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Abstract

In this paper, we are concerned with the global bifurcation results for p-Laplacian discrete
problem{ −∆[ϕp(∆u(t− 1))] = λa(t)ϕp(u(t)) + a(t)f(t, u(t), λ) + g(t, u(t), λ), t ∈ [1, T ]Z ,

u(0) = u(T + 1) = 0,

where λ > 0 is a parameter, a : [1, T ]Z → [0,∞), f, g ∈ C([0, T+1]Z×R2,R), ∆u(t) = u(t+1)−u(t)
is the forward difference operator, ϕp(s) = |s|p−2s(1 < p < +∞). We shall show that there are two
distinct unbounded continua C+ and C−, consisting of the bifurcation branch C if f is not necessarily
differentiable at the origin with respect to ϕp(u), and there are two distinct unbounded continua
D+ and D−, consisting of the bifurcation branch D if f is not necessarily differentiable at infinity
with respect to ϕp(u).

As the applications of the above result, we shall obtain that there exist at least a positive solution
and a negative one for the half-quasilinear problem{ −∆[ϕp(∆u(t− 1))] = µa(t)F (u(t)) + α(t)ϕp(u

+(t)) + β(t)ϕp(u
−(t)), t ∈ [1, T ]Z ,

u(0) = u(T + 1) = 0,

where µ 6= 0 is a parameter, a : [1, T ]Z → (0,+∞), α, β : [1, T ]Z → R, u+ = max{u, 0}, u− =
−min{u, 0}, F ∈ C(R,R) satisfies sF (s) > 0.
Keywords: p-Laplacian; bifurcation; difference equation; generalized Picone identity
MSC(2020): 39A12; 39A28; 47J10

1. Introduction

In [3], Berestycki considered the following nonlinear Sturm-Liouville problem{ −(pu′)′ + qu = λa(t)u+ F (t, u, u′, λ), t ∈ (0, 1),

b0u(0) + c0u
′(0) = 0, b1u(1) + c1u

′(1) = 0,
(1)

where p, q are continuous function on [0, 1] and bi, ci are real numbers such that |bi|+|ci| 6= 0, i = 0, 1.
Moreover, the nonlinear term has the form F = f1 + f2, f1, f2 satisfying the following conditions:
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(A1) f1 ∈ C([0, 1] × R3,R) and
∣∣f1(t,u,s,λ)

u

∣∣ ≤ M , for all t ∈ [0, 1], 0 < |u| ≤ 1, |s| ≤ 1 and all
λ ∈ R, where M is a positive constant;

(A2) f2 ∈ C([0, 1] × R3,R) and f2(t, u, s, λ) = o(|u| + |s|), near (u, s) = (0, 0), uniformly in
t ∈ [0, 1] and λ on bounded sets.
Using the result of Rabinowitz [18], the author obtained that there are two unbounded connected
branches of problem (1) with bifurcation from an interval. The proof of the main result of (1)
strictly depends on the linear property of operator.

In [13], Ma and Dai extended Berestycki’s result to show a unilateral global bifurcation result
for (1) under the assumptions (A1) and (A2).

Many authors have discussed the existence and multiplicity of solutions for discrete boundary
value problems involving the p-Laplacian difference operator, we refer to [1, 2, 6, 8, 10, 14, 15]
and references therein. These results were usually obtained by the applicability of the topological
method such as the upper and lower solutions technique, critical theory, variational methods, Leray-
Schauder degree, fixed point theory, etc. Moreover, a great attention has been paid to discrete
equations using variational methods and critical point theory, we refer the reader to [7, 9, 12] and
the related results mentioned there.

Therefore, in this article, we extend the results of [13] to the p-Laplacian difference case. We
will establish the unilateral interval bifurcation results for the problem{ −∆[ϕp(∆u(t− 1))] = λa(t)ϕp(u(t)) + a(t)f(t, u(t), λ) + g(t, u(t), λ), t ∈ [1, T ]Z ,

u(0) = u(T + 1) = 0,
(2)

where a : [1, T ]Z → [0,∞) and a(t) 6= 0 on any subinterval of [1, T ]Z , T > 2 is integer. Let Z denote
the integer set, for m,n ∈ Z with m < n, [m,n]Z := {m,m + 1, · · · , n}. f, g ∈ C([1, T ]Z × R2,R)
and we make the following assumptions:

(H1) There exist f0, f
0 ∈ R with f0 6= f 0, where

f0 = lim inf
|s|→0+

f(t, s, λ)

|s|p−1
, f 0 = lim sup

|s|→0+

f(t, s, λ)

|s|p−1

for any t ∈ [1, T ]Z , 0 < |s| ≤ 1 and for all λ ∈ R.
(H2) g(t, s, λ) = o(|s|p−1), near s = 0, uniformly in t ∈ [1, T ]Z and in every bounded interval

of λ.
(H3) There exist f∞, f

∞ ∈ R with f∞ 6= f∞, where

f∞ = lim inf
|s|→+∞

f(t, s, λ)

|s|p−1
, f∞ = lim sup

|s|→+∞

f(t, s, λ)

|s|p−1

for any t ∈ [1, T ]Z , |s| ≥ C for some positive constant C large enough and for all λ ∈ R.
(H4) g(t, s, λ) = o(|s|p−1), near s =∞, uniformly in t ∈ [1, T ]Z and in every bounded interval

of λ.

In the differential case, the spectrum of the one-dimensional half-quasilinear p-Laplacian problem
has been clearly determined, but in the difference case it is not known. In fact, the spectrum of half-
quasilinear eigenvalue problems needs the help of interval bifurcation theory. Therefore, based on
the obtained global interval bifurcation theory, we obtain the existence of principal half-eigenvalue
for half-quasilinear discrete eigenvalue problem{ −∆[ϕp(∆u(t− 1))] = λa(t)ϕp(u(t)) + α(t)ϕp(u

+(t)) + β(t)ϕp(u
−(t)), t ∈ [1, T ]Z ,

u(0) = u(T + 1) = 0,
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where a : [1, T ]Z → (0,+∞), α, β : [1, T ]Z → R, u+ = max{u, 0}, u− = −min{u, 0}. We proved
that the above problem has two principal half-eigenvalues λ+ and λ−, aside from λ+ and λ−, there
is no other half-eigenvalue has positive or negative eigenfunction. As the applications of the above
result, it is the purpose of this paper to determine the interval of µ in which{ −∆[ϕp(∆u(t− 1))] = µa(t)F (u(t)) + α(t)ϕp(u

+(t)) + β(t)ϕp(u
−(t)), t ∈ [1, T ]Z ,

u(0) = u(T + 1) = 0

has a positive or negative solution, where µ 6= 0 is a parameter, F ∈ C(R,R).

This paper is organized as follows: In Section 2, we state some notations and preliminary results.
Sections 3-4 are devoted to study the bifurcation phenomena from the trivial solution axis or from
infinity for (2) which are not necessarily linearizable, respectively. In Section 5, we will discuss
the properties of the eigenvalue of the half-quasilinear discrete problem and the global structure of
one-sign solution sets for the corresponding nonlinear problems in detail.

2. Preliminaries

In this section, we introduce some well-known results which will be used in the subsequent
section.

Set E = {u : [0, T + 1]Z → R : u(0) = u(T + 1) = 0} with the norm ‖u‖ = max
t∈[0,T+1]Z

|u(t)|. Let

Y =
{
u
∣∣u : [1, T ]Z → R

}
with the norm ||u||Y = max

t∈[1,T ]Z

∣∣u(t)
∣∣.

Lemma 2.1. (See. [4, Propositions1.8-1.10]) The eigenvalue problem
−∆[ϕp(∆u(t− 1))] = λa(t)ϕp(u(t)), t ∈ [1, T ]Z ,

u(0) = u(T + 1) = 0

(3)

has the first simple eigenvalue λ1, let φ1 be the eigenfunction corresponding to λ1. Moreover, φ1

does not change sign in [1, T ]Z.

Next, we will give the generalized Picone type identity, which will be used in the proof of the
main theorem.

Lemma 2.2. (See. [16]) Define

lp(x(t)) = ∆[ϕp(∆x(t))]− P (t)ϕp(x(t+ 1))

and

Lp(y(t)) = ∆[ϕp(∆y(t))]−Q(t)ϕp(y(t+ 1)),
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where t ∈ [m,n]Z ,m, n ∈ Z,m ≤ n, and P (t), Q(t) are real-valued sequences defined on [m,n]Z. Let

x(t), y(t) be defined on [m,n+ 2]Z and let y(t) 6= 0 for t ∈ [m,n+ 1]Z. Then the equality

∆
{ x(t)

ϕp(y(t))
[ϕp(y(t))ϕp(∆x(t))− ϕp(x(t))ϕp(∆y(t))]

}
= (P (t)−Q(t))|x(t+ 1)|p + x(t+ 1)lp(x(t))− |x(t+ 1)|p

ϕp(y(t+ 1))
Lp(y(t))

+ [|∆x(t)|p +
ϕp(∆y(t))

ϕp(y(t))
|x(t)|p − ϕp(∆y(t))

ϕp(y(t+ 1))
|x(t+ 1)|p]

holds for t ∈ [m,n]Z.

Lemma 2.3. (Young’s inequality) If a, b ≥ 0, p, q > 1 satisfy 1
p

+ 1
q

= 1, then ab ≤ ap

p
+ bq

q
, and the

equality holds if and only if b = ap−1.

Definition 2.4. (See. [11]) Let u : [1, T ]Z → R. If u(t0) = 0, then t0 is a zero of u. If u(t0) = 0

and u(t0 − 1)u(t0 + 1) < 0 for some t0 ∈ [2, T − 1]Z , then t0 is a simple zero of u.

Consider the following auxiliary problem{
∆[ϕp(∆u(t− 1))] = h(t), t ∈ [1, T ]Z ,

u(0) = u(T + 1) = 0,
(4)

where h : [1, T ]Z → R. Clearly the problem (4) is equivalent to

u(t) = Gp(h)(t) := u(1) +
t−1∑
s=1

ϕ−1
p [ϕp(u(1)) +

s∑
τ=1

h(τ)], t ∈ [1, T + 1]Z ,

It is known that Gp : Y → E is continuous and maps bounded sets of R into relatively compacts of
E.

We define the operator T pλ : E → E by

T pλ (u)(t) = u(1) +
t−1∑
s=1

ϕ−1
p [ϕp(u(1))−

s∑
τ=1

λaϕp(u)(τ)]

= Gp

(
− λaϕp(u)

)
(t),

Then T pλ : E → E is compact.
Define the Nemitskii operators F : R× E → Y by

F (λ, u)(t) = −λa(t)ϕp(u(t))− a(t)f(t, u(t), λ)− g(t, u(t), λ).

Thus it is obvious that F is continuous operator which maps bounded sets of R×E into the bounded
sets of Y and problem (1.1) can be equivalently written as

u = Gp ◦ F (λ, u) = Ap(λ, u).

4
26 Jun 2023 05:35:02 PDT
221004-FumeiYe Version 2 - Submitted to Rocky Mountain J. Math.



A is completely continuous in R× E → E and for any λ ∈ R, A(λ, 0) = 0.

We use the terminology of Rabinowitz [20]. Let us denote S+ = {u ∈ E
∣∣u(t) > 0, t ∈ [1, T ]Z},

and let S− = −S+ and S = S+ ∪ S−. S+ and S− are disjoint and open in E. Furthermore, we use
C to denote the closure in R × E of the set of nontrivial solutions of (2) under assumptions (H1)
and (H2). C ± denote the subset of C with u ∈ S±, and C = C + ∪ C −.

In addition, we use the terminology of Rynne [17]. For any λ ∈ R, we say that a subset
C ′ ⊂ C meets (λ, 0) (similarly, (λ,∞)) if there is a sequence (λn, un) ∈ C ′(n = 1, 2, · · · ) such that
λn → λ, ‖un‖ → 0 (similarly, ‖un‖ → ∞) as n→ +∞. Furthermore, we will say that C ′ ⊂ C meets
(λ, 0) throught R × E if the sequence (λn, un) ∈ C ′(n = 1, 2, · · · ) can be chosen such that un ∈ E
for all n. If I ⊂ R is a bounded interval we say that C ′ ⊂ C meets I × {0} (similarly, I × {∞})
if C ′ meets (λ, 0) (similarly, (λ,∞)) for some λ ∈ I. Similarly, we can define C ′ meets I × {0} or
I × {∞} through R× E.

3. Interval bifurcation from trivial solution axis

In this section, we shall study the unilateral global bifurcation phenomena of problem (2) which
bifurcates from trivial solution axis or from infinity. In order to obtain the main result, the gener-
alized Picone identity plays a key role.

The following lemmas will be needed in our further considerations.

Lemma 3.1. Assume (H1) and (H2) hold. Let (λ, u) is a solution of (2), if there is t0 ∈ [1, T ]Z

such that one of the following two situations hold:

(i) u(t0) = 0,∆u(t0) = 0;

(ii) u(t0) = 0, u(t0 − 1)u(t0 + 1) ≥ 0.

Then u ≡ 0.

Proof. (i) In view of (2), we have

ϕp(∆u(t0 − 1))− ϕp(∆u(t0)) = λa(t)ϕp(u(t0)) + a(t)f(t, u(t0), λ) + g(t, u(t0), λ).

Connecting the assumptions (H1)-(H2) with u(t0) = 0,∆u(t0) = 0, we obtain that ϕp(∆u(t0−1)) =

0, which ensures ∆u(t0 − 1) = 0. Since u(t0) = 0, thus u(t0 − 1) = 0. Repeat this step and we can

find: u(t) ≡ 0 for every t ≤ t0, t ∈ [1, T ]Z .

Similarly, by virtue of ϕp(∆u(t0)) − ϕp(∆u(t0 + 1)) = 0, this yields ∆u(t0 + 1) = 0. Hence,

u(t0 + 2) = 0. Repeat this step and we can find: u(t) ≡ 0 for every t ≥ t0, t ∈ [1, T ]Z .

(ii) Similar to the calculation in (i), it follows that ϕp(−u(t0−1))−ϕp(u(t0 +1)) = 0. Combining

the conclusion of (i) and u(t0 − 1)u(t0 + 1) ≥ 0, we obtain that u ≡ 0.

To get the main results, we introduce the following approximate problem{ −∆[ϕp(∆u(t− 1))] = λa(t)ϕp(u(t)) + a(t)f(t, u(t)|u(t)|ε, λ) + g(t, u(t), λ), t ∈ [1, T ]Z ,

u(0) = u(T + 1) = 0.
(5)
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Note that it follows from the condition (H1), for any ε > 0, the function f(t, u(t)|u(t)|ε, λ) satisfies

f(t, u(t)|u(t)|ε, λ) = o(|u|p−1)

near u = 0, uniformly for t ∈ [1, T ]Z and λ on bounded sets.

Lemma 3.2. Let I0 = [λ1 − f 0, λ1 − f0], let εn → 0, 0 < εn < 1. If there exists a sequence

{(λn, un)} ⊂ R × Sσ such that (λn, un) a nontrivial solution of (5) corresponding to ε = εn, and

(λn, un)→ (λ, 0) in R× E. Then λ ∈ I0, where σ = + or −.

Proof. Without loss of generality, let ‖un‖ ≤ 1 and vn = un
‖un‖ . So vn satisfies

−∆[ϕp(∆vn(t− 1))] = λa(t)ϕp(vn(t)) + a(t)fn(t) + gn(t), t ∈ [1, T ]Z ,

vn(0) = vn(T + 1) = 0,

(6)

where fn(t) = f(t,un|un|εn ,λn)
‖un‖p−1 , gn(t) = g(t,un,λn)

‖un‖p−1 .

Setting g(t, u, λ) = max
0≤|s|≤u

∣∣g(t, s, λ)
∣∣ for any t ∈ [1, T ]Z . According to (H2), g is nondecreasing

with respect to u and

lim
u→0

g(t, u, λ)

|u|p−1
= 0 (7)

uniformly for t ∈ [1, T ]Z and in every bounded interval of λ. Furthermore, it can be obtained from

(7)
|g(t, u, λ)|
‖u‖p−1

≤ g(t, u, λ)

‖u‖p−1
≤ g(t, ‖u‖, λ)

‖u‖p−1
→ 0, u→ 0 (8)

uniformly for t ∈ [1, T ]Z and in every bounded interval of λ. Obviously, in view of (H1), there is

fn(t) = f(t,un|un|εn ,λn)
ϕp(un|un|εn )

ϕp(un|un|εn )

‖un‖p−1

≤ f 0‖un‖εn(p−1)

→ f 0, n→ +∞

(9)

for any t ∈ [1, T ]Z . Connecting (6), (8) with (9), we may assume that vn → v and ‖v‖ = 1.

Therefore, v lies in the closure of Sσ.

Let us prove that in fact v ∈ Sσ. If v 6∈ Sσ, then v ∈ ∂Sσ. Hence v has at least one double

zero in [1, T ]Z . We assume that there exists t0 ∈ [1, T ]Z such that either vn(t0) → 0,∆vn(t0) → 0

or vn(t0)→ 0, vn(t0 − 1)vn(t0 + 1) ≥ 0 as n→ +∞. By Lemma 3.1, we can see that vn ≡ 0, which

contradicts ‖v‖ = 1. Hence v ∈ Sσ.

In order to obtain the interval of λ, we will now compare v and φσ1 in the spirit of the Picone’s

identity (cf. [16], Lemma 1). We know that vn satisfies

∆[ϕp(∆vn(t− 1))] +
(
λna(t) + a(t)

fn(t)

ϕp(vn(t))
+

gn(t)

ϕp(vn(t))

)
ϕp(vn(t)) = 0,
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and φσ1 satisfies

∆[ϕp(∆φ
σ
1 (t− 1))] + λ1a(t)ϕp(φ

σ
1 (t)) = 0.

Since vn ∈ Sσ, φσ1 ∈ Sσ. In view of Lemma 2.2, we can obtain that

∆
{
vn(t− 1)ϕp(∆vn(t− 1))− |vn(t− 1)|p

ϕp(φσ1 (t− 1))
ϕp(∆φ

σ
1 (t− 1))

}
= vn(t){∆[ϕp(∆vn(t− 1))]} − |vn(t)|p

ϕp(φσ1 (t))
{∆[ϕp(∆φ

σ
1 (t− 1))]}

+ [|∆vn(t− 1)|p +
ϕp(∆φ

σ
1 (t− 1))

ϕp(φσ1 (t− 1))
|vn(t− 1)|p − ϕp(∆φ

σ
1 (t− 1))

ϕp(φσ1 (t))

(
vn(t)

)p
]

=
(
λ1a(t)− λna(t)− a(t)

fn(t)

ϕp(vn(t))
− gn(t)

ϕp(vn(t))

)(
vn(t)

)p
+ |∆vn(t− 1)|p +

ϕp(∆φ
σ
1 (t− 1))

ϕp(φσ1 (t− 1))
|vn(t− 1)|p − ϕp(∆φ

σ
1 (t− 1))

ϕp(φσ1 (t))

(
vn(t)

)p
.

Therefore,

T∑
t=1

∆
{
vn(t− 1)ϕp(∆vn(t− 1))− |vn(t− 1)|p

ϕp(φσ1 (t− 1))
ϕp(∆φ

σ
1 (t− 1))

}
=

T∑
t=1

(
λ1a(t)− λna(t)− a(t)

fn(t)

ϕp(vn(t))
− gn(t)

ϕp(vn(t))

)(
vn(t)

)p
+

T∑
t=1

[
|∆vn(t− 1)|p +

ϕp(∆φ
σ
1 (t− 1))

ϕp(φσ1 (t− 1))
|vn(t− 1)|p − ϕp(∆φ

σ
1 (t− 1))

ϕp(φσ1 (t))

(
vn(t)

)p]
.

By calculation, we know that

T∑
t=1

∆
{
vn(t− 1)ϕp(∆vn(t− 1))− |vn(t− 1)|p

ϕp(φσ1 (t− 1))
ϕp(∆φ

σ
1 (t− 1))

}
= 0.

Since

|∆vn(t− 1)|p +
ϕp(∆φ

σ
1 (t− 1))

ϕp(φσ1 (t− 1))
|vn(t− 1)|p − ϕp(∆φ

σ
1 (t− 1))

ϕp(φσ1 (t))

(
vn(t)

)p ≥ 0, t ∈ [1, T ]Z ,

and the equality holds if and only if ∆vn(t− 1) =
vn(t−1)∆φσ1 (t−1)

φσ1 (t−1)
. Combining the above conclusion,

we conclude that

T∑
t=1

(
λ1a(t)− λna(t)− a(t)

fn(t)

ϕp(vn(t))
− gn(t)

ϕp(vn(t))

)(
vn(t)

)p ≤ 0. (10)

Similarly, by swapping vn and φσ1 , we can obtain that

T∑
t=1

(
λ1a(t)− λna(t)− a(t)

fn(t)

ϕp(vn(t))
− gn(t)

ϕp(vn(t))

)(
φσ1 (t)

)p ≥ 0. (11)

7
26 Jun 2023 05:35:02 PDT
221004-FumeiYe Version 2 - Submitted to Rocky Mountain J. Math.



In view of (10), (H1) (H2), we see that∑T
t=1

(
λ1 − λ)a(t)

(
vn(t)

)p ≤ lim
n→+∞

∑T
t=1 a(t)f(t,un|un|εn ,λn)

‖un‖p−1

(
vn(t)

)p
≤ lim

n→+∞

∑T
t=1 a(t)f(s,un|un|εn ,λn)

|ϕp(un|un|εn )| · |ϕp(|un|
εn)|
(
vn(t)

)p
≤
∑T

t=1 a(t)f 0
(
vn(t)

)p
.

It follows that λ ≥ λ1 − f 0.

In view of (11), (H1) (H2), we see that∑T
t=1

(
λ1 − λ)a(t)

(
φσ1 (t)

)p ≥ lim
n→+∞

∑T
t=1 a(t)f(t,un|un|εn ,λn)

‖un‖p−1

(
φσ1 (t)

)p
≥ lim

n→+∞

∑T
t=1 a(t)f(s,un|un|εn ,λn)

|ϕp(un|un|εn )| · |ϕp(|un|
εn)|
(
φσ1 (t)

)p
≥
∑T

t=1 a(t)f0

(
φσ1 (t)

)p
.

It follows that λ ≤ λ1 − f0.

Hence, λ ∈ I0.

Based on the analysis above, we have the following interval bifurcation result for the problem
(2).

Theorem 3.3. Assume (H1)-(H2) hold. The connected component C+ of C +∪(I0×{0}), containing

I0×{0} is unbounded and C+ ⊂ (R×S+)∪(I0×{0}), the connected component C− of C −∪(I0×{0}),

containing I0 × {0} is unbounded and C− ⊂ (R× S−) ∪ (I0 × {0}).

Proof. Without loss of generality, we only prove the case of C+, and we can prove C− in the same

method. Let C+ be the component of C + ∪ (I0 × {0}) containing I0 × {0}. We divide the proof

into the following two steps.

Step 1. Firstly, we prove that C+ ⊂ (R× S+) ∪ (I0 × {0});

For any (λ∗, u∗) ∈ C+, then either u∗ ∈ S+ or u∗ ∈ ∂S+. if u∗ ∈ ∂S+, then there exists

t0 ∈ [1, T ]Z such that

u∗(t0) = 0, ∆u∗(t0) = 0 or u∗(t0) = 0, ∆u∗(t0 − 1)∆u∗(t0 + 1) ≥ 0.

In view of the Lemma 3.1, it follows that u∗ ≡ 0. Hence, there exists a sequence {(λn, un)} ⊂ R×S+

such that (λn, un) is a solution of (5) corresponding to ε = 0, and (λn, un) → (λ∗, 0) in R × E.

Lemma 3.2 implies that λ∗ ∈ I0. Thus (λ∗, u∗) ∈ I0 × {0}.
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If u∗ ∈ S+, we see that
−∆[ϕp(∆u∗(t− 1))] = λ∗a(t)ϕp(u∗(t)) + a(t)f(t, u∗(t), λ) + g(t, u∗(t), λ), t ∈ [1, T ]Z ,

u∗(0) = u∗(T + 1) = 0,

This implies that µ = 1 is a eigenvalue of the following problem
−∆[ϕp(∆u(t− 1))] = µ

(
λ∗a(t) + a(t)f(t,u∗(t),λ∗)

ϕp(u∗(t))
+ g(t,u∗(t),λ∗)

ϕp(u∗(t))

)
ϕp(u(t)), t ∈ [1, T ]Z ,

u(0) = u(T + 1) = 0.

By (H1) and (H2), we obtain that for any τ > 0, there exists a positive constant γ ≤ 1 such that

when |s| ∈ [0, γ], there is

|g(t, s, λ)| ≤ τϕp(|s|)

uniformly for t ∈ [1, T ]Z and fixed λ. Hence, we deduce that

K(t, u∗, λ∗) ≤ |λ∗| max
t∈[1,T ]Z

a(t) +H + τ + max
t∈[1,T ]Z

max
|s|∈[γ,‖u∗‖]

∣∣∣f(t, s, λ∗) + g(t, s, λ∗)

ϕp(s)

∣∣∣,
H = max

t∈[1,T ]Z
a(t) ·max{|f0|, |f 0|},

K(t, u∗, λ∗) = λ∗a(t) +
a(t)f(t, u∗(t), λ∗)

ϕp(u∗(t))
+
g(t, u∗(t), λ∗)

ϕp(u∗(t))
.

Similar to the proof in [5, Proposition 3.2], it is easy to get that u > 0 holds on [1, T ]Z . Therefore,

C+ ⊂ (R× S+) ∪ (I0 × {0}). The same can be proved C− ⊂ (R× S−) ∪ (I0 × {0}).

Step 2. We can prove that C+ and C− are both unbounded in R × E by using the method of

Theorem 2.1 in [13].

Corollary 3.4. If f ≡ 0, then there exist two unbounded continua P+ and P− of solutions of (2),

bifurcating from (λ1, 0) and P+ ⊂ (R× S+) ∪ {(λ1, 0)},P− ⊂ (R× S−) ∪ {(λ1, 0)}.

4. Interval bifurcation from infinity

As in the semilinear case in [19], Rabinowitz established the global bifurcation results from
infinity. Inspired by the Theorem 1.6 of [19], next, we shall study the unilateral global bifurcation
phenomena of problem (2) which bifurcates from infinity. We use (H3) and (H4) instead of (H1)
and (H2), let D to denote the set of nontrivial solutions of (2) under assumptions (H3) and (H4).
Our second main result is the following theorem.
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Theorem 4.1. Assume (H3)-(H4) hold. Let I∞ = [λ1 − f∞, λ1 − f∞] and σ = + and −. There

exists a component Dσ of D ∪ (I∞×{∞}), containing I∞×{∞}. Moreover, if Λ ⊂ R is an interval

such that Λ ∩ (I∞) = I∞ and M is a neighborhood of I∞ × {∞} whose projection on R lies in Λ

and whose projection on E is bounded away from 0, then either

1◦. Dσ −M is bounded in R× E and Dσ −M meets R = {(λ, 0)|λ ∈ R} or

2◦. Dσ −M is unbounded.

Furthermore, if 2◦ occurs and Dσ−M has a bounded projection on R, then Dσ−M meets I∞j ×{∞}

for some j 6= 1, where I∞j = [λj − f∞, λj − f∞].

Proof. If (λ, u) ∈ D and ‖u‖ 6= 0. Let ω = u
‖u‖2 , dividing (2) by ‖u‖2(p−1), we obtain

−∆[ϕp(∆ω(t− 1))] = λa(t)ϕp(ω(t)) + a(t) f(t,u,λ)

‖u‖2(p−1) + g(t,u,λ)

‖u‖2(p−1) , t ∈ [1, T ]Z ,

ω(0) = ω(T + 1) = 0.

(12)

Define

f̃(t, ω, λ) =


‖ω‖2(p−1)f(t, ω

‖ω‖2 , λ), ω 6= 0,

0, ω = 0,

and

g̃(t, ω, λ) =


‖ω‖2(p−1)g(t, ω

‖ω‖2 , λ), ω 6= 0,

0, ω = 0.

Obviously, (12) is equivalent to
−∆[ϕp(∆ω(t− 1))] = λa(t)ϕp(ω(t)) + a(t)f̃(t, ω, λ) + g̃(t, ω, λ), t ∈ [1, T ]Z ,

ω(0) = ω(T + 1) = 0.

(13)

It is easily can be seen that (H3) and (H4) imply

lim inf
|ω|→0+

f̃(t, ω, λ)

|ω|p−1
= f∞, lim sup

|ω|→0+

f̃(t, ω, λ)

|ω|p−1
= f∞

and g̃(r, ω, λ) = o(|ω|p−1), near ω = 0, uniformly for t ∈ [1, T ]Z and in every bounded interval of λ.

We using Theorem 3.3 to the problem (13), which implies that there exists connected component

Dσ of C σ ∪ (I∞ × {0}), containing I∞ × {0} is unbounded and

Dσ ⊂ (R× Sσ ∪ (I∞ × {0})).

In view of ω → ω
‖ω‖2 = u, it follows that Dσ → Dσ. Furthermore, the conclusions in the theorem

can be obtained.
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Combining the facts of Theorem 3.3 with the proof of Theorem 4.1, we can obtain the following
result.

Theorem 4.2. There exists a neighborhood N ⊂M of I∞×{∞} such that (Dσ ∩N ) ⊂ (R×Sσ ∪

(I∞ × {∞})) for σ = + and σ = −.

Remark 4.3. Note that we can only construct the connected components of positive and negative

solutions, but cannot construct connected components of change-sign solutions. The main reason is

that we do not know whether other eigenvalues of the problem (3) are simple. If we can overcome

this difficulty in the future, the conclusions of these two sections can be naturally extended.

5. Existence of one-sign solutions for half-quasilinear discrete problem

Based on the global interval bifurcation conclusions of the previous sections, we first study the
spectrum of the following half-quasilinear eigenvalue problem{ −∆[ϕp(∆u(t− 1))] = λa(t)ϕp(u(t)) + α(t)ϕp(u

+(t)) + β(t)ϕp(u
−(t)), t ∈ [1, T ]Z ,

u(0) = u(T + 1) = 0,
(14)

where λ ∈ R is a parameter, u+ = max{u, 0}, u− = −min{u, 0}, a : [1, T ]Z → (0,+∞), α, β :
[1, T ]Z → R.

We say λ is a half-eigenvalue of (14) if there exists a nontrivial solution (λ, u). λ is said to be
simple if all solutions (λ, ω) of (14), with ω = ku (k > 0 is a constant). A half-eigenvalue is called
a principal half-eigenvalue if its corresponding eigenfunction is positive or negative.

Theorem 5.1. There exist two simple half-eigenvalues λ+ and λ− for problem (14). The corre-

sponding half-quasilinear solutions are in {λ+} × S+ and {λ−} × S−. Furthermore, aside from λ+

and λ−, the problem (14) has no other half-eigenvalue with positive or negative eigenfunction.

Proof. According to Lemma 3.2, for σ = + or σ = −, the problem (14) has at least one solution

(λσ, uσ) ∈ R × Sσ. Note that {(λσ, kuσ), k > 0} are half-quasilinear solutions in {λσ} × Sσ. We

only prove the case of σ = −, since the case of σ = + is similar.

We claim that for any solution (λ, u) of problem (14) with u ∈ S−, we have λ = λ− and u = ku−

for some constant k > 0.
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Similar to the arguments of the Lemma 3.2, we have that

T∑
t=1

∆
{
u−(t− 1)ϕp(∆u

−(t− 1))− |u
−(t− 1)|p

ϕp(u(t− 1))
ϕp(∆u(t− 1))

}
=

T∑
t=1

(
λ− − λ

)
a(t)|u−(t)|p

+
T∑
t=1

[
|∆u−(t− 1)|p +

ϕp(∆u(t− 1))

ϕp(u(t− 1))
|u−(t− 1)|p − ϕp(∆u(t− 1))

ϕp(u(t))
|u−(t)|p

]
.

It is easy to see that

T∑
t=1

∆
{
u−(t− 1)ϕp(∆u

−(t− 1))− |u
−(t− 1)|p

ϕp(u(t− 1))
ϕp(∆u(t− 1))

}
= 0

T∑
t=1

[
|∆u−(t− 1)|p +

ϕp(∆u(t− 1))

ϕp(u(t− 1))
|u−(t− 1)|p − ϕp(∆u(t− 1))

ϕp(u(t))
|u−(t)|p ≥ 0,

and the equality holds if and only if ∆u−(t−1)
u−(t−1)

= ∆u(t−1)
u(t−1)

.

Hence,
T∑
t=1

(
λ− − λ

)
a(t)|u−(t)|p ≤ 0,

which implies λ ≥ λ−. Similarly,

T∑
t=1

(
λ− − λ

)
a(t)|u(t)|p ≥ 0,

it follows that λ ≤ λ−. Thus there exists constant k > 0 such that u = ku− and λ = λ−.

Remark 5.2. min{λ−, λ+} is the smallest half-eigenvalue of (14).

Remark 5.3. By some simple computations, we obtain that if β ≡ 0, then λ− = λ1; if α ≡ 0, then

λ+ = λ1; if α ≡ β ≡ 0, then λ− = λ+ = λ1.

Next, we discuss the bifurcation phenomena of the problem
−∆[ϕp(∆u(t− 1))] = λa(t)ϕp(u(t)) + α(t)ϕp(u

+(t)) + β(t)ϕp(u
−(t)) + h(t, u(t), λ),

t ∈ [1, T ]Z ,

u(0) = u(T + 1) = 0,

(15)

where h(t, s, λ) = o(|s|p−1) near s = 0, uniformly for t ∈ [1, T ]Z and λ on bounded sets.
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Theorem 5.4. For σ = + or −, (λσ, 0) is a bifurcation point for problem (15). Moreover, there

exists an unbounded continuum Cσ of solutions to the problem (15) such that Cσ ⊂
(
(R × Sσ) ∪

{(λσ, 0)}
)
.

Proof. Let α = max
t∈[1,T ]Z

|α(t)|, β = max
t∈[1,T ]Z

|β(t)| and

I = [λ1 −
α + β

a0

, λ1 +
α + β

a0

],

where a0 = min
t∈[1,T ]Z

a(t). It follows from Theorem 3.3 that from I ×{0} it bifurcates two unbounded

continua C+ and C− in R× E of the solutions to the problem (15). Further,

Cσ ⊂ (R× Sσ) ∪ (I × {0}),

where σ = + or −. We claim that Cσ ∩ (R× {0}) = (λσ, 0). In fact, let (λn, un) ∈ Cσ, un 6≡ 0 and

(λn, un)→ (λ, 0). Set ωn = un
‖un‖ , thus ωn satisfies

−∆[ϕp(∆ωn(t− 1))] = λna(t)ϕp(ωn(t)) + α(t)ϕp(ω
+
n (t)) + β(t)ϕp(ω

−
n (t)) +

h(t, un(t), λn)

‖un‖p−1
.

According to the proof of the (8) and the compactness of Gp, we deduce that ωn → ω0 in E as

n→∞. Hence, ω0 satisfies

−∆[ϕp(∆ω0(t− 1))] = λa(t)ϕp(ω0(t)) + α(t)ϕp(ω
+
0 (t)) + β(t)ϕp(ω

−
0 (t))

and ‖ω0‖ = 1. This implies that λ = λσ.

Let Cσ denote the closure in R× E of the solutions set {(λ, ω) : ω ∈ Sσ} of (15), we have

Cσ ∩ (R× {0}) ⊂ {(λσ, 0)}.

If Cσ is the component given by Theorem 3.3, we define Cσ = Cσ ∩ Cσ. It is easy to verify that

Cσ is an unbounded continuum of Cσ and

(λσ, 0) ∈ Cσ ⊂
(
(R× Sσ) ∪ {(λσ, 0)}

)
.

According to the above spectral results and bifurcation conclusions, we discuss the existence of
one-sign solutions for the p-Laplacian discrete problem

−∆[ϕp(∆u(t− 1))] = µa(t)F (u(t)) + α(t)ϕp(u
+(t)) + β(t)ϕp(u

−(t)),

t ∈ [1, T ]Z ,

u(0) = u(T + 1) = 0,

(16)
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where µ 6= 0 is a parameter, we assume that F ∈ C(R,R) satisfies
(H5) sF (s) > 0 for all s 6= 0;
(H6) there exist F0, F∞ ∈ (0,+∞) such that

F0 = lim
|s|→0+

F (s)

ϕp(s)
, F∞ = lim

|s|→+∞

F (s)

ϕp(s)
.

Under the above assumptions, we can obtain the following results for the existence of one-sign
solutions.

Theorem 5.5. If µ ∈
(

min{λσ
F0
, λσ
F∞
},max{ λσ

F∞
, λσ
F0
}
)
, then (16) has at least one solution uσ such

that σuσ > 0 in [1, T ]Z, where σ = + or −.

Proof. By (H6), it is easy to see that there exists ι ∈ C(R,R) such that

F (s) = F0ϕp(s) + ι(s).

Clearly,

lim
|s|→0+

ι(s)

ϕp(s)
= 0.

Let us consider

−∆[ϕp(∆u(t− 1))] = µa(t)F0ϕp(u(t)) + α(t)ϕp(u
+(t)) + β(t)ϕp(u

−(t)) + µa(t)ι(u(t)),

t ∈ [1, T ]Z ,

u(0) = u(T + 1) = 0

(17)

as a bifurcation problem from the trivial solution u ≡ 0. Applying the Theorem 5.4 to (17),

we know that there is a nontrivial solution branch C of (17) bifurcating from (λσ
F0
, 0) such that

C ⊂
(
(R× Sσ) ∪ {(λσ

F0
, 0)}

)
, and it joins (λσ

F0
, 0) to infinity.

Let us prove that C joins (λσ
F0
, 0) to ( λσ

F∞
,+∞). Set (λn, un) ∈ C, un 6≡ 0, we know that

λn + ‖un‖ → +∞.

We claim that if there exists positive constant K such that |λn| ∈ [0, K] holds for any n ∈ N,

then C joins (λσ
F0
, 0) to ( λσ

F∞
,+∞).

Note that

‖un‖ → +∞, as n→ +∞.

We can see that there exists κ ∈ C(R,R) such that

F (s) = F∞ϕp(s) + κ(s).
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Obviously,

lim
|s|→+∞

κ(s)

ϕp(s)
= 0.

Consider the problem

−∆[ϕp(∆u(t− 1))] = µa(t)F∞ϕp(u(t)) + α(t)ϕp(u
+(t)) + β(t)ϕp(u

−(t)) + µa(t)κ(u(t)),

t ∈ [1, T ]Z ,

u(0) = u(T + 1) = 0.

(18)

Set vn = un
‖un‖2 , dividing (18) by ‖un‖2(p−1), we obtain

−∆[ϕp(∆vn(t− 1))] = λna(t)F∞ϕp(vn(t)) + α(t)ϕp(v
+
n (t)) + β(t)ϕp(v

−
n (t))+

λna(t) κ(un)

‖un‖2(p−1) , t ∈ [1, T ]Z ,

vn(0) = vn(T + 1) = 0.

(19)

Noting that

lim
n→+∞

κ(un(t))

‖un‖2(p−1)
= 0.

The boundedness of vn ensures that vn → v and v ∈ E, thus

−∆[ϕp(∆v(t− 1))] = λa(t)F∞ϕp(v(t)) + α(t)ϕp(v
+(t)) + β(t)ϕp(v

−(t)),

where λ = lim
n→+∞

λn. By virtue of Theorem 5.1 and v → v
‖v‖2 = u, it follows that λF∞ = λσ. Hence,

λ = λσ
F∞

.

Consequently, C joins (λσ
F0
, 0) to ( λσ

F∞
,∞).

In fact, we show that there exists a constant K such that |λn| ∈ [0, K], for any n ∈ N. Suppose

there is no such K, choosing a subsequence and relabelling if necessary, it follows that lim
n→+∞

|λn| =

+∞. Since (λn, un) ∈ C, thus

−∆[ϕp(∆un(t− 1))] = λna(t)F̂n(t)ϕp(un(t)) + α(t)ϕp(u
+
n (t)) + β(t)ϕp(u

−
n (t)),

where

F̂n(t) =


F (un(t))
ϕp(un(t))

, un(t) 6= 0,

F0, un(t) = 0.

We see from (H5)-(H6) that there exists constant χ > 0 such that F (s)
ϕp(s)

≥ χ, ∀s 6= 0. Therefore,

lim
n→+∞

λnF̂n(t) = ±∞.
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Suppose that φσ is the eigenfunction corresponding to λσ. If lim
n→+∞

λnF̂n(t) = −∞. Applying the

Theorem 3 of [16] to φσ and un, then φσ must change sign for n large enough, it is conflicted..

Similarly, we can prove that lim
n→+∞

λnF̂n(t) = +∞ is impossible.

Finally, we present an example to illustrate the result of Theorem 5.5.

Example 5.6. Consider the problem
−∆[ϕp(∆u(t− 1))] = µF (u(t)) + ϕp(u

+(t)) + ϕp(u
−(t)), t ∈ [1, 6]Z ,

u(0) = u(7) = 0,

(20)

where

F (s) = f1(s) + f2(s)ϕp(s),

f1(s) =



0, s = 0,

2ϕp(s), |s| ∈ (0, 1],

10ϕp(s)− 1
4
, |s| ∈ (1,∞)

and

f2(s) =
1

5
for |s| ∈ [0,∞).

It is clear that

lim
|s|→0+

F (s)

ϕp(s)
= F0, lim

|s|→+∞

F (s)

ϕp(s)
= F∞,

where

F0 =
11

5
, F∞ =

51

5
.

Hence, if µ ∈
(

min{5λσ
11
, 5λσ

51
},max{5λσ

51
, 5λσ

11
}
)
, then problem (20) has at least a constant-sign solu-

tion uσ satisfying σuσ > 0 with σ = + or σ = −, where λσ is the half-eigenvalue of problem
−∆[ϕp(∆u(t− 1))] = λϕp(u(t)) + ϕp(u

+(t)) + ϕp(u
−(t)), t ∈ [1, 6]Z ,

u(0) = u(7) = 0.

Conflict of interest

The author declares that there is no conflict of interests regarding the publication of this paper.

16
26 Jun 2023 05:35:02 PDT
221004-FumeiYe Version 2 - Submitted to Rocky Mountain J. Math.



Authors’ contributions

The author read and approved the final manuscript.

Acknowledgments

This work is supported by the Chongqing Postdoctoral Science Foundation Project (No. 2023NSCQ-
BHX0378).

References
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