational-type where F is considered as a semi-Wardowski function with constant $\tau \in \mathcal{R}$ instead of $\tau > 0$. Later on, Ramezani [33] introduced the concepts of generalized convex contractions on orthogonal metric spaces and established some fixed point results.

In this article, we introduce the notion of $(\alpha_{\perp} - \digamma)$ -convex contraction in the background of orthogonal metric space (OMS) inspired by the work of Mahendra Singh, Khan, and Kang [15]. We also provide a case study to illustrate the originality of the outcomes. We investigate the numerical illustration of a nonlinear Volterra integral equation to satisfy all conditions of the fixed point theorem.

Throughout this paper, we use the notations \mathbb{R} represents $(-\infty, +\infty)$, \mathbb{R}_+ is $(0, +\infty)$ and \mathbb{R}^0_+ represents $[0, +\infty)$ respectively.

Gordji et al. [22] introduced the following new notion of O-set in 2017.

Definition 1.1. [22] Let Λ be a nonempty set and $\bot \subseteq \Lambda \times \Lambda$ be a binary relation. If \bot satisfies the following conditions:

$$\exists \ \mathbf{m}_0 \in \Lambda : (\forall \mathbf{m} \in \Lambda, \mathbf{m} \bot \mathbf{m}_0) \quad or \quad (\forall \mathbf{m} \in \Lambda, \mathbf{m}_0 \bot \mathbf{m}),$$

then it is called an orthogonal set (briefly O-set) and it is denoted by (Λ, \perp) .

Example 1.1. Let (Λ, \mathcal{G}) be a metric space and $\Gamma : \Lambda \to \Lambda$ be a Picard operator, that is, there exists $\mathbf{m}^* \in \Lambda$ such that $\lim_{\beta \to \infty} \Gamma^{\beta}(\ell) = \mathbf{m}^*$ for all $\ell \in \Lambda$. We define $\mathbf{m} \perp \ell$ if

$$\lim_{\beta \to \infty} (\mathbf{m}, \Gamma^{\beta}(\ell)) = 0.$$

Then (Λ, \perp) is an O-set.

Definition 1.2. [22] Let (Λ, \perp) be an O-set. A sequence $\{\mathfrak{m}_{\beta}\}$ is called an orthogonal sequence (briefly, O-sequence) if

$$(\forall \beta \in \mathbb{N}, \mathbf{m}_{\beta} \bot \mathbf{m}_{\beta+1}) \quad or \quad (\forall \beta \in \mathbb{N}, \mathbf{m}_{\beta+1} \bot \mathbf{m}_{\beta}).$$

Definition 1.3. [22] The triplet $(\Lambda, \perp, \mathcal{G})$ is called an orthogonal metric space if (Λ, \perp) is an O-set and (Λ, \mathcal{G}) is a metric space.

Definition 1.4. [22] Let $(\Lambda, \bot, \mathcal{G})$ be an orthogonal metric space. Then, a mapping $\Gamma : \Lambda \to \Lambda$ is said to be orthogonal continuous (or \bot -continuous) in $\mathfrak{m} \in \Lambda$ if for each O-sequence $\{\mathfrak{m}_{\beta}\}$ in Λ with $\mathfrak{m}_{\beta} \to \mathfrak{m}$ as $\beta \to \infty$, we have $\Gamma(\mathfrak{m}_{\beta}) \to \Gamma(\mathfrak{m})$ as $\beta \to \infty$. Also, Γ is said to be \bot -continuous on Λ if Γ is \bot -continuous in each $\mathfrak{m} \in \Lambda$.

Definition 1.5. [22] Let $(\Lambda, \perp, \mathcal{G})$ be an orthogonal metric space. Then, Λ is said to be an orthogonal complete (briefly, O-complete) if every O-Cauchy sequence is convergent.

Definition 1.6. [22] Let (Λ, \bot) be an O-set. A mapping $\Gamma : \Lambda \to \Lambda$ is said to be \bot -preserving if $\Gamma \mathtt{m} \bot \Gamma \ell$ whenever $\mathtt{m} \bot \ell$. Also $\Gamma : \Lambda \to \Lambda$ is said to be weakly \bot -preserving if $\Gamma(\mathtt{m}) \bot \Gamma(\ell)$ or $\Gamma(\ell) \bot \Gamma(\mathtt{m})$ whenever $\mathtt{m} \bot \ell$.

Wardowski [11] introduced the following new notion of F-contraction in 2012.

Definition 1.7. [11] Let $F \in \Im$ be the set of all mapping, $F : \mathbb{R}_+ \to \mathbb{R}$ satisfying the stipulations:

- (F₁) \digamma is strictly non decreasing, i.e., $\forall \delta, \epsilon \in \mathbb{R}_+$ such that $\delta < \epsilon, \digamma(\delta) < \digamma(\epsilon)$;
- (F₂) For each sequence $\{\delta_{\beta}\}\in\mathbb{N}$, $\lim_{\beta\to\infty}\delta_{\beta}=0\Leftrightarrow \lim_{\beta\to\infty}\digamma(\delta_{\beta})=-\infty$;
- $(F_3) \exists \mathbf{k} \in (0,1) \text{ such that } \lim_{\delta \to 0^+} \delta^{\mathbf{k}} \digamma(\delta) = 0.$

Definition 1.8. [11] We say that a self-map Γ on Λ is an orthogonal F-contraction on (Λ, \mathcal{G}) if $\exists F \in \Im$ and $\mu > 0$ such that

$$\mathcal{G}(\Gamma m, \Gamma \ell) > 0 \implies \mu + \mathcal{F}(\mathcal{G}(\Gamma m, \Gamma \ell)) \le \mathcal{F}(\mathcal{G}(m, \ell)),$$
 (1)

 $\forall m, \ell \in \Lambda \text{ with } m \perp \ell.$

Example 1.2. [11] Suppose the functions $F : \mathbb{R}_+ \to \mathbb{R}$ are in \Im .

- (i) $\digamma(\delta) = ln\delta$;
- (ii) $\digamma(\delta) = ln\delta + \delta$;
- $(iii) \ F(\delta) = \frac{-1}{\sqrt{\delta}};$
- (iv) $\digamma(\delta) = \ln(\delta^2 + \delta)$.

Definition 1.9. [30] A self-map $\Gamma: \Lambda \to \Lambda$ defined on a non-void O-set Λ and a mapping $\alpha: \Lambda \times \Lambda \to [0, \infty)$. Then, Γ is said to be an orthogonal α -admissible (shortly, α_{\perp} -admissible) if $m, \ell \in \Lambda$ with $m \perp \ell$, $\alpha(m, \ell) \geq 1 \Rightarrow \alpha(\Gamma m, \Gamma \ell) \geq 1$.

Definition 1.10. [30] Let $\Gamma : \Lambda \to \Lambda$ be a self-map and a mapping $\alpha : \Lambda \times \Lambda \to (-\infty, +\infty)$. Then, Γ is called an orthogonal triangular α -admissible (shortly, $\triangle_{\alpha_{\perp}}$ -admissible) if

- $(\Gamma_1) \ \alpha(\mathbf{m}, \ell) \ge 1 \Rightarrow \alpha(\Gamma\mathbf{m}, \Gamma\ell) \ge 1, \ \forall \ \mathbf{m}, \ell \in \Lambda \ with \ \mathbf{m} \bot \ell;$
- $(\Gamma_2) \ \alpha(\mathtt{m},\mathfrak{o}) \geq 1 \ and \ \alpha(\mathfrak{o},\ell) \geq 1 \ imply \ \alpha(\mathtt{m},\ell) \geq 1, \ \forall \ \mathtt{m},\ell,\mathfrak{o} \in \Lambda \ with \ \mathtt{m} \bot \mathfrak{o} \ and \ \mathfrak{o} \bot \ell \ imply \ \mathtt{m} \bot \ell.$

Example 1.3. Let $\Lambda = [0, \infty)$ and define $\Gamma : \Lambda \to \Lambda$ by $\Gamma m = ln(1 + m) \ \forall \ m \in \Lambda$. Define $\alpha : \Lambda \times \Lambda \to [0, \infty)$ by

$$\alpha(\mathbf{m},\ell) = \begin{cases} 1+\mathbf{m}, & \textit{if } \mathbf{m} \geq \ell, \\ 0, & \textit{else}. \end{cases}$$

Then, Γ is α_{\perp} -admissible as $\alpha(\mathbf{m},\ell) \geq 1 \Rightarrow \alpha(\Gamma\mathbf{m},\Gamma\ell) \geq 1$ for $\mathbf{m} \geq \ell$ and $\alpha(\mathbf{m},\ell) = \alpha(\ell,\mathbf{m}) \forall \mathbf{m} = \ell$.

Definition 1.11. Let $\Lambda \neq \emptyset$ and let Γ be an α_{\perp} -admissible mapping on Λ . Then Λ has the hypothesis(H) if for each $\mathfrak{m}, \ell \in Fix(\Gamma)$ with $\mathfrak{m} \perp \ell$, $\exists \ \mathfrak{o} \in \Lambda$ such that $\alpha(\mathfrak{m}, \mathfrak{o}) \geq 1$ and $\alpha(\mathfrak{o}, \ell) \geq 1$ with $\mathfrak{m} \perp \mathfrak{o}$ and $\mathfrak{o} \perp \ell \implies \alpha(\mathfrak{m}, \ell) \geq 1$ with $\mathfrak{m} \perp \ell$.

Definition 1.12. Let Γ be a self-map on an orthogonal metric space (Λ, \mathcal{G}) . Then, we say that Γ is an orthogonal orbitally continuous on Λ if $\lim_{\mathfrak{k}\to\infty}\Gamma^{\beta_{\mathfrak{k}}}\mathfrak{m}=\mathfrak{o}$ implies that $\lim_{\mathfrak{k}\to\infty}\Gamma^{\beta_{\mathfrak{k}}}\mathfrak{m}=\Gamma\mathfrak{o}$.

 $A \ self-map \ \Gamma : \Lambda \to \Lambda \ on \ a \ non-void \ O-set \ \Lambda. \ Define \ Fix(\Gamma) = \{\mathtt{m} : \Gamma\mathtt{m} = \mathtt{m} \ for \ all \ \mathtt{m} \in \Lambda\}.$

In the next section, we define an orthogonal $\alpha - F$ -convex contraction and prove a fixed results of the above mentioned contraction in metric space with an orthogonal concepts.

2. Orthogonal
$$(\alpha - F)$$
-convex Contraction

This section will discuss the beauty of orthogonal $(\alpha - F)$ -convex contractions. Assume that Γ represents a mapping on $(\Lambda, \perp, \mathcal{G})$. We denote

$$\mathcal{M}^{\upsilon}(\mathbf{m}, \ell) = \max\{\mathcal{G}^{\upsilon}(\mathbf{m}, \ell), \mathcal{G}^{\upsilon}(\Gamma \mathbf{m}, \Gamma \ell), \mathcal{G}^{\upsilon}(\mathbf{m}, \Gamma \mathbf{m}), \mathcal{G}^{\upsilon}(\Gamma \mathbf{m}, \Gamma^{2} \mathbf{m}), \mathcal{G}^{\upsilon}(\ell, \Gamma \ell), \mathcal{G}^{\upsilon}(\Gamma \ell, \Gamma^{2} \ell)\}. \tag{2}$$

Definition 2.1. We say that a self-map Γ on Λ is an orthogonal $(\alpha - F)$ -convex contraction(shortly, $(\alpha_{\perp} - F)$ -convex contraction) if \exists two mappings $\alpha : \Lambda \times \Lambda \to \mathbb{R}^0_+$ and $F \in \Im$ such that

$$\mathcal{G}^{\upsilon}(\Gamma^2\mathtt{m},\Gamma^2\ell)>0 \implies \mu+\digamma(\alpha(\mathtt{m},\ell)\mathcal{G}^{\upsilon}(\Gamma^2\mathtt{m},\Gamma^2\ell)) \leq \digamma(\mathcal{M}^{\upsilon}(\mathtt{m},\ell)), \tag{3}$$

 $\forall \mathbf{m}, \ell \in \Lambda \text{ with } \mathbf{m} \perp \ell, \text{ where } \upsilon \in [1, \infty) \text{ and } \mu > 0.$

Example 2.1. Let $\Lambda = [0,1]$ with $\mathcal{G}(\mathtt{m},\ell) = |\mathtt{m} - \ell|$. Define a mapping $\Gamma : \Lambda \to \Lambda$ by $\Gamma \mathtt{m} = \frac{\mathtt{m}^2}{2} + \frac{1}{4} \ \forall \ \mathtt{m} \in \Lambda$ with $\alpha(\mathtt{m},\ell) = 1$ for all $\mathtt{m},\ell \in \Lambda$ with $\mathtt{m} \bot \ell$. Then, Γ is α_\bot -admissible. Now, we get Γ is non-expansive, since we obtain

$$|\Gamma \mathbf{m} - \Gamma \ell| = \frac{1}{2} |\mathbf{m}^2 - \ell^2| \le |\mathbf{m} - \ell| \ \forall \ \mathbf{m}, \ell \in \Lambda \ \textit{with} \ \mathbf{m} \bot \ell.$$

Setting $F \in \Im$ such that $F(\mathfrak{x}) = \ln \mathfrak{x}, \mathfrak{x} > 0$. Then, $\forall \mathfrak{m}, \ell \in \Lambda$ with $\mathfrak{m} \perp \ell$ and $\mathfrak{m} \neq \ell$, we obtain

$$\begin{split} \alpha(\mathbf{m},\ell|\Gamma^2\mathbf{m},\Gamma^2\ell| &= |\Gamma^2\mathbf{m},\Gamma^2\ell| \\ &= \frac{1}{8}(|(\mathbf{m}^4 + \mathbf{m}^2) - (\ell^4 + \ell^2)|) \\ &\leq \frac{1}{8}(|\mathbf{m}^4 - \ell^4| + |\mathbf{m}^2 - \ell^2|) \\ &\leq \frac{1}{2}|\Gamma\mathbf{m} - \Gamma\ell| + \frac{1}{4}|\mathbf{m} - \ell| \\ &\leq \frac{3}{4}\max\{|\Gamma\mathbf{m} - \Gamma\ell|, |\mathbf{m} - \ell|\} \\ &< e^{-\mu}\flat^1(\mathbf{m},\ell), \end{split}$$

where $-\mu = In(\frac{3}{4})$. Applying logarithm on both sides, we have

$$\mu + \digamma(\alpha(\mathbf{m}, \ell)\mathcal{G}(\Gamma^2\mathbf{m}, \Gamma^2\ell)) \le \digamma(\flat^1(\mathbf{m}, \ell)).$$

We conclude that Γ is an $(\alpha_{\perp} - F)$ -convex contraction with v = 1.

3. Fixed point results of an $(\alpha_{\perp} - F)$ -convex contraction

First, we prove the following lemma using an $(\alpha_{\perp} - F)$ -convex contraction.

Lemma 3.1. Let $(\Lambda, \perp, \mathcal{G})$ be an OMS and $\Gamma : \Lambda \to \Lambda$ be an $(\alpha_{\perp} - \digamma)$ -convex contraction the following affirmations hold:

- (i) Γ is α_{\perp} -admissible;
- (ii) $\exists \mathbf{m}_0 \in \Lambda \text{ such that } \alpha(\mathbf{m}_0, \Gamma \mathbf{m}_0) \geq 1$;
- (iii) \perp -preserving.

Define an O-sequence $\{\mathbf{m}_{\beta}\}$ in Λ by $\mathbf{m}_{\beta+1} = \Gamma \mathbf{m}_{\beta} = \Gamma^{\beta+1} \mathbf{m}_{0}$ for all $\beta \geq 0$, then $\{\mathcal{G}^{\upsilon}(\mathbf{m}_{\beta}, \mathbf{m}_{\beta+1})\}$ is strictly non-increasing sequence in Λ .

Proof. By the definition of orthogonality, there exists $m_0 \in \Lambda$ be such that

$$(\forall \ell \in \Lambda, m_0 \perp \ell) \text{ or } (\forall \ell \in \Lambda, \ell \perp m_0).$$

It follows that $\mathbf{m}_0 \perp \Gamma(\mathbf{m}_0)$ or $\Gamma(\mathbf{m}_0) \perp \mathbf{m}_0$. Let

$$\mathbf{m}_1 := \Gamma(\mathbf{m}_0); \mathbf{m}_2 = \Gamma(\mathbf{m}_1) = \Gamma^2(\mathbf{m}_0); \ldots; \mathbf{m}_{\beta+1} = \Gamma(\mathbf{m}_\beta) = \Gamma^{\beta+1}(\mathbf{m}_0)$$

for all $\beta \in \mathbb{N} \cup \{0\}$.

If $\mathfrak{m}_{\beta} = \mathfrak{m}_{\beta+1}$ for any $\beta \in \mathbb{N} \cup \{0\}$, then, it is clear that Λ_{β} is a fixed point of Γ . Assume that $\mathfrak{m}_{\beta} \neq \mathfrak{m}_{\beta+1}$ for all $\beta \in \mathbb{N} \cup \{0\}$. Thus, we have $\mathcal{G}(\mathfrak{m}_{\beta}, \mathfrak{m}_{\beta+1}) > 0$ for all $\beta \in \mathbb{N} \cup \{0\}$. Since Γ is \perp -preserving, we have

$$\mathbf{m}_{\beta} \perp \mathbf{m}_{\beta+1} \quad \text{or} \quad \mathbf{m}_{\beta+1} \perp \mathbf{m}_{\beta}$$
 (4)

for all $\beta \in \mathbb{N} \cup \{0\}$. This implies that $\{\mathfrak{m}_{\beta}\}$ is an O-sequence. Postulating that $\mathfrak{m}_{\beta} \neq \mathfrak{m}_{\beta+1}$ $\forall \beta \geq 0$. Then, $\mathcal{G}(\mathfrak{m}_{\beta},\mathfrak{m}_{\beta+1}) > 0 \ \forall \beta \geq 0$. Letting $\mathfrak{v} = \max\{\mathcal{G}^{\upsilon}(\mathfrak{m}_{0},\mathfrak{m}_{1}), \mathcal{G}^{\upsilon}(\mathfrak{m}_{1},\mathfrak{m}_{2})\}$. From (2), taking $\mathfrak{m} = \mathfrak{m}_{0}$ and $\ell = \mathfrak{m}_{1}$, we obtain

$$\mathcal{M}^{\upsilon}(\mathbf{m}_{0}, \mathbf{m}_{1}) = \max\{\mathcal{G}^{\upsilon}(\mathbf{m}_{0}, \mathbf{m}_{1}), \mathcal{G}^{\upsilon}(\Gamma \mathbf{m}_{0}, \Gamma \mathbf{m}_{1}), \mathcal{G}^{\upsilon}(\mathbf{m}_{0}, \Gamma \mathbf{m}_{0}), \mathcal{G}^{\upsilon}(\Gamma \mathbf{m}_{0}, \Gamma^{2} \mathbf{m}_{0}), \mathcal{G}^{\upsilon}(\mathbf{m}_{1}, \Gamma \mathbf{m}_{1}), \mathcal{G}^{\upsilon}(\Gamma \mathbf{m}_{1}, \Gamma^{2} \mathbf{m}_{1})\}$$

$$= \max\{\mathcal{G}^{\upsilon}(\mathbf{m}_{0}, \mathbf{m}_{1}), \mathcal{G}^{\upsilon}(\mathbf{m}_{1}, \mathbf{m}_{2}), \mathcal{G}^{\upsilon}(\mathbf{m}_{0}, \mathbf{m}_{1}), \mathcal{G}^{\upsilon}(\mathbf{m}_{1}, \mathbf{m}_{2}), \mathcal{G}^{\upsilon}(\mathbf{m}_{1}, \mathbf{m}_{2}), \mathcal{G}^{\upsilon}(\mathbf{m}_{1}, \mathbf{m}_{2}), \mathcal{G}^{\upsilon}(\mathbf{m}_{2}, \mathbf{m}_{3})\}$$

$$= \max\{\mathcal{G}^{\upsilon}(\mathbf{m}_{0}, \mathbf{m}_{1}), \mathcal{G}^{\upsilon}(\mathbf{m}_{1}, \mathbf{m}_{2}), \mathcal{G}^{\upsilon}(\mathbf{m}_{2}, \mathbf{m}_{3})\}. \tag{5}$$

By (F_1) and $\alpha(\mathbf{m}_0, \mathbf{m}_1) \geq 1$, by (3) and (5), we obtain

$$F(\mathcal{G}^{\upsilon}(\mathbf{m}_{2}, \mathbf{m}_{3})) = F(\mathcal{G}^{\upsilon}(\Gamma^{2}\mathbf{m}_{0}, \Gamma^{2}\mathbf{m}_{1}))$$

$$\leq F(\alpha(\mathbf{m}_{0}, \mathbf{m}_{1})\mathcal{G}^{\upsilon}(\Gamma^{2}\mathbf{m}_{0}, \Gamma^{2}\mathbf{m}_{1}))$$

$$\leq F(\mathcal{M}^{\upsilon}(\mathbf{m}_{0}, \mathbf{m}_{1})) - \mu$$

$$= F(\max\{\mathcal{G}^{\upsilon}(\mathbf{m}_{0}, \mathbf{m}_{1}), \mathcal{G}^{\upsilon}(\mathbf{m}_{1}, \mathbf{m}_{2}), \mathcal{G}^{\upsilon}(\mathbf{m}_{2}, \mathbf{m}_{3})\}) - \mu$$

$$\leq F(\max\{\mathfrak{v}, \mathcal{G}^{\upsilon}(\mathbf{m}_{2}, \mathbf{m}_{3})\}) - \mu.$$
(6)

If $\max{\{\mathfrak{v}, \mathcal{G}^{\upsilon}(\mathtt{m}_2, \mathtt{m}_3)\}} = \mathcal{G}^{\upsilon}(\mathtt{m}_2, \mathtt{m}_3)$, then (6) gives

$$F(\mathcal{G}^{\upsilon}(\mathbf{m}_2, \mathbf{m}_3)) \leq F(\mathcal{G}^{\upsilon}(\mathbf{m}_2, \mathbf{m}_3)) - \mu < F(\mathcal{G}^{\upsilon}(\mathbf{m}_2, \mathbf{m}_3)).$$

This is a contradiction. It follows that

$$F(\mathcal{G}^v(\mathbf{m}_2, \mathbf{m}_3)) \leq F(\mathbf{v}) - \mu < F(\mathbf{v}).$$

Since $\mu > 0$ and by (F_1) , we have

$$\mathcal{G}^{\upsilon}(\mathtt{m}_2,\mathtt{m}_3) < \mathfrak{v} = \max\{\mathcal{G}^{\upsilon}(\mathtt{m}_0,\mathtt{m}_1),\mathcal{G}^{\upsilon}(\mathtt{m}_1,\mathtt{m}_2)\}.$$

Again, by (2) taking with $m = m_1$ and $\ell = m_2$, we get

$$\begin{split} \mathcal{M}^{\upsilon}(\mathbf{m}_{1},\mathbf{m}_{2}) &= \max\{\mathcal{G}^{\upsilon}(\mathbf{m}_{1},\mathbf{m}_{2}), \mathcal{G}^{\upsilon}(\Gamma\mathbf{m}_{1},\Gamma\mathbf{m}_{2}), \mathcal{G}^{\upsilon}(\mathbf{m}_{1},\Gamma\mathbf{m}_{1}), \mathcal{G}^{\upsilon}(\Gamma\mathbf{m}_{1},\Gamma^{2}\mathbf{m}_{1}), \mathcal{G}^{\upsilon}(\mathbf{m}_{2},\Gamma\mathbf{m}_{2}), \mathcal{G}^{\upsilon}(\Gamma\mathbf{m}_{2},\Gamma^{2}\mathbf{m}_{2})\}\\ &= \max\{\mathcal{G}^{\upsilon}(\mathbf{m}_{1},\mathbf{m}_{2}), \mathcal{G}^{\upsilon}(\mathbf{m}_{2},\mathbf{m}_{3}), \mathcal{G}^{\upsilon}(\mathbf{m}_{1},\mathbf{m}_{2}), \mathcal{G}^{\upsilon}(\mathbf{m}_{2},\mathbf{m}_{3}), \mathcal{G}^{\upsilon}(\mathbf{m}_{2},\mathbf{m}_{3}), \mathcal{G}^{\upsilon}(\mathbf{m}_{2},\mathbf{m}_{3}), \mathcal{G}^{\upsilon}(\mathbf{m}_{3},\mathbf{m}_{4})\}\\ &= \max\{\mathcal{G}^{\upsilon}(\mathbf{m}_{1},\mathbf{m}_{2}), \mathcal{G}^{\upsilon}(\mathbf{m}_{2},\mathbf{m}_{3}), \mathcal{G}^{\upsilon}(\mathbf{m}_{3},\mathbf{m}_{4})\}. \end{split} \tag{7}$$

By (3) and (7), we obtain

$$\begin{split} \digamma(\mathcal{G}^{\upsilon}(\mathbf{m}_{3},\mathbf{m}_{4})) &= \digamma(\mathcal{G}^{\upsilon}(\Gamma^{2}\mathbf{m}_{1},\Gamma^{2}\mathbf{m}_{2})) \\ &\leq \digamma(\alpha(\mathbf{m}_{1},\mathbf{m}_{2})\mathcal{G}^{\upsilon}(\Gamma^{2}\mathbf{m}_{1},\Gamma^{2}\mathbf{m}_{2})) \\ &\leq \digamma(\mathcal{M}^{\upsilon}(\mathbf{m}_{1},\mathbf{m}_{2})) - \mu \\ &= \digamma(\max\{\mathcal{G}^{\upsilon}(\mathbf{m}_{1},\mathbf{m}_{2}),\mathcal{G}^{\upsilon}(\mathbf{m}_{2},\mathbf{m}_{3}),\mathcal{G}^{\upsilon}(\mathbf{m}_{3},\mathbf{m}_{4})\}) - \mu. \end{split}$$

If $\max\{\mathcal{G}^{\upsilon}(\mathtt{m}_1,\mathtt{m}_2),\mathcal{G}^{\upsilon}(\mathtt{m}_2,\mathtt{m}_3),\mathcal{G}^{\upsilon}(\mathtt{m}_3,\mathtt{m}_4)\}=\mathcal{G}^{\upsilon}(\mathtt{m}_3,\mathtt{m}_4),$ then we obtain

$$F(\mathcal{G}^{\upsilon}(\mathbf{m}_3, \mathbf{m}_4)) \le F(\mathcal{G}^{\upsilon}(\mathbf{m}_3, \mathbf{m}_4)) - \mu < F(\mathcal{G}^{\upsilon}(\mathbf{m}_3, \mathbf{m}_4)).$$

Which is a contradiction. We obtain

$$\max\{\mathcal{G}^{\upsilon}(\mathtt{m}_{1},\mathtt{m}_{2}),\mathcal{G}^{\upsilon}(\mathtt{m}_{2},\mathtt{m}_{3})\} > \mathcal{G}^{\upsilon}(\mathtt{m}_{3},\mathtt{m}_{4}).$$

Therefore,

$$\mathfrak{v} > \mathcal{G}^{\upsilon}(\mathtt{m}_2,\mathtt{m}_3) > \mathcal{G}^{\upsilon}(\mathtt{m}_3,\mathtt{m}_4).$$

Continuing in this way, inductively prove that the non-increasing O-sequence $\{\mathcal{G}^{\upsilon}(\mathbf{m}_{\beta},\mathbf{m}_{\beta+1})\}$ is strictly in Λ .

Theorem 3.2. Let $(\Lambda, \bot, \mathcal{G})$ be an O-complete metric space and $\Gamma : \Lambda \to \Lambda$ be an $(\alpha_{\bot} - \digamma)$ -convex contraction the following affirmations hold:

- (i) Γ is α_{\perp} -admissible;
- (ii) $\exists m_0 \in \Lambda \text{ such that } \alpha(m_0, \Gamma m_0) \geq 1$;
- (iii) Γ is \perp -continuous or, \perp -orbitally continuous on Λ ;
- (iv) \perp -preserving.

Then Γ has a fixed point in Λ . Moreover, for any $\mathbf{m}_0 \in \Lambda$ if $\mathbf{m}_{\beta+1} = \Gamma^{\beta+1}\mathbf{m}_0 \neq \Gamma\mathbf{m}_\beta$ for all $\beta \in \mathbb{N} \cup \{0\}$, then $\lim_{\beta \to \infty} \Gamma^\beta \mathbf{m}_0 = \mathfrak{o}$.

Proof. By the definition of orthogonality, there exists $m_0 \in \Lambda$ be such that

$$(\forall \ell \in \Lambda, \mathbf{m}_0 \perp \ell) \text{ or } (\forall \ell \in \Lambda, \ell \perp \mathbf{m}_0).$$

It follows that $\mathbf{m}_0 \perp \Gamma(\mathbf{m}_0)$ or $\Gamma(\mathbf{m}_0) \perp \mathbf{m}_0$. Let

$$\mathbf{m}_1 := \Gamma(\mathbf{m}_0); \mathbf{m}_2 = \Gamma(\mathbf{m}_1) = \Gamma^2(\mathbf{m}_0); \dots; \mathbf{m}_{\beta+1} = \Gamma(\mathbf{m}_\beta) = \Gamma^{\beta+1}(\mathbf{m}_0)$$

for all $\beta \in \mathbb{N} \cup \{0\}$.

If $m_{\beta} = m_{\beta+1}$ for any $\beta \in \mathbb{N} \cup \{0\}$, then it is clear that Λ_{β} is a fixed point of Γ . Assume that $m_{\beta} \neq m_{\beta+1}$ for all $\beta \in \mathbb{N} \cup \{0\}$. Thus, we have $\mathcal{G}(m_{\beta}, m_{\beta+1}) > 0$ for all $\beta \in \mathbb{N} \cup \{0\}$. Since Γ is \perp -preserving, we have

$$\mathbf{m}_{\beta} \perp \mathbf{m}_{\beta+1} \quad \text{or} \quad \mathbf{m}_{\beta+1} \perp \mathbf{m}_{\beta}$$
 (8)

for all $\beta \in \mathbb{N} \cup \{0\}$. This implies that $\{m_{\beta}\}$ is an O-sequence.

Now, we postulate that $\mathbf{m}_{\beta} \neq \mathbf{m}_{\beta+1} \ \forall \ \beta \geq 0$. Then, $\mathcal{G}(\mathbf{m}_{\beta}, \mathbf{m}_{\beta+1}) > 0 \ \forall \ \beta \geq 0$. By (i), we have $\alpha(\mathbf{m}_{0}, \Gamma \mathbf{m}_{0}) \geq 1 \Rightarrow \alpha(\mathbf{m}_{1}, \mathbf{m}_{2}) = \alpha(\Gamma \mathbf{m}_{0}, \Gamma^{2} \mathbf{m}_{0}) \geq 1$. Therefore, inductively shows that $\alpha(\mathbf{m}_{\beta}, \mathbf{m}_{\beta+1}) = \alpha(\Gamma^{\beta} \mathbf{m}_{0}, \Gamma^{\beta+1} \mathbf{m}_{0}) \geq 1 \ \forall \ \beta \geq 0$. Letting $\mathbf{v} = \max\{\mathcal{G}^{v}(\mathbf{m}_{0}, \mathbf{m}_{1}), \mathcal{G}^{v}(\mathbf{m}_{1}, \mathbf{m}_{2})\}$. Now form (2), taking $\mathbf{m} = \mathbf{m}_{\beta-2}$ and $\ell = \mathbf{m}_{\beta-1}$ with $\beta \geq 2$, we have

$$\begin{split} \mathcal{M}^{\upsilon}(\mathbf{m}_{\beta-2},\mathbf{m}_{\beta-1}) &= \max\{\mathcal{G}^{\upsilon}(\mathbf{m}_{\beta-2},\mathbf{m}_{\beta-1}), \mathcal{G}^{\upsilon}(\Gamma\mathbf{m}_{\beta-2},\Gamma\mathbf{m}_{\beta-1}), \mathcal{G}^{\upsilon}(\mathbf{m}_{\beta-2},\Gamma\mathbf{m}_{\beta-2}), \mathcal{G}^{\upsilon}(\Gamma\mathbf{m}_{\beta-2},\Gamma^2\mathbf{m}_{\beta-2}), \\ &\mathcal{G}^{\upsilon}(\mathbf{m}_{\beta-1},\Gamma\mathbf{m}_{\beta-1}), \mathcal{G}^{\upsilon}(\Gamma\mathbf{m}_{\beta-1},\Gamma^2\mathbf{m}_{\beta-1})\} \\ &= \max\{\mathcal{G}^{\upsilon}(\mathbf{m}_{\beta-2},\mathbf{m}_{\beta-1}), \mathcal{G}^{\upsilon}(\mathbf{m}_{\beta-1},\mathbf{m}_{\beta}), \mathcal{G}^{\upsilon}(\mathbf{m}_{\beta-2},\mathbf{m}_{\beta-1}), \mathcal{G}^{\upsilon}(\mathbf{m}_{\beta-1},\mathbf{m}_{\beta}), \\ &\mathcal{G}^{\upsilon}(\mathbf{m}_{\beta-1},\mathbf{m}_{\beta}), \mathcal{G}^{\upsilon}(\mathbf{m}_{\beta},\mathbf{m}_{\beta+1})\} \\ &= \max\{\mathcal{G}^{\upsilon}(\mathbf{m}_{\beta-2},\mathbf{m}_{\beta-1}), \mathcal{G}^{\upsilon}(\mathbf{m}_{\beta-1},\mathbf{m}_{\beta}), \mathcal{G}^{\upsilon}(\mathbf{m}_{\beta},\mathbf{m}_{\beta+1})\}. \end{split}$$

Since Γ is an $(\alpha_{\perp} - \digamma)$ -convex contraction mapping, we have

$$\begin{split} \digamma(\mathcal{G}^{\upsilon}(\mathbf{m}_{\beta},\mathbf{m}_{\beta+1})) &= \digamma(\mathcal{G}^{\upsilon}(\Gamma^{2}\mathbf{m}_{\beta-2},\Gamma^{2}\mathbf{m}_{\beta-1})) \\ &\leq \digamma(\alpha(\mathbf{m}_{\beta-2},\mathbf{m}_{\beta-1})\mathcal{G}^{\upsilon}(\Gamma^{2}\mathbf{m}_{\beta-2},\Gamma^{2}\mathbf{m}_{\beta-1})) \\ &\leq \digamma(\mathcal{M}^{\upsilon}(\mathbf{m}_{\beta-2},\mathbf{m}_{\beta-1})) - \mu \\ &\leq \digamma(\max\{\mathcal{G}^{\upsilon}(\mathbf{m}_{\beta-2},\mathbf{m}_{\beta-1}),\mathcal{G}^{\upsilon}(\mathbf{m}_{\beta-1},\mathbf{m}_{\beta}),\mathcal{G}^{\upsilon}(\mathbf{m}_{\beta},\mathbf{m}_{\beta+1})\}) - \mu. \end{split}$$

 $\text{If}\max\{\mathcal{G}^{\upsilon}(\mathtt{m}_{\beta-2},\mathtt{m}_{\beta-1}),\mathcal{G}^{\upsilon}(\mathtt{m}_{\beta-1},\mathtt{m}_{\beta}),\mathcal{G}^{\upsilon}(\mathtt{m}_{\beta},\mathtt{m}_{\beta+1})\}=\mathcal{G}^{\upsilon}(\mathtt{m}_{\beta},\mathtt{m}_{\beta+1}), \text{then we obtain}$

$$\digamma(\mathcal{G}^{\upsilon}(\mathsf{m}_{\beta},\mathsf{m}_{\beta+1})) \leq \digamma(\mathcal{G}^{\upsilon}(\mathsf{m}_{\beta},\mathsf{m}_{\beta+1})) - \mu < \digamma(\mathcal{G}^{\upsilon}(\mathsf{m}_{\beta},\mathsf{m}_{\beta+1})).$$

This is a contradiction. Therefore

$$\digamma(\mathcal{G}^{\upsilon}(\mathtt{m}_{\beta},\mathtt{m}_{\beta+1})) \leq \digamma(\max\{\mathcal{G}^{\upsilon}(\mathtt{m}_{\beta-2},\mathtt{m}_{\beta-1}),\mathcal{G}^{\upsilon}(\mathtt{m}_{\beta-1},\mathtt{m}_{\beta})\}) - \mu.$$

Since $\{\mathcal{G}^v(\mathbf{m}_{\beta},\mathbf{m}_{\beta+1})\}$ is strictly non-increasing. Therefore, we obtain

$$F(\mathcal{G}^{v}(\mathbf{m}_{\beta}, \mathbf{m}_{\beta+1})) \le F(\mathcal{G}^{v}(\mathbf{m}_{\beta-2}, \mathbf{m}_{\beta-1})) - \mu \le \dots \le F(\mathfrak{v}) - J\mu, \tag{9}$$

whenever $\beta = 2 J$ or $\beta = 2 J + 1$ for $J \ge 1$.

From (7), we obtain

$$\lim_{\beta \to \infty} F(\mathcal{G}^{\upsilon}(\mathbf{m}_{\beta}, \mathbf{m}_{\beta+1})) = -\infty.$$
 (10)

Therefore, by (F2) and by equation (10), we have

$$\lim_{\beta \to \infty} \mathcal{G}(\mathbf{m}_{\beta}, \mathbf{m}_{\beta+1}) = 0. \tag{11}$$

By (F3), $\exists 0 < \mathbf{k} < 1$ such that

$$\lim_{\beta \to \infty} [\mathcal{G}^{\upsilon}(\mathbf{m}_{\beta}, \mathbf{m}_{\beta+1})]^{\mathbf{k}} \mathcal{F}(\mathcal{G}^{\upsilon}(\mathbf{m}_{\beta}, \mathbf{m}_{\beta+1})) = 0. \tag{12}$$

Also, by equation (9), we get

$$[\mathcal{G}^{\upsilon}(\mathbf{m}_{\beta}, \mathbf{m}_{\beta+1})]^{\mathbf{k}} [\mathcal{F}(\mathcal{G}^{\upsilon}(\mathbf{m}_{\beta}, \mathbf{m}_{\beta+1})) - \mathcal{F}(\mathbf{v})] \le -[\mathcal{G}^{\upsilon}(\mathbf{m}_{\beta}, \mathbf{m}_{\beta+1})]^{\mathbf{k}} J\mu \le 0, \tag{13}$$

where $\beta = 2$ J or $\beta = 2$ J + 1 for $J \ge 1$. Setting $\beta \to \infty$ in (13) along with (11) and (12), we have

$$\lim_{\beta \to \infty} J[\mathcal{G}(\mathbf{m}_{\beta}, \mathbf{m}_{\beta+1})]^{\mathbf{k}} = 0. \tag{14}$$

Now, we arise two cases.

Case-(i): If β is even and $\beta \geq 2$, then by equation (14), we have

$$\lim_{\beta \to \infty} \beta [\mathcal{G}(\mathbf{m}_{\beta}, \mathbf{m}_{\beta+1})]^{\mathbf{k}} = 0.$$
 (15)

Case-(ii): If β is odd and $\beta \geq 3$, then by equation (14), we have

$$\lim_{\beta \to \infty} (\beta - 1) [\mathcal{G}(\mathbf{m}_{\beta}, \mathbf{m}_{\beta+1})]^{\mathbf{k}} = 0.$$
(16)

Using (11), (16) gives

$$\lim_{\beta \to \infty} \beta [\mathcal{G}(\mathbf{m}_{\beta}, \mathbf{m}_{\beta+1})]^{\mathbf{k}} = 0. \tag{17}$$

We conclude the above cases that, $\exists \beta_1 \in \mathbb{N}$ such that

$$\beta[\mathcal{G}(\mathbf{m}_{\beta}, \mathbf{m}_{\beta+1})]^{\mathbf{k}} \leq 1 \ \forall \ \beta \geq \beta_1.$$

Therefore, we obtain

$$\mathcal{G}(\mathtt{m}_{\beta},\mathtt{m}_{\beta+1}) \leq \frac{1}{\beta^{\frac{1}{k}}}, \ \forall \ \beta \geq \beta_{1}.$$

Now, to prove the O-sequence $\{m_{\beta}\}$ is a Cauchy. $\forall v > \mathfrak{q} \geq \beta_1$, we have

$$\mathcal{G}(\mathtt{m}_{\upsilon},\mathtt{m}_{\mathfrak{q}}) \leq \mathcal{G}(\mathtt{m}_{\upsilon},\mathtt{m}_{\upsilon-1}) + \mathcal{G}(\mathtt{m}_{\upsilon-1},\mathtt{m}_{\upsilon-2}) + \ldots + \mathcal{G}(\mathtt{m}_{\mathfrak{q}+1},\mathtt{m}_{\mathfrak{q}}) < \sum_{\mathfrak{k}=\mathfrak{q}}^{\infty} \mathcal{G}(\mathtt{m}_{\mathfrak{k}},\mathtt{m}_{\mathfrak{k}+1}) \leq \sum_{\mathfrak{k}=\mathfrak{q}}^{\infty} \frac{1}{\mathfrak{k}^{\frac{1}{k}}}.$$

Taking $\mathfrak{q} \to \infty$, we get $\lim_{v,\mathfrak{q}\to\infty} \mathcal{G}(\mathfrak{m}_v,\mathfrak{m}_{\mathfrak{q}}) = 0$, since $\sum_{\mathfrak{k}=\mathfrak{q}}^{\infty} \frac{1}{\mathfrak{k}^{\frac{1}{k}}}$ is convergent. This proves that the O-sequence $\{\mathfrak{m}_{\beta}\}$ is a Cauchy in Λ . By O-completeness property, $\exists \ \mathfrak{o} \in \Lambda$ such that $\lim_{\beta\to\infty} \mathfrak{m}_{\beta} = \mathfrak{o}$. Next, to prove \mathfrak{o} is a fixed point of Γ . By (iii), we obtain

$$\mathcal{G}(\mathfrak{o},\Gamma\mathfrak{o})=\lim_{\beta\to\infty}\mathcal{G}(\mathtt{m}_\beta,\Gamma\mathtt{m}_\beta)=\lim_{\beta\to\infty}\mathcal{G}(\mathtt{m}_\beta,\mathtt{m}_{\beta+1})=0.$$

This implies that \mathfrak{o} is a fixed point of Γ .

Also, by (iii), we get

$$\mathbf{m}_{\beta+1} = \Gamma \mathbf{m}_{\beta} = \Gamma(\Gamma^{\beta} \mathbf{m}_{0}) \to \Gamma \mathbf{o} \text{ as } \beta \to \infty.$$

By O-completeness, we obtain $\Gamma \mathfrak{o} = \mathfrak{o}$. Therefore, $Fix(\Gamma) \neq 0$.

To prove the uniqueness property of fixed point, let $\ell^* \in \Lambda$ be a fixed point of Γ . Then we have $\Gamma^{\beta}(\mathfrak{o}^*) = \mathfrak{o}^*$ and $\Gamma^{\beta}(\ell^*) = \ell^*$ for all $\beta \in \mathbb{N}$. By the choice of \mathfrak{o}_0 in the first part of proof, we have

$$[\mathfrak{o}_0 \perp \mathfrak{o}^* \text{ and } \mathfrak{o}_0 \perp \ell^*] \text{ or } [\mathfrak{o}^* \perp \mathfrak{o}_0 \text{ and } \ell^* \perp \mathfrak{o}_0].$$

Since Γ is \perp -preserving, we have

$$[\Gamma^{\beta}\mathfrak{o}_0 \perp \Gamma^{\beta}\mathfrak{o}^* \text{ and } \Gamma^{\beta}\mathfrak{o}_0 \perp \Gamma^{\beta}\ell^*] \text{ or } [\Gamma^{\beta}\mathfrak{o}^* \perp \Gamma^{\beta}\mathfrak{o}_0 \text{ and } \Gamma^{\beta}\ell^* \perp \Gamma^{\beta}\mathfrak{o}_0].$$

for all $\beta \in \mathbb{N}$. Therefore, by the triangle inequality, we have

$$\begin{split} \mathcal{G}(\mathfrak{o}^*,\ell^*) &= \mathcal{G}(\Gamma^\beta \mathfrak{o}^*,\Gamma^\beta \ell^*) \\ &\leq \mathcal{G}(\Gamma^\beta \mathfrak{o}^*,\Gamma^\beta \mathfrak{o}_0) + \mathcal{G}(\Gamma^\beta \mathfrak{o}_0,\Gamma^\beta \ell^*) \\ &\leq \mathcal{G}(\mathfrak{o}^*,\mathfrak{o}_0) + \mathcal{G}(\mathsf{mo}_0,\ell^*) \\ &\leq \mathcal{G}(\mathfrak{o}^*,\ell^*). \end{split}$$

This is a contradiction. Thus it follows that $\mathfrak{o}^* = \ell^*$. Finally, let $\mathfrak{o} \in \Lambda$ be arbitrary. Similarly, we have

$$[\mathfrak{o}_0\bot\mathfrak{o}^* \text{ and } \mathfrak{o}_0\bot\mathfrak{o}] \text{ or } [\mathfrak{o}^*\bot\mathfrak{o}_0 \text{ and } \mathfrak{o}\bot\mathfrak{o}_0].$$

Since Γ is \perp -preserving, we have

$$[\Gamma^{\beta}\mathfrak{o}_0 \perp \Gamma^{\beta}\mathfrak{o}^* \text{ and } \Gamma^{\beta}\mathfrak{o}_0 \perp \Gamma^{\beta}\mathfrak{o}] \text{ or } [\Gamma^{\beta}\mathfrak{o}^* \perp \Gamma^{\beta}\mathfrak{o}_0 \text{ and } \Gamma^{\beta}\mathfrak{o} \perp \Gamma^{\beta}\mathfrak{o}_0].$$

for all $\beta \in \mathbb{N}$. Hence, for all $\beta \in \mathbb{N}$, we get

$$\begin{split} \mathcal{G}(\mathfrak{o}^*, \Gamma^{\beta} \mathfrak{o}) &= \mathcal{G}(\Gamma^{\beta} \mathfrak{o}^*, \Gamma^{\beta} \mathfrak{o}) \\ &\leq \mathcal{G}(\Gamma^{\beta} \mathfrak{o}^*, \Gamma^{\beta} \mathfrak{o}_0) + \mathcal{G}(\Gamma^{\beta} \mathfrak{o}_0, \Gamma^{\beta} \mathfrak{o}) \\ &\leq \mathcal{G}(\mathfrak{o}^*, \mathfrak{o}_0) + \mathcal{G}(\mathtt{mo}_0, \mathfrak{o}) \\ &\leq \mathcal{G}(\mathfrak{o}^*, \mathfrak{o}). \end{split}$$

Hence the proof is completed.

Corollary 3.3. Let $(\Lambda, \bot, \mathcal{G})$ be an O-complete metric space and a mapping $\alpha : \Lambda \times \Lambda \to [0, \infty)$. Postulating that $\Gamma : \Lambda \to \Lambda$ be a self-map the following affirmations hold

(i) $\forall m, \ell \in \Lambda \text{ with } m \perp \ell$,

$$\mathcal{G}^{\upsilon}(\Gamma^{2}\mathbf{m}, \Gamma^{2}\ell) > 0
\Longrightarrow \alpha(\mathbf{m}, \ell)\mathcal{G}(\Gamma^{2}\mathbf{m}, \Gamma^{2}\ell) \leq \mathbb{k} \max\{\mathcal{G}(\mathbf{m}, \ell), \mathcal{G}(\Gamma\mathbf{m}, \Gamma\ell), \mathcal{G}(\mathbf{m}, \Gamma\mathbf{m}), \mathcal{G}(\Gamma\mathbf{m}, \Gamma^{2}\mathbf{m}),
\mathcal{G}(\ell, \Gamma\ell), \mathcal{G}(\Gamma\ell, \Gamma^{2}\ell)\}$$
(18)

where $\mathbb{k} \in [0,1)$;

- (ii) Γ is α_{\perp} -admissible;
- (iii) $\exists \ \mathbf{m}_0 \in \Lambda \ such \ that \ \alpha(\mathbf{m}_0, \Gamma \mathbf{m}_0) \geq 1;$
- (iv) Γ is \perp -continuous or, \perp -orbitally continuous on Λ ;
- $(v) \perp$ -preserving.

Then, Γ has a fixed point in Λ . Moreover, for any $\mathbf{m}_0 \in \Lambda$ if $\mathbf{m}_{\beta+1} = \Gamma^{\beta+1}\mathbf{m}_0 \neq \Gamma^{\beta}\mathbf{m}_0 \ \forall \ \beta \in \mathbb{N} \cup \{0\}$, then $\lim_{\beta \to \infty} \Gamma^{\beta}\mathbf{m}_0 = \mathfrak{o}$.

Proof. Setting $F(\mathfrak{x}) = In(\mathfrak{x}), \mathfrak{x} > 0$. Obviously, $F \in \mathfrak{F}$. Applying logarithm on both sides of (18), we get

$$\begin{split} &-In\mathbb{k}+In\alpha(\mathbf{m},\ell)\mathcal{G}(\Gamma^2\mathbf{m},\Gamma^2\ell)\\ &\leq In(\max\{\mathcal{G}(\mathbf{m},\ell),\mathcal{G}(\Gamma\mathbf{m},\Gamma\ell),\mathcal{G}(\mathbf{m},\Gamma\mathbf{m}),\mathcal{G}(\Gamma\mathbf{m},\Gamma^2\mathbf{m}),\mathcal{G}(\ell,\Gamma\ell),\mathcal{G}(\Gamma\ell,\Gamma^2\ell)\}), \end{split}$$

which implies that

$$\mu + \digamma(\alpha(\mathbf{m}, \ell)\mathcal{G}(\Gamma^2\mathbf{m}, \Gamma^2\ell)) \le \digamma(\mathcal{M}^1(\mathbf{m}, \ell))$$

 $\forall \, m, \ell \in \Lambda \text{ with } \underline{m} \perp \ell \text{ and } \underline{m} \neq \ell \text{ where } \mu = -In \mathbb{k}.$ It follows that Γ is an $(\alpha_{\perp} - \digamma)$ -convex contraction with v = 1. Thus, all the affirmations of Theorem (3.2) are hold and hence, Γ has a unique fixed point in Λ .

Corollary 3.4. Let $(\Lambda, \perp, \mathcal{G})$ be an O-complete metric space and a mapping $\alpha : \Lambda \times \Lambda \to [0, \infty)$. Postulating that $\Gamma : \Lambda \to \Lambda$ be a self-map the following affirmations hold:

(i) $\forall m, \ell \in \Lambda \text{ with } m \perp \ell$,

$$\begin{split} \mathcal{G}^{\upsilon}(\Gamma^2\mathbf{m},\Gamma^2\ell) > 0 &\implies \alpha(\mathbf{m},\ell)\mathcal{G}(\Gamma^2\mathbf{m},\Gamma^2\ell) \\ &\leq \alpha_1\mathcal{G}(\mathbf{m},\ell) + \alpha_2\mathcal{G}(\Gamma\mathbf{m},\Gamma\ell) + \alpha_3\mathcal{G}(\mathbf{m},\Gamma\mathbf{m}) \\ &+ \alpha_4\mathcal{G}(\Gamma\mathbf{m},\Gamma^2\mathbf{m}) + \alpha_5\mathcal{G}(\ell,\Gamma\ell) + \alpha_6\mathcal{G}(\Gamma\ell,\Gamma^2\ell), \end{split}$$

where $0 \le \alpha_{\mathfrak{k}} < 1, \mathfrak{k} = 1, 2, ..., 6$ such that $\sum_{\mathfrak{k}=1}^{6} \alpha_{\mathfrak{k}} < 1;$

- (ii) Γ is α_{\perp} -admissible;
- (iii) $\exists \ \mathbf{m}_0 \in \Lambda \ such \ that \ \alpha(\mathbf{m}_0, \Gamma \mathbf{m}_0) \geq 1;$
- (iv) Γ is \perp -continuous or, \perp -orbitally continuous on Λ ;
- $(v) \perp$ -preserving.

Then, Γ has a fixed point in Λ . Moreover, for any $\mathbf{m}_0 \in \Lambda$ if $\mathbf{m}_{\beta+1} = \Gamma^{\beta+1}\mathbf{m}_0 \neq \Gamma^{\beta}\mathbf{m}_0 \ \forall \ \beta \in \mathbb{N} \cup \{0\}$, then $\lim_{\beta \to \infty} \Gamma^{\beta}\mathbf{m}_0 = \mathfrak{o}$.

Proof. Setting $F(\mathfrak{x}) = In(\mathfrak{x}), \mathfrak{x} > 0$. Obviously, $F \in \mathfrak{F}$. $\forall \mathfrak{m}, \ell \in \Lambda$ with $\mathfrak{m} \perp \ell$ and $\mathfrak{m} \neq \ell$, we obtain

$$\begin{split} \alpha(\mathbf{m},\ell)\mathcal{G}(\Gamma^2\mathbf{m},\Gamma^2\ell) &= \mathcal{G}(\Gamma^2\mathbf{m},\Gamma^2\ell) \\ &\leq \alpha_1\mathcal{G}(\mathbf{m},\ell) + \alpha_2\mathcal{G}(\Gamma\mathbf{m},\Gamma\ell) + \alpha_3\mathcal{G}(\mathbf{m},\Gamma\mathbf{m}) \\ &+ \alpha_4\mathcal{G}(\Gamma\mathbf{m},\Gamma^2\mathbf{m}) + \alpha_5\mathcal{G}(\ell,\Gamma\ell) + \alpha_6\mathcal{G}(\Gamma\ell,\Gamma^2\ell) \\ &\leq \mathbb{k}\max\bigg\{\mathcal{G}(\mathbf{m},\ell),\mathcal{G}(\Gamma\mathbf{m},\Gamma\ell),\mathcal{G}(\mathbf{m},\Gamma\mathbf{m}),\mathcal{G}(\Gamma\mathbf{m},\Gamma^2\mathbf{m}), \\ \mathcal{G}(\ell,\Gamma\ell),\mathcal{G}(\Gamma\ell,\Gamma^2\ell)\bigg\}, \end{split}$$

where $\mathbb{k} = \sum_{\ell=1}^{6} \alpha_{\ell} < 1$. By Corollary (3.3), Γ has a unique fixed point in Λ .

Corollary 3.5. A \perp -continuous self-map Γ on an O-complete metric space $(\Lambda, \perp, \mathcal{G})$. If $\exists \ \Bbbk \in [0,1)$ satisfying the following inequality

$$\mathcal{G}^{v}(\Gamma^{2}\mathbf{m},\Gamma^{2}\ell)>0 \implies$$

$$\mathcal{G}(\Gamma^2\mathtt{m},\Gamma^2\ell) \leq \mathtt{k} \max \bigg\{ \mathcal{G}(\mathtt{m},\ell), \mathcal{G}(\Gamma\mathtt{m},\Gamma\ell), \mathcal{G}(\mathtt{m},\Gamma\mathtt{m}), \mathcal{G}(\Gamma\mathtt{m},\Gamma^2\mathtt{m}), \mathcal{G}(\ell,\Gamma\ell), \mathcal{G}(\Gamma\ell,\Gamma^2\ell) \bigg\}$$

 $\forall m, \ell \in \Lambda \text{ with } m \perp \ell, \text{ then } \Gamma \text{ has a unique fixed point in } \Lambda.$

4. Application

In this section, we prove the existence of fixed point for $(\alpha_{\perp} - F)$ -convex contraction to nonlinear integral equation of Volterra type

$$\mathfrak{x}(\tau) = \int_0^{\tau} \mathcal{J}(\tau, \flat, \mathfrak{x}(\flat)) \mathcal{G}\flat + \gamma(\tau), \tau \in [0, \mathcal{P}]. \tag{19}$$

Consider the following assumptions:

- (b₁) Here $\mathcal{J}:[0,\mathcal{P}]\times[0,\mathcal{P}]\times\mathcal{R}\to\mathcal{R},\gamma:[0,\mathcal{P}]\to\mathcal{R}$ are continuous functions and $\mathbb{I}=[0,\mathcal{P}],\mathcal{P}>0.$
- (\flat_2) \exists a strictly increasing O-sequence $\{\mathfrak{m}_\beta\}_{\mathfrak{n}\in\mathcal{N}\cup(0)}$ satisfying for any $\mathfrak{n}\in\mathcal{N}$ such that

$$|\mathcal{J}(\tau, \flat, \mathbf{m}) - \mathcal{J}(\tau, \flat, \ell)| \le \mathfrak{e}^{-\mu - \tau} |\mathbf{m} - \ell| \tag{20}$$

for all $\tau, \flat \in \mathbb{I}, \mu \in (0,1)$ and $m, \ell \in \mathcal{R}$.

Let the set of all continuous functions $\mathcal{J} = \mathcal{C}(\mathbb{I}, \mathcal{R})$ defined on $[0, \mathcal{P}]$ endowed with the O-complete metric space. Define $\mathcal{G}: \mathcal{J} \times \mathcal{J} \to \mathcal{R}$ by

$$\mathcal{M}(\mathbf{m}, \ell) = \max_{\tau \in [0, \mathcal{P}]} \{ |\mathbf{m}(\tau) - \ell(\tau)| \mathbf{e}^{-\tau} \}$$
 (21)

for all $m, \ell \in \mathcal{J} = \mathcal{C}(\mathbb{I}, \mathcal{R})$ with $((\mathcal{C}(\mathbb{I}, \mathcal{R})), \mathcal{G})$ is an O-complete metric space.

Theorem 4.1. If (b_1) and (b_2) are fulfilled, then the non-linear integral equation of Volterra type Equation (19) has a unique solution in $(\mathcal{C}(\mathbb{I}, \mathcal{R}))$.

Proof. For any $m \in \mathcal{J}$ is a solution of (19) iff $m \in \mathcal{J}$ is a solution of the integral equation

$$\mathbf{m}(\tau) = \int_0^{\tau} (\mathcal{J}(\tau, \flat, \mathbf{m}(\flat)) \mathcal{G}\flat + \gamma(\tau). \tag{22}$$

Then, (19) is equivalent to prove $\Gamma(m) = m$ for $m \in \mathcal{J}$. Define a relation \perp on \mathcal{J} by

$$\mathbf{m} \perp \ell \Leftrightarrow \mathbf{m}(\tau)\ell(\tau) \ge 0,\tag{23}$$

for all $\tau \in [0, \mathcal{P}]$. Since \mathcal{J} is an orthogonal for all $\mathbf{m} \in \mathcal{J}$, $\exists \ \ell(\tau) = 0, \ \forall \ \tau \in [0, \mathcal{P}]$ such that $\mathbf{m}(\tau)\ell(\tau) = 0$: We examine

$$\mathcal{M}(\mathbf{m}, \ell) = \max_{\tau \in [0, \mathcal{P}]} \{ |\mathbf{m}(\tau) - \ell(\tau)| \mathbf{e}^{-\tau} \},$$

for all $m, \ell \in \mathcal{J}$. So, the triplet $(\mathcal{J}, \perp, \mathcal{G})$ is an O-complete metric space. This implies that Γ is \perp -continuous. Now, to prove Γ is \perp -preserving. Let $m(\tau) \perp \ell(\tau)$, $\forall \tau \in [0, \mathcal{P}]$. Now, we have

$$\Gamma \mathbf{m}(\tau) = \int_0^\tau \mathcal{J}(\tau, \flat, \mathbf{m}(\flat)) \mathcal{G}\flat + \gamma(\tau) > 0. \tag{24}$$

which yields that $\Gamma m(\tau) \perp \Gamma \ell(\tau)$, i.e., Γ is \perp -preserving.

Define a mapping $\alpha: \mathcal{J} \times \mathcal{J} \to \mathcal{R}^+$ by $\alpha(\mathfrak{m}, \ell) = 1 \ \forall \ \mathfrak{m}, \ell \in \mathcal{J}$. Therefore, Γ is α_{\perp} -admissible. Letting $F \in \Im$ such that $F(\mathfrak{x}) = In(\mathfrak{x}), \mathfrak{x} > 0$. In this point, from Definition 2.1, we get,

$$\begin{split} \mu + F(\alpha(\mathbf{m},\ell)\mathcal{G}^{\upsilon}(\Gamma^{2}\mathbf{m},\Gamma^{2}\ell)) & \Longrightarrow \mu + F(|\mathcal{P}^{2}\mathbf{m} - \mathcal{P}^{2}\ell|\mathfrak{e}^{-\tau}) \leq F(|\mathbf{m} - \ell|\mathfrak{e}^{-\tau}) \\ & \Longrightarrow \mu + In|\mathcal{P}^{2}\mathbf{m} - \mathcal{P}^{2}\ell|\mathfrak{e}^{-\tau} \leq In|\mathbf{m} - \ell|\mathfrak{e}^{-\tau} \\ & \Longrightarrow \mu \leq In\frac{|\mathbf{m} - \ell|\mathfrak{e}^{-\tau}}{|\mathcal{P}^{2}\mathbf{m} - \mathcal{P}^{2}\ell|\mathfrak{e}^{-\tau}} \\ & \Longrightarrow \mathfrak{e}^{\mu} < \frac{|\mathbf{m} - \ell|\mathfrak{e}^{-\tau}}{|\mathcal{P}^{2}\mathbf{m} - \mathcal{P}^{2}\ell|\mathfrak{e}^{-\tau}} \\ & \Longrightarrow |\mathcal{P}^{2}\mathbf{m} - \mathcal{P}^{2}\ell| < \frac{|\mathbf{m} - \ell|}{\mathfrak{e}^{\mu}}. \end{split}$$

Thus,

$$\mathfrak{e}^{-\tau}|\mathcal{P}^2\mathbf{m} - \mathcal{P}^2\ell| < \frac{|\mathbf{m} - \ell|\mathfrak{e}^{-\tau}}{\mathfrak{e}^{\mu}},\tag{25}$$

for all $m, \ell \in \mathcal{C}(\mathbb{I})$. We conclude that for any $\flat \in \mathbb{I}$, we get

$$|\mathbf{m}(\flat) - \ell(\flat)| \leq \mathfrak{e}^{\flat} \max \mathfrak{e}^{-\flat} |\mathbf{m}(\flat) - \ell(\flat)|$$

$$< \mathfrak{e}^{\flat} \mathcal{M}(\mathbf{m}, \ell)$$

$$\leq \mathfrak{e}^{\mathcal{P}} \mathcal{M}(\mathbf{m}, \ell). \tag{26}$$

Therefore due to (\flat_2) , we obtain,

$$\begin{split} |\Gamma\mathbf{m}(\tau) - \Gamma\ell(\tau)| &\leq |\int_{0}^{\tau} \mathcal{J}(\tau, \flat, \mathbf{m}(\flat)) \mathcal{G}\flat - \int_{0}^{\tau} \mathcal{J}(\tau, \flat, \ell(\flat)) \mathcal{G}\flat| \\ &\leq \int_{0}^{\tau} |\mathcal{J}(\tau, \flat, \mathbf{m}(\flat)) - \mathcal{J}(\tau, \flat, \ell(\flat))| \mathcal{G}\flat \\ &\leq \mathfrak{e}^{-\mu-\tau} \int_{0}^{\tau} \max_{\flat \in [0, \mathcal{P}]} |\mathbf{m}(\flat) - \ell(\flat)| \mathfrak{e}^{-\flat} \mathfrak{e}^{\flat} \mathcal{G}\flat \\ &\leq \mathfrak{e}^{-\mu-\tau} \mathcal{M}(\mathbf{m}, \ell) \int_{0}^{\tau} \mathfrak{e}^{\flat} \mathcal{G}\flat \\ &\leq \mathfrak{e}^{-\mu-\tau} \mathcal{M}(\mathbf{m}, \ell) [\mathfrak{e}^{\tau} - 1] \\ &\leq \mathfrak{e}^{-\mu} (1 - \mathfrak{e}^{-\tau}) \mathcal{M}(\mathbf{m}, \ell) \\ &< \mathfrak{e}^{-\mu} \mathcal{M}(\mathbf{m}, \ell); \tau \in \mathbb{I}. \end{split} \tag{27}$$

By O-sequence $\{m_{\beta}\}$, we have,

$$\mathfrak{e}^{-\tau}|\Gamma m(\tau) - \Gamma \ell(\tau)| \le \frac{\mathcal{M}(m,\ell)\mathfrak{e}^{-\tau}}{\mathfrak{e}^{\mu}}, \tau \in \mathbb{I}.$$
 (28)

Letting supremum in (28), we have,

$$\mu + \digamma(\alpha(\mathbf{m}, \ell)\mathcal{G}(\Gamma\mathbf{m}, \Gamma\ell)) \leq \digamma(\mathcal{M}(\mathbf{m}, \ell))$$

Therefore, Γ has a unique solution by Theorem (3.2).

5. Obtaining a numerical solution to integral equations

Example 5.1. Let $\mathcal{J} = \{\mathfrak{f}(\tau)/\mathfrak{f}(\tau) \text{ be a continuous function defined on } [0,1]\}$, i.e., $\mathcal{J} = \mathcal{C}[0,1]$.

Define $\mathcal{G}: \mathcal{J} \times \mathcal{J} \to \mathcal{R}$ by $\mathcal{G}(\mathfrak{a}, \mathfrak{b}) = \sup_{\tau \in [0,1]} \{ |\mathfrak{m}(\tau) - \ell(\tau)| \}$ for all $\mathfrak{m}, \ell \in \mathcal{J}$. Clearly, $(\mathcal{J}, \mathcal{G})$ is an O-complete metric space. Define $\mathcal{O}: \mathcal{J} \to \mathcal{J}$ by:

$$\mathcal{O}\mathbf{m}(\tau) = \gamma(\tau) + \int_0^1 \mathcal{J}(\tau, \flat, \mathbf{m}(\flat)) \mathcal{G}^{\flat}; \mathbf{m}(\tau) \in \mathcal{J}. \tag{29}$$

Define a mapping $F:(0,\infty)\to\mathcal{R}$ defined by $F(\mathfrak{x})=In(\mathfrak{x}),\mathfrak{x}>0$ and a mapping $\alpha:\mathcal{J}\times\mathcal{J}\to\mathcal{R}^+$ by $\alpha(\mathfrak{m},\ell)=1$ \forall $\mathfrak{m},\ell\in\mathcal{J}$. Taking $\gamma(\tau)=\frac{5}{8}\tau$ and $\mathcal{J}(\tau,\flat,\mathfrak{m}(\flat))=\frac{\tau}{4}(1+\mathfrak{m}(\flat))$. Then Eq. (29) reduces to $\mathcal{O}\mathfrak{m}(\tau)=\frac{5}{8}\tau+\int_0^1\frac{\tau}{4}(1+\mathfrak{m}(\flat))\mathcal{G}\flat$, where $\frac{5}{8}\tau,\frac{\tau}{4}(1+\mathfrak{m}(\flat))$ are continuous functions and $\mathcal{O}\mathfrak{m}\in\mathcal{C}[0,1]$. Let us assume that $|\frac{\tau}{4}|\leq\mathfrak{e}^{-\mu-\tau}$. To prove that \mathcal{O} is a $(\alpha_\perp$ -F)-contraction, we need to prove $\mathcal{G}(\mathcal{O}\mathfrak{m},\mathcal{O}\ell)\leq\mathcal{M}(\mathfrak{m},\ell)\mathfrak{e}^{-\mu}$.

$$\begin{split} \mu + F(\alpha(\mathbf{m}, \ell)\mathcal{G}^{\upsilon}(\Gamma^{2}\mathbf{m}, \Gamma^{2}\ell)) &\leq F(\mathcal{M}^{\upsilon}(\mathbf{m}, \ell)) \implies \mu + In(\mathcal{G}(\mathcal{O}\mathbf{m}, \mathcal{O}\ell)) \leq In(\mathcal{M}(\mathbf{m}, \ell)) \\ & \implies In\frac{|\mathcal{O}\mathbf{m} - \mathcal{O}\ell|}{|\mathbf{m} - \ell|} \leq -\mu \\ & \implies |\mathcal{O}\mathbf{m} - \mathcal{O}\ell| \leq |\mathbf{m} - \ell|\mathfrak{e}^{-\mu} \\ & \implies \mathcal{G}(\mathcal{O}\mathbf{m}, \mathcal{O}\ell) \leq \mathcal{M}(\mathbf{m}, \ell)\mathfrak{e}^{-\mu}. \end{split}$$

Consider

$$\begin{aligned} |\mathcal{O}\mathbf{m}(\tau) - \mathcal{O}\ell(\tau)| &= |\int_{0}^{1} \mathcal{J}(\tau, \flat, \mathbf{m}(\flat))\mathcal{G}\flat - \int_{0}^{1} \mathcal{J}(\tau, \flat, \ell(\flat))\mathcal{G}\flat| \\ &\leq \int_{0}^{1} |\mathcal{J}(\tau, \flat, \mathbf{m}(\flat)) - \mathcal{J}(\tau, \flat, \ell(\flat))|\mathcal{G}\flat| \\ &\leq \int_{0}^{1} |\frac{\tau}{4}(1 + \mathbf{m}(\flat)) - \frac{\tau}{4}(1 + \ell(\flat))|\mathcal{G}\flat| \\ &\leq \int_{0}^{1} |\frac{\tau}{4}(\mathbf{m}(\flat) - \ell(\flat))|\mathcal{G}\flat| \\ &\leq \int_{0}^{1} |\frac{\tau}{4}(\mathbf{m}(\flat) - \ell(\flat))|\mathcal{G}\flat|, \end{aligned} \tag{30}$$

then,

$$\begin{split} \sup_{\mathfrak{t} \in [0,1]} |\mathcal{O}\mathbf{m}(\tau) - \mathcal{O}\ell(\tau)| &\leq \int_{0}^{1} |\frac{\tau}{4}||\mathbf{m}(\flat) - \ell(\flat)|\mathcal{G}\flat \\ &\leq \mathfrak{e}^{-\mu-\tau} \int_{0}^{1} |\mathbf{m}(\flat) - \ell(\flat)|\mathcal{G}\flat \\ &\leq \mathfrak{e}^{-\mu}|\mathbf{m}(\flat) - \ell(\flat)|\mathfrak{e}^{-\tau} \int_{0}^{1} \mathcal{G}\flat \\ &\leq \mathfrak{e}^{-\mu}|\mathbf{m}(\flat) - \ell(\flat)|\mathfrak{e}^{-\tau}. \end{split} \tag{31}$$

Therefore, $\mathcal{G}(\mathcal{O}m, \mathcal{O}\ell) \leq \mathfrak{e}^{-\mu}\mathcal{M}(m, \ell)$.

Therefore, all the hypothesis of Theorem (3.2) are satisfied and \mathcal{O} has a unique fixed point and the nonlinear integral equation of Volterra type equation (29) has a unique solution.

Verify that $\mathbf{m}(\tau) = \tau$ is the exact solution of the Eq. (29). Utilizing the iteration process, we get

$$\mathtt{m}_{\beta+1}(\tau) = \mathcal{O}\mathtt{m}_{\beta}(\tau) = \frac{5}{8}\tau + \frac{\tau}{4}\int_0^1 (1+\mathtt{m}_{\beta}(\flat))\mathcal{G}\flat.$$

Let $m_0(\tau) = 0$ be the initial condition. Letting $\beta = 0, 1, 2, ...$ in Eq.(28) successively, we obtain,

$$\begin{split} \mathbf{m}_1(\tau) &= 0.875\tau, \\ \mathbf{m}_2(\tau) &= 0.984375\tau, \\ \mathbf{m}_3(\tau) &= 0.998046875\tau, \\ \mathbf{m}_4(\tau) &= 0.999755859375\tau, \\ \mathbf{m}_5(\tau) &= 0.999969482421875\tau, \\ \mathbf{m}_6(\tau) &= 0.999996185302734375\tau, \\ \mathbf{m}_7(\tau) &= 0.999999523162841796875\tau, \\ \mathbf{m}_8(\tau) &= 0.9999999940395355224609375\tau, \\ \mathbf{m}_9(\tau) &= 0.9999999992549419403076171875\tau, \\ \mathbf{m}_{10}(\tau) &= 0.999999999988358467817306518554688\tau, \\ \mathbf{m}_{11}(\tau) &= 0.9999999999988358467817306518554688\tau, \end{split}$$

Therefore $\mathbf{m}(\tau) = \tau$ is the exact solution.

 $m_{12}(\tau) = \tau$.

By Theorem (3.2), we proved that the integral equation of Volterra type Eq.(29) has a unique solution. Then, the Eq. (29) has unique solution.

6. Conclusion

In this paper, we improved the results of Mahendra Singh et al. [15] by conferring examples of an $(\alpha_{\perp} - F)$ -convex contraction of the self-map in the framework of α_{\perp} -admissible. The notions of an $(\alpha_{\perp} - F)$ -convex contraction extend other well known metrical fixed point theorems within the literature.

References

- [1] iri, L.B. Generalized contractions and fixed point theorems. Publ. Inst. Math. 1971, 12, 19-26.
- [2] iri, L.B. A generalization of Banachs contraction principle. Proc. Am. Math. Soc. 1974, 45(2), 267-273.
- [3] Istrătescu, V.I. Some fixed point theorems for convex contraction mappings and convex non expansive mappings (I). *Liberta Math.* **1981**, *1*, 151-163.
- [4] Alghamdi, M. A.; Alnafei, S. H.; Radenovic, S.; Shahzad, N. Fixed point theorems for convex contraction mappings on cone metric spaces. *Math. Comput. Modelling*, **2011**, *54*, 2020-2026.
- [5] Ghorbanian, v.; Rezapour, S.; Shahzad, N. Some ordered fixed point results and the property (P). Comput. Math. Appl. 2012, 63(9), 1361-1368.
- [6] Khan, M.S.; Singh, Y.M.; Maniu, G.; Postolache, M. On (α, p)-convex contraction and asymptotic regularity. J. Math. Comput. Sci. 2018, 18, 132-145.
- [7] Khan, M.S.; Singh, Y.M.; Maniu, G.; Postolache, M. On generalized convex contractions of type-2 in b-metric and 2-metric spaces. *J. Nonlinear Sci. Appl.* **2017**, *10*, 2902-2913.
- [8] Miculescu, R.; Mihail, A. A generalization of Istratescus fixed point theorem for convex contractions. ArXiv, 2015, 17 pages.
- [9] Miandaragh, M. A.; Postolache, M; Rezapour, S. Some approximate fixed point results for generalized α-contractive mapping. *Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys.* **2013**, *75*, 3-10.
- [10] Latif, A.; Sintunavarat, W.; Ninsri, A. Approximate fixed point theorems for partial generalized convex contraction mappings in α-complete metric spaces. *Taiwanese J. Math.* 2015, 19, 315-333.
- [11] Wardowski, D.: Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 94 (2012).

- [12] Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α , ψ -contractive type mappings. *Nonlinear Anal.* **2012**, 75, 2154-2165.
- [13] Alsulami, H.H.; Chandok, S.; Taoudi, M.A.; Erhan, I.M. Some fixed point theorems for (α, ψ) -rational type contractive mappings. Fixed Point Theory Appl. **2015**, 97, 1-12.
- [14] Arul Joseph, G.; Gunasekaran, N.; Absar, U.H.; Gunaseelan, M.; Imran, A.B.; Kamsing, N. Common Fixed-Points Technique for the Existence of a Solution to Fractional Integro-Differential Equations via Orthogonal Branciari Metric Spaces. Symmetry 2022, 14, 1859.
- [15] Mahendra Singh, Y.; Khan, M.S.; Kang, S.M. F-Convex Contraction via Admissible Mapping and Related Fixed Point Theorems with an Application. *Mathematics* **2018**, *6*, 105; doi:10.3390/math6060105.
- [16] Chen, L.; Li, C.; Kaczmarek, R.; Zhao, Y. Several Fixed Point Theorems in Convex b-Metric Spaces and Applications. *Mathematics* **2020**, *8*, 2422.
- [17] Geleta, K.W.; Tola, K.K.; Teweldemedhin, S.G. Alpha-F-Convex Contraction Mappings in b-Metric Space and a Related Fixed Point Theorem. *Journal of Function Spaces* **2021**, *2021*, Article ID 5720558, 7 pages. https://doi.org/10.1155/2021/5720558.
- [18] Haokip, N. Convergence of an iteration scheme in convex metric spaces. Proyecciones Journal of Mathematics 2022, 41, No. 3, 777–790.
- [19] Khan, M. S. On fixed point theorems in 2-metric space. Publ. Inst. Math. (Beograd) (N.S.), 1980, 41, 107-113.
- [20] Karapinar, E.; Kumam, P.; Salimi, P. On $\alpha \psi$ -Meir-Keeler contractive mappings. Fixed Point Theory Appl. 2013, 94, 1-12.
- [21] Karapinar, E. α-Geraghty contraction type mappings and some related fixed point results. Filomat, 2014, 28, 37-48.
- [22] Gordji, M.E.; Ramezani, M.; De La Sen, M.; Cho, Y.J. On orthogonal sets and Banach fixed point theorem. Fixed Point Theory (FPT), 2017, 18(2), 569–578.
- [23] Eshaghi Gordji, M.; Habibi, H. Fixed point theory in generalized orthogonal metric space. *Journal of Linear and Topological Algebra (JLTA)*, 6(3), 251–260.
- [24] Sawangsup, K.; Sintunavarat, W.; Cho, Y.J. Fixed point theorems for orthogonal F-contraction mappings on O-complete metric spaces. J. Fixed Point Theorey Appl. 2020, 22(10).
- [25] Eshaghi, M.; Habibi, H. Fixed point theory in ε-connected orthogonal metric space. Shand Communications in Mathematical Analysis(SCMA), 2019, 16(1), 35–46.
- [26] Gungor, N.B.; Turkoglu, D. Fixed point theorems on orthogonal metric spaces via altering distance functions. AIP Conference Proceedings, 2019, 2183(040011).
- [27] Yamaod, O.; Sintunavarat, W. On new orthogonal contractions in b-metric spaces. *International Journal of Pure Mathematics*, **2018**, 5.
- [28] Senapati, T.; Dey, L.K.; Damjanović, B.; Chanda, A. New fixed results in orthogonal metric spaces with an Application. *Kragujevac Journal of Mathematics*, **2018**, 42(4), 505–516.
- [29] Gunaseelan, M.; Arul Joseph, G.; Lakshmi Narayan, M.; Vishnu Narayan, M. Fixed point theorems for orthogonal F-Suzuki contraction mappings on O-complete metric space with an applications. Malaya Journal of Matematik, 2021, 9(1), 369–377.
- [30] Arul Joseph, G.; Gunaseelan, M.; Lee, J.R.; Park, C. Solving a nonlinear integral equation via orthogonal metric space. *AIMS Math.* **2022**, *7*, 1198–1210.
- [31] Touail, Y.; El Moutawakil, D. $\perp_{\psi F}$ -contractions and some fixed point results on generalized orthogonal sets. Rendiconti del Circolo Matematico di Palermo Series 2, **2021**, 70(3), 1459–72.
- [32] Mehmood, N.; Khan I.A.; Nawaz, M.A.; Ahmad, N. Existence results for ABC-fractional BVP via new fixed point results of F-Lipschitzian mappings. *Demonstratio Mathematica*, **2022**, *55(1)*, 452–69.
- [33] Ramezani, M. Orthogonal metric space and convex contractions. *Int. J. Nonlinear Anal. Appl.*, **2015**, 6, 127-132.

E-mail address: gn4255@srmist.edu.in

¹ Department of Mathematics, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur - 603203, Kanchipuram, Chennai, Tamil Nadu, India.

 2 Department of Mathematics, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur - 603203, Kanchipuram, Chennai, Tamil Nadu, India.

E-mail address: aruljoseph.alex@gmail.com

³ Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India.

 $E ext{-}mail\ address: mathsguna@yahoo.com}$

 4 Department of Mathematics, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey.

E-mail address: ozgur.ege@ege.edu.tr