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Abstract: In this paper, we analyze the growth behavior of entire solutions of the
non-linear binomial differential equation

Afm0(f ′)m1(f ′′)m2 · · · (f (p))mp +Bfn0(f ′)n1(f ′′)n2 · · · (f (k))nk = H,

where A, B are polynomials and H is an entire function. By applying this result and
Cartan’s second main theorem, we obtain the zero distribution of entire solutions in the
case when H has the particular form

H(z) = H0(z) +H1(z)eω1zq +H2(z)eω2zq + · · ·+Hm(z)eωmz
q
,

where ω1, · · · , ωm are distinct non-zero complex numbers, H0, H1, · · · , Hm are entire
functions of order less than q with H1 · · ·Hm 6≡ 0. Some examples are given to show the
existence of solutions.
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1 Introduction and Main Results

A function f is called meromorphic if it is analytic in the complex plane C except at
isolated poles. In what follows, we assume the reader is familiar with the basic notions
of Nevanlinna’s value distribution theory on meromorphic functions (see e.g., [4], [13]).
By ρ(f) and λ(f) we will denote the order and the exponent of convergence of zeros of f ,
respectively. According to a famous result due to Titchmarsh [10], the non-linear differential
equation

f(z)f ′′(z) = − sin2 z (1.1)

has no real finite order entire solutions, other than f(z) = ± sin z.
Later, Li, Lü and Yang [6] showed that any entire solution of Eq. (1.1) must be real

and of finite order. Furthermore, they investigated the following differential equation

f(z)f ′′(z) = p(z) sin2 z, (1.2)

where p(z) 6≡ 0 is a polynomial with real coefficients and real zeros, they proved that if f
is an entire solution of Eq. (1.2), then p must be a non-zero constant, and f(z) = a sin z,
where a is a constant satisfying a2 = −p.
∗The work of authors were partially supported by Topics on Basic and Applied Basics Research of

Guangzhou in 2023 (no. 2023A04J0648), PCSIRT (No. IRT1264) and The Fundamental Research Funds of
Shandong University (No. 2017JC019).
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In connection to the classical trigonometric identity 2 sin z cos z = sin 2z, Zhang and Yi
[14] proved that all entire solutions of the differential equation

f(z)f ′(z) =
1

2
sin 2z (1.3)

have only the four forms f(z) = ± sin z,±i cos z.
Naturally, Eq. (1.1)-Eq. (1.3) can be classified into the following form

f(z)f (k)(z) = H(z), (1.4)

where k ≥ 1 and H(z) is an entire function with H(z) 6≡ 0. It is interesting to consider the
general differential equations of the form (1.4) and even more complicated ones

fn0(f ′)n1(f ′′)n2 · · · (f (k))nk = H, (1.5)

where H is entire with H 6≡ 0, k ≥ 1, n0 ≥ 1 and nk ≥ 1.
Very recently, Gundersen, Lü, Ng and Yang [3] proved the following double inequality

for the growth of entire solutions of Eq. (1.5).

Theorem 1.1 ([3]). If f is an entire solution of a monomial differential equation (1.5),
then we have

1

q
T (r,H) + S(r, f) ≤ T (r, f) ≤ 1

n0
T (r,H) + S(r, f),

where q = n0 + n1 + · · ·+ nk. Hence, ρ(f) = ρ(H).

After giving the growth of all entire solutions of the differential equation (1.5), Gunder-
sen, Lü, Ng and Yang [3] considered the following non-linear binomial differential equation

Afm0(f ′)m1(f ′′)m2 · · · (f (p))mp +Bfn0(f ′)n1(f ′′)n2 · · · (f (k))nk = H, (1.6)

under the assumption:
(a): p, k ≥ 0 are integers, A,B,H are entire functions with ABH 6≡ 0, mi(i =

0, · · · , p), nj(j = 0, · · · , k) are non-negative integers with

max{m0,mp} ≥ 1, max{n0, nk} ≥ 1, max{m0, n0} ≥ 1, max{mp, nk} ≥ 1,

and where it is assumed that the left-hand side of Eq. (1.6) does not reduce to (A +
B)fm0(f ′)m1(f ′′)n2 · · · (f (p))mp .

First observe that an analogous result to Theorem 1.1 cannot hold for non-linear bino-
mial equations of the form (1.6), since f(z) = sin z satisfies f2 + (f ′)2 = 1.

Our first result is to find some comparatively relaxed conditions for (1.6). Now, we
state our result in accordance with m0 >

∑k
j=0 nj , which in some sense can be seen as

corresponding slight improvement to Theorem 1.1.

Theorem 1.2. Suppose that m0 > N , A,B are polynomials, and assume (a). If f is an
entire solution of Eq. (1.6), then we have

1

M
T (r,H) + S(r, f) ≤ T (r, f) ≤ 1

m0 −N
T (r,H) + S(r, f),

where M = m0 +m1 + · · ·+mp, N = n0 + n1 + · · ·+ nk. Hence, ρ(f) = ρ(H).

From Theorem 1.2, the growth of all entire solutions of the differential equation (1.6)
is clear. Hence, we will consider differential equations such that H(z) has a special form.
Motivated by the consideration of transcendental exponential polynomials as in [5, 7, 9, 11,
15], a natural question follows:
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Question 1.3. When m0 > N , can we characterize all entire solutions f of Eq. (1.6) if
H(z) = H0(z) +H1(z)eω1zq +H2(z)eω2zq + · · ·+Hm(z)eωmz

q
?

In order to answer this question, we will use Cartan’s second main theorem and Nevan-
linna’s theorem concerning a group of meromorphic functions to investigate the non-linear
binomial differential equation

Afm0(f ′)m1(f ′′)m2 · · · (f (p))mp +Bfn0(f ′)n1(f ′′)n2 · · · (f (k))nk

= H0 +H1e
ω1zq +H2e

ω2zq + · · ·+Hme
ωmzq .

(1.7)

We arrive at the following conclusion:

Theorem 1.4. Suppose that m0 > N , m, q ≥ 1 are integers, and assume (a). Let
ω1, · · · , ωm be distinct non-zero complex numbers and let H0, H1, · · · , Hm be entire func-
tions of order less than q such that H1 · · ·Hm 6≡ 0. If Eq. (1.7) admits an entire solution
f , then the following assertions hold.

(1) When H0 ≡ 0, we have two possibilities:

(i) f(z) = γ0(z)e
ωj
M
zq and m = 2, where Aγm0

0 γm1
1 · · · γmpp = Hj, γi = γ′i−1 +

ωj
M qγi−1z

q−1 and Nωj = Mωt ({j, t} = {1, 2}, {2, 1}).
(ii) λ(f) = ρ(f) = q and m0 ≤ m+N .

(2) When H0 6≡ 0, we have λ(f) = ρ(f) = q and m0 ≤ m+N + 1.

The following examples show the existence of entire solutions satisfying Theorem 1.4.

Example 1.5. Yang and Li [12] showed that all solutions of the equation f3(z) + 3
4f
′′(z) =

−1
4 sin 3z satisfy λ(f) = ρ(f) = 1. Here m0 = m + N . This example also shows that the

case λ(f) = ρ(f) = q in Theorem 1.4 may happen although m = 2.

Example 1.6. The equation f3(z) − 3f ′(z) = e3z − e−3z − 6ez has an entire solution
f(z) = ez − e−z. Here m0 < m+N , λ(f) = ρ(f) = 1.

Example 1.7. The equation f2(z)− 2zf ′(z) = e2z + z2 − 2z has an entire solution f(z) =
ez + z. Here m0 < m+N + 1, λ(f) = ρ(f) = 1.

2 Some Lemmas

In this section, we will introduce some lemmas used to prove our main results in the present
paper. In the following, let E1 (or E2) denote the set of finite linear measure (or finite
logarithmic measure) respectively.

Lemma 2.1 (see, e.g., [13]). Let f1, f2, · · · , fn be linearly independent meromorphic func-
tions such that

∑n
j=1 fj ≡ 1. Then for 1 ≤ j ≤ n, we have

T (r, fj) ≤
n∑
k=1

N

(
r,

1

fk

)
+N(r, fj) +N(r,D)−

n∑
k=1

N(r, fk)−N
(
r,

1

D

)
+ S(r)

≤
n∑
k=1

N

(
r,

1

fk

)
+ (n− 1)

n∑
k=1

N(r, fk)−N
(
r,

1

D

)
+ S(r),

where D is the Wronskian determinant W (f1, f2, · · · , fn),

S(r) = o(T (r)) (r →∞, r 6∈ E1), T (r) = max
1≤k≤n

{T (r, fk)}.
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For introducing the following lemma, we denote by np

(
r, 1
f

)
the number of zeros of f in

|z| ≤ r where a zero of multiplicity l is counted l times if l ≤ p and p times if l > p. Then,

we let Np

(
r, 1
f

)
denote the corresponding integrated counting function(cf. [2], Definition

2.1).

Lemma 2.2 (Cartan’s theorem, see, e.g., [1, 2]). Let f1, f2, · · · , fp be linearly independent
entire functions. Assume that for each complex number z, max{|f1(z)|, · · · , |fp(z)|} > 0.
For r > 0, set

T (r) =
1

2π

∫ 2π

0
u(reiθ)dθ − u(0), u(z) = sup

1≤j≤p
log|fj(z)|.

Set fp+1 = f1 + · · ·+ fp. Then

T (r) ≤
p+1∑
j=1

Np−1

(
r,

1

fj

)
+ S(r) ≤ (p− 1)

p+1∑
j=1

N

(
r,

1

fj

)
+ S(r),

where S(r) is a quantity satisfying S(r) = O(log T (r))+O(log r)(r →∞, r 6∈ E1). If at least
one of the quotients fj/fm is a transcendental function, then S(r) = o(T (r))(r → ∞, r 6∈
E1), while if all the quotients fj/fm are rational functions, then S(r) ≤ −1

2k(k − 1) log r +
O(1)(r →∞, r 6∈ E1).

Lemma 2.3 (see, e.g., [1, 2]). Assume that the hypotheses of Lemma 2.2 hold. Then for
any j and m, we have

T (r, fj/fm) = T (r) +O(1) (r →∞),

and for any j, we have

N(r, 1/fj) = T (r) +O(1) (r →∞).

Lemma 2.4 (see, e.g., [8]). Let m, q be positive integers, ω1, · · · , ωm be distinct non-zero
complex numbers, and A0, A1, · · · , Am be meromorphic functions of order less than q such
that Aj 6≡ 0(1 ≤ j ≤ m). Set ϕ(z) = A0(z) +

∑m
j=1Aj(z)e

ωjz
q
, then the following results

hold.

(i) There exist two positive numbers d1 < d2, such that for sufficiently large r,

d1r
q ≤ T (r, ϕ) ≤ d2r

q.

(ii) If A0 6≡ 0, then m
(
r, 1
ϕ

)
= o(rq) (r →∞).

Lemma 2.5 (see, e.g., [13]). Let f be a non-constant meromorphic function, and k be a
positive integer. Then

N

(
r,

1

f (k)

)
≤ N

(
r,

1

f

)
+ kN(r, f) + o(T (r, f)) (r →∞, r 6∈ E1).

Lemma 2.6. Under the conditions of Theorem 1.4, if f is an entire solution of (1.7), then
the following results hold.

(i) There exist two positive numbers τ1 < τ2, such that,

τ1r
q ≤ T (r, f) ≤ τ2r

q (r →∞).

(ii) If H0 6≡ 0, then N
(
r, 1
f

)
= T (r, f) + S(r, f).
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Proof. Let f be an entire solution of (1.7). By Theorem 1.2 and Lemma 2.4, we have

T (r, f) ≥ 1

M
T (r,H) + S(r, f) ≥ d1

M
rq,

and

(1− o(1))T (r, f) ≤ 1

m0 −N
T (r,H) ≤ d2

m0 −N
rq,

which leads to τ1r
q ≤ T (r, f) ≤ τ2r

q, (r →∞), where τ1, τ2 are positive numbers such that
τ1 < τ2. The result (i) is thus proved.

Rewriting (1.7) in the form

1

H0 +
∑m

j=1Hjeωjz
q

(
Afm0 · · · (f (p))mp

fM
+
Bfn0 · · · (f (k))nk

fN
1

fM−N

)
=

1

fM
.

If H0 6≡ 0, then by Lemma 2.4, we get

Mm

(
r,

1

f

)
≤ (M −N)m

(
r,

1

f

)
+ S(r, f) + o(rq) (r →∞),

which implies m
(
r, 1
f

)
= S(r, f). Hence, the result (ii) follows.

3 Proof of Theorem 1.2

Let f be an entire solution of the binomial differential equation (1.6). Note that M =
m0 + m1 + · · · + mp, N = n0 + n1 + · · · + nk, and by the assumption m0 > N , we have
M ≥ m0 > N . Combining (1.6) and the logarithmic derivative lemma, we get

T (r,H) = T
(
r,Afm0(f ′)m1 · · · (f (p))mp +Bfn0(f ′)n1 · · · (f (k))nk

)
= m

(
r,Afm0(f ′)m1 · · · (f (p))mp +Bfn0(f ′)n1 · · · (f (k))nk

)
= m

(
r, fN

(
Afm0(f ′)m1 · · · (f (p))mp

fM
fM−N +

Bfn0(f ′)n1 · · · (f (k))nk

fN

))
≤ Nm(r, f) + (M −N)m(r, f) + S(r, f)

= MT (r, f) + S(r, f).

(3.1)

We now give an estimate in another direction. By the logarithmic derivative lemma and
the first fundamental theorem, we get

T
(
r,Afm0(f ′)m1 · · · (f (p))mp

)
= T

(
r,
Afm0(f ′)m1 · · · (f (p))mp

fM
fM

)

≥MT (r, f)− T

(
r,
Afm0(f ′)m1 · · · (f (p))mp

fM

)

= MT (r, f)−N

(
r,
A(f ′)m1 · · · (f (p))mp

fM−m0

)
−m

(
r,
Afm0(f ′)m1 · · · (f (p))mp

fM

)

≥MT (r, f)− (M −m0)N

(
r,

1

f

)
− S(r, f)

≥MT (r, f)− (M −m0)T (r, f)− S(r, f)

= m0T (r, f)− S(r, f).

(3.2)
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By m0 > N and (3.2), we have

T (r,H) = T
(
r,Afm0(f ′)m1 · · · (f (p))mp +Bfn0(f ′)n1 · · · (f (k))nk

)
≥ T

(
r,Afm0(f ′)m1 · · · (f (p))mp

)
− T

(
r,Bfn0(f ′)n1 · · · (f (k))nk

)
≥ m0T (r, f)−m

(
r,
Bfn0(f ′)n1 · · · (f (k))nk

fN
fN

)
− S(r, f)

≥ m0T (r, f)−Nm(r, f)− S(r, f)

= (m0 −N)T (r, f)− S(r, f).

(3.3)

Now, combining (3.1) and (3.3) yields

1

M
T (r,H) + S(r, f) ≤ T (r, f) ≤ 1

m0 −N
T (r,H) + S(r, f).

The proof of Theorem 1.2 is now completed.

4 Proof of Theorem 1.4

Let f be an entire solution of (1.7). By Lemma 2.6, we deduce that

ρ(f) = q, S(r, f) = o(rq). (4.1)

Now we consider the following two cases.
Case 1. H0 ≡ 0. Rewriting (1.7) in the form

m∑
j=1

Hje
ωjz

q

Afm0(f ′)m1 · · · (f (p))mp
− Bfn0(f ′)n1 · · · (f (k))nk

Afm0(f ′)m1 · · · (f (p))mp
≡ 1. (4.2)

Subcase 1.1. m0 ≥ m+N + 1.
Using the similar argument to that of (3.3), and by (4.1), there exists a constant τ > 0,

such that

T

(
r,
Bfn0(f ′)n1 · · · (f (k))nk

Afm0(f ′)m1 · · · (f (p))mp

)
= T

(
r,
Afm0(f ′)m1 · · · (f (p))mp

Bfn0(f ′)n1 · · · (f (k))nk

)
+O(1)

≥ T
(
r, fm0(f ′)m1 · · · (f (p))mp

)
− T

(
r, fn0(f ′)n1 · · · (f (k))nk

)
− S(r, f)

≥ (m0 −N)T (r, f)− S(r, f)

≥ (m0 −N − o(1))τrq (r →∞).

(4.3)

Subcase 1.1.1. Suppose that

Bfn0(f ′)n1 · · · (f (k))nk , H1e
ω1zq , H2e

ω2zq , · · · , Hme
ωmzq

are m+ 1 linearly independent entire functions.
Let Π1(z) denote the canonical product (or the polynomial) formed by the common

zeros {ak}uk=1 of Afm0(f ′)m1 · · · (f (p))mp , Bfn0(f ′)n1 · · · (f (k))nk , H1e
ω1zq , · · · , Hme

ωmzq ,
each common zero ak is counted min{sk, tk, lkj : j = 1, · · · ,m} times, where u = ∞
(or finite integer), sk, tk, lk1, · · · , lkm denote the respective multiplicities of the zero of
Afm0(f ′)m1 · · · (f (p))mp , Bfn0(f ′)n1 · · · (f (k))nk , H1e

ω1zq , · · · , Hme
ωmzq at point ak. Then

by (4.1), we have

N

(
r,

1

Π1

)
≤ N

(
r,

1

H1

)
= o(rq) (4.4)

as r →∞, r 6∈ E2.
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Dividing both sides of (1.7) by Π1

Afm0(f ′)m1 · · · (f (p))mp

Π1
=

m∑
j=1

Hje
ωjz

q

Π1
− Bfn0(f ′)n1 · · · (f (k))nk

Π1
, (4.5)

we deduce that Afm0 (f ′)m1 ···(f (p))mp
Π1

, Bfn0 (f ′)n1 ···(f (k))nk
Π1

, H1eω1z
q

Π1
, · · · , Hmeωmz

q

Π1
are all entire

functions without common zeros, and by (4.3), we know that Bfn0 (f ′)n1 ···(f (k))nk
Π1

/Af
m0 (f ′)m1 ···(f (p))mp

Π1

is transcendental.
Since f is an entire function and A is a polynomial, we describe the following two facts:

N

(
r,

1

Afm0(f ′)m1 · · · (f (p))mp

)
= m0N

(
r,

1

f

)
+N (r, ψ) , (4.6)

and
Nm (r, ψ)−N (r, ψ) ≤ 0. (4.7)

where ψ = 1
A(f ′)m1 ···(f (p))mp , for simplicity.

Then by (4.1), (4.4)-(4.7), Lemmas 2.2, 2.3, 2.5, we get

m0N

(
r,

1

f

)
= N

(
r,

1

Afm0(f ′)m1 · · · (f (p))mp

)
−N (r, ψ)

≤ N
(
r,

Π1

Afm0(f ′)m1 · · · (f (p))mp

)
−N (r, ψ) + o(rq)

≤ T1(r)−N (r, ψ) + o(rq)

≤
m∑
j=1

Nm

(
r,

Π1

Hjeωjz
q

)
+Nm

(
r,

Π1

Bfn0(f ′)n1 · · · (f (k))nk

)

+Nm

(
r,

Π1

Afm0(f ′)m1 · · · (f (p))mp

)
−N (r, ψ) + o(T1(r)) + o(rq)

≤
k∑
j=0

nkN

(
r,

1

f

)
+mN

(
r,

1

f

)
+Nm (r, ψ)

−N (r, ψ) + o(T1(r)) + o(rq)

≤ (N +m)N

(
r,

1

f

)
+ o(T1(r)) + o(rq) (r →∞, r 6∈ E1),

(4.8)

where

T1(r) =
1

2π

∫ 2π

0
u1(reiθ)dθ − u1(0),

u1(z) = sup

{
log

∣∣∣∣Bfn0(f ′)n1 · · · (f (k))nk

Π1

∣∣∣∣, log

∣∣∣∣Hje
ωjz

q

Π1

∣∣∣∣ : 1 ≤ j ≤ m

}
.

Combining (4.8) and Lemma 2.6, we obtain

(m0 −m−N)N

(
r,

1

f

)
≤ o(rq) + o(T1(r)) ≤ o(rq) (r →∞, r 6∈ E1), (4.9)

this together with the assumption m0 ≥ m+N + 1 give us

N

(
r,

1

f

)
= o(rq) (r →∞, r 6∈ E1). (4.10)

From (4.1), (4.10) and Lemma 2.5, we see that

m∑
j=1

N

(
r,
Afm0(f ′)m1 · · · (f (p))mp

Hjeωjz
q

)
+N

(
r,
Afm0(f ′)m1 · · · (f (p))mp

Bfn0(f ′)n1 · · · (f (k))nk

)
= o(rq), (4.11)
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and

m∑
j=1

N

(
r,

Hje
ωjz

q

Afm0(f ′)m1 · · · (f (p))mp

)
+N

(
r,
Bfn0(f ′)n1 · · · (f (k))nk

Afm0(f ′)m1 · · · (f (p))mp

)
= o(rq), (4.12)

where r →∞, r 6∈ E1.
Set

Tf (r) = max

{
T

(
r,
Bfn0(f ′)n1 · · · (f (k))nk

Afm0(f ′)m1 · · · (f (p))mp

)
, T

(
r,

Hje
ωjz

q

Afm0(f ′)m1 · · · (f (p))mp

)
:

j = 1, · · · ,m
}
.

From Lemma 2.1, (4.2), (4.11) and (4.12), it follows that

(1− o(1))Tf (r) = o(rq) (r →∞, r 6∈ E1),

it implies

T

(
r,
Bfn0(f ′)n1 · · · (f (k))nk

Afm0(f ′)m1 · · · (f (p))mp

)
≤ Tf (r) = o(rq) (r →∞, r 6∈ E1), (4.13)

which contradicts (4.3).
Subcase 1.1.2. Suppose that

Bfn0(f ′)n1 · · · (f (k))nk , H1e
ω1zq , H2e

ω2zq , · · · , Hme
ωmzq

are m+ 1 linearly dependent entire functions.
From the fact that H1e

ω1zq , · · · , Hme
ωmzq are linearly independent, there exist constants

d1, · · · , dm, at least one of them is not zero, such that

Bfn0(f ′)n1 · · · (f (k))nk =
m∑
j=1

djHje
ωjz

q
. (4.14)

Substituting (4.14) into (1.7), we get

Afm0(f ′)m1 · · · (f (p))mp =
m∑
j=1

(1− dj)Hje
ωjz

q
. (4.15)

(a) Suppose that there exist at least two of 1 − d1, · · · , 1 − dm, say 1 − d1 and 1 − d2,
such that 1− d1 6= 0 and 1− d2 6= 0. Then by rewriting (4.15), we have

Afm0(f ′)m1 · · · (f (p))mp

eω1zq
= (1− d1)H1 +

m∑
j=2

(1− dj)Hje
(ωj−ω1)zq . (4.16)

Denote ϕ1 = Afm0 (f ′)m1 ···(f (p))mp
eω1z

q , then by Lemma 2.4 and the first fundamental theorem,
there exists a positive number D1, such that for sufficiently large r,

N

(
r,

1

ϕ1

)
= T (r, ϕ1)−m

(
r,

1

ϕ1

)
−O(1) ≥ D1r

q,

then from Lemma 2.5, we find

N

(
r,

1

f

)
≥ 1

M
N

(
r,

1

ϕ1

)
−O(log r) ≥ D1

M
rq −O(log r). (4.17)

8

17 Aug 2023 19:00:34 PDT
230411-LinlinWu Version 2 - Submitted to Rocky Mountain J. Math.



On the other hand, by dividing Π2 on both sides of (4.15), we get

Afm0(f ′)m1 · · · (f (p))mp

Π2
=
∑
λj∈Λ

lλjHλje
ωλj z

q

Π2
, (4.18)

where Λ is a subset of {1, · · · ,m} such that lλj = 1 − dλj 6= 0, Π2 is defined as Π1, such

that Afm0 (f ′)m1 ···(f (p))mp
Π2

,
lλjHλj e

ωλj
zq

Π2
are all entire functions without common zeros, and

N
(
r, 1

Π2

)
≤ N

(
r, 1
Hλj

)
= o(rq)(r →∞). Then by (4.18), Lemmas 2.2 and 2.3, we get

m0N

(
r,

1

f

)
= N

(
r,

1

Afm0(f ′)m1 · · · (f (p))mp

)
−N (r, ψ)

≤ N
(
r,

Π2

Afm0(f ′)m1 · · · (f (p))mp

)
−N (r, ψ) + o(rq)

≤ T2(r)−N (r, ψ) + o(rq)

≤
∑
λj∈Λ

Nm−1

(
r,

Π2

lλjHλje
ωλj z

q

)
+Nm−1

(
r,

Π2

fm0(f ′)m1 · · · (f (p))mp

)
−N (r, ψ) + o(T1(r)) + o(rq)

≤ (m− 1)N

(
r,

1

f

)
+Nm−1 (r, ψ)−N (r, ψ) + o(T1(r)) + o(rq)

≤ (m− 1)N

(
r,

1

f

)
+ o(T1(r)) + o(rq) (r →∞, r 6∈ E1),

(4.19)

where

T2(r) =
1

2π

∫ 2π

0
u2(reiθ)dθ − u2(0), u2(z) = sup

{
log

∣∣∣∣ lλjHλje
ωλj z

q

Π2

∣∣∣∣ : λj ∈ Λ

}
.

So we deduce from (4.19) and Lemma 2.6 that

(m0 −m+ 1)N

(
r,

1

f

)
≤ o(rq) (r →∞, r 6∈ E1),

which contradicts (4.17).
(b) Suppose that there exists one and only one of 1 − d1, · · · , 1 − dm is non-zero, say

1− d1 6= 0. Then d2 = · · · = dm = 1. We now write (4.15) as

Afm0(f ′)m1 · · · (f (p))mp = (1− d1)H1e
ω1zq , (4.20)

which implies that

N

(
r,

1

f

)
≤ 1

m0
N

(
r,

1

H1

)
= o(rq) (r →∞). (4.21)

By (4.1), (4.20) and Hadamard’s factorization theorem, we get

f(z) = γ0(z)e
ω1

m0+···+mp
zq
, f (i)(z) = γi(z)e

ω1
m0+···+mp

zq
, (4.22)

where γ0(z), γi(z) satisfy the recurrence formulas γm0
0 · · · γmpp = (1 − d1)H1, γi = γ′i−1 +

ω1
M qγi−1z

q−1(i = 1, · · · , p).
On the other hand, we claim that the set {d1, d2 = 1, · · · , dm = 1} has also only one

non-zero element, i.e. d1 = 0,m = 2. Otherwise, suppose that there exist at least two of
d1, · · · , dm, say d1 and d2, such that d1 6= 0 and d2 6= 0. By rewriting (4.14), we have

Bfn0(f ′)n1 · · · (f (k))nk

eω1zq
= d1H1 +

m∑
j=2

Hje
(ωj−ω1)zq .
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Denote ϕ2 = Bfn0 (f ′)n1 ···(f (k))nk
eω1z

q , then by Lemma 2.4, Lemma 2.5 and the first fundamental
theorem, there exists a positive number D2, such that for sufficiently large r,

k∑
j=0

njN

(
r,

1

f

)
≥ N

(
r,

1

Bfn0(f ′)n1 · · · (f (k))nk

)
−O(log r)

= N

(
r,

1

ϕ2

)
−O(log r)

= T (r, ϕ2)−m
(
r,

1

ϕ2

)
−O(log r)

≥ D2r
q −O(log r) (r →∞, r 6∈ E1),

which contradicts (4.21). Thus (4.14) reduces to

Bfn0(f ′)n1 · · · (f (k))nk = H2e
ω2zq . (4.23)

Substituting (4.22) into (4.23) results in

Bγn0
0 · · · γ

nk
k e

N
M
ω1zq = H2e

ω2zq . (4.24)

Moreover, combining (4.22) with (4.20) yields

Aγm0
0 · · · γmpp eω1zq = H1e

ω1zq .

Thus, we have the following result

m = 2, f(z) = γ0(z)e
ω1
M
zq ,

ω2

ω1
=
N

M
, Aγm0

0 · · · γmpp = H1. (4.25)

Subcase 1.2. m0 ≤ m+N . By (4.1), we get

λ(f) ≤ ρ(f) = q.

Furthermore, if λ(f) < q, we can obtain N
(
r, 1
f

)
= o(rq).

If Bfn0(f ′)n1 · · · (f (k))nk , H1e
ω1zq , H2e

ω2zq , · · · , Hme
ωmzq are linearly independent, then

using the similar argument to that of Subcase 1.1.1, we get a contradiction, thus λ(f) =
ρ(f) = q, the result (1)-(ii) is proved.

If Bfn0(f ′)n1 · · · (f (k))nk , H1e
ω1zq , H2e

ω2zq , · · · , Hme
ωmzq are linearly dependent, then

by using the same argument as in the proof of Subcase 1.1.2, we have (4.25), so the result
(1)-(i) is thus proved.

Case 2. H0 6≡ 0. By Lemma 2.6, we conclude

λ(f) = ρ(f) = q, N

(
r,

1

f

)
= T (r, f) + o(rq) (r →∞, r 6∈ E1). (4.26)

Suppose that m0 > m + N + 1, we proceed to prove the following two subcases by
contradiction.

Subcase 2.1. Suppose that

Bfn0(f ′)n1 · · · (f (k))nk , H0, H1e
ω1zq , H2e

ω2zq , · · · , Hme
ωmzq

are m+ 2 linearly independent entire functions.
Let Π3(z) denote the canonical product (or the polynomial) formed by the common ze-

ros {zk}vk=1 of Afm0(f ′)m1 · · · (f (p))mp , Bfn0(f ′)n1 · · · (f (k))nk , H0, H1e
ω1zq , · · · , Hme

ωmzq ,
each common zero zk is counted min{sk, tk, lkj : j = 0, 1, · · · ,m} times, where v = ∞
(or finite integer), sk, tk, lk1, · · · , lkm denote the respective multiplicities of the zero of
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Afm0(f ′)m1 · · · (f (p))mp , Bfn0(f ′)n1 · · · (f (k))nk , H0, H1e
ω1zq , · · · , Hme

ωmzq at point zk.
Then by (4.1), we have

N

(
r,

1

Π3

)
≤ N

(
r,

1

H1

)
= o(rq) (r →∞, r 6∈ E1). (4.27)

By dividing Π3 on two sides of (1.7), we have

Afm0(f ′)m1 · · · (f (p))mp

Π3
=

m∑
j=0

Hje
ωjz

q

Π3
− Bfn0(f ′)n1 · · · (f (k))nk

Π3
, (ω0 = 0). (4.28)

Then using the similar argument to that of Subcase 1.1.1, by (4.28), (4.1), (4.27), Lemmas
2.2, 2.3 and 2.5, we get

(m0 −m−N − 1)N

(
r,

1

f

)
≤ o(rq) (r →∞, r 6∈ E1).

From this, (4.1) and (4.26), we get T (r, f) = S(r, f). This is a contradiction.
Subcase 2.2. Suppose that

Bfn0(f ′)n1 · · · (f (k))nk , H0, H1e
ω1zq , H2e

ω2zq , · · · , Hme
ωmzq

are m+ 2 linearly dependent entire functions.
From the fact that H0, H1e

ω1zq , · · · , Hme
ωmzq are linearly independent, there exist con-

stants l0, l1, · · · , lm, at least one of them is not zero, such that

Bfn0(f ′)n1 · · · (f (k))nk = l0H0 +
m∑
j=1

ljHje
ωjz

q
. (4.29)

Substituting (4.29) into (1.7) yields

Afm0(f ′)m1 · · · (f (p))mp = (1− l0)H0 +
m∑
j=1

(1− lj)Hje
ωjz

q
. (4.30)

From (4.26) and (4.30), it follows that there exist at least two of 1− l0, 1− l1, · · · , 1− lm are
not zero. Then using the similar argument to that of Subcase 1.1.2 (a), by (4.30), Lemmas
2.2 and 2.3, we get

(m0 −m)N

(
r,

1

f

)
≤ o(rq) (r →∞, r 6∈ E1). (4.31)

From (4.31) and (4.26), we obtain T (r, f) = S(r, f). This is a contradiction.
Thus we have m0 ≤ m+N + 1. The result (2) is thus proved.
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[3] Gundersen, G.G., Lü, W.R., Ng, T.W., Yang, C.C.: Entire solutions of differential
equations that are related to trigonometric identities. J. Math. Anal. Appl. 507 (2022),
no. 1, Paper No. 125788, 16 pp.

[4] Hayman, W.K.: Meromorphic functions. Clarendon Press, Oxford (1964)

11

17 Aug 2023 19:00:34 PDT
230411-LinlinWu Version 2 - Submitted to Rocky Mountain J. Math.



[5] Heittokangas, J.M., Wen, Z.T.: Generalization of Pólya’s Zero Distribution Theory
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