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ARITHMETIC PROGRESSIONS OF INTEGERS THAT ARE
RELATIVELY PRIME TO THEIR DIGITAL SUMS

RYAN BLAU, JOSHUA HARRINGTON, SARAH LOHREY, ELIEL SOSIS, AND TONY W. H. WONG

ABSTRACT. For an integer b≥ 2, we call a positive integer b-anti-Niven if it is relatively prime to the
sum of the digits in its base-b representation. In this article, we investigate the maximum lengths of
arithmetic progressions of b-anti-Niven numbers.

1. Introduction

Throughout this paper, let b≥ 2 be an integer. For all positive integers n, let sb(n) denote the sum of
the digits in the base-b expansion of n, i.e., if n = ∑

m
j=0 a jb j, where m is a nonnegative integer and

0≤ a j ≤ b−1 are integers for each 0≤ j ≤ m, then sb(n) = ∑
m
j=0 a j.

For positive integers n, d, and t, we call the sequence {n+ jd : 0≤ j ≤ t−1} a d-AP of length t
and we call the sequence {n+ jd : j ≥ 0} a d-AP of infinite length. A positive integer n is b-Niven if
sb(n) | n. If every term of a d-AP is b-Niven, we call it a b-Niven d-AP. We note that a b-Niven 1-AP
is a sequence of consecutive Niven numbers.

In 1993, Cooper and Kennedy [1] showed that the maximum length of a 10-Niven 1-AP is 20.
Grundman [3] generalized this result in 1994 by showing that the maximum length of a b-Niven 1-AP
is 2b. These maximum lengths were shown to be attainable by Wilson [7]. More recently, Grundman,
Harrington, and Wong [4] investigated maximum length b-Niven d-APs for d > 1 and Harrington,
Litman, and Wong [5] showed that every infinite d-AP contains infinitely many b-Niven numbers.

In 1975, Olivier [6] studied sets Sb = {n∈Z : gcd(n,sb(n)) = 1} and showed that the natural density
of these sets is 6

π2 ∏p|(b−1)
p

p+1 . In 1997, Cooper and Kennedy [2] published a weaker result that
established Olivier’s density as an upper bound for the density of S10.

In this paper, we define a positive integer n to be b-anti-Niven if gcd(sb(n),n) = 1. If every term of a
d-AP is b-anti-Niven, then we call it a b-anti-Niven d-AP. In Section 2 we give necessary and sufficient
conditions on d, b, and n for which the d-AP {n+ jd : j ≥ 0} contains at least one b-anti-Niven
number. We also show that there is no b-anti-Niven d-AP of infinite length, but for any b and t, there
are infinitely many b-anti-Niven d-APs of length t. In Section 3 we investigate the maximum length of
b-anti-Niven d-APs when b and d satisfy various constraints.

2. b-anti-Niven Numbers in d-APs

In this section, we are going to give several general results on b-anti-Niven numbers in d-APs.
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Lemma 2.1. Let δ be a positive integer such that δ | (b−1). Then for all positive integers n, δ | n if
and only if δ | sb(n).

Proof. Let n = ∑
m
j=0 a jb j, where m is a nonnegative integer and 0≤ a j ≤ b−1 are integers for each

0≤ j ≤ m. The proof follows from the simple observation that b≡ 1 (mod δ ) and thus ∑
m
j=0 a jb j ≡

∑
m
j=0 a j (mod δ ). �

The following lemma was proven by Harrington, Litman, and Wong [5].

Lemma 2.2 ([5, Proposition 2.6]). Let ξ = gcd(sb(n),sb(d),b− 1). Then there exists a positive
multiple d of d such that gcd(sb(n),sb(d)) = ξ .

Theorem 2.3. The d-AP of infinite length {n+ jd : j ≥ 0} contains a b-anti-Niven number if and only
if gcd(n,d,b−1) = 1.

Proof. Assuming that gcd(n,d,b− 1) = 1, we have gcd(sb(n),sb(d),b− 1) = 1 by Lemma 2.1. By
Lemma 2.2, there exists a positive multiple d of d such that gcd(sb(n),sb(d)) = 1. Let k be a
positive integer such that sb(n) + k · sb(d) = p is a prime with p > max(b,d), and we further let
m0 = blogb(n)c+ 1 and mi = mi−1 + blogb(d)c+ 1 for all 1 ≤ i ≤ k. Consider n+ jd and n+ j′d,
where j = ∑

k
i=0 bmi and j′ = j−bmk +bmk+1. Note that both sb(n+ jd) and sb(n+ j′d) are equal to

sb(n)+k · sb(d) = p, and (n+ j′d)− (n+ jd) = bmk(b−1)d is not divisible by p since p > max(b,d).
Hence, at least one of n+ jd and n+ j′d is our desired b-anti-Niven number in the given d-AP.

Conversely, if gcd(n,d,b− 1) = δ > 1, then δ | gcd(n+ jd,sb(n+ jd)) for all integers j ≥ 0 by
Lemma 2.1. Therefore, {n+ jd : j ≥ 0} does not contain any b-anti-Niven numbers. �

The following theorem is a consequence of a result of Harrington, Litman, and Wong [5] who
showed that every arithmetic progression of infinite length contains at least one b-Niven number n with
sb(n) 6= 1.

Theorem 2.4. For any positive integer d, there is no b-anti-Niven d-AP of infinite length.

Our next theorem shows that there exist arithmetic progressions of arbitrary length containing only
b-anti-Niven numbers.

Theorem 2.5. For every positive integer t, there exist positive integers n and d such that {n+ jd : 0≤
j ≤ t−1} is a b-anti-Niven d-AP of length t.

Proof. Let m be a positive integer such that bm/(m(b−1)+1)≥ t, and let d = b(bm−1)(m(b−1)+1).
Consider the d-AP {(d +1)+ jd : 0≤ j ≤ t−1}. For all 0≤ j ≤ t−1, note that j̃ = ( j+1)(m(b−
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1)+1)≤ bm. Hence,

sb((d +1)+ jd) = sb( j̃(bm+1−b)+1)

= sb( j̃(bm+1−b))+1

= sb
(
( j̃−1)bm+1 +b(bm−1− ( j̃−1))

)
+1

= sb( j̃−1)+ sb
(
bm−1− ( j̃−1)

)
+1

= sb( j̃−1)+ sb

(
m−1

∑
j=0

(b−1)b j− ( j̃−1)

)
+1

= sb( j̃−1)+m(b−1)− sb( j̃−1)+1

= m(b−1)+1.

Since (d + 1)+ jd ≡ 1 (mod m(b− 1)+ 1), we conclude that (d + 1)+ jd is b-anti-Niven for all
0≤ j ≤ t−1. �

Although Theorem 2.5 shows that there are b-anti-Niven d-APs of arbitrary length, the maximum
length of a b-anti-Niven d-AP is bounded above by b−2 for many values of b and d, as shown in the
following theorem.

Theorem 2.6. For b > 2 and a positive integer d, let p be the smallest prime such that p | (b−1) and
p - d. Then every b-anti-Niven d-AP has length at most p−1.

Proof. Since p - d, every d-AP of length p contains a multiple of p. By Lemma 2.1, this multiple of p
is not b-anti-Niven. Hence, the maximum length of a d-AP that contains only b-anti-Niven numbers is
at most p−1. �

3. Maximum Length b-anti-Niven d-APs

Theorem 2.6 in the previous section gives a bound on the maximum length of certain b-anti-Niven
d-APs. We begin this section by demonstrating that there are instances when this bound is achieved.
Theorems 3.2 and 3.3 investigate 1-APs, i.e. sequences of consecutive b-anti-Niven numbers, and
2-APs, respectively. The following lemma will be a common tool in establishing these two theorems.

Lemma 3.1. For all finite collections of distinct primes q1,q2, . . . ,qt , there exist infinitely many positive
integers m such that bm ≡ b (mod q1q2 · · ·qt).

Proof. Without loss of generality, assume that there exists 0≤ t ′ ≤ t such that qi - b for all 1≤ i≤ t ′ and
qi | b for all t ′+1≤ i≤ t. By Euler’s theorem, bkϕ(q1q2···qt′ ) ≡ 1 (mod q1q2 · · ·qt ′) for every positive
integer k. Hence, m = kϕ(q1q2 · · ·qt ′)+1 is our desired choice of integer. �

Theorem 3.2. For b > 2, let p be the smallest prime such that p | (b−1). Then the maximum length
of a sequence of consecutive b-anti-Niven numbers is p−1. Furthermore, there exist infinitely many
such sequences of length p−1.

Proof. By Theorem 2.6, the maximum length of a b-anti-Niven 1-AP is at most p− 1. It remains
to show that such sequences occur infinitely often. Let q1,q2, . . . ,qt be all primes less than p. By
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Lemma 3.1, there exist infinitely many positive integers m such that bm ≡ b (mod q1q2 · · ·qt). Now,
for all 0≤ j ≤ p−2, we have sb(bm + j) = j+1. Since j+1 < p, for any prime divisor q of j+1,
we have bm + j ≡ b+ j ≡ b−1 6≡ 0 (mod q). Therefore, gcd(bm + j,sb(bm + j)) = 1, implying that
{bm + j : 0≤ j ≤ p−2} forms a sequence of p−1 consecutive b-anti-Niven numbers. �

Theorem 3.3. Let b > 2 be such that b 6= 2r +1 for any integer r, and let p be the smallest odd prime
such that p | (b−1). Then the maximum length of a b-anti-Niven 2-AP is p−1. Furthermore, there
exist infinitely many such sequences of length p−1.

Proof. By Theorem 2.6, the maximum length of a b-anti-Niven 2-AP is at most p−1. It remains to
show that such sequences occur infinitely often. Let q1,q2, . . . ,qt be all primes less than or equal to b.
By Lemma 3.1, there exist infinitely many positive integers m such that bm ≡ b (mod q1q2 · · ·qt).

Consider the case when b is even. For all 0≤ j ≤ p−2, we have sb(bm +2 j+1) = 2( j+1). Since
j+1 < p, for any prime divisor q of 2( j+1), we have bm +2 j+1≡ b+2 j+1≡ b−1 6≡ 0 (mod q).
Therefore, gcd(bm +2 j+1,sb(bm +2 j+1)) = 1, implying that {bm +2 j+1 : 0≤ j ≤ p−2} forms
a b-anti-Niven 2-AP of length p−1.

Next, consider the case when b is odd. For all 0 ≤ j ≤ (p− 1)/2, we have sb(bm + b− p +
2 j) = 1+ b− p+ 2 j. Since 1+ b− p+ 2 j ≤ b, for any prime divisor q of 1+ b− p+ 2 j, we have
bm + b− p+ 2 j ≡ 2b− p+ 2 j ≡ 2b− p+ 2 j− 2(1+ b− p+ 2 j) ≡ p− 2 j− 2 (mod q). Note that
−1 ≤ p− 2 j− 2 ≤ p− 2, so none of these odd numbers share a common prime factor with b− 1.
Hence, gcd(p− 2 j− 2,1+ b− p+ 2 j) = gcd(p− 2 j− 2,b− 1) = 1, implying that p− 2 j− 2 6≡ 0
(mod q). Thus, gcd(bm +b− p+2 j,sb(bm +b− p+2 j)) = 1 when 0≤ j ≤ (p−1)/2.

Furthermore, for all 0 ≤ j ≤ (p− 5)/2, we have sb(bm + b+ 1+ 2 j) = 3+ 2 j. Since 3+ 2 j ≤
p− 2 < b, for any prime divisor q of 3+ 2 j, we have bm + b+ 1+ 2 j ≡ 2b+ 1+ 2 j ≡ 2b+ 1+
2 j− (3+ 2 j) ≡ 2(b− 1) (mod q). Note that 2(b− 1) 6≡ 0 (mod q) since q is an odd prime less
than p. Thus, gcd(bm + b+ 1+ 2 j,sb(bm + b+ 1+ 2 j)) = 1 when 0 ≤ j ≤ (p− 5)/2. Therefore,
{bm +b− p+2 j : 0≤ j ≤ (p−1)/2}∪{bm +b+1+2 j : 0≤ j ≤ (p−5)/2} forms a b-anti-Niven
2-AP of length p−1. �

So far, the theorems in this section have shown that the bound provided in Theorem 2.6 is attainable.
However, there are infinitely many instances when the maximum length of b-anti-Niven d-APs does
not attain this bound. The following theorem illustrates one such instance.

Theorem 3.4. Let b≥ 6 be even, and let 3≤ d ≤ b/2 be an odd integer. Then the maximum length of
a b-anti-Niven d-AP is at most d2b/de+2.

Note that when b−1 is an odd prime, the bound given by Theorem 2.6 is b−2, while the bound
given by Theorem 3.4 is strictly smaller when b > 15.

Proof of Theorem 3.4. Suppose there are two consecutive terms from a d-AP in the interval [ab,ab+
b−1] that are b-anti-Niven. Let these two numbers be ab+a0 and ab+a0 +d for some nonnegative
integers a and a0 ≤ b− 1− d. Recalling that d is odd, there exists χ ∈ {0,1} so that a0 + χd is
even. As a result, ab+ a0 + χd is also even since b is even. Since ab+ a0 + χd is b-anti-Niven,
sb(ab+a0 +χd) = sb(a)+a0 +χd is odd, implying that sb(a) is odd.
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Note that there are at most d2b/de terms from a d-AP in the interval [ab,(a+1)b+(b−1)]. Hence,
if there is a b-anti-Niven d-AP of length d2b/de+3, then there exists a nonnegative integer a such
that each of the intervals [ab,ab+b−1], [(a+1)b,(a+1)b+b−1], and [(a+2)b,(a+2)b+b−1]
contains at least two terms from this d-AP. From the above observation, we conclude that sb(a),
sb(a+1), and sb(a+2) are all odd, which is a contradiction. This establishes an upper bound for the
maximum length of a b-anti-Niven d-AP as stated in the theorem. �

We now turn our attention to d-APs for which Theorem 2.6 does not apply.

Theorem 3.5. Let b be even. Then the maximum length of a b-anti-Niven (b− 1)-AP is 2b+ 1.
Furthermore, there exist infinitely many such sequences of length 2b+1.

Proof. Suppose there is a b-anti-Niven (b−1)-AP S of length at least 2b+1. Since gcd(b−1,b) = 1,
there exist two terms in S that are multiples of b. Let these two terms be ab and ab+(b−1)b for some
positive integer a. Note that ab is even, so sb(ab) = sb(a) is odd. Since ab+2(b−1) = (a+1)b+b−2
is an even term in S , the digit sum sb((a+1)b+b−2) = sb(a+1)+b−2 must be odd, implying
that sb(a+1) is also odd. Hence, a = cb+b−1 for some nonnegative integer c, where sb(c) is even.
In other words, ab = cb2 +(b−1)b and ab+(b−1)b = (c+1)b2 +(b−2)b. Also, sb(c+1) is odd
since sb((c+1)b2 +(b−2)b) = sb(c+1)+b−2 is odd.

Now, note that cb2 and sb(cb2) = sb(c) are even, so cb2 is not in S . Similarly, (c + 1)b2 +
(b− 1)b+ b− 2 and sb((c+ 1)b2 +(b− 1)b+ b− 2) = sb(c+ 1)+ b− 1+ b− 2 are even, so (c+
1)b2 +(b−1)b+b−2 = cb2 +(2b+2)(b−1) is also not in S . Therefore, S is a subsequence of
{cb2 + j(b−1) : 1≤ j ≤ 2b+1}, thus the maximum length of a b-anti-Niven (b−1)-AP is at most is
2b+1.

It remains to show that such sequences occur infinitely often. Let c be a nonnegative integer such
that sb(c+ 1) = sb(c)+ 1. Then it is not difficult to observe that sb(cb2 + j(b− 1)) = sb(c)+ b− 1
for 1 ≤ j ≤ b and b+ 2 ≤ j ≤ 2b, and sb(cb2 + j(b− 1)) = sb(c)+ 2(b− 1) for j ∈ {b+ 1,2b+ 1}.
Hence, it suffices to show that there exist infinitely many positive integers c such that

• b - (c+1),
• gcd(cb2 + j(b−1),sb(c)+b−1) = 1 for 1≤ j ≤ b and b+2≤ j ≤ 2b, and
• gcd(cb2 + j(b−1),sb(c)+2(b−1)) = 1 for j ∈ {b+1,2b+1}.

Let p1, p2, . . . , pt be all primes less than or equal to 2b. By Lemma 3.1, there exist infinitely many
positive integers m such that bm+1 ≡ b (mod p1 p2 · · · pt). In other words, p1 p2 · · · pt | b(bm−1). Let
P = bm + 1. Since gcd(bm + 1,b) = 1 and gcd(bm + 1,bm− 1) = 1, we have gcd(P, p1 p2 · · · pt) = 1.
Next, consider q1,q2, . . . ,qν be all prime factors of bm−1 +1. Hence, bm−1 ≡−1 (mod q1q2 · · ·qν).
Let r1,r2, . . . ,r(P−b+1)/2 be positive integers, where ri+1− ri ≥ m+1 for all 1≤ i≤ (P−b−1)/2, be
defined as follows.

• If (P−b+1)/2 is odd, then

bri+2 ≡

{
−1 (mod q1q2 · · ·qν) if 1≤ i≤ (P−b−1)/4;
1 (mod q1q2 · · ·qν) otherwise.
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• If (P−b+1)/2 is even, then

bri+2 ≡


−1 (mod q1q2 · · ·qτ) if 1≤ i≤ (P−b−3)/4;
1 (mod q1q2 · · ·qτ) if (P−b+1)/4≤ i≤ (P−b−3)/2;
b (mod q1q2 · · ·qτ) otherwise.

Now, let c = ∑
(P−b+1)/2
i=1 bri(bm +1). Since b | c, we have b - (c+1). Next, sb(c) = P−b+1 from our

construction, thus sb(c)+ b− 1 = P = bm + 1, which is a factor of c. Recalling that P is relatively
prime to all positive integers up to 2b, we have gcd(cb2 + j(b− 1),P) = 1 for all 1 ≤ j ≤ 2b. It
remains to prove that gcd(cb2 + j(b− 1),sb(c)+ 2(b− 1)) = 1 for j ∈ {b+ 1,2b+ 1}. Note that
sb(c)+2(b−1) = P−b+1+2(b−1) = P+b−1 = b(bm−1+1). For any prime factor q of bm−1+1,
we clearly have q - b. Moreover, q - (b−1), or otherwise, q | b(bm−1 +1) and q | (b−1) imply q | P,
contradicting that P is relatively prime to all positive integers up to 2b. If (P−b+1)/2 is odd, then

cb2 +(b+1)(b−1) =

(
(P−b+1)/2

∑
i=1

bri+2

)
P+b2−1

≡ P+b2−1

≡ P+b2−1− (P+b−1)

≡ b(b−1)

6≡ 0 (mod q)

and cb2+(2b+1)(b−1) = cb2+(b+1)(b−1)+b(b−1)≡ 2b(b−1) 6≡ 0 (mod q). If (P−b+1)/2
is even, then

cb2 +(b+1)(b−1) =

(
(P−b+1)/2

∑
i=1

bri+2

)
P+b2−1

≡ 2bP+b2−1

≡ 2bP+b2−1−2b(P+b−1)

≡−(b−1)2

6≡ 0 (mod q)

and cb2 + (2b+ 1)(b− 1) = cb2 + (b+ 1)(b− 1) + b(b− 1) ≡ −(b− 1)2 + b(b− 1) ≡ b− 1 6≡ 0
(mod q). Finally, our proof is completed by noticing that gcd(cb2 + j(b− 1),b) = 1 for j ∈ {b+
1,2b+1}. �

To complete the investigation on 1-APs, we provide the following corollary by choosing b = 2 in
Theorem 3.5.

Corollary 3.6. For b = 2, the maximum length of a sequence of consecutive 2-anti-Niven numbers is
5. Furthermore, there exist infinitely many such sequences of length 5.
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4. Concluding Remarks

Theorem 3.3 establishes that the maximum length of a b-anti-Niven 2-AP is at most b−2 when b−1
has an odd prime divisor. Although we have not established an upper bound for the maximum length of
a b-anti-Niven 2-AP when b = 2r +1 for some nonnegative integer r, the following theorem establishes
a lower bound.

Theorem 4.1. Let b = 2r +1 for some nonnegative integer r. Then the maximum length of a b-anti-
Niven 2-AP is at least b.

Proof. If r = 0, then b = 2, and {2,4} forms a 2-anti-Niven 2-AP of length 2. If r > 0, then b is odd.
For all 0≤ j≤ (b−1)/2, we have gcd(b+2 j,sb(b+2 j)) = gcd(b+2 j,1+2 j) = gcd(b+2 j,b−1) =
gcd(2r +1+2 j,2r) = 1. Furthermore, for all 0≤ j ≤ (b−3)/2, we have gcd(2b+1+2 j,sb(2b+1+
2 j)) = gcd(2b+1+2 j,3+2 j) = gcd(2b+1+2 j,2b−2) = gcd(2r+1+3+2 j,2r+1) = 1. Therefore,
{b+2 j : 0≤ j ≤ (b−1)/2}∪{2b+1+2 j : 0≤ j ≤ (b−3)/2} forms a b-anti-Niven 2-AP of length
b. �

Theorem 3.5 establishes that the maximum length of a b-anti-Niven (b−1)-AP is at most 2b+1
when b is even. The following theorem establishes a lower bound when b is an odd prime.

Theorem 4.2. Let b be an odd prime. Then the maximum length of a b-anti-Niven (b−1)-AP is at
least 2b+1.

Proof. Clearly, 1, b, and b2 are b-anti-Niven. For all 1≤ j ≤ b−1, we have

gcd
(
b+ j(b−1),sb(b+ j(b−1))

)
= gcd

(
( j+1)b− j,sb( jb+b− j)

)
= gcd(( j+1)b− j, j+b− j)

= gcd(( j+1)b− j,b) = 1

since b is a prime. Furthermore, for all 1≤ j ≤ b−1, we have

gcd
(
b2 + j(b−1),sb(b2 + j(b−1))

)
= gcd

(
b2 + jb− j,sb(b2 +( j−1)b+b− j)

)
= gcd(b2 + jb− j,1+ j−1+b− j)

= gcd(b2 + jb− j,b) = 1.

Therefore, {1,b}∪{b+ j(b− 1) : 1 ≤ j ≤ b− 1}∪{b2}∪{b2 + j(b− 1) : 1 ≤ j ≤ b− 1} forms a
b-anti-Niven (b−1)-AP of length 2b+1. �

Recall that Theorem 3.4 shows that the upper bound on the maximum length of a b-anti-Niven d-AP
given by Theorem 2.6 may not be achievable for even b. However, when b is odd, computational data
suggests otherwise. Of course, if d is odd, then Theorem 2.6 implies that the maximum length of a
b-anti-Niven d-AP is at most 1, which is clearly attainable. It is more interesting to investigate if d is
even. The next conjecture addresses this more interesting case and generalizes Theorem 3.3 to other
even values of d.

Conjecture 4.3. Let b be odd such that b 6= 2r +1 for any positive integer r, let d be even, and let p be
the smallest prime such that p | (b−1) and p - d. Then there exist infinitely many b-anti-Niven d-APs
of length p−1.
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To partially support Conjecture 4.3, we have verified computationally that for b∈{7,11,13,15,19,21,23,25,27,29}
and even integers d ≤ 100 such that d is not a multiple of the square-free kernel of b−1, there exists
at least one b-anti-Niven d-AP of length p−1, where p is the smallest prime p satisfying p | (b−1)
and p - d.

Theorem 3.4 established an upper bound for the maximum length of a b-anti-Niven d-AP when
b ≥ 6 is even and 3 ≤ d ≤ b/2 is an odd integer. We conjecture that this bound is attainable for
infinitely many pairs (b,d).

Conjecture 4.4. There exist infinitely many pairs (b,d), where b≥ 6 is even and 3≤ d ≤ b/2 is an
odd integer, for which there is a b-anti-Niven d-AP of length d2b/de+2.

b d
First term of

a b-anti-Niven d-AP
of length d2b/de+2

10 3 1190
12 3 2005
14 3 3513
18 3 6463
20 5 8779
22 9 457
24 5 549
28 9 3892
30 5 867
32 9 3031
34 15 1126
36 15 1247
38 15 1393
40 15 1549
42 7 1717
44 15 1879
48 7 2251
50 21 2435
52 9 2653
54 15 2849

b d
First term of

a b-anti-Niven d-AP
of length d2b/de+2

56 15 3073
58 15 3293
60 5 3537
62 21 3763
66 15 4283
68 9 4549
70 9 4825
72 9 5107
74 15 5389
78 21 5993
80 9 6313
82 15 6631
84 15 6959
88 15 7643
90 15 8017
92 21 8380
94 21 8746
96 25 9099
98 15 9499

100 27 9883

TABLE 1. Computational data supporting Conjecture 4.4
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