NOVEL RESULTS OF AN ORTHOGONAL $(\alpha-\digamma)$-CONVEX CONTRACTION MAPPINGS

GUNASEKARAN NALLASELLII ${ }^{1}$, ARUL JOSEPH GNANAPRAKASAM ${ }^{2}$, GUNASEELAN MANI ${ }^{3}$, OZGUR EGE ${ }^{4, *}$

Abstract

The main goal of this article is to introduce the idea of $\left(\alpha_{\perp}-\digamma\right)$-convex contraction in the context of orthogonal metric spaces and to provide some novel fixed point results in that recently described spaces. Additionally, we offer a case study to illustrate the originality of the outcomes. As an application of our key finding, we investigate the solution of a nonlinear Volterra integral equation.

1. Introduction

In 1971, Ćirićc |1 investigated a class of generalized contractions, which includes the Banach's contractions and the mappings which satisfy

$$
d(T x, T y) \leq a(d(x, T x)+d(y, T y)), 0<a<\frac{1}{2}
$$

In 1974, Ć írić [2] introduced the quasi-contraction

$$
d(T x, T y) \leq q \max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\}
$$

for some $q<1$. Also, he proved some fixed point results in these quasi-contraction of the above all possible values (self-map on a metric space). In 1981, Istrătescu [3] introduced a "convexity condition" by proving the generalization of the Banach contraction principle. In 2011, Alghamdi et al. [4] obtained the generalization of the Banach contraction principle to the class of convex contractions on non-normal cone metric spaces. Ghorbanian et al. [5] proved some ordered fixed point results for convex contractions and special mappings which satisfy some contraction conditions and are not necessarily continuous. Khan et al. [6] recently addressed the concepts of the (α, p)-convex contraction and asymptotically T2regular sequence and showed that the (α, p)-convex contraction reduces to two-sided convex contraction. Additionally, they demonstrated through instances the independence between the concepts of asymptotically T-regular and T2-regular sequences. We refer readers to the researchers in [[7] [10]] for additional details in this manner.

In 2012, Wardowski [11] introduced a new type of contraction called F-contraction and prove a new fixed point theorem concerning F-contraction. Samet et al. [12] introduced a new concept of (α, ψ)-contractive type mappings and established fixed point theorems for such mappings in complete metric spaces. Further, more details (see [13]- [21]). Very recently, Gordji et al. [22] introduced the orthogonal set (in short, O-set) and its properties. Many researchers proved fixed point results used in the O-sets in various metric spaces, see

[^0]([23]- [31]). Touail and Moutawakil [31] introduced generalized orthogonal sets and $\perp_{\Psi F^{-}}$ contractions. They proved some fixed point theorems and gave an application to a differential equation. Mehmood et al. [32] proved some fixed point results for self-maps in the setting of two metrics satisfying F-Lipschitzian conditions of rational-type where F is considered as a semi-Wardowski function with constant $\tau \in \mathcal{R}$ instead of $\tau>0$. Later on, Ramezani 33] introduced the concepts of generalized convex contractions on orthogonal metric spaces and established some fixed point results.

In this article, we introduce the notion of $\left(\alpha_{\perp}-\digamma\right)$-convex contraction in the background of orthogonal metric space (OMS) inspired by the work of Mahendra Singh, Khan, and Kang [15]. We also provide a case study to illustrate the originality of the outcomes. We investigate the numerical illustration of a nonlinear Volterra integral equation to satisfy all conditions of the fixed point theorem.

Throughout this paper, we use the notations \mathbb{R} represents $(-\infty,+\infty), \mathbb{R}_{+}$is $(0,+\infty)$ and \mathbb{R}_{+}^{0} represents $[0,+\infty)$ respectively.

Gordji et al. 22] introduced the following new notion of O-set in 2017.
Definition 1.1. [22] Let Λ be a nonempty set and $\perp \subseteq \Lambda \times \Lambda$ be a binary relation. If \perp satisfies the following conditions:

$$
\exists \mathrm{m}_{0} \in \Lambda:\left(\forall \mathrm{m} \in \Lambda, \mathrm{~m} \perp \mathrm{~m}_{0}\right) \quad \text { or } \quad\left(\forall \mathrm{m} \in \Lambda, \mathrm{~m}_{0} \perp \mathrm{~m}\right),
$$

then it is called an orthogonal set (briefly O-set) and it is denoted by (Λ, \perp).
Example 1.1. Let (Λ, \mathcal{G}) be a metric space and $\Gamma: \Lambda \rightarrow \Lambda$ be a Picard operator, that is, there exists $\mathrm{m}^{*} \in \Lambda$ such that $\lim _{\beta \rightarrow \infty} \Gamma^{\beta}(\ell)=\mathrm{m}^{*}$ for all $\ell \in \Lambda$. We define $\mathrm{m} \perp \ell$ if

$$
\lim _{\beta \rightarrow \infty}\left(\mathrm{m}, \Gamma^{\beta}(\ell)\right)=0
$$

Then (Λ, \perp) is an O-set.
Definition 1.2. [22] Let (Λ, \perp) be an O-set. A sequence $\left\{\mathrm{m}_{\beta}\right\}$ is called an orthogonal sequence (briefly, O-sequence) if

$$
\left(\forall \beta \in \mathbb{N}, \mathrm{m}_{\beta} \perp \mathrm{m}_{\beta+1}\right) \quad \text { or } \quad\left(\forall \beta \in \mathbb{N}, \mathrm{m}_{\beta+1} \perp \mathrm{~m}_{\beta}\right) .
$$

Definition 1.3. [22] The triplet $(\Lambda, \perp, \mathcal{G})$ is called an orthogonal metric space if (Λ, \perp) is an O-set and (Λ, \mathcal{G}) is a metric space.

Definition 1.4. [22] Let $(\Lambda, \perp, \mathcal{G})$ be an orthogonal metric space. Then, a mapping $\Gamma: \Lambda \rightarrow$ Λ is said to be orthogonal continuous (or \perp-continuous) in $\mathrm{m} \in \Lambda$ if for each O-sequence $\left\{\mathrm{m}_{\beta}\right\}$ in Λ with $\mathrm{m}_{\beta} \rightarrow \mathrm{m}$ as $\beta \rightarrow \infty$, we have $\Gamma\left(\mathrm{m}_{\beta}\right) \rightarrow \Gamma(\mathrm{m})$ as $\beta \rightarrow \infty$. Also, Γ is said to be \perp-continuous on Λ if Γ is \perp-continuous in each $\mathrm{m} \in \Lambda$.

Definition 1.5. [22] Let $(\Lambda, \perp, \mathcal{G})$ be an orthogonal metric space. Then, Λ is said to be an orthogonal complete (briefly, O-complete) if every O-Cauchy sequence is convergent.
Definition 1.6. 222] Let (Λ, \perp) be an O-set. A mapping $\Gamma: \Lambda \rightarrow \Lambda$ is said to be \perp-preserving if $\Gamma \mathrm{m} \perp \Gamma \ell$ whenever $\mathrm{m} \perp \ell$. Also $\Gamma: \Lambda \rightarrow \Lambda$ is said to be weakly \perp-preserving if $\Gamma(\mathrm{m}) \perp \Gamma(\ell)$ or $\Gamma(\ell) \perp \Gamma(\mathrm{m})$ whenever $\mathrm{m} \perp \ell$.

Wardowski [11 introduced the following new notion of \digamma-contraction in 2012.
Definition 1.7. [11] Let $\digamma \in \Im$ be the set of all mapping, $\digamma: \mathbb{R}_{+} \rightarrow \mathbb{R}$ satisfying the stipulations:
$\left(F_{1}\right) \digamma$ is strictly non decreasing, i.e., $\forall \delta, \epsilon \in \mathbb{R}_{+}$such that $\delta<\epsilon, \digamma(\delta)<\digamma(\epsilon)$;
(F_{2}) For each sequence $\left\{\delta_{\beta}\right\} \in \mathbb{N}, \lim _{\beta \rightarrow \infty} \delta_{\beta}=0 \Leftrightarrow \lim _{\beta \rightarrow \infty} \digamma\left(\delta_{\beta}\right)=-\infty$;
$\left(F_{3}\right) \exists \mathbf{k} \in(0,1)$ such that $\lim _{\delta \rightarrow 0^{+}} \delta^{\mathbf{k}} \digamma(\delta)=0$.
Definition 1.8. [11] We say that a self-map Γ on Λ is an orthogonal \digamma-contraction on (Λ, \mathcal{G}) if $\exists \digamma \in \Im$ and $\mu>0$ such that

$$
\begin{equation*}
\mathcal{G}(\Gamma \mathrm{m}, \Gamma \ell)>0 \Longrightarrow \mu+\digamma(\mathcal{G}(\Gamma \mathrm{m}, \Gamma \ell)) \leq \digamma(\mathcal{G}(\mathrm{m}, \ell)) \tag{1}
\end{equation*}
$$

$\forall \mathrm{m}, \ell \in \Lambda$ with $\mathrm{m} \perp \ell$.
Example 1.2. 11 Suppose the functions $\digamma: \mathbb{R}_{+} \rightarrow \mathbb{R}$ are in \Im.
(i) $\digamma(\delta)=\ln \delta$;
(ii) $\digamma(\delta)=\ln \delta+\delta$;
(iii) $\digamma(\delta)=\frac{-1}{\sqrt{\delta}}$;
(iv) $\digamma(\delta)=\ln \left(\delta^{2}+\delta\right)$.

Definition 1.9. [30] A self-map $\Gamma: \Lambda \rightarrow \Lambda$ defined on a non-void O-set Λ and a mapping $\alpha: \Lambda \times \Lambda \rightarrow[0, \infty)$. Then, Γ is said to be an orthogonal α-admissible(shortly, α_{\perp}-admissible) if $\mathrm{m}, \ell \in \Lambda$ with $\mathrm{m} \perp \ell, \alpha(\mathrm{m}, \ell) \geq 1 \Rightarrow \alpha(\Gamma \mathrm{~m}, \Gamma \ell) \geq 1$.

Definition 1.10. [30] Let $\Gamma: \Lambda \rightarrow \Lambda$ be a self-map and a mapping $\alpha: \Lambda \times \Lambda \rightarrow(-\infty,+\infty)$.
Then, Γ is called an orthogonal triangular α-admissible(shortly, $\triangle_{\alpha_{\perp}}$-admissible) if
$\left(\Gamma_{1}\right) \alpha(\mathrm{m}, \ell) \geq 1 \Rightarrow \alpha(\Gamma \mathrm{~m}, \Gamma \ell) \geq 1, \forall \mathrm{~m}, \ell \in \Lambda$ with $\mathrm{m} \perp \ell$;
$\left(\Gamma_{2}\right) \alpha(\mathrm{m}, \mathfrak{o}) \geq 1$ and $\alpha(\mathfrak{o}, \ell) \geq 1$ imply $\alpha(\mathrm{m}, \ell) \geq 1, \forall \mathrm{~m}, \ell, \mathfrak{o} \in \Lambda$ with $\mathrm{m} \perp \mathfrak{o}$ and $\mathfrak{o} \perp \ell$ imply $\mathrm{m} \perp \ell$.

Example 1.3. Let $\Lambda=[0, \infty)$ and define $\Gamma: \Lambda \rightarrow \Lambda$ by $\Gamma \mathrm{m}=\ln (1+\mathrm{m}) \forall \mathrm{m} \in \Lambda$. Define $\alpha: \Lambda \times \Lambda \rightarrow[0, \infty)$ by

$$
\alpha(\mathrm{m}, \ell)= \begin{cases}1+\mathrm{m}, & \text { if } \mathrm{m} \geq \ell \\ 0, & \text { else }\end{cases}
$$

Then, Γ is α_{\perp}-admissible as $\alpha(\mathrm{m}, \ell) \geq 1 \Rightarrow \alpha(\Gamma \mathrm{~m}, \Gamma \ell) \geq 1$ for $\mathrm{m} \geq \ell$ and $\alpha(\mathrm{m}, \ell)=\alpha(\ell, \mathrm{m})$ $\forall \mathrm{m}=\ell$.

Definition 1.11. Let $\Lambda \neq \emptyset$ and let Γ be an α_{\perp}-admissible mapping on Λ. Then Λ has the hypothesis (H) if for each $\mathrm{m}, \ell \in F i x(\Gamma)$ with $\mathrm{m} \perp \ell, \exists \mathfrak{o} \in \Lambda$ such that $\alpha(\mathrm{m}, \mathfrak{o}) \geq 1$ and $\alpha(\mathfrak{o}, \ell) \geq 1$ with $\mathrm{m} \perp \mathfrak{o}$ and $\mathfrak{o} \perp \ell \Longrightarrow \alpha(\mathrm{m}, \ell) \geq 1$ with $\mathrm{m} \perp \ell$.
Definition 1.12. Let Γ be a self-map on an orthogonal metric space (Λ, \mathcal{G}). Then, we say that Γ is an orthogonal orbitally continuous on Λ if $\lim _{\mathfrak{k} \rightarrow \infty} \Gamma^{\beta_{\mathfrak{k}}} \mathrm{m}=\mathfrak{o}$ implies that $\lim _{\mathfrak{k} \rightarrow \infty} \Gamma^{\beta_{\mathfrak{k}}} \mathrm{m}=\Gamma \mathfrak{o}$.

A self-map $\Gamma: \Lambda \rightarrow \Lambda$ on a non-void O-set Λ. Define Fix $(\Gamma)=\{\mathrm{m}: \Gamma \mathrm{m}=\mathrm{m}$ for all $\mathrm{m} \in \Lambda\}$.
In the next section, we define an orthogonal $\alpha-\digamma$-convex contraction and prove a fixed results of the above mentioned contraction in metric space with an orthogonal concepts.

2. Orthogonal $(\alpha-\digamma)$-convex Contraction

This section will discuss the beauty of orthogonal $(\alpha-\digamma)$-convex contractions. Assume that Γ represents a mapping on $(\Lambda, \perp, \mathcal{G})$. We denote

$$
\begin{equation*}
\mathcal{M}^{v}(\mathrm{~m}, \ell)=\max \left\{\mathcal{G}^{v}(\mathrm{~m}, \ell), \mathcal{G}^{v}(\Gamma \mathrm{~m}, \Gamma \ell), \mathcal{G}^{v}(\mathrm{~m}, \Gamma \mathrm{~m}), \mathcal{G}^{v}\left(\Gamma \mathrm{~m}, \Gamma^{2} \mathrm{~m}\right), \mathcal{G}^{v}(\ell, \Gamma \ell), \mathcal{G}^{v}\left(\Gamma \ell, \Gamma^{2} \ell\right)\right\} . \tag{2}
\end{equation*}
$$

Definition 2.1. We say that a self-map Γ on Λ is an orthogonal $(\alpha-\digamma)$-convex contraction(shortly, $\left(\alpha_{\perp}-\digamma\right)$-convex contraction) if \exists two mappings $\alpha: \Lambda \times \Lambda \rightarrow \mathbb{R}_{+}^{0}$ and $\digamma \in \Im$ such that

$$
\begin{equation*}
\mathcal{G}^{v}\left(\Gamma^{2} \mathrm{~m}, \Gamma^{2} \ell\right)>0 \Longrightarrow \mu+\digamma\left(\alpha(\mathrm{m}, \ell) \mathcal{G}^{v}\left(\Gamma^{2} \mathrm{~m}, \Gamma^{2} \ell\right)\right) \leq \digamma\left(\mathcal{M}^{v}(\mathrm{~m}, \ell)\right) \tag{3}
\end{equation*}
$$

$\forall \mathrm{m}, \ell \in \Lambda$ with $\mathrm{m} \perp \ell$, where $v \in[1, \infty)$ and $\mu>0$.
Example 2.1. Let $\Lambda=[0,1]$ with $\mathcal{G}(\mathrm{m}, \ell)=|\mathrm{m}-\ell|$. Define a mapping $\Gamma: \Lambda \rightarrow \Lambda$ by $\Gamma \mathrm{m}=\frac{\mathrm{m}^{2}}{2}+\frac{1}{4} \forall \mathrm{~m} \in \Lambda$ with $\alpha(\mathrm{m}, \ell)=1$ for all $\mathrm{m}, \ell \in \Lambda$ with $\mathrm{m} \perp \ell$. Then, Γ is α_{\perp}-admissible. Now, we get Γ is non-expansive, since we obtain

$$
|\Gamma \mathrm{m}-\Gamma \ell|=\frac{1}{2}\left|\mathrm{~m}^{2}-\ell^{2}\right| \leq|\mathrm{m}-\ell| \forall \mathrm{m}, \ell \in \Lambda \text { with } \mathrm{m} \perp \ell
$$

Setting $\digamma \in \Im$ such that $\digamma(\mathfrak{x})=\ln \mathfrak{x}, \mathfrak{x}>0$. Then, $\forall \mathrm{m}, \ell \in \Lambda$ with $\mathrm{m} \perp \ell$ and $\mathrm{m} \neq \ell$, we obtain

$$
\begin{aligned}
\alpha\left(\mathrm{m}, \ell\left|\Gamma^{2} \mathrm{~m}, \Gamma^{2} \ell\right|\right. & =\left|\Gamma^{2} \mathrm{~m}, \Gamma^{2} \ell\right| \\
& =\frac{1}{8}\left(\left|\left(\mathrm{~m}^{4}+\mathrm{m}^{2}\right)-\left(\ell^{4}+\ell^{2}\right)\right|\right) \\
& \leq \frac{1}{8}\left(\left|\mathrm{~m}^{4}-\ell^{4}\right|+\left|\mathrm{m}^{2}-\ell^{2}\right|\right) \\
& \leq \frac{1}{2}|\Gamma \mathrm{~m}-\Gamma \ell|+\frac{1}{4}|\mathrm{~m}-\ell| \\
& \leq \frac{3}{4} \max \{|\Gamma \mathrm{~m}-\Gamma \ell|,|\mathrm{m}-\ell|\} \\
& \leq e^{-\mu b^{1}(\mathrm{~m}, \ell),}
\end{aligned}
$$

where $-\mu=\operatorname{In}\left(\frac{3}{4}\right)$. Applying logarithm on both sides, we have

$$
\mu+\digamma\left(\alpha(\mathrm{m}, \ell) \mathcal{G}\left(\Gamma^{2} \mathrm{~m}, \Gamma^{2} \ell\right)\right) \leq \digamma\left(b^{1}(\mathrm{~m}, \ell)\right)
$$

We conclude that Γ is an $\left(\alpha_{\perp}-\digamma\right)$-convex contraction with $v=1$.

3. Fixed point results of an $\left(\alpha_{\perp}-\digamma\right)$-convex contraction

First, we prove the following lemma using an $\left(\alpha_{\perp}-\digamma\right)$-convex contraction.
Lemma 3.1. Let $(\Lambda, \perp, \mathcal{G})$ be an $O M S$ and $\Gamma: \Lambda \rightarrow \Lambda$ be an $\left(\alpha_{\perp}-\digamma\right)$-convex contraction the following affirmations hold:
(i) Γ is α_{\perp}-admissible;
(ii) $\exists \mathrm{m}_{0} \in \Lambda$ such that $\alpha\left(\mathrm{m}_{0}, \Gamma \mathrm{~m}_{0}\right) \geq 1$;
(iii) \perp-preserving.

Define an O-sequence $\left\{\mathrm{m}_{\beta}\right\}$ in Λ by $\mathrm{m}_{\beta+1}=\Gamma \mathrm{m}_{\beta}=\Gamma^{\beta+1} \mathrm{~m}_{0}$ for all $\beta \geq 0$, then $\left\{\mathcal{G}^{v}\left(\mathrm{~m}_{\beta}, \mathrm{m}_{\beta+1}\right)\right\}$ is strictly non-increasing sequence in Λ.
Proof. By the definition of orthogonality, there exists $\mathrm{m}_{0} \in \Lambda$ be such that

$$
\left(\forall \ell \in \Lambda, \mathrm{m}_{0} \perp \ell\right) \text { or }\left(\forall \ell \in \Lambda, \ell \perp \mathrm{m}_{0}\right)
$$

It follows that $\mathrm{m}_{0} \perp \Gamma\left(\mathrm{~m}_{0}\right)$ or $\Gamma\left(\mathrm{m}_{0}\right) \perp \mathrm{m}_{0}$. Let

$$
\mathrm{m}_{1}:=\Gamma\left(\mathrm{m}_{0}\right) ; \mathrm{m}_{2}=\Gamma\left(\mathrm{m}_{1}\right)=\Gamma^{2}\left(\mathrm{~m}_{0}\right) ; \ldots ; \mathrm{m}_{\beta+1}=\Gamma\left(\mathrm{m}_{\beta}\right)=\Gamma^{\beta+1}\left(\mathrm{~m}_{0}\right)
$$

for all $\beta \in \mathbb{N} \cup\{0\}$.

If $\mathrm{m}_{\beta}=\mathrm{m}_{\beta+1}$ for any $\beta \in \mathbb{N} \cup\{0\}$, then, it is clear that Λ_{β} is a fixed point of Γ. Assume that $\mathrm{m}_{\beta} \neq \mathrm{m}_{\beta+1}$ for all $\beta \in \mathbb{N} \cup\{0\}$. Thus, we have $\mathcal{G}\left(\mathrm{m}_{\beta}, \mathrm{m}_{\beta+1}\right)>0$ for all $\beta \in \mathbb{N} \cup\{0\}$. Since Γ is \perp-preserving, we have

$$
\begin{equation*}
\mathrm{m}_{\beta} \perp \mathrm{m}_{\beta+1} \quad \text { or } \quad \mathrm{m}_{\beta+1} \perp \mathrm{~m}_{\beta} \tag{4}
\end{equation*}
$$

for all $\beta \in \mathbb{N} \cup\{0\}$. This implies that $\left\{\mathrm{m}_{\beta}\right\}$ is an O-sequence. Postulating that $\mathrm{m}_{\beta} \neq \mathrm{m}_{\beta+1}$ $\forall \beta \geq 0$. Then, $\mathcal{G}\left(m_{\beta}, m_{\beta+1}\right)>0 \forall \beta \geq 0$. Letting $\mathfrak{v}=\max \left\{\mathcal{G}^{v}\left(m_{0}, m_{1}\right), \mathcal{G}^{v}\left(m_{1}, m_{2}\right)\right\}$. From (2), taking $\mathrm{m}=\mathrm{m}_{0}$ and $\ell=\mathrm{m}_{1}$, we obtain

$$
\begin{align*}
\mathcal{M}^{v}\left(\mathrm{~m}_{0}, \mathrm{~m}_{1}\right) & =\max \left\{\mathcal{G}^{v}\left(\mathrm{~m}_{0}, \mathrm{~m}_{1}\right), \mathcal{G}^{v}\left(\Gamma \mathrm{~m}_{0}, \Gamma \mathrm{~m}_{1}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{0}, \Gamma \mathrm{~m}_{0}\right), \mathcal{G}^{v}\left(\Gamma \mathrm{~m}_{0}, \Gamma^{2} \mathrm{~m}_{0}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{1}, \Gamma \mathrm{~m}_{1}\right), \mathcal{G}^{v}\left(\Gamma \mathrm{~m}_{1}, \Gamma^{2} \mathrm{~m}_{1}\right)\right\} \\
& =\max \left\{\mathcal{G}^{v}\left(\mathrm{~m}_{0}, \mathrm{~m}_{1}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{0}, \mathrm{~m}_{1}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{2}, \mathrm{~m}_{3}\right)\right\} \\
& =\max \left\{\mathcal{G}^{v}\left(\mathrm{~m}_{0}, \mathrm{~m}_{1}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{2}, \mathrm{~m}_{3}\right)\right\} . \tag{5}
\end{align*}
$$

By $\left(F_{1}\right)$ and $\alpha\left(\mathrm{m}_{0}, \mathrm{~m}_{1}\right) \geq 1$, by (3) and (5), we obtain

$$
\begin{align*}
\digamma\left(\mathcal{G}^{v}\left(\mathrm{~m}_{2}, \mathrm{~m}_{3}\right)\right) & =\digamma\left(\mathcal{G}^{v}\left(\Gamma^{2} \mathrm{~m}_{0}, \Gamma^{2} \mathrm{~m}_{1}\right)\right) \\
& \leq \digamma\left(\alpha\left(\mathrm{m}_{0}, \mathrm{~m}_{1}\right) \mathcal{G}^{v}\left(\Gamma^{2} \mathrm{~m}_{0}, \Gamma^{2} \mathrm{~m}_{1}\right)\right) \\
& \leq \digamma\left(\mathcal{M}^{v}\left(\mathrm{~m}_{0}, \mathrm{~m}_{1}\right)\right)-\mu \\
& =\digamma\left(\max \left\{\mathcal{G}^{v}\left(\mathrm{~m}_{0}, \mathrm{~m}_{1}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{2}, \mathrm{~m}_{3}\right)\right\}\right)-\mu \\
& \leq \digamma\left(\max \left\{\mathfrak{v}, \mathcal{G}^{v}\left(\mathrm{~m}_{2}, \mathrm{~m}_{3}\right)\right\}\right)-\mu . \tag{6}
\end{align*}
$$

If $\max \left\{\mathfrak{v}, \mathcal{G}^{v}\left(\mathrm{~m}_{2}, \mathrm{~m}_{3}\right)\right\}=\mathcal{G}^{v}\left(\mathrm{~m}_{2}, \mathrm{~m}_{3}\right)$, then (6) gives

$$
\digamma\left(\mathcal{G}^{v}\left(\mathrm{~m}_{2}, \mathrm{~m}_{3}\right)\right) \leq \digamma\left(\mathcal{G}^{v}\left(\mathrm{~m}_{2}, \mathrm{~m}_{3}\right)\right)-\mu<\digamma\left(\mathcal{G}^{v}\left(\mathrm{~m}_{2}, \mathrm{~m}_{3}\right)\right) .
$$

This is a contradiction. It follows that

$$
\digamma\left(\mathcal{G}^{v}\left(\mathrm{~m}_{2}, \mathrm{~m}_{3}\right)\right) \leq \digamma(\mathfrak{v})-\mu<\digamma(\mathfrak{v}) .
$$

Since $\mu>0$ and by $\left(F_{1}\right)$, we have

$$
\mathcal{G}^{v}\left(\mathrm{~m}_{2}, \mathrm{~m}_{3}\right)<\mathfrak{v}=\max \left\{\mathcal{G}^{v}\left(\mathrm{~m}_{0}, \mathrm{~m}_{1}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right)\right\} .
$$

Again, by (2) taking with $m=m_{1}$ and $\ell=m_{2}$, we get

$$
\begin{align*}
\mathcal{M}^{v}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right) & =\max \left\{\mathcal{G}^{v}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right), \mathcal{G}^{v}\left(\Gamma \mathrm{~m}_{1}, \Gamma \mathrm{~m}_{2}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{1}, \Gamma \mathrm{~m}_{1}\right), \mathcal{G}^{v}\left(\Gamma \mathrm{~m}_{1}, \Gamma^{2} \mathrm{~m}_{1}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{2}, \Gamma \mathrm{~m}_{2}\right), \mathcal{G}^{v}\left(\Gamma \mathrm{~m}_{2}, \Gamma^{2} \mathrm{~m}_{2}\right)\right\} \\
& =\max \left\{\mathcal{G}^{v}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{2}, \mathrm{~m}_{3}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{2}, \mathrm{~m}_{3}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{2}, \mathrm{~m}_{3}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{3}, \mathrm{~m}_{4}\right)\right\} \\
& =\max \left\{\mathcal{G}^{v}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{2}, \mathrm{~m}_{3}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{3}, \mathrm{~m}_{4}\right)\right\} . \tag{7}
\end{align*}
$$

By (3) and (7), we obtain

$$
\begin{aligned}
\digamma\left(\mathcal{G}^{v}\left(\mathrm{~m}_{3}, \mathrm{~m}_{4}\right)\right) & =\digamma\left(\mathcal{G}^{v}\left(\Gamma^{2} \mathrm{~m}_{1}, \Gamma^{2} \mathrm{~m}_{2}\right)\right) \\
& \leq \digamma\left(\alpha\left(\mathrm{m}_{1}, \mathrm{~m}_{2}\right) \mathcal{G}^{v}\left(\Gamma^{2} \mathrm{~m}_{1}, \Gamma^{2} \mathrm{~m}_{2}\right)\right) \\
& \leq \digamma\left(\mathcal{M}^{v}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right)\right)-\mu \\
& =\digamma\left(\max \left\{\mathcal{G}^{v}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{2}, \mathrm{~m}_{3}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{3}, \mathrm{~m}_{4}\right)\right\}\right)-\mu .
\end{aligned}
$$

If $\max \left\{\mathcal{G}^{v}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{2}, \mathrm{~m}_{3}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{3}, \mathrm{~m}_{4}\right)\right\}=\mathcal{G}^{v}\left(\mathrm{~m}_{3}, \mathrm{~m}_{4}\right)$, then we obtain

$$
\digamma\left(\mathcal{G}^{v}\left(\mathrm{~m}_{3}, \mathrm{~m}_{4}\right)\right) \leq \digamma\left(\mathcal{G}^{v}\left(\mathrm{~m}_{3}, \mathrm{~m}_{4}\right)\right)-\mu<\digamma\left(\mathcal{G}^{v}\left(\mathrm{~m}_{3}, \mathrm{~m}_{4}\right)\right) .
$$

Which is a contradiction. We obtain

$$
\max \left\{\mathcal{G}^{v}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{2}, \mathrm{~m}_{3}\right)\right\}>\mathcal{G}^{v}\left(\mathrm{~m}_{3}, \mathrm{~m}_{4}\right)
$$

Therefore,

$$
\mathfrak{v}>\mathcal{G}^{v}\left(\mathrm{~m}_{2}, \mathrm{~m}_{3}\right)>\mathcal{G}^{v}\left(\mathrm{~m}_{3}, \mathrm{~m}_{4}\right) .
$$

Continuing in this way, inductively prove that the non-increasing O-sequence $\left\{\mathcal{G}^{v}\left(\mathrm{~m}_{\beta}, \mathrm{m}_{\beta+1}\right)\right\}$ is strictly in Λ.

Theorem 3.2. Let $(\Lambda, \perp, \mathcal{G})$ be an O-complete metric space and $\Gamma: \Lambda \rightarrow \Lambda$ be an $\left(\alpha_{\perp}-\digamma\right)$ convex contraction the following affirmations hold:
(i) Γ is α_{\perp}-admissible;
(ii) $\exists \mathrm{m}_{0} \in \Lambda$ such that $\alpha\left(\mathrm{m}_{0}, \Gamma \mathrm{~m}_{0}\right) \geq 1$;
(iii) Γ is \perp-continuous or, \perp-orbitally continuous on Λ;
(iv) \perp-preserving.

Then Γ has a fixed point in Λ. Moreover, for any $\mathrm{m}_{0} \in \Lambda$ if $\mathrm{m}_{\beta+1}=\Gamma^{\beta+1} \mathrm{~m}_{0} \neq \Gamma \mathrm{m}_{\beta}$ for all $\beta \in \mathbb{N} \cup\{0\}$, then $\lim _{\beta \rightarrow \infty} \Gamma^{\beta} \mathrm{m}_{0}=\mathfrak{o}$.

Proof. By the definition of orthogonality, there exists $\mathrm{m}_{0} \in \Lambda$ be such that

$$
\left(\forall \ell \in \Lambda, \mathrm{m}_{0} \perp \ell\right) \text { or }\left(\forall \ell \in \Lambda, \ell \perp \mathrm{m}_{0}\right)
$$

It follows that $\mathrm{m}_{0} \perp \Gamma\left(\mathrm{~m}_{0}\right)$ or $\Gamma\left(\mathrm{m}_{0}\right) \perp \mathrm{m}_{0}$. Let

$$
\mathrm{m}_{1}:=\Gamma\left(\mathrm{m}_{0}\right) ; \mathrm{m}_{2}=\Gamma\left(\mathrm{m}_{1}\right)=\Gamma^{2}\left(\mathrm{~m}_{0}\right) ; \ldots ; \mathrm{m}_{\beta+1}=\Gamma\left(\mathrm{m}_{\beta}\right)=\Gamma^{\beta+1}\left(\mathrm{~m}_{0}\right)
$$

for all $\beta \in \mathbb{N} \cup\{0\}$.
If $\mathrm{m}_{\beta}=\mathrm{m}_{\beta+1}$ for any $\beta \in \mathbb{N} \cup\{0\}$, then it is clear that Λ_{β} is a fixed point of Γ. Assume that $\mathrm{m}_{\beta} \neq \mathrm{m}_{\beta+1}$ for all $\beta \in \mathbb{N} \cup\{0\}$. Thus, we have $\mathcal{G}\left(\mathrm{m}_{\beta}, \mathrm{m}_{\beta+1}\right)>0$ for all $\beta \in \mathbb{N} \cup\{0\}$. Since Γ is \perp-preserving, we have

$$
\begin{equation*}
\mathrm{m}_{\beta} \perp \mathrm{m}_{\beta+1} \quad \text { or } \quad \mathrm{m}_{\beta+1} \perp \mathrm{~m}_{\beta} \tag{8}
\end{equation*}
$$

for all $\beta \in \mathbb{N} \cup\{0\}$. This implies that $\left\{\mathrm{m}_{\beta}\right\}$ is an O-sequence.
Now, we postulate that $\mathrm{m}_{\beta} \neq \mathrm{m}_{\beta+1} \forall \beta \geq 0$. Then, $\mathcal{G}\left(\mathrm{m}_{\beta}, \mathrm{m}_{\beta+1}\right)>0 \forall \beta \geq 0$. By (i), we have $\alpha\left(\mathrm{m}_{0}, \Gamma \mathrm{~m}_{0}\right) \geq 1 \Rightarrow \alpha\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right)=\alpha\left(\Gamma \mathrm{m}_{0}, \Gamma^{2} \mathrm{~m}_{0}\right) \geq 1$. Therefore, inductively shows that $\alpha\left(\mathrm{m}_{\beta}, \mathrm{m}_{\beta+1}\right)=\alpha\left(\Gamma^{\beta} \mathrm{m}_{0}, \Gamma^{\beta+1} \mathrm{~m}_{0}\right) \geq 1 \forall \beta \geq 0$. Letting $\mathfrak{v}=\max \left\{\mathcal{G}^{v}\left(\mathrm{~m}_{0}, \mathrm{~m}_{1}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right)\right\}$.
Now form (2), taking $\mathrm{m}=\mathrm{m}_{\beta-2}$ and $\ell=\mathrm{m}_{\beta-1}$ with $\beta \geq 2$, we have

$$
\begin{aligned}
\mathcal{M}^{v}\left(\mathrm{~m}_{\beta-2}, \mathrm{~m}_{\beta-1}\right) & =\max \left\{\mathcal{G}^{v}\left(\mathrm{~m}_{\beta-2}, \mathrm{~m}_{\beta-1}\right), \mathcal{G}^{v}\left(\Gamma \mathrm{~m}_{\beta-2}, \Gamma \mathrm{~m}_{\beta-1}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{\beta-2}, \Gamma \mathrm{~m}_{\beta-2}\right), \mathcal{G}^{v}\left(\Gamma \mathrm{~m}_{\beta-2}, \Gamma^{2} \mathrm{~m}_{\beta-2}\right),\right. \\
& \left.\mathcal{G}^{v}\left(\mathrm{~m}_{\beta-1}, \Gamma \mathrm{~m}_{\beta-1}\right), \mathcal{G}^{v}\left(\Gamma \mathrm{~m}_{\beta-1}, \Gamma^{2} \mathrm{~m}_{\beta-1}\right)\right\} \\
& =\max \left\{\mathcal{G}^{v}\left(\mathrm{~m}_{\beta-2}, \mathrm{~m}_{\beta-1}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{\beta-1}, \mathrm{~m}_{\beta}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{\beta-2}, \mathrm{~m}_{\beta-1}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{\beta-1}, \mathrm{~m}_{\beta}\right),\right. \\
& \left.\mathcal{G}^{v}\left(\mathrm{~m}_{\beta-1}, \mathrm{~m}_{\beta}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{\beta}, \mathrm{m}_{\beta+1}\right)\right\} \\
& =\max \left\{\mathcal{G}^{v}\left(\mathrm{~m}_{\beta-2}, \mathrm{~m}_{\beta-1}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{\beta-1}, \mathrm{~m}_{\beta}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{\beta}, \mathrm{m}_{\beta+1}\right)\right\} .
\end{aligned}
$$

Since Γ is an $\left(\alpha_{\perp}-\digamma\right)$-convex contraction mapping, we have

$$
\begin{aligned}
\digamma\left(\mathcal{G}^{v}\left(\mathrm{~m}_{\beta}, \mathrm{m}_{\beta+1}\right)\right) & =\digamma\left(\mathcal{G}^{v}\left(\Gamma^{2} \mathrm{~m}_{\beta-2}, \Gamma^{2} \mathrm{~m}_{\beta-1}\right)\right) \\
& \leq \digamma\left(\alpha\left(\mathrm{m}_{\beta-2}, \mathrm{~m}_{\beta-1}\right) \mathcal{G}^{v}\left(\Gamma^{2} \mathrm{~m}_{\beta-2}, \Gamma^{2} \mathrm{~m}_{\beta-1}\right)\right) \\
& \leq \digamma\left(\mathcal{M}^{v}\left(\mathrm{~m}_{\beta-2}, \mathrm{~m}_{\beta-1}\right)\right)-\mu \\
& \leq \digamma\left(\max \left\{\mathcal{G}^{v}\left(\mathrm{~m}_{\beta-2}, \mathrm{~m}_{\beta-1}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{\beta-1}, \mathrm{~m}_{\beta}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{\beta}, \mathrm{m}_{\beta+1}\right)\right\}\right)-\mu .
\end{aligned}
$$

If $\max \left\{\mathcal{G}^{v}\left(\mathrm{~m}_{\beta-2}, \mathrm{~m}_{\beta-1}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{\beta-1}, \mathrm{~m}_{\beta}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{\beta}, \mathrm{m}_{\beta+1}\right)\right\}=\mathcal{G}^{v}\left(\mathrm{~m}_{\beta}, \mathrm{m}_{\beta+1}\right)$, then we obtain

$$
\digamma\left(\mathcal{G}^{v}\left(\mathrm{~m}_{\beta}, \mathrm{m}_{\beta+1}\right)\right) \leq \digamma\left(\mathcal{G}^{v}\left(\mathrm{~m}_{\beta}, \mathrm{m}_{\beta+1}\right)\right)-\mu<\digamma\left(\mathcal{G}^{v}\left(\mathrm{~m}_{\beta}, \mathrm{m}_{\beta+1}\right)\right) .
$$

This is a contradiction. Therefore

$$
\digamma\left(\mathcal{G}^{v}\left(\mathrm{~m}_{\beta}, \mathrm{m}_{\beta+1}\right)\right) \leq \digamma\left(\max \left\{\mathcal{G}^{v}\left(\mathrm{~m}_{\beta-2}, \mathrm{~m}_{\beta-1}\right), \mathcal{G}^{v}\left(\mathrm{~m}_{\beta-1}, \mathrm{~m}_{\beta}\right)\right\}\right)-\mu
$$

Since $\left\{\mathcal{G}^{v}\left(\mathrm{~m}_{\beta}, \mathrm{m}_{\beta+1}\right)\right\}$ is strictly non-increasing. Therefore, we obtain

$$
\begin{equation*}
\digamma\left(\mathcal{G}^{v}\left(\mathrm{~m}_{\beta}, \mathrm{m}_{\beta+1}\right)\right) \leq \digamma\left(\mathcal{G}^{v}\left(\mathrm{~m}_{\beta-2}, \mathrm{~m}_{\beta-1}\right)\right)-\mu \leq \ldots \leq \digamma(\mathfrak{v})-J \mu \tag{9}
\end{equation*}
$$

whenever $\beta=2 J$ or $\beta=2 J+1$ for $J \geq 1$.
From (7), we obtain

$$
\begin{equation*}
\lim _{\beta \rightarrow \infty} \digamma\left(\mathcal{G}^{v}\left(\mathrm{~m}_{\beta}, \mathrm{m}_{\beta+1}\right)\right)=-\infty \tag{10}
\end{equation*}
$$

Therefore, by (F2) and by equation (10), we have

$$
\begin{equation*}
\lim _{\beta \rightarrow \infty} \mathcal{G}\left(\mathrm{m}_{\beta}, \mathrm{m}_{\beta+1}\right)=0 \tag{11}
\end{equation*}
$$

By (F3), $\exists 0<\mathbf{k}<1$ such that

$$
\begin{equation*}
\lim _{\beta \rightarrow \infty}\left[\mathcal{G}^{v}\left(\mathrm{~m}_{\beta}, \mathrm{m}_{\beta+1}\right)\right]^{\mathbf{k}} \digamma\left(\mathcal{G}^{v}\left(\mathrm{~m}_{\beta}, \mathrm{m}_{\beta+1}\right)\right)=0 . \tag{12}
\end{equation*}
$$

Also, by equation (9), we get

$$
\begin{equation*}
\left[\mathcal{G}^{v}\left(\mathrm{~m}_{\beta}, \mathrm{m}_{\beta+1}\right)\right]^{\mathbf{k}}\left[\digamma\left(\mathcal{G}^{v}\left(\mathrm{~m}_{\beta}, \mathrm{m}_{\beta+1}\right)\right)-\digamma(\mathfrak{v})\right] \leq-\left[\mathcal{G}^{v}\left(\mathrm{~m}_{\beta}, \mathrm{m}_{\beta+1}\right)\right]^{\mathbf{k}} J \mu \leq 0 \tag{13}
\end{equation*}
$$

where $\beta=2 J$ or $\beta=2 J+1$ for $J \geq 1$. Setting $\beta \rightarrow \infty$ in (13) along with (11) and (12), we have

$$
\begin{equation*}
\lim _{\beta \rightarrow \infty} J\left[\mathcal{G}\left(\mathrm{~m}_{\beta}, \mathrm{m}_{\beta+1}\right)\right]^{\mathbf{k}}=0 \tag{14}
\end{equation*}
$$

Now, we arise two cases.
Case-(i): If β is even and $\beta \geq 2$, then by equation (14), we have

$$
\begin{equation*}
\lim _{\beta \rightarrow \infty} \beta\left[\mathcal{G}\left(\mathrm{m}_{\beta}, \mathrm{m}_{\beta+1}\right)\right]^{\mathbf{k}}=0 \tag{15}
\end{equation*}
$$

Case-(ii): If β is odd and $\beta \geq 3$, then by equation (14), we have

$$
\begin{equation*}
\lim _{\beta \rightarrow \infty}(\beta-1)\left[\mathcal{G}\left(\mathrm{m}_{\beta}, \mathrm{m}_{\beta+1}\right)\right]^{\mathbf{k}}=0 \tag{16}
\end{equation*}
$$

Using (11), (16) gives

$$
\begin{equation*}
\lim _{\beta \rightarrow \infty} \beta\left[\mathcal{G}\left(\mathrm{m}_{\beta}, \mathrm{m}_{\beta+1}\right)\right]^{\mathbf{k}}=0 \tag{17}
\end{equation*}
$$

We conclude the above cases that, $\exists \beta_{1} \in \mathbb{N}$ such that

$$
\beta\left[\mathcal{G}\left(\mathrm{m}_{\beta}, \mathrm{m}_{\beta+1}\right)\right]^{\mathbf{k}} \leq 1 \forall \beta \geq \beta_{1}
$$

Therefore, we obtain

$$
\mathcal{G}\left(\mathrm{m}_{\beta}, \mathrm{m}_{\beta+1}\right) \leq \frac{1}{\beta^{\frac{1}{\mathbf{k}}}}, \forall \beta \geq \beta_{1} .
$$

Now, to prove the O-sequence $\left\{\mathrm{m}_{\beta}\right\}$ is a Cauchy. $\forall v>\mathfrak{q} \geq \beta_{1}$, we have

$$
\mathcal{G}\left(\mathrm{m}_{v}, \mathrm{~m}_{\mathfrak{q}}\right) \leq \mathcal{G}\left(\mathrm{m}_{v}, \mathrm{~m}_{v-1}\right)+\mathcal{G}\left(\mathrm{m}_{v-1}, \mathrm{~m}_{v-2}\right)+\ldots .+\mathcal{G}\left(\mathrm{m}_{\mathfrak{q}+1}, \mathrm{~m}_{\mathfrak{q}}\right)<\sum_{\mathfrak{k}=\mathfrak{q}}^{\infty} \mathcal{G}\left(\mathrm{m}_{\mathfrak{k}}, \mathrm{m}_{\mathfrak{k}+1}\right) \leq \sum_{\mathfrak{k}=\mathfrak{q}}^{\infty} \frac{1}{\mathfrak{k}^{\frac{1}{k}}}
$$

Taking $\mathfrak{q} \rightarrow \infty$, we get $\lim _{v, \mathfrak{q} \rightarrow \infty} \mathcal{G}\left(\mathrm{~m}_{v}, \mathrm{~m}_{\mathfrak{q}}\right)=0$, since $\sum_{\mathfrak{k}=\mathfrak{q}}^{\infty} \frac{1}{\mathfrak{k} \frac{1}{\mathbf{1}}}$ is convergent. This proves that the O-sequence $\left\{\mathrm{m}_{\beta}\right\}$ is a Cauchy in Λ. By O-completeness property, $\exists \mathfrak{o} \in \Lambda$ such that $\lim _{\beta \rightarrow \infty} \mathrm{m}_{\beta}=\mathfrak{o}$. Next, to prove \mathfrak{o} is a fixed point of Γ. By (iii), we obtain

$$
\mathcal{G}(\mathfrak{o}, \Gamma \mathfrak{o})=\lim _{\beta \rightarrow \infty} \mathcal{G}\left(\mathrm{m}_{\beta}, \Gamma \mathrm{m}_{\beta}\right)=\lim _{\beta \rightarrow \infty} \mathcal{G}\left(\mathrm{m}_{\beta}, \mathrm{m}_{\beta+1}\right)=0
$$

This implies that \mathfrak{o} is a fixed point of Γ.
Also, by (iii), we get

$$
\mathrm{m}_{\beta+1}=\Gamma \mathrm{m}_{\beta}=\Gamma\left(\Gamma^{\beta} \mathrm{m}_{0}\right) \rightarrow \Gamma \mathfrak{o} \text { as } \beta \rightarrow \infty
$$

By O-completeness, we obtain $\Gamma \mathfrak{o}=\mathfrak{o}$. Therefore, $\operatorname{Fix}(\Gamma) \neq 0$.
To prove the uniqueness property of fixed point, let $\ell^{*} \in \Lambda$ be a fixed point of Γ. Then we have $\Gamma^{\beta}\left(\mathfrak{o}^{*}\right)=\mathfrak{o}^{*}$ and $\Gamma^{\beta}\left(\ell^{*}\right)=\ell^{*}$ for all $\beta \in \mathbb{N}$. By the choice of \mathfrak{o}_{0} in the first part of proof, we have

$$
\left[\mathfrak{o}_{0} \perp \mathfrak{o}^{*} \text { and } \mathfrak{o}_{0} \perp \ell^{*}\right] \text { or }\left[\mathfrak{o}^{*} \perp \mathfrak{o}_{0} \text { and } \ell^{*} \perp \mathfrak{o}_{0}\right] \text {. }
$$

Since Γ is \perp-preserving, we have

$$
\left[\Gamma^{\beta} \mathfrak{o}_{0} \perp \Gamma^{\beta} \mathfrak{o}^{*} \text { and } \Gamma^{\beta} \mathfrak{o}_{0} \perp \Gamma^{\beta} \ell^{*}\right] \text { or }\left[\Gamma^{\beta} \mathfrak{o}^{*} \perp \Gamma^{\beta} \mathfrak{o}_{0} \text { and } \Gamma^{\beta} \ell^{*} \perp \Gamma^{\beta} \mathfrak{o}_{0}\right] .
$$

for all $\beta \in \mathbb{N}$. Therefore, by the triangle inequality, we have

$$
\begin{aligned}
\mathcal{G}\left(\mathfrak{o}^{*}, \ell^{*}\right) & =\mathcal{G}\left(\Gamma^{\beta} \mathfrak{o}^{*}, \Gamma^{\beta} \ell^{*}\right) \\
& \leq \mathcal{G}\left(\Gamma^{\beta} \mathfrak{o}^{*}, \Gamma^{\beta} \mathfrak{o}_{0}\right)+\mathcal{G}\left(\Gamma^{\beta} \mathfrak{o}_{0}, \Gamma^{\beta} \ell^{*}\right) \\
& \leq \mathcal{G}\left(\mathfrak{o}^{*}, \mathfrak{o}_{0}\right)+\mathcal{G}\left(\mathfrak{m o}_{0}, \ell^{*}\right) \\
& \leq \mathcal{G}\left(\mathfrak{o}^{*}, \ell^{*}\right)
\end{aligned}
$$

This is a contradiction. Thus it follows that $\mathfrak{o}^{*}=\ell^{*}$. Finally, let $\mathfrak{o} \in \Lambda$ be arbitrary. Similarly, we have

$$
\left[\mathfrak{o}_{0} \perp \mathfrak{o}^{*} \text { and } \mathfrak{o}_{0} \perp \mathfrak{o}\right] \text { or }\left[\mathfrak{o}^{*} \perp \mathfrak{o}_{0} \text { and } \mathfrak{o} \perp \mathfrak{o}_{0}\right] \text {. }
$$

Since Γ is \perp-preserving, we have

$$
\left[\Gamma^{\beta} \mathfrak{o}_{0} \perp \Gamma^{\beta} \mathfrak{o}^{*} \text { and } \Gamma^{\beta} \mathfrak{o}_{0} \perp \Gamma^{\beta} \mathfrak{o}\right] \text { or }\left[\Gamma^{\beta} \mathfrak{o}^{*} \perp \Gamma^{\beta} \mathfrak{o}_{0} \text { and } \Gamma^{\beta} \mathfrak{o} \perp \Gamma^{\beta} \mathfrak{o}_{0}\right] .
$$

for all $\beta \in \mathbb{N}$. Hence, for all $\beta \in \mathbb{N}$, we get

$$
\begin{aligned}
\mathcal{G}\left(\mathfrak{o}^{*}, \Gamma^{\beta} \mathfrak{o}\right) & =\mathcal{G}\left(\Gamma^{\beta} \mathfrak{o}^{*}, \Gamma^{\beta} \mathfrak{o}\right) \\
& \leq \mathcal{G}\left(\Gamma^{\beta} \mathfrak{o}^{*}, \Gamma^{\beta} \mathfrak{o}_{0}\right)+\mathcal{G}\left(\Gamma^{\beta} \mathfrak{o}_{0}, \Gamma^{\beta} \mathfrak{o}\right) \\
& \leq \mathcal{G}\left(\mathfrak{o}^{*}, \mathfrak{o}_{0}\right)+\mathcal{G}\left(\operatorname{mo}_{0}, \mathfrak{o}\right) \\
& \leq \mathcal{G}\left(\mathfrak{o}^{*}, \mathfrak{o}\right)
\end{aligned}
$$

Hence the proof is completed.
Corollary 3.3. Let $(\Lambda, \perp, \mathcal{G})$ be an O-complete metric space and a mapping $\alpha: \Lambda \times \Lambda \rightarrow$ $[0, \infty)$. Postulating that $\Gamma: \Lambda \rightarrow \Lambda$ be a self-map the following affirmations hold
(i) $\forall \mathrm{m}, \ell \in \Lambda$ with $\mathrm{m} \perp \ell$,

$$
\begin{align*}
& \mathcal{G}^{v}\left(\Gamma^{2} \mathrm{~m}, \Gamma^{2} \ell\right)>0 \\
& \Longrightarrow \alpha(\mathrm{~m}, \ell) \mathcal{G}\left(\Gamma^{2} \mathrm{~m}, \Gamma^{2} \ell\right) \leq \mathbb{k} \max \left\{\mathcal{G}(\mathrm{m}, \ell), \mathcal{G}(\Gamma \mathrm{m}, \Gamma \ell), \mathcal{G}(\mathrm{m}, \Gamma \mathrm{~m}), \mathcal{G}\left(\Gamma \mathrm{m}, \Gamma^{2} \mathrm{~m}\right),\right. \\
& \left.\mathcal{G}(\ell, \Gamma \ell), \mathcal{G}\left(\Gamma \ell, \Gamma^{2} \ell\right)\right\} \tag{18}
\end{align*}
$$

where $\mathbb{k} \in[0,1)$;
(ii) Γ is α_{\perp}-admissible;
(iii) $\exists \mathrm{m}_{0} \in \Lambda$ such that $\alpha\left(\mathrm{m}_{0}, \Gamma \mathrm{~m}_{0}\right) \geq 1$;
(iv) Γ is \perp-continuous or, \perp-orbitally continuous on Λ;
(v) \perp-preserving.

Then, Γ has a fixed point in Λ. Moreover, for any $\mathrm{m}_{0} \in \Lambda$ if $\mathrm{m}_{\beta+1}=\Gamma^{\beta+1} \mathrm{~m}_{0} \neq \Gamma^{\beta} \mathrm{m}_{0} \forall \beta \in$ $\mathbb{N} \cup\{0\}$, then $\lim _{\beta \rightarrow \infty} \Gamma^{\beta} \mathrm{m}_{0}=\mathfrak{o}$.

Proof. Setting $\digamma(\mathfrak{x})=\operatorname{In}(\mathfrak{x}), \mathfrak{x}>0$. Obviously, $\digamma \in \Im$. Applying logarithm on both sides of (18), we get

$$
\begin{aligned}
& -\operatorname{In} \mathbb{k}+\operatorname{In} \alpha(\mathrm{m}, \ell) \mathcal{G}\left(\Gamma^{2} \mathrm{~m}, \Gamma^{2} \ell\right) \\
& \leq \operatorname{In}\left(\max \left\{\mathcal{G}(\mathrm{m}, \ell), \mathcal{G}(\Gamma \mathrm{m}, \Gamma \ell), \mathcal{G}(\mathrm{m}, \Gamma \mathrm{~m}), \mathcal{G}\left(\Gamma \mathrm{m}, \Gamma^{2} \mathrm{~m}\right), \mathcal{G}(\ell, \Gamma \ell), \mathcal{G}\left(\Gamma \ell, \Gamma^{2} \ell\right)\right\}\right),
\end{aligned}
$$

which implies that

$$
\mu+\digamma\left(\alpha(\mathrm{m}, \ell) \mathcal{G}\left(\Gamma^{2} \mathrm{~m}, \Gamma^{2} \ell\right)\right) \leq \digamma\left(\mathcal{M}^{1}(\mathrm{~m}, \ell)\right)
$$

$\forall \mathrm{m}, \ell \in \Lambda$ with $\mathrm{m} \perp \ell$ and $\mathrm{m} \neq \ell$ where $\mu=-I n \mathbb{k}$. It follows that Γ is an $\left(\alpha_{\perp}-\digamma\right)$-convex contraction with $v=1$. Thus, all the affirmations of Theorem (3.2) are hold and hence, Γ has a unique fixed point in Λ.

Corollary 3.4. Let $(\Lambda, \perp, \mathcal{G})$ be an O-complete metric space and a mapping $\alpha: \Lambda \times \Lambda \rightarrow$ $[0, \infty)$. Postulating that $\Gamma: \Lambda \rightarrow \Lambda$ be a self-map the following affirmations hold:
(i) $\forall \mathrm{m}, \ell \in \Lambda$ with $\mathrm{m} \perp \ell$,

$$
\begin{aligned}
\mathcal{G}^{v}\left(\Gamma^{2} \mathrm{~m}, \Gamma^{2} \ell\right)>0 \Longrightarrow & \alpha(\mathrm{~m}, \ell) \mathcal{G}\left(\Gamma^{2} \mathrm{~m}, \Gamma^{2} \ell\right) \\
& \leq \alpha_{1} \mathcal{G}(\mathrm{~m}, \ell)+\alpha_{2} \mathcal{G}(\Gamma \mathrm{~m}, \Gamma \ell)+\alpha_{3} \mathcal{G}(\mathrm{~m}, \Gamma \mathrm{~m}) \\
& +\alpha_{4} \mathcal{G}\left(\Gamma \mathrm{~m}, \Gamma^{2} \mathrm{~m}\right)+\alpha_{5} \mathcal{G}(\ell, \Gamma \ell)+\alpha_{6} \mathcal{G}\left(\Gamma \ell, \Gamma^{2} \ell\right)
\end{aligned}
$$

where $0 \leq \alpha_{\mathfrak{k}}<1, \mathfrak{k}=1,2, \ldots, 6$ such that $\sum_{\mathfrak{k}=1}^{6} \alpha_{\mathfrak{k}}<1$;
(ii) Γ is α_{\perp}-admissible;
(iii) $\exists \mathrm{m}_{0} \in \Lambda$ such that $\alpha\left(\mathrm{m}_{0}, \Gamma \mathrm{~m}_{0}\right) \geq 1$;
(iv) Γ is \perp-continuous or, \perp-orbitally continuous on Λ;
(v) \perp-preserving.

Then, Γ has a fixed point in Λ. Moreover, for any $\mathrm{m}_{0} \in \Lambda$ if $\mathrm{m}_{\beta+1}=\Gamma^{\beta+1} \mathrm{~m}_{0} \neq \Gamma^{\beta} \mathrm{m}_{0} \forall \beta \in$ $\mathbb{N} \cup\{0\}$, then $\lim _{\beta \rightarrow \infty} \Gamma^{\beta} \mathrm{m}_{0}=\mathfrak{o}$.

Proof. Setting $\digamma(\mathfrak{x})=\operatorname{In}(\mathfrak{x}), \mathfrak{x}>0$. Obviously, $\digamma \in \Im . \forall \mathrm{m}, \ell \in \Lambda$ with $\mathrm{m} \perp \ell$ and $\mathrm{m} \neq \ell$, we obtain

$$
\begin{aligned}
\alpha(\mathrm{m}, \ell) \mathcal{G}\left(\Gamma^{2} \mathrm{~m}, \Gamma^{2} \ell\right) & =\mathcal{G}\left(\Gamma^{2} \mathrm{~m}, \Gamma^{2} \ell\right) \\
& \leq \alpha_{1} \mathcal{G}(\mathrm{~m}, \ell)+\alpha_{2} \mathcal{G}(\Gamma \mathrm{~m}, \Gamma \ell)+\alpha_{3} \mathcal{G}(\mathrm{~m}, \Gamma \mathrm{~m}) \\
& +\alpha_{4} \mathcal{G}\left(\Gamma \mathrm{~m}, \Gamma^{2} \mathrm{~m}\right)+\alpha_{5} \mathcal{G}(\ell, \Gamma \ell)+\alpha_{6} \mathcal{G}\left(\Gamma \ell, \Gamma^{2} \ell\right) \\
& \leq \mathbb{k} \max \left\{\mathcal{G}(\mathrm{m}, \ell), \mathcal{G}(\Gamma \mathrm{m}, \Gamma \ell), \mathcal{G}(\mathrm{m}, \Gamma \mathrm{~m}), \mathcal{G}\left(\Gamma \mathrm{m}, \Gamma^{2} \mathrm{~m}\right)\right. \\
& \left.\mathcal{G}(\ell, \Gamma \ell), \mathcal{G}\left(\Gamma \ell, \Gamma^{2} \ell\right)\right\}
\end{aligned}
$$

where $\mathbb{k}=\sum_{\mathfrak{k}=1}^{6} \alpha_{\mathfrak{k}}<1$. By Corollary (3.3), Γ has a unique fixed point in Λ.
Corollary 3.5. A \perp-continuous self-map Γ on an O-complete metric space $(\Lambda, \perp, \mathcal{G})$. If $\exists \mathbb{k} \in[0,1)$ satisfying the following inequality

$$
\begin{aligned}
& \mathcal{G}^{v}\left(\Gamma^{2} \mathrm{~m}, \Gamma^{2} \ell\right)>0 \Longrightarrow \\
& \mathcal{G}\left(\Gamma^{2} \mathrm{~m}, \Gamma^{2} \ell\right) \leq \mathbb{k} \max \left\{\mathcal{G}(\mathrm{m}, \ell), \mathcal{G}(\Gamma \mathrm{m}, \Gamma \ell), \mathcal{G}(\mathrm{m}, \Gamma \mathrm{~m}), \mathcal{G}\left(\Gamma \mathrm{m}, \Gamma^{2} \mathrm{~m}\right), \mathcal{G}(\ell, \Gamma \ell), \mathcal{G}\left(\Gamma \ell, \Gamma^{2} \ell\right)\right\}
\end{aligned}
$$

$\forall \mathrm{m}, \ell \in \Lambda$ with $\mathrm{m} \perp \ell$, then Γ has a unique fixed point in Λ.

4. Application

In this section, we prove the existence of fixed point for $\left(\alpha_{\perp}-\digamma\right)$-convex contraction to nonlinear integral equation of Volterra type

$$
\begin{equation*}
\mathfrak{x}(\tau)=\int_{0}^{\tau} \mathcal{J}(\tau, b, \mathfrak{x}(b)) \mathcal{G} b+\gamma(\tau), \tau \in[0, \mathcal{P}] \tag{19}
\end{equation*}
$$

Consider the following assumptions:
$\left(b_{1}\right)$ Here $\mathcal{J}:[0, \mathcal{P}] \times[0, \mathcal{P}] \times \mathcal{R} \rightarrow \mathcal{R}, \gamma:[0, \mathcal{P}] \rightarrow \mathcal{R}$ are continuous functions and $\mathbb{I}=[0, \mathcal{P}], \mathcal{P}>0$.
$\left(b_{2}\right) \exists$ a strictly increasing O-sequence $\left\{m_{\beta}\right\}_{\mathfrak{n} \in \mathcal{N} \cup(0)}$ satisfying for any $\mathfrak{n} \in \mathcal{N}$ such that

$$
\begin{equation*}
|\mathcal{J}(\tau, b, \mathrm{~m})-\mathcal{J}(\tau, b, \ell)| \leq \mathfrak{e}^{-\mu-\tau}|\mathrm{m}-\ell| \tag{20}
\end{equation*}
$$

for all $\tau, b \in \mathbb{I}, \mu \in(0,1)$ and $\mathrm{m}, \ell \in \mathcal{R}$.
Let the set of all continuous functions $\mathcal{J}=\mathcal{C}(\mathbb{I}, \mathcal{R})$ defined on $[0, \mathcal{P}]$ endowed with the O-complete metric space. Define $\mathcal{G}: \mathcal{J} \times \mathcal{J} \rightarrow \mathcal{R}$ by

$$
\begin{equation*}
\mathcal{M}(\mathrm{m}, \ell)=\max _{\tau \in[0, \mathcal{P}]}\left\{|\mathrm{m}(\tau)-\ell(\tau)| \mathfrak{e}^{-\tau}\right\} \tag{21}
\end{equation*}
$$

for all $\mathrm{m}, \ell \in \mathcal{J}=\mathcal{C}(\mathbb{I}, \mathcal{R})$ with $((\mathcal{C}(\mathbb{I}, \mathcal{R})), \mathcal{G})$ is an O-complete metric space.
Theorem 4.1. If $\left(b_{1}\right)$ and $\left(b_{2}\right)$ are fulfilled, then the non-linear integral equation of Volterra type Equation (19) has a unique solution in $(\mathcal{C}(\mathbb{I}, \mathcal{R}))$.
Proof. For any $\mathrm{m} \in \mathcal{J}$ is a solution of 19 iff $\mathrm{m} \in \mathcal{J}$ is a solution of the integral equation

$$
\begin{equation*}
\mathrm{m}(\tau)=\int_{0}^{\tau}(\mathcal{J}(\tau, b, \mathrm{~m}(b)) \mathcal{G} b+\gamma(\tau) \tag{22}
\end{equation*}
$$

Then, (19) is equivalent to prove $\Gamma(\mathrm{m})=\mathrm{m}$ for $\mathrm{m} \in \mathcal{J}$. Define a relation \perp on \mathcal{J} by

$$
\begin{equation*}
\mathrm{m} \perp \ell \Leftrightarrow \mathrm{~m}(\tau) \ell(\tau) \geq 0 \tag{23}
\end{equation*}
$$

for all $\tau \in[0, \mathcal{P}]$. Since \mathcal{J} is an orthogonal for all $m \in \mathcal{J}, \exists \ell(\tau)=0, \forall \tau \in[0, \mathcal{P}]$ such that $\mathrm{m}(\tau) \ell(\tau)=0$: We examine

$$
\mathcal{M}(\mathrm{m}, \ell)=\max _{\tau \in[0, \mathcal{P}]}\left\{|\mathrm{m}(\tau)-\ell(\tau)| \mathfrak{e}^{-\tau}\right\}
$$

for all $\mathrm{m}, \ell \in \mathcal{J}$. So, the triplet $(\mathcal{J}, \perp, \mathcal{G})$ is an O-complete metric space. This implies that Γ is \perp-continuous. Now, to prove Γ is \perp-preserving. Let $\mathrm{m}(\tau) \perp \ell(\tau), \forall \tau \in[0, \mathcal{P}]$. Now, we have

$$
\begin{equation*}
\Gamma \mathrm{m}(\tau)=\int_{0}^{\tau} \mathcal{J}(\tau, b, \mathrm{~m}(b)) \mathcal{G} b+\gamma(\tau)>0 \tag{24}
\end{equation*}
$$

which yields that $\Gamma \mathrm{m}(\tau) \perp \Gamma \ell(\tau)$, i.e., Γ is \perp-preserving.
Define a mapping $\alpha: \mathcal{J} \times \mathcal{J} \rightarrow \mathcal{R}^{+}$by $\alpha(\mathrm{m}, \ell)=1 \forall \mathrm{~m}, \ell \in \mathcal{J}$. Therefore, Γ is $\alpha_{\perp^{-}}$ admissible. Letting $\digamma \in \Im$ such that $\digamma(\mathfrak{x})=\operatorname{In}(\mathfrak{x}), \mathfrak{x}>0$. In this point, from Definition 2.1, we get,

$$
\begin{aligned}
\mu+\digamma\left(\alpha(\mathrm{m}, \ell) \mathcal{G}^{v}\left(\Gamma^{2} \mathrm{~m}, \Gamma^{2} \ell\right)\right) \leq \digamma\left(\mathcal{M}^{v}(\mathrm{~m}, \ell)\right) & \Longrightarrow \mu+\digamma\left(\left|\mathcal{P}^{2} \mathrm{~m}-\mathcal{P}^{2} \ell\right| \mathfrak{e}^{-\tau}\right) \leq \digamma\left(|\mathrm{m}-\ell| \mathfrak{e}^{-\tau}\right) \\
& \Longrightarrow \mu+\operatorname{In}\left|\mathcal{P}^{2} \mathrm{~m}-\mathcal{P}^{2} \ell\right| \mathfrak{e}^{-\tau} \leq \operatorname{In}|\mathrm{m}-\ell| \mathfrak{e}^{-\tau} \\
& \Longrightarrow \mu \leq \operatorname{In} \frac{|\mathrm{m}-\ell| \mathfrak{e}^{-\tau}}{\left|\mathcal{P}^{2} \mathrm{~m}-\mathcal{P}^{2} \ell\right| \mathfrak{e}^{-\tau}} \\
& \Longrightarrow \mathfrak{e}^{\mu}<\frac{|\mathrm{m}-\ell| \mathfrak{e}^{-\tau}}{\left|\mathcal{P}^{2} \mathrm{~m}-\mathcal{P}^{2} \ell\right| \mathfrak{e}^{-\tau}} \\
& \Longrightarrow\left|\mathcal{P}^{2} \mathrm{~m}-\mathcal{P}^{2} \ell\right|<\frac{|\mathrm{m}-\ell|}{\mathfrak{e}^{\mu}} .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\mathfrak{e}^{-\tau}\left|\mathcal{P}^{2} \mathrm{~m}-\mathcal{P}^{2} \ell\right|<\frac{|\mathrm{m}-\ell| \mathfrak{e}^{-\tau}}{\mathfrak{e}^{\mu}} \tag{25}
\end{equation*}
$$

for all $\mathrm{m}, \ell \in \mathcal{C}(\mathbb{I})$. We conclude that for any $b \in \mathbb{I}$, we get

$$
\begin{align*}
|\mathrm{m}(b)-\ell(b)| & \leq \mathfrak{e}^{b} \max \mathfrak{e}^{-b}|\mathrm{~m}(b)-\ell(b)| \\
& <\mathfrak{e}^{b} \mathcal{M}(\mathrm{~m}, \ell) \\
& \leq \mathfrak{e}^{\mathcal{P}} \mathcal{M}(\mathrm{m}, \ell) . \tag{26}
\end{align*}
$$

Therefore due to $\left(b_{2}\right)$, we obtain,

$$
\begin{align*}
|\Gamma \mathrm{m}(\tau)-\Gamma \ell(\tau)| & \leq\left|\int_{0}^{\tau} \mathcal{J}(\tau, b, \mathrm{~m}(b)) \mathcal{G} b-\int_{0}^{\tau} \mathcal{J}(\tau, b, \ell(b)) \mathcal{G} b\right| \\
& \leq \int_{0}^{\tau}|\mathcal{J}(\tau, b, \mathrm{~m}(b))-\mathcal{J}(\tau, b, \ell(b))| \mathcal{G} b \\
& \leq \mathfrak{e}^{-\mu-\tau} \int_{0}^{\tau} \max _{b \in[0, \mathcal{P}]}|\mathrm{m}(b)-\ell(b)| \mathfrak{e}^{-b} \mathfrak{e}^{b} \mathcal{G} b \\
& \leq \mathfrak{e}^{-\mu-\tau} \mathcal{M}(\mathrm{m}, \ell) \int_{0}^{\tau} \mathfrak{e}^{b} \mathcal{G} b \\
& \leq \mathfrak{e}^{-\mu-\tau} \mathcal{M}(\mathrm{m}, \ell)\left[\mathfrak{e}^{\tau}-1\right] \\
& \leq \mathfrak{e}^{-\mu}\left(1-\mathfrak{e}^{-\tau}\right) \mathcal{M}(\mathrm{m}, \ell) \\
& <\mathfrak{e}^{-\mu} \mathcal{M}(\mathrm{m}, \ell) ; \tau \in \mathbb{I} . \tag{27}
\end{align*}
$$

By O-sequence $\left\{\mathrm{m}_{\beta}\right\}$, we have,

$$
\begin{equation*}
\mathfrak{e}^{-\tau}|\Gamma \mathrm{m}(\tau)-\Gamma \ell(\tau)| \leq \frac{\mathcal{M}(\mathrm{m}, \ell) \mathfrak{e}^{-\tau}}{\mathfrak{e}^{\mu}}, \tau \in \mathbb{I} . \tag{28}
\end{equation*}
$$

Letting supremum in (28), we have,

$$
\mu+\digamma(\alpha(\mathrm{m}, \ell) \mathcal{G}(\Gamma \mathrm{m}, \Gamma \ell)) \leq \digamma(\mathcal{M}(\mathrm{m}, \ell))
$$

Therefore, Γ has a unique solution by Theorem (3.2).

5. Obtaining a numerical solution to integral equations

Example 5.1. Let $\mathcal{J}=\{\mathfrak{f}(\tau) / \mathfrak{f}(\tau)$ be a continuous function defined on $[0,1]\}$, i.e., $\mathcal{J}=$ $\mathcal{C}[0,1]$.
Define $\mathcal{G}: \mathcal{J} \times \mathcal{J} \rightarrow \mathcal{R}$ by $\mathcal{G}(\mathfrak{a}, \mathfrak{b})=\sup _{\tau \in[0,1]}\{|\mathrm{m}(\tau)-\ell(\tau)|\}$ for all $\mathrm{m}, \ell \in \mathcal{J}$.
Clearly, $(\mathcal{J}, \mathcal{G})$ is an O-complete metric space. Define $\mathcal{O}: \mathcal{J} \rightarrow \mathcal{J}$ by:

$$
\begin{equation*}
\mathcal{O} \mathrm{m}(\tau)=\gamma(\tau)+\int_{0}^{1} \mathcal{J}(\tau, b, \mathrm{~m}(b)) \mathcal{G} b ; \mathrm{m}(\tau) \in \mathcal{J} \tag{29}
\end{equation*}
$$

Define a mapping $\digamma:(0, \infty) \rightarrow \mathcal{R}$ defined by $\digamma(\mathfrak{x})=\operatorname{In}(\mathfrak{x}), \mathfrak{x}>0$ and a mapping $\alpha: \mathcal{J} \times \mathcal{J} \rightarrow$ \mathcal{R}^{+}by $\alpha(\mathrm{m}, \ell)=1 \forall \mathrm{~m}, \ell \in \mathcal{J}$. Taking $\gamma(\tau)=\frac{5}{8} \tau$ and $\mathcal{J}(\tau, b, \mathrm{~m}(b))=\frac{\tau}{4}(1+\mathrm{m}(b))$. Then Eq. (29) reduces to $\mathcal{O} \mathrm{m}(\tau)=\frac{5}{8} \tau+\int_{0}^{1} \frac{\tau}{4}(1+\mathrm{m}(b)) \mathcal{G} b$, where $\frac{5}{8} \tau, \frac{\tau}{4}(1+\mathrm{m}(b))$ are continuous functions and $\mathcal{O} \mathrm{m} \in \mathcal{C}[0,1]$. Let us assume that $\left|\frac{\tau}{4}\right| \leq \mathfrak{e}^{-\mu-\tau}$. To prove that \mathcal{O} is a $\left(\alpha_{\perp}-\digamma\right)$-contraction, we need to prove $\mathcal{G}(\mathcal{O}, \mathcal{O} \ell) \leq \mathcal{M}(\mathrm{m}, \ell) \mathfrak{e}^{-\mu}$.

Since

$$
\begin{aligned}
\mu+\digamma\left(\alpha(\mathrm{m}, \ell) \mathcal{G}^{v}\left(\Gamma^{2} \mathrm{~m}, \Gamma^{2} \ell\right)\right) \leq \digamma\left(\mathcal{M}^{v}(\mathrm{~m}, \ell)\right) & \Longrightarrow \mu+\operatorname{In}(\mathcal{G}(\mathcal{O} \mathrm{m}, \mathcal{O} \ell)) \leq \operatorname{In}(\mathcal{M}(\mathrm{m}, \ell)) \\
& \Longrightarrow \operatorname{In} \frac{|\mathcal{O} \mathrm{m}-\mathcal{O} \ell|}{|\mathrm{m}-\ell|} \leq-\mu \\
& \Longrightarrow|\mathcal{O} \mathrm{m}-\mathcal{O} \ell| \leq|\mathrm{m}-\ell| \mathfrak{e}^{-\mu} \\
& \Longrightarrow \mathcal{G}(\mathcal{O} \mathrm{m}, \mathcal{O} \ell) \leq \mathcal{M}(\mathrm{m}, \ell) \mathfrak{e}^{-\mu}
\end{aligned}
$$

Consider

$$
\begin{align*}
|\mathcal{O} \mathrm{m}(\tau)-\mathcal{O} \ell(\tau)| & =\left|\int_{0}^{1} \mathcal{J}(\tau, b, \mathrm{~m}(b)) \mathcal{G} b-\int_{0}^{1} \mathcal{J}(\tau, b, \ell(b)) \mathcal{G} b\right| \\
& \leq \int_{0}^{1}|\mathcal{J}(\tau, b, \mathrm{~m}(b))-\mathcal{J}(\tau, b, \ell(b))| \mathcal{G} b \\
& \leq \int_{0}^{1}\left|\frac{\tau}{4}(1+\mathrm{m}(b))-\frac{\tau}{4}(1+\ell(b))\right| \mathcal{G} b \\
& \leq \int_{0}^{1}\left|\frac{\tau}{4}(\mathrm{~m}(b)-\ell(b))\right| \mathcal{G} b \\
& \leq \int_{0}^{1}\left|\frac{\tau}{4}\right||\mathrm{m}(b)-\ell(b)| \mathcal{G} b \tag{30}
\end{align*}
$$

then,

$$
\begin{align*}
\sup _{\mathfrak{t} \in[0,1]}|\mathcal{O} \mathrm{m}(\tau)-\mathcal{O} \ell(\tau)| & \leq \int_{0}^{1}\left|\frac{\tau}{4}\right||\mathrm{m}(b)-\ell(b)| \mathcal{G} b \\
& \leq \mathfrak{e}^{-\mu-\tau} \int_{0}^{1}|\mathrm{~m}(b)-\ell(b)| \mathcal{G} b \\
& \leq \mathfrak{e}^{-\mu}|\mathrm{m}(b)-\ell(b)| \mathfrak{e}^{-\tau} \int_{0}^{1} \mathcal{G} b \\
& \leq \mathfrak{e}^{-\mu}|\mathrm{m}(b)-\ell(b)| \mathfrak{e}^{-\tau} . \tag{31}
\end{align*}
$$

Therefore, $\mathcal{G}(\mathcal{O}, \mathcal{O} \ell) \leq \mathfrak{e}^{-\mu} \mathcal{M}(\mathrm{m}, \ell)$.
Therefore, all the hypothesis of Theorem (3.2) are satisfied and \mathcal{O} has a unique fixed point and the nonlinear integral equation of Volterra type equation (29) has a unique solution.

Verify that $\mathrm{m}(\tau)=\tau$ is the exact solution of the Eq. (29). Utilizing the iteration process, we get

$$
\mathrm{m}_{\beta+1}(\tau)=\mathcal{O} \mathrm{m}_{\beta}(\tau)=\frac{5}{8} \tau+\frac{\tau}{4} \int_{0}^{1}\left(1+\mathrm{m}_{\beta}(b)\right) \mathcal{G} b
$$

Let $\mathrm{m}_{0}(\tau)=0$ be the initial condition. Letting $\beta=0,1,2, \ldots$ in Eq. (28) successively, we obtain,

$$
\begin{aligned}
\mathrm{m}_{1}(\tau) & =0.875 \tau \\
\mathrm{~m}_{2}(\tau) & =0.984375 \tau \\
\mathrm{~m}_{3}(\tau) & =0.998046875 \tau \\
\mathrm{~m}_{4}(\tau) & =0.999755859375 \tau \\
\mathrm{~m}_{5}(\tau) & =0.999969482421875 \tau \\
\mathrm{~m}_{6}(\tau) & =0.999996185302734375 \tau \\
\mathrm{~m}_{7}(\tau) & =0.999999523162841796875 \tau \\
\mathrm{~m}_{8}(\tau) & =0.999999940395355224609375 \tau \\
\mathrm{~m}_{9}(\tau) & =0.999999992549419403076171875 \tau \\
\mathrm{~m}_{10}(\tau) & =0.999999999068677425384521484375 \tau \\
\mathrm{~m}_{11}(\tau) & =0.999999999988358467817306518554688 \tau \\
\mathrm{~m}_{12}(\tau) & =\tau
\end{aligned}
$$

Therefore $\mathrm{m}(\tau)=\tau$ is the exact solution.
By Theorem (3.2), we proved that the integral equation of Volterra type Eq.(29) has a unique solution. Then, the Eq. (29) has unique solution.

6. Conclusion

In this paper, we improved the results of Mahendra Singh et al. [15] by conferring examples of an $\left(\alpha_{\perp}-\digamma\right)$-convex contraction of the self-map in the framework of α_{\perp}-admissible. The notions of an $\left(\alpha_{\perp}-\digamma\right)$-convex contraction extend other well known metrical fixed point theorems within the literature.

References

[1] iri, L.B. Generalized contractions and fixed point theorems. Publ. Inst. Math. 1971, 12, 19-26.
[2] iri, L.B. A generalization of Banachs contraction principle. Proc. Am. Math. Soc. 1974, 45(2), 267-273.
[3] Istrătescu, V.I. Some fixed point theorems for convex contraction mappings and convex non expansive mappings (I). Liberta Math. 1981, 1, 151-163.
[4] Alghamdi, M. A.; Alnafei, S. H.; Radenovic, S.; Shahzad, N. Fixed point theorems for convex contraction mappings on cone metric spaces. Math. Comput. Modelling, 2011, 54, 2020-2026.
[5] Ghorbanian, v.; Rezapour, S.; Shahzad, N. Some ordered fixed point results and the property (P). Comput. Math. Appl. 2012, 63(9), 1361-1368.
[6] Khan, M.S.; Singh, Y.M.; Maniu, G.; Postolache, M. On (α, p)-convex contraction and asymptotic regularity. J. Math. Comput. Sci. 2018, 18, 132-145.
[7] Khan, M.S.; Singh, Y.M.; Maniu, G.; Postolache, M. On generalized convex contractions of type-2 in b-metric and 2-metric spaces. J. Nonlinear Sci. Appl. 2017, 10, 2902-2913.
[8] Miculescu, R.; Mihail, A. A generalization of Istratescus fixed point theorem for convex contractions. ArXiv, 2015 2015, 17 pages.
[9] Miandaragh, M. A.; Postolache, M; Rezapour, S. Some approximate fixed point results for generalized α-contractive mapping. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2013, 75, 3-10.
[10] Latif, A.; Sintunavarat, W.; Ninsri, A. Approximate fixed point theorems for partial generalized convex contraction mappings in α-complete metric spaces. Taiwanese J. Math. 2015, 19, 315-333.
[11] Wardowski, D.: Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 94 (2012).
[12] Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α, ψ-contractive type mappings. Nonlinear Anal. 2012, 75, 2154-2165.
[13] Alsulami, H.H.; Chandok, S.; Taoudi, M.A.; Erhan, I.M. Some fixed point theorems for (α, ψ)-rational type contractive mappings. Fixed Point Theory Appl. 2015, 97, 1-12.
[14] Arul Joseph, G.; Gunasekaran, N.; Absar, U.H.; Gunaseelan, M.; Imran, A.B.; Kamsing, N. Common Fixed-Points Technique for the Existence of a Solution to Fractional Integro-Differential Equations via Orthogonal Branciari Metric Spaces. Symmetry 2022, 14, 1859.
[15] Mahendra Singh, Y.; Khan, M.S.; Kang, S.M. F-Convex Contraction via Admissible Mapping and Related Fixed Point Theorems with an Application. Mathematics 2018, 6, 105; doi:10.3390/math6060105.
[16] Chen, L.; Li, C.; Kaczmarek, R.; Zhao, Y. Several Fixed Point Theorems in Convex b-Metric Spaces and Applications. Mathematics 2020, 8, 2422.
[17] Geleta, K.W.; Tola, K.K.; Teweldemedhin, S.G. Alpha-F-Convex Contraction Mappings in b-Metric Space and a Related Fixed Point Theorem. Journal of Function Spaces 2021, 2021, Article ID 5720558, 7 pages. https://doi.org/10.1155/2021/5720558.
[18] Haokip, N. Convergence of an iteration scheme in convex metric spaces. Proyecciones Journal of Mathematics 2022, 41, No. 3, 777-790.
[19] Khan, M. S. On fixed point theorems in 2-metric space. Publ. Inst. Math. (Beograd) (N.S.), 1980, 41, 107-113.
[20] Karapinar, E.; Kumam, P.; Salimi, P. On $\alpha-\psi$-Meir-Keeler contractive mappings. Fixed Point Theory Appl. 2013, 94, 1-12.
[21] Karapinar, E. α-Geraghty contraction type mappings and some related fixed point results. Filomat, 2014, 28, 37-48.
[22] Gordji, M.E.; Ramezani, M.; De La Sen, M.; Cho, Y.J. On orthogonal sets and Banach fixed point theorem. Fixed Point Theory (FPT), 2017, 18(2), 569-578.
[23] Eshaghi Gordji, M.; Habibi, H. Fixed point theory in generalized orthogonal metric space. Journal of Linear and Topological Algebra (JLTA), 6(3), 251-260.
[24] Sawangsup, K.; Sintunavarat, W.; Cho, Y.J. Fixed point theorems for orthogonal F-contraction mappings on O-complete metric spaces. J. Fixed Point Theorey Appl. 2020, 22(10).
[25] Eshaghi, M.; Habibi, H. Fixed point theory in ϵ-connected orthogonal metric space. Shand Communications in Mathematical Analysis(SCMA), 2019, 16(1), 35-46.
[26] Gungor, N.B.; Turkoglu, D. Fixed point theorems on orthogonal metric spaces via altering distance functions. AIP Conference Proceedings, 2019, 2183(040011).
[27] Yamaod, O.; Sintunavarat, W. On new orthogonal contractions in b-metric spaces. International Journal of Pure Mathematics, 2018, 5.
[28] Senapati, T.; Dey, L.K.; Damjanović, B.; Chanda, A. New fixed results in orthogonal metric spaces with an Application. Kragujevac Journal of Mathematics, 2018, 42(4), 505-516.
[29] Gunaseelan, M.; Arul Joseph, G.; Lakshmi Narayan, M.; Vishnu Narayan, M. Fixed point theorems for orthogonal F-Suzuki contraction mappings on O-complete metric space with an applications. Malaya Journal of Matematik, 2021, 9(1), 369-377.
[30] Arul Joseph, G.; Gunaseelan, M.; Lee, J.R.; Park, C. Solving a nonlinear integral equation via orthogonal metric space. AIMS Math. 2022, 7, 1198-1210.
[31] Touail, Y.; El Moutawakil, D. $\perp_{\psi F}$-contractions and some fixed point results on generalized orthogonal sets. Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70(3), 1459-72.
[32] Mehmood, N.; Khan I.A.; Nawaz, M.A.; Ahmad, N. Existence results for ABC-fractional BVP via new fixed point results of F-Lipschitzian mappings. Demonstratio Mathematica, 2022, 55(1), 452-69.
[33] Ramezani, M. Orthogonal metric space and convex contractions. Int. J. Nonlinear Anal. Appl., 2015, $6,127-132$.
${ }^{1}$ Department of Mathematics, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur - 603203, Kanchipuram, Chennai, Tamil Nadu, India.

E-mail address: gn4255@srmist.edu.in
${ }^{2}$ Department of Mathematics, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur - 603203, Kanchipuram, Chennai, Tamil Nadu, India.

E-mail address: aruljoseph.alex@gmail.com
${ }^{3}$ Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India.

E-mail address: mathsguna@yahoo.com
${ }^{4}$ Department of Mathematics, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey.

E-mail address: ozgur.ege@ege.edu.tr

[^0]: 2010 Mathematics Subject Classification. Primary 47H10; Secondary 54H25.
 Key words and phrases. O-set, O-sequence, \perp-continuous, α_{\perp}-admissible, $\left(\alpha_{\perp}-\digamma\right)$-convex contraction.
 *: Corresponding author.

