
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS

Vol. , No. , YEAR

https://doi.org/rmj.YEAR..PAGE

SELBERG-TYPE INTEGRALS AND THE VARIANCE CONJECTURE FOR THE OPERATOR NORM

BEATRICE-HELEN VRITSIOU

ABSTRACT. The variance conjecture in Asymptotic Convex Geometry stipulates that the Eu-
clidean norm ‖XK ‖2 of a random vector XK uniformly distributed in a (properly normalised)
high-dimensional convex body K ⊂Rn satisfies a Poincaré-type inequality (which will imply
that the variance of ‖XK ‖2 is much smaller than its expectation). We settle the conjecture for
the cases when K is the unit ball of the operator norm in classical subspaces of square matrices,
which include the subspaces of self-adjoint matrices. Through the estimates we establish, we
are also able to show that the unit ball of the operator norm in the subspace of real symmetric
matrices or in the subspace of Hermitian matrices is not isotropic, yet is in almost isotropic
position (i.e. its covariance matrix has small condition number).

1. Introduction

This note is a follow-up on [41], in which we were concerned with the question whether the variance
(or thin-shell) conjecture holds true for unit balls of the p-Schatten norms. Given a convex body K in
Rm , that is, a convex, compact set with non-empty interior, its covariance matrix Cov(K ) is given by

(1) Cov(K )i , j :=
∫

K xi x j d x∫
K 1d x

−
∫

K xi d x∫
K 1d x

∫
K x j d x∫
K 1d x

for 1 É i , j É m.

If Cov(K ) has small condition number (the ratio of the largest singular value to the smallest one), then
the variance conjecture states that most of the mass of K will be found in an annulus of width much
smaller than its average radius, a “thin shell” (see the ε-Concentration Hypothesis of Anttila, Ball and
Perissinaki [4], or the quantitatively stronger statement (2) suggested by Bobkov and Koldobsky [11]).
Supposing first for simplicity that K has Lebesgue volume 1, barycentre at the origin, and that K is
isotropic, that is, Cov(K ) is a multiple of the identity matrix, the conjecture can be stated as asking that

(2) VarK
(‖x‖2

2

)
:=

∫
K
‖x‖4

2 d x −
(∫

K
‖x‖2

2 d x

)2

.
1

m

(∫
K
‖x‖2

2 d x

)2

,

where ‖·‖2 stands for the Euclidean norm on Rm , and ‘.’ implies a multiplicative constant that should
not depend on the dimension m or the body K . To motivate (2) further, it is known that it is equivalent
to

(2a) VarK
(‖x‖2

)
.

(
det

[
Cov(K )

]) 1
m ' (

det
[
Cov(K )

]) 1
2m ·

∫
K ‖x‖2 d xp

m
.

Although stated separately and with different motivations initially, inequality (2) is a special case of
the KLS conjecture (put forth by Kannan, Lovász and Simonovits [30]) when the latter is equivalently
reformulated as a Poincaré inequality for convex bodies (the equivalence following by works of Maz’ya,
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Cheeger, Buser and Ledoux): given a convex body K ⊂Rm of volume 1 with barycentre at the origin
(not necessarily isotropic), and any (locally) Lipschitz function f :Rm →R, we should have

(3) VarK
(

f
)
. smax

[
Cov(K )

] ·∫
K

∥∥∇ f (x)
∥∥2

2 d x ,

where smax
[
Cov(K )

]
denotes the largest singular value of the covariance matrix of K . To see how (3)

gives (2) (and (2a)) immediately, observe that, when Cov(K ) is a multiple of the identity matrix, we
have

(4) smax
[
Cov(K )

]= (
det

[
Cov(K )

]) 1
m and also = 1

m
tr

[
Cov(K )

]= 1

m

∫
K
‖x‖2

2 d x.

Of course, with the KLS conjecture in mind, it makes sense to ask about the validity of a suitably
modified inequality (2) even when Cov(K ) is not a multiple of the identity, and when (4) is not true
even approximately (or we don’t know a priori whether it is).

Conjecture 1. (“Generalised Variance Conjecture”) There is an absolute constant C > 0 such that,
given any convex body K ⊂Rm of volume 1 with barycentre at the origin, one has

(5) VarK
(‖x‖2

2

)ÉC · smax
[
Cov(K )

]∫
K
‖x‖2

2 d x.

The assumption that K has volume 1 is merely for convenience: if instead we don’t specify the
volume of K , integration above is understood with respect to the density 1K (x)/(

∫
K 1d x).

In this note we verify this conjecture for the unit ball of the operator norm on several classical
subspaces of square matrices.

Before we turn to particulars, let us recall that, despite the fact that Conjecture 1, or its more restricted
version for isotropic convex bodies only, seem like very special cases of the KLS conjecture, they are in
fact almost equivalent reformulations of it: according to a breakthrough result by Eldan [19], whatever
estimates one obtains for the constant C appearing in (5) (for all centred convex bodies), or even
just for inequality (2) (for all isotropic convex bodies), the same estimates (up to some multiplicative
logarithmic factors in the dimension m) will also be valid for the implied constant in (3). The best
known estimates for the constant C =C (m) in (2) follow from recent remarkable developments for
the KLS conjecture: in a breakthrough result which builds on Eldan’s seminal stochastic localisation
method from [19] and further analysis of it by Lee and Vempala [37], Yuansi Chen [13] obtained
bounds which are asymptotically smaller than any power of m. More recently, Klartag and Lehec
[33], and subsequently Jambulapati, Lee and Vempala [24], refined the technique even further and
combined it with other closely related methods to obtain improvements which were polylogarithmic
in the dimension m. Finally, in March 2023 Klartag [32] obtained the best known estimate for the KLS
conjecture (and its special cases, the classical Variance Conjecture and its generalised version), by
showing that C (m).

√
log(m).

The abovementioned methods are very powerful and have had far-reaching applications. Still, for
decades, and in parallel, the above conjectures have also been studied for special families of convex
bodies via methods which are more specific to said special families. Inequality (2) was (optimally)
established early on for the unit balls of the `p norms by Ball and Perissinaki [7]. Then Conjecture 1 was
verified by Klartag [31] for all unconditional convex bodies, and soon thereafter, via extending Klartag’s
method in [31], Barthe and Cordero-Erausquin [8] showed it for all convex bodies that have many
symmetries (maybe fewer than those of an unconditional body, but still enough; one such example is
the simplex, or any other convex body which has the symmetries of the simplex). Conjecture 1 has also
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been verified by Alonso-Gutiérrez and Bastero [1] for hyperplane projections of the unit balls of the
`p norms. Obviously, it is also true for all classes of convex bodies for which the even stronger KLS
conjecture (equivalently, inequality (3)) has been optimally established: e.g. Kolesnikov and Milman
[34] have done so for certain Orlicz balls (see also [9, Section 5] by Barthe and Wolff). We refer the
reader to [34, p. 4 (3581)] for a comprehensive list of other such results.

Finally, of most relevance here is a work independent of this present note, which also appeared
chronologically after this note was first posted on arXiv: Dadoun, Fradelizi, Guédon and Zitt [17]
established Conjecture 1 for the unit balls of p-Schatten norms on subspaces of self-adjoint matrices
when p ∈ (3,∞) is fixed (see next couple of paragraphs for definitions and terminology). Even though
there is a common starting point in both their work and the present note (namely the invariances of
p-Schatten norms), the crucial ingredients in their work are very different, and their approach utilises
beautifully a connection to the theory of logarithmic potentials which was developed in prior works
[25]-[27] (again independent of this note). We will elaborate a little more on these works after giving
the definitions for the Schatten classes.

We now state the main result of this note. Let Mn(F) denote the space of all n ×n matrices with
entries from the division algebra F, which stands either for R or C or the skew fieldH of quaternions
(note that in all cases we view Mn(F) as a real vector space, which can thus be thought of as Rm where
m =βn2 with β= 1,2 or 4 respectively). For a matrix T ∈Mn(F) and p Ê 1, the p-Schatten norm of T is
given by

‖T ‖Sn
p

:= ‖s(T )‖p =
(

n∑
i=1

si (T )p

)1/p

,

where s(T ) = (s1(T ), . . . , sn(T )) is the non-increasing rearrangement of the singular values of T , that
is, of the eigenvalues of (T ∗T )1/2. The limiting case of p =∞ is defined in the usual way: ‖T ‖Sn∞ :=
‖s(T )‖∞ = smax(T ) is the operator or spectral norm of T . Also, the Euclidean norm ‖ · ‖2 on Mn(F)
coincides with the 2-Schatten norm ‖ ·‖Sn

2
, also known as the Hilbert-Schmidt or Frobenius norm.

We will focus on establishing Conjecture 1 when K is the unit ball of Sn∞ on either of the spaces
Mn(F), or moreover on its classical subspace of F-self-adjoint matrices.

Theorem 2. Let F stand for either R or C or H, and let E = Mn(F) or the subspace of F-self-adjoint
matrices. Set dn = dim(E), and write BE for the unit ball of ‖ ·‖Sn∞ on E, and BE for its homothetic copy

of volume 1, that is, BE := BE

[vol(BE )]1/dn
. Then there are absolute constants C1,C2 > 0 so that

(6) C1 Éσ2
BE

:= dn

VarBE

(‖T ‖2
Sn

2

)
(∫

BE

‖T ‖2
Sn

2
dT

)2 ÉC2.

Remark 3. Obviously this implies Conjecture 1 for the (normalised) unit ball BE of the operator norm
on E since we always have 1

dn

∫
BE

‖T ‖2
Sn

2
dT = 1

dn
tr

[
Cov

(
BE

)]É smax
[
Cov

(
BE

)]
.

For most of the cases of E mentioned above these estimates were also established in [41] by J. Radke
and the author (with somewhat similar methods as we will see): these are the cases of the whole spaces,
and the subspace of Hermitian matrices. For the subspaces of symmetric (or real self-adjoint) matrices,
and of quaternionic self-adjoint matrices, the result is new.

It is worth noting that the unit balls BE ,p in Mn(F) of all p-Schatten norms (thus including the
operator norm) have enough symmetries/invariances (and are also isotropic; see the next paragraphs
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for details) that the method of Barthe and Cordero-Erausquin in [8] could give the estimate σ2
BE ,p

=
O(n) = O

(p
dim(E)

)
(this was the uniform estimate known before the recent developments for the

KLS conjecture). On the other hand, it is unclear whether either this method, or any of the general
results we now know, could imply the exact same estimates that they give for σBMn (F) also in the case of
subspaces of self-adjoint matrices. This is because it is not known (to the best of our knowledge) if the
condition number of the covariance matrix of BE in such a subspace E is small (similarly this appears
not to be known for any other p-Schatten norm besides p = 2). In this note we also show that this
condition number is small in the cases where E consists of the real or complex self-adjoint matrices
(see Theorem 4 below). Observe that the estimates in (6) are established regardless of that.

The starting point here, as well as for the arguments in [41], is a key idea and strategy which, in the
context of problems on volumetric properties of the Schatten classes, appeared first in the paper [43] by
Saint Raymond. It was further developed by König, Meyer and Pajor [35], and by Guédon and Paouris
[22]. We start with the key observation/fact that the uniform distribution on BE defines an invariant
ensemble of ‘random’ matrices from E : the distribution remains the same under multiplication by
an F-unitary matrix (by which we understand either multiplication from left or from right when
E =Mn(F), or conjugation by the matrix when BE contains only F-self-adjoint matrices). Equivalently,
the distribution depends only on the non-increasing rearrangement of the singular values si (T ) of
T ∈ E when E = Mn(F), or of the eigenvalues ei (T ) of T ∈ E when E consists of the F-self-adjoint
matrices. As a consequence of this, and also of the fact that the integrands we care about depend only
on the singular values of T , the integrals in (6) which we wish to estimate can be reduced to integrals
of highly symmetric distributions over Rn (see Lemma 6 and Proposition 7).

It is worth noting here that, in [25]-[27], Kabluchko, Prochno and Thäle refined this strategy and
reduced the estimation of the latter type of integrals to the study of the empirical distribution of n
particles/‘unit charges’ on the real line which have pairwise repulsive logarithmic interaction and are
also confined by an external field. This allowed them to invoke results from the log-potential theory, a
theory which, in many cases of external fields, provides concrete information about the equilibrium
density of such an ensemble of particles. Dadoun, Fradelizi, Guédon and Zitt [17] build further on this
approach, and reduce questions about different moments of the Euclidean norm or about its variance
to the convergence or the fluctuations of linear statistics of these empirical measures.

In this paper, in contrast, the initial reduction is used in a more direct way: to estimate σ2
BE

(recall
that, here, BE is the unit ball of ‖ ·‖Sn∞ on E), it is equivalent to obtain estimates for the variance of the
Euclidean norm with respect to the density

x = (x1, . . . , xn) ∈Rn 7→ 1[−1,1]n (x)
∏

1Éi< jÉn

∣∣xa
i −xa

j

∣∣b · ∏
1ÉiÉn

|xi |c d x,

where a,b,c are integers depending only on E (a ∈ {1,2}, b = β = dimR(F), and c ∈ {0,β−1}). This
requires us to study integrals of the form

(7)
∫ 1

−1

∫ 1

−1
· · ·

∫ 1

−1
s(x)

∏
1Éi< jÉn

∣∣xa
i −xa

j

∣∣b · ∏
1ÉiÉn

|xi |c d xn . . .d x2d x1

where a = 1 or 2, and where the integrand s(x) is a symmetric polynomial (in this case we will have
s(x) =∑

i xk
i with k = 2 or 4, or s(x) =∑

i< j x2
i x2

j ).
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With suitable changes of variables, all such integrals can be related to integrals of a similar form:

(8)
∫ 1

0

∫ 1

0
· · ·

∫ 1

0
s̃(t )

∏
1ÉiÉn

t u−1
i (1− ti )w−1

∏
1Éi< jÉn

∣∣ ti − t j
∣∣2κd tn . . .d t2d t1

where again s̃(t) is a symmetric polynomial, and where u > 0, w > 0 and κÊ 0 (we can even think of
u, w,κ as complex numbers, with the inequalities-constraints then holding for their real part). Selberg
[44] was the first to study such a family of integrals in the case where s̃(t ) = 1 (using crucially the fact
that the change of variables ti 7→ 1− ti leaves the integrals in this family unchanged), and he showed
that each of them equals a certain product of Gamma factors (that is, of values of the Gamma function)
whose inputs depend only linearly on u, w and κ in a pre-specified manner:

(9) I0(n;u, w,κ) :=
∫ 1

0

∫ 1

0
· · ·

∫ 1

0

∏
1ÉiÉn

t u−1
i (1− ti )w−1

∏
1Éi< jÉn

∣∣ ti − t j
∣∣2κ d tn . . .d t2d t1

= ∏
1ÉiÉn

Γ
(
1+ (n − i +1)κ

)
Γ(1+κ)

∏
1ÉiÉn

Γ
(
u + (n − i )κ

)
Γ
(
w + (n − i )κ

)
Γ
(
u +w + (2n − i −1)κ

) .

Aomoto [5], and then Kadell [28], the latter confirming a conjecture by Macdonald [38, Conjecture
(C5)], have generalised this result by establishing completely analogous ‘closed-form’ expressions for
the corresponding integrals when s̃(t) ranges in different families of non-constant symmetric poly-
nomials. In fact, Kadell’s result encompasses all the previous results since the family of polynomials
s̃(t ) which one can consider according to his result contains the family of Jack symmetric polynomials
(under a standard normalisation) and therefore spans the space of symmetric polynomials (see Sub-
section 2.2 for definitions and specifics; also, for other proofs of Kadell’s result, see Kaneko [29], Baker
and Forrester [6] (see also [20] for a streamlined sketch of this proof), and Warnaar [48]).

In Section 3 we show how to use Aomoto’s result (as well as an immediate extension of it) in order to
reestablish the conclusion in Theorem 2 when E =Mn(F), and furthermore how to use Kadell’s more
general result to obtain Theorem 2 for the subspaces of self-adjoint matrices too.

The estimates we obtain for integrals of the form (7) allow us to also deal with the question of what
the covariance matrix of BE is when E is one of the subspaces of self-adjoint matrices. Note that in
the case of the spaces Mn(F) it is not difficult to see that simply the symmetries/invariances of the
respective unit balls BMn (F) (and similarly of the unit balls of all other p-Schatten norms) guarantee
these bodies are isotropic (see e.g. [41, Proposition 26]); however in the case of the subspaces of
self-adjoint matrices the symmetries are no longer enough for a similar conclusion.

Let us observe that, since BE has volume 1 and the origin as a centre of symmetry, computing the
entries of the covariance matrix as in (1) reduces essentially to computing integrals of the form

(10)
∫

BE

|Ti , j |2 dT, 1 É i , j É n, as well as
∫

BE

Ti , j Tl ,k dT for (i , j ) 6= (l ,k).

This is made possible through the Weingarten calculus which allows to estimate integrals of polynomial
functions of the entries of a random matrix (in the case of several important types of matrix ensembles)
via relating them to integrals of symmetric functions of the eigenvalues: for our setting we need a result
of Collins, Matsumoto and Saad [15] for conjugate invariant ensembles of self-adjoint matrices with
real or complex entries (see Subsection 2.3 for details).
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The estimates we obtain are summarised in the following theorem, and show that BE is almost
isotropic when E is the subspace of symmetric matrices, or the subspace of Hermitian matrices (see
Section 4 for the details and more precise estimates including constants).

Theorem 4. Let E be the subspace of F-self-adjoint matrices with F = R or C. Then all integrals of
the first form in (10) are of the order of 1, while all integrals of the second form are zero except when
i = j 6= l = k. In fact, when F=C and, say, i 6= j , we also have∫

BE

Re(Ti , j )Re(Tl ,k )dT =
∫

BE

Im(Ti , j ) Im(Tl ,k )dT =
∫

BE

Re(Ti , j ) Im(Tl ,k )dT = 0,

as well as
∫

BE

Re(Ti , j ) Im(Ti , j )dT = 0.

On the other hand, when i = j 6= l = k, we have∫
BE

Ti ,i Tk,k dT '− 1

n
.

Remark 5. As we will see, the precise conclusions of Theorem 4 show that, in the case that F=C, the
condition number of Cov

(
BE

)
is equal to 4+o(1), while in the case of F=R it is equal to 2+o(1).

To the best of our knowledge, the almost isotropicity (or lack thereof) of the unit balls of p-Schatten
norms in subspaces of self-adjoint matrices has not been examined for any other values of p except for
p = 2 (in which case we get the Euclidean ball in the corresponding subspaces).

It is also worth noting that, in the case p = 2, the joint distribution of the eigenvalues of these matrix
ensembles is closely linked (see Lemma 6, (14)) to the joint eigenvalue distributions of the well-known
Gaussian Orthogonal, Unitary and Symplectic Ensembles (these are central among matrix ensembles
and are extensively reviewed in the literature, see e.g. [40] and [2], and further references there; see also
the mostly expository note [12], where the GOE, GUE and GSE are studied as part of another family of
matrix ensembles). In [12, Subsection 10.2.2] it is observed that the joint eigenvalue distributions of
the GOE, GUE and GSE, symmetrised so that they are invariant under permutation of the coordinates,
are asymptotically isotropic. From our estimates in Section 3, the same can be concluded about the
symmetrised joint eigenvalue distributions of the matrix ensembles we study here (see Proposition 16,
(37) and (38), Proposition 17, (43) and (44), and Proposition 18, (49) and (50)).

The rest of the paper is organised as follows. In Section 2 we give exact statements for all the
abovementioned results that we need. Theorem 2 and Theorem 4 are proven in Sections 3 and 4
respectively.

Finally, we make use of the fact that, in [15], Collins, Matsumoto and Saad deal also with the case of
left-right invariant ensembles (which covers e.g. integration of polynomial functions over BMn (F)). In
Section 5 we exploit this to add to and complete the conclusions from [41] concerning the question
whether the entries of T ∼ Unif

(
BMn (F)

)
are negatively correlated in a certain sense (for the precise

definitions and statements see Section 5).

2. Preliminaries and overview of key prior results

We will denote by ‖ · ‖p the `p norm on Rn and by B n
p its unit ball, namely B n

p = {
x ∈ Rn : ‖x‖p :=(∑n

i=1 |xi |p
)1/p É 1

}
.
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Let Sn be the symmetric group of permutations of the elements of [n] := {1,2, . . . ,n}. We will say a
function F : Rn → R is symmetric if F (x1, x2, . . . , xn) = F (xσ(1), xσ(2), . . . , xσ(n)) for every σ ∈ Sn . Given
s ∈R, we will say F is s-homogeneous if, for every t > 0, we have F (t x) = t sF (x).

Let n be a positive integer. A partition λ of n is a sequence of positive integers (λ1, . . . ,λm) such that
λ1 Ê ·· · Ê λm and

∑m
i=1λi = n; in such a case we write λ` n or |λ| = n. The integers λi are called the

parts of λ, and their total number is the length of λ and is denoted by l (λ). Sometimes we may need to
consider sequences with a fixed number of terms, say m0, in which case we will think of all partitions
λ with l (λ) É m0 as giving such sequences once we annex to them a finite number of 0’s as appropriate
(in this case l (λ) will just be the number of non-zero parts, and we can also speak of partitions of 0 all
of whose parts are necessarily 0).

Given a partition λ, the monomial symmetric function mλ(ttt ) in n variables, where n Ê l (λ), is given
by

mλ(t1, . . . , tn) = 1

|Stab(λ)|
∑
σ∈Sn

tλ1
σ(1) · · · tλn

σ(n),

where |Stab(λ)| denotes the order of the stabiliser of any monomial of type λ under the action of Sn

(and dividing by it ensures we add each monomial only once). By convention, mλ(t1, . . . , tn) = 0 if
n < l (λ). Moreover, when λ= (1,1, . . . ,1) = (1k ) for some k Ê 1, then we may also write ek (ttt ) instead of
m(1k )(ttt ) and call this the k-th elementary symmetric function.

The letters c,c ′,c1,c2 etc. denote absolute positive constants (which do not depend on the dimension
of the Euclidean space we’re in, or moreover on any of the other parameters unless specifically stated);
their value may change from line to line. We will use the notation A ' B (or A . B) to mean there
exist absolute constants c1,c2 > 0 such that c1 A ≤ B ≤ c2 A (or A É c1B). We will also use the Landau
notation: A =O(B) has the same meaning as A.B , whereas A = o(B) will mean the ratio A/B tends to
0 as the dimension grows to infinity.

Recall that the uniform distribution over the unit ball of any p-Schatten norm in Mn(F) or its
subspace of self-adjoint matrices defines an invariant ensemble of random matrices: we will call this
left-right invariant ensemble if the distribution remains unchanged under multiplication either from
the left or from the right by a fixed F-unitary matrix (this is true in the case of Mn(F)), and we will
call it conjugate invariant if the distribution remains unchanged under conjugation by an F-unitary
matrix (this is true in the case of F-self-adjoint matrices). Equivalently, the underlying distribution of a
left-right invariant ensemble depends only on the distribution of the non-increasing rearrangement of
the singular values of the matrices, whereas that of a conjugate invariant ensemble depends only on
(the non-increasing rearrangement of) the eigenvalues.

2.1. Reduction to Selberg-type integrals. A consequence of left-right or conjugate invariance is that
estimating integrals of functions that would also only depend on the singular values or eigenvalues
of a matrix T in the ensemble (as is the case for the implied integrals in Theorem 2) can be reduced
to computing integrals of highly symmetric distributions over Rn (and then we can examine whether
there are more, analytic or combinatorial, tools to use). Moreover, when we consider the same question
for any other p-Schatten norm, then (given that the integrands we are interested in, which are powers
of the Euclidean norm, are also homogeneous functions) we can equivalently try to estimate the
corresponding integrals with respect to densities of the form exp

(−‖T ‖p
Sn

p

)
dT . Proposition 7 below

was proven in [41] based on the following key fact from Random Matrix Theory which makes what was
just described precise (see for example [40] or [2, Propositions 4.1.3 and 4.1.1] for proofs).
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Lemma 6. Let F=R or C or H, and let F :Rn →R be a measurable and symmetric function. Let us write
Kp,E for the unit ball of the p-Schatten norm on a subspace E of Mn(F), dn for the dimension of E, and
fa,b,c for the function

x ∈Rn 7→ ∏
1Éi< jÉn

∣∣xa
i −xa

j

∣∣b · ∏
1ÉiÉn

|xi |c .

Then:
(I) if E =Mn(F), there is a constant cn depending only on E, such that

(11)
∫

Kp,E

F
(
s1(T ), · · · , sn(T )

)
dT = cn

∫
B n

p

F
(|x1|, · · · , |xn |

) · f2,β,β−1 d x,

where β= dimR(F); furthermore, if p <∞, and if F is also s-homogeneous for some s >−dn , then

(12)
∫

Kp,E

F
(
s1(T ), · · · , sn(T )

)
dT = cn

Γ
(
1+ dn+s

p

) ∫
Rn

F
(|x1|, · · · , |xn |

)
e−‖x‖p

p f2,β,β−1(x)d x.

(II) if E is the subspace of F-self-adjoint matrices, there is a constant cn depending only on E, such that

(13)
∫

Kp,E

F
(
e1(T ), · · · ,en(T )

)
dT = cn

∫
B n

p

F (x) · f1,β,0 d x;

similarly, if p <∞ and F is s-homogeneous for some s >−dn , then

(14)
∫

Kp,E

F
(
e1(T ), · · · ,en(T )

)
dT = cn

Γ
(
1+ dn+s

p

) ∫
Rn

F (x)e−‖x‖p
p f1,β,0(x)d x.

Denote by Mp ( f ) the integral of a function f :Rn →Rwith respect to the density fa,b,c (x) ·e−‖x‖p
p d x,

where a,b,c are going to depend appropriately on the subspace E that we consider. Furthermore,
denote by Np ( f ) the corresponding integral with respect to the density fa,b,c (x) · 1B n

p
(x)d x. The

following proposition, following from Lemma 6, appears in [41]. (Note that one of the facts it relies on
is that

Np
(‖x‖2

2

)
Np (1)

' n1− 2
p ' dn [vol(Kp,E )]2/dn and

Mp
(‖x‖2

2

)
Mp (1)

' n1+ 2
p ;

these estimates follow by the main results of [43] and [35] and by [22, Proposition 3].)

Proposition 7. For every p Ê 1, we have

σ2
Kp,E

:= dn

VarKp,E

(‖T ‖2
Sn

2

)
(∫

Kp,E

‖T ‖2
Sn

2
dT

)2 ' n4/p VarNp

(‖x‖2
2

)
:= n4/p Np

(‖x‖4
2

)
Np (1)

−
(

Np
(‖x‖2

2

)
Np (1)

)2

,

while, if p <∞ too, then

VarMp

(‖x‖2
2

)
:= Mp

(‖x‖4
2

)
Mp (1)

−
(

Mp
(‖x‖2

2

)
Mp (1)

)2

' max
{
σ2

Kp,E
,

1

p

}
·n4/p .

Focusing on p =∞ now, we see that, to accurately estimate σ2
K∞,E

≡σ2
BE

, we should study integrals
of the form ∫ 1

−1

∫ 1

−1
· · ·

∫ 1

−1
s(x)

∏
1Éi< jÉn

∣∣xa
i −xa

j

∣∣b · ∏
1ÉiÉn

|xi |c d xn . . .d x2d x1

where a = 1 or 2, and where the integrand s(x) is a symmetric polynomial (here of degree at most 4).
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2.2. Selberg’s, Aomoto’s, and Kadell’s results. Recall the formula for the value of the Euler beta integral:∫ 1

0
xu−1(1−x)w−1 d x = Γ(u)Γ(w)

Γ(u +w)
,

where Re(u),Re(w) > 0. Selberg [44] (see also [40, Chapter 17] for a presentation of his original proof)
discovered a high-dimensional generalisation of this formula: for every triple of complex numbers
u, w,κ with

Re(u) > 0, Re(w) > 0, Re(κ) >−min

(
1

n
,

Re(u)

n −1
,

Re(w)

n −1

)
,

if we set

h(ttt ;u, w,κ) := ∏
1ÉiÉn

t u−1
i (1− ti )w−1 · ∏

1Éi< jÉn

∣∣ ti − t j
∣∣2κ

we have

I0(n;u, w,κ) :=
∫

[0,1]n

h(ttt ;u, w,κ)d ttt = ∏
1ÉiÉn

Γ
(
1+ (n − i +1)κ

)
Γ(1+κ)

∏
1ÉiÉn

Γ
(
u + (n − i )κ

)
Γ
(
w + (n − i )κ

)
Γ
(
u +w + (2n − i −1)κ

) .

Aomoto [5] extended Selberg’s result to more general integrals, where the integrand could be
h(ttt ;u, w,κ) multiplied by an elementary symmetric function em(ttt ):

em(ttt ) := ∑
1Éi1<···<imÉn

ti1 · · · tim with 1 É m < n.

We observe that by symmetry we have∫
[0,1]n

em(ttt ) ·h(ttt ;u, w,κ)d ttt =
(

n

m

) ∫
[0,1]n

∏
1ÉiÉm

ti ·h(ttt ;u, w,κ)d ttt(15)

which Aomoto showed =
(

n

m

)
m∏

i=1

u + (n − i )κ

u +w + (2n − i −1)κ
I0(n;u, w,κ)

(recall that I0(n;u, w,κ) is Selberg’s integral, and we can naturally extend this notation by writing
Im = Im(n;u, w,κ) for the right-hand-side integral in (15)). In fact, Aomoto used these expressions to
conclude that the ratio

1

I0(n;u, w,κ)

∫
[0,1]n

∏
1ÉiÉn

(ti − y) ·h(ttt ;u, w,κ)d ttt

is equal to a certain Jacobi polynomial:

1

I0(n;u, w,κ)

∫
[0,1]n

∏
1ÉiÉn

(ti − y) ·h(ttt ;u, w,κ)d ttt = n!∏
i (α+β+n + i )

P (α,β)
n (1−2y),

where α=−1+2u/κ, β=−1+2w/κ and P (α,β)
n is the Jacobi polynomial of degree n.

Aomoto’s approach relied on finding recurrence relations between the different Im which would
follow from integration by parts. It should be mentioned that our main argument in [41] was along
very similar lines.

With only a little more effort (see [3, Chapter 8]), Aomoto’s proof method can also give similar
formulas when the integrand involves slightly more general symmetric polynomials having terms of
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the form
m1∏
i=1

ti ·
m1+m2−m3∏
j=m1+1−m3

(1− t j )

where m1,m2,m3 Ê 0 and m3 É m1, m1 +m2 −m3 É n: we have

(16) Im1,m2,m3 :=
∫

[0,1]n

m1∏
i=1

ti ·
m1+m2−m3∏
j=m1+1−m3

(1− t j ) ·h(ttt ;u, w,κ)d ttt

=
m3∏
i=1

(
u +w + (n − i −1)κ

)(
u +w +1+ (2n − i −1)κ

) ·
m1∏
i=1

(
u + (n − i )κ

) m2∏
i=1

(
w + (n − i )κ

)
m1+m2∏

i=1

(
u +w + (2n − i −1)κ

) I0(n;u, w,κ).

Note that if m3 > 0, then there is some overlap in factors of the two products, something which allows
us to get additional factors of the form ti (1− ti ) for some i only (and will allow us, for instance, to
exactly compute

∫
BE

‖T ‖4
Sn

4
dT when E =Mn(F)).

Kadell [28] (see also Kaneko [29], as well as later proofs in [6] and [48]) has extended these results in
the most general way: he has shown that, for eachκÊ 0, there is an infinite family of homogeneous sym-
metric polynomials {sκ

λ
(ttt )} indexed by the partitions, which spans the space of symmetric polynomials,

and such that the polynomial corresponding to the partition λ has the following properties:

• sκλ(t1, . . . , tn) = mλ(ttt) + ∑
µ6=λ

|µ|=|λ|

aκλ,µ,n mµ(ttt) where n Ê l (λ), and where aκ
λ,µ,n are coefficients

which depend on κ, λ and µ, and which might also depend on the number of variables n (but,
as we will shortly see, don’t).

• For every n Ê l (λ) we have sκ
λ

(1n) = f κn [λ]

f κn [(0)]
where

f κn [λ] := ∏
i< j

λi−λ j>0

(
λi −λ j + ( j − i )κ

)
κ · ∏

i< j
λi−λ j=0

j − i

j − i +1
· (1+ ( j − i )κ

)
κ

and where (x)m := Γ(x+m)
Γ(x) stands for the Pochhammer function or rising factorial (here m can

take non-integer values too), and moreover we have∫
[0,1]n

sκλ(ttt ) · ∏
1ÉiÉn

t u−1
i (1− ti )w−1

∏
1Éi< jÉn

∣∣ ti − t j
∣∣2κd ttt ≡

∫
[0,1]n

sκλ(ttt ) ·h(ttt ;u, w,κ)d ttt

= I0(n;u, w,κ) · sκλ(1n)
n∏

i=1

(
u + (n − i )κ

)
λi(

u +w + (2n − i −1)κ
)
λi

(17)

= n! f κn [λ]
∏

1ÉiÉn

Γ
(
u + (n − i )κ+λi

)
Γ
(
w + (n − i )κ

)
Γ
(
u +w + (2n − i −1)κ+λi

) .

This family can in fact be taken to be the family of (monic) Jack polynomials corresponding to the
parameter 1/κ, that is, sk

λ
(ttt ) = Pλ(ttt ;1/κ) for every partition λ.

Although we will not need this in the sequel, let us recall for the sake of completeness that one way of
defining the family of Jack polynomials

{
Pλ(ttt ;ξ)

}
corresponding to a parameter ξ is as follows (see e.g.

[39, Chapter VI]). Recall that, for any non-negative integer b, we can define the power-sum function
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pb(t1, . . . , tn) := ∑n
i=1 t b

i ; we then extend this notion by defining for every partition λ= (λ1, . . . ,λm) a
power-sum function pλ(ttt) := ∏m

j=1 pλ j (ttt). We can also define a (partial) ordering of the partitions,
called the dominance ordering, by setting µ4λ if and only if |µ| = |λ| and µ1+·· ·+µi Éλ1+·· ·+λi for
every i Ê 1. Finally, consider the field Q(ξ) of all rational functions of ξ (seen as an indeterminate) with
coefficients in Q and also the vector space Q(ξ)

[{
mλ(t1, . . . , tn) :λ partition, l (λ) É n

}]
of all symmetric

polynomials in n variables with coefficients from Q(ξ). We can define a scalar product 〈·, ·〉ξ on this
vector space by setting

(18)
〈

pλ, pµ
〉
ξ

:= zλξ
l (λ) ·111λ=µ,

where zλ = ∏l (λ)
i=1 ai ! · i ai with ai being the number of parts of λ equal to i . Then the family of Jack

polynomials {Pλ(ttt ;ξ) : λ partition} in n variables is the unique family of functions in Q(ξ)
[
{mλ(ttt)}

]
satisfying the following two properties:

• Orthogonality
〈

Pλ(ttt ;ξ),Pµ(ttt ;ξ)
〉
ξ
= 0 if µ 6=λ.

• Triangularity If we write

Pλ(ttt ;ξ) = ∑
µ:l (µ)Én

c(λ,µ,n;ξ)mµ(ttt )

for some coefficients c(λ,µ,n;ξ) ∈Q(ξ), then c(λ,µ,n;ξ) 6= 0 only if µ4λ and c(λ,λ,n;ξ) = 1.

Actually this definition overdetermines the family of Jack polynomials, which means that a priori it is
not clear that there exists any family fromQ(ξ)

[
{mλ(ttt )}

]
which has these two properties. However it

can be shown that such a family exists, and then necessarily it is unique.
Moreover, it can be shown that the coefficients c(λ,µ,n;ξ) do not depend on n, and therefore the

Jack polynomials have the following stability property: for every n1 Ê n2 Ê l (λ),

Pλ
(
(t1, . . . , tn2 ,000n1−n2 );ξ

)≡ Pλ
(
(t1, . . . , tn2 );ξ

)
.

For convenience we also set Pλ
(
(t1, . . . , tm);ξ

)≡ 0 if m < l (λ).

Alternatively, we can obtain the Jack polynomials corresponding to ξ by considering the eigenfunc-
tions of the following operator arising in the Calogero-Sutherland model, which aims to describe a
system of n identical quantum particles on a circle (see e.g. [47], [45]):

D∗
ξ =

n∑
i=1

xi
∂

∂xi

(
xi

∂

∂xi

)
+ 1

ξ

∑
i< j

xi +x j

xi −x j

(
xi

∂

∂xi
−x j

∂

∂x j

)
.

The Jack polynomial Pλ(t1, . . . , tn ;ξ) is the unique homogeneous and symmetric polynomial eigenfunc-
tion with eigenvalue

∑n
i=1

(
λ2

i + 1
ξ (n −1−2i )λi

)
which is monic and whose leading terms are of type λ

(in other words, we choose the normalisation Pλ(ttt ;ξ) = mλ(ttt )+∑
µ≺λ c(λ,µ;ξ)mµ(ttt )).

Setting ξ equal to different non-zero real values (although it has to be noted that the orthogonalising
inner product defined above will be positive definite only for positive real values), we obtain different
families of symmetric polynomials. With ξ = 1 the corresponding family is the Schur polynomials{
Pλ(ttt ;1)

}
, which are intimately connected with the representation theory of the symmetric groups

Sn and of the (complex) general linear groups. Other important values, and essentially the only ones
we care about for the main applications in this paper, are ξ= 2, which gives the zonal polynomials{

Pλ(ttt ;2)
}

associated with real symmetric matrices, and ξ = 1
2 , which gives the quaternion zonal

polynomials
{
Pλ(·;1/2)

}
associated with the quaternionic self-adjoint matrices.

What is important to us in this note is having transition matrices from the basis {sκ
λ

(ttt )} = {P 1/κ
λ

(ttt )}
to the basis of monomial functions of degree up to 4 and vice versa. These can be found via the
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determinantal expressions for the Jack polynomials in terms of the monomial functions which were
established by Lapointe, Lascoux and Morse [36]. They are given in the following tables (and actually,
in the specific cases of the special families of the Schur or zonal polynomials (κ= 1,1/2 or 2), such
tables were known even before [36]).

P 1/κ
(1) = m(1)

m(2) m(12)

P 1/κ
(2) 1 2κ

κ+1

P 1/κ
(12)

0 1

m(3) m(2,1) m(13)

P 1/κ
(3) 1 3κ

κ+2
6κ2

(κ+1)(κ+2)

P 1/κ
(2,1) 0 1 6κ

2κ+1

P 1/κ
(13)

0 0 1

m(4) m(3,1) m(22) m(2,12) m(14)

P 1/κ
(4) 1 4κ

κ+3
6κ(κ+1)

(κ+2)(κ+3)
12κ2

(κ+2)(κ+3)
24κ3

(κ+1)(κ+2)(κ+3)

P 1/κ
(3,1) 0 1 2κ

κ+1
(5κ+3)κ
(κ+1)2

12κ2

(κ+1)2

P 1/κ
(22)

0 0 1 2κ
κ+1

12κ2

(κ+1)(2κ+1)

P 1/κ
(2,12)

0 0 0 1 12κ
3κ+1

P 1/κ
(14)

0 0 0 0 1

(19)

P 1/κ
(2) P 1/κ

(12)

m(2) 1 − 2κ
κ+1

m(12) 0 1

P 1/κ
(3) P 1/κ

(2,1) P 1/κ
(13)

m(3) 1 − 3κ
κ+2

6κ2

(κ+1)(2κ+1)

m(2,1) 0 1 − 6κ
2κ+1

m(13) 0 0 1

(20)

P 1/κ
(4) P 1/κ

(3,1) P 1/κ
(22)

P 1/κ
(2,12)

P 1/κ
(14)

m(4) 1 − 4κ
κ+3

2κ(κ−1)
(κ+1)(κ+2)

4κ2

(κ+1)2 − 24κ3

(κ+1)(2κ+1)(3κ+1)

m(3,1) 0 1 − 2κ
κ+1 −κ(κ+3)

(κ+1)2
24κ2

(2κ+1)(3κ+1)

m(22) 0 0 1 − 2κ
κ+1

12κ2

(2κ+1)(3κ+1)

m(2,12) 0 0 0 1 − 12κ
3κ+1

m(14) 0 0 0 0 1

2.3. Weingarten calculus for invariant ensembles. A permutation σ ∈ Sk can be decomposed into
cycles. If the numbers of lengths of cycles are µ1 Êµ2 Ê ·· · Êµl , then the sequence µ= (µ1,µ2, . . . ,µl ) is
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a partition of k. We will refer to µ as the cycle-type ofσ. Recall that the different cycle-types correspond
to the different conjugacy classes of Sk . Recall also that characters of Sk are class functions, that is,
they take the same value at permutations belonging to the same conjugacy class or, in other words,
having the same cycle-type.

For the (pairwise non-isomorphic) irreducible representations of Sk , there is a canonical way of
identifying each one of them with a unique partition of k and vice-versa (see e.g. [42, Section 2.3] or [21,
Chapter 4]). This also gives a natural one-to-one and onto correspondence between the irreducible
characters of Sk and partitions of k, which allows us to write the character table of Sk in terms of
partitions (in fact, to find χλ(µ), the value of the character correspoding to λ at a permutation with
cycle-type µ, one can use the Frobenius formula, see e.g. [21, Proposition 4.37]). In our computations
in Sections 4 and 5 we will need to plug in values of characters of S2,S3 and S4, so the character tables
for these are recalled here:

(21)

(12) (2)

χ(2) 1 1

χ(12) 1 -1

(13) (2,1) (3)

χ(3) 1 1 1

χ(2,1) 2 0 −1

χ(13) 1 −1 1

(22)

(14) (2,12) (22) (3,1) (4)

χ(4) 1 1 1 1 1

χ(3,1) 3 1 −1 0 −1

χ(22) 2 0 2 −1 0

χ(2,12) 3 −1 −1 0 1

χ(14) 1 −1 1 1 −1

2.3.1. The unitary case. For two sequences iii = (i1, . . . , ik ) and iii ′ = (i ′1, . . . , i ′k ) of positive integers and
for a permutation π ∈ Sk , set

(23) δπ(iii , iii ′) =
n∏

s=1
δiπ(s),i ′s ,

where δi , j = 1{i= j }.
Given a square matrix A and a permutation π ∈ Sk of cycle-type µ= (µ1,µ2, . . . ,µl ), set

(24) Trπ(A) =
l∏

j=1
Tr(Aµ j ).
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Finally, given a partition λ of k and a number z ∈C, define

(25) Cλ(z) =
l (λ)∏
i=1

λi∏
j=1

(z + j − i )

(in the applications below we are going to evaluate Cλ(z) at z = n; in this case, this is just the value
at 1n = (1, . . . ,1) of the Jack polynomial J 1

λ
(ttt ) ≡ cλ ·P 1

λ
(ttt ) under a different normalisation, see e.g. [46,

Theorem 5.4]).
One of the equivalent ways of defining the unitary Weingarten function on Sk with one complex

parameter z ∈C (see [16] or [15]) is the following: it is the complex-valued function on Sk given by

(26) π ∈ Sk 7→ WgU (π; z) := 1

k !

∑
λ`k

Cλ(z)6=0

χλ(e)

Cλ(z)
χλ(π),

where e is the identity permutation in Sk . Note that, unless z ∈ {0,±1, . . . ,±(k −1)}, Cλ(z) 6= 0 for all
partitions λ` k. Note also that WgU (π; z) depends only on the cycle-type of π.

It is convenient to also consider the convolution of two Weingarten functions. Recall that, for two
complex-valued functions f1, f2 on Sk ,

( f1 ∗ f2)(π) := ∑
τ∈Sk

f1(πτ) f2(τ−1) = ∑
τ∈Sk

f1(τ) f2(τ−1π).

We set

(27) π ∈ Sk 7→ WgU (π; z, w) := (
WgU (·; z)∗WgU (·; w)

)
(π),

where z, w ∈C.
By Schur’s lemma and the orthogonality relations it entails (see also [23, Theorem 2.13] for a different

derivation), we can also write

(28) WgU (π; z, w) = 1

k !

∑
λ`k

Cλ(z)Cλ(w)6=0

χλ(e)

Cλ(z)Cλ(w)
χλ(π).

Theorem 8. (Conjugacy invariance, [15, Theorem 3.1]) Let T = (Ti j ) be an n ×n Hermitian random
matrix whose distribution has the property that U TU∗ is distributed in the same way as T for any
unitary matrix U . For two sequences iii = (i1, . . . , ik ) and jjj = ( j1, . . . , jk ), we have

E[Ti1 j1 Ti2 j2 · · ·Tik jk ] = ∑
σ,τ∈Sk

δσ(iii , jjj )WgU (σ−1τ;n) E[Trτ(T )].

Theorem 9. (Left-right invariance, [15, Theorem 3.4]) Let X be a complex n ×p random matrix which
has the same distribution as U X V for any unitary matrices U ,V . Then, for four sequences iii = (i1, . . . , ik ),
iii ′ = (i ′1, . . . , i ′k ), jjj = ( j1, . . . , jk ) and jjj ′ = ( j ′1, . . . , j ′k ), we have

E
[

Xi1 j1 Xi2 j2 · · ·Xik jk Xi ′1 j ′1 Xi ′2 j ′2 · · ·Xi ′k j ′k

]= ∑
σ1,σ2,τ∈Sk

δσ1 (iii , iii ′)δσ2 ( jjj , jjj ′)WgU (τσ−1
1 σ2;n, p) E[Trτ(X X ∗)].

Remark 10. The proof of either theorem proceeds along very similar lines: one notes that T or X has
the same distribution as U DU∗ or U DV ∗ respectively, where D is a diagonal matrix (with the same
distribution of eigenvalues or singular values as T or X respectively), U ,V are Haar-distributed random
unitary matrices, and D , U and V are all independent. Then, once the integrals we are interested in are
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rewritten using these decompositions, one invokes the following pivotal result in Weingarten calculus
(see e.g. [16, Corollary 3.4]).

Theorem 11. Let U = (Ui j )1Éi , jÉn be an n ×n Haar-distributed unitary matrix. For four sequences
iii = (i1, . . . , ik ), iii ′ = (i ′1, . . . , i ′k ), jjj = ( j1, . . . , jk ) and jjj ′ = ( j ′1, . . . , j ′k ) of positive integers in [n], we have∫

U (n)
Ui1 j1Ui2 j2 · · ·Uik jkUi ′1 j ′1Ui ′2 j ′2 · · ·Ui ′k j ′k

dU = ∑
σ,τ∈Sk

δσ(iii , iii ′)δτ( jjj , jjj ′)WgU (σ−1τ;n).

2.3.2. The orthogonal case. For every σ ∈ S2k we can consider an undirected graph G(σ) with vertices
1,2, . . . ,2k and edge set consisting of{

{2i −1,2i } : i = 1,2, . . . ,k
}∪{

{σ(2i −1),σ(2i )} : i = 1,2, . . . ,k
}

(note that we consider as different every two edges of the form {2i −1,2i } and {σ(2 j −1),σ(2 j )} even
if the sets coincide). Then each vertex lies on exactly two edges, and the number of vertices in
each connected component is even. If the numbers of vertices in the connected components are
2µ1 Ê 2µ2 Ê ·· · Ê 2µl , then the sequence µ = (µ1,µ2, . . . ,µl ) is a partition of k which is called the
coset-type of σ.

Let M2k be the set of all pair partitions of the set [2k] = {1, . . . ,2k}. A pair partition σ ∈ M2k can be
uniquely expressed in the form

σ= {
{σ(1),σ(2)}, {σ(3),σ(4)}, . . . , {σ(2k −1),σ(2k)}

}
where 1 =σ(1) <σ(3) < ·· · <σ(2i −1) < ·· · <σ(2k −1) and σ(2i −1) <σ(2i ) for every 1 É i É k. Then σ

can also be regarded as a permutation

(
1 2 · · · 2k

σ(1) σ(2) · · · σ(2k)

)
in S2k . In this way we can embed

M2k into S2k (in particular, we can talk about the coset-type of a pair partition σ ∈ M2k ).

For a permutation σ ∈ S2k and a 2k-tuple iii = (i1, i2, . . . , i2k ) of positive integers, set

(29) δ′σ(iii ) =
k∏

s=1
δiσ(2s−1),iσ(2s) .

In particular, if σ ∈ M2k , then we can more simply write δ′σ(iii ) = ∏
{a,b}∈σ

δia ,ib .

Given a square matrix A and σ ∈ S2k with coset-type µ= (µ1,µ2, . . . ,µl ), set

(30) Tr′σ(A) =
l∏

j=1
Tr(Aµ j ) .

Finally, given a partition λ of k and a number z ∈C, define

(31) C ′
λ(z) =

l (λ)∏
i=1

λi∏
j=1

(z +2 j − i −1)

(again C ′
λ

(n) = J 2
λ

(1n), see [46, Theorem 5.4]).

To be able to give the definition for the orthogonal Weingarten function that is analogous to the
one we gave above in the unitary case, we first need to recall how the zonal spherical functions on S2k

are defined. Let Hk be the hyperoctahedral group of order 2k k !; this can be realised as the subgroup
of S2k generated by adjacent tranpositions (2i−1 2i ) for any 1 É i É k and double transpositions
of the form (2i−1 2 j−1)(2i 2 j ) for any 1 É i < j É k. Then for each partition λ of k, consider the
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partition 2λ= (2λ1,2λ2, . . . ,2λl (λ)) of 2k and the corresponding character χ2λ of S2k , and define the
zonal spherical function ωλ corresponding to λ by

(32) σ ∈ S2k 7→ ωλ(σ) := 1

2k k !

(
χ2λ∗1Hk

)
(σ) = 1

2k k !

∑
π∈S2k

χ2λ(σπ) 1Hk

(
π−1).

Given that Hk is a subgroup of S2k and that M2k contains a unique representative of each left coset
σHk of Hk in S2k , this definition can be rewritten in a somewhat simpler way:

(33) ωλ(σ) = 1

2k k !

∑
τ∈M2k

∑
ζ∈Hk

χ2λ(
στζ

)
1Hk

(
(τζ)−1)= 1

2k k !

∑
ζ∈Hk

χ2λ(σζ).

Recall finally that the zonal sperical functions ωλ corresponding to partitions λ of k form a linear basis
of L(S2k , Hk ), the space of all complex-valued functions on S2k which are Hk -bi-invariant, that is, the
set {

f : S2k →C | f (ζσ) = f (σζ) = f (σ) for every σ ∈ S2k ,ζ ∈ Hk
}
.

We now define the orthogonal Weingarten function on S2k with one complex parameter z ∈C (see
[14] or [15]):

(34) σ ∈ S2k 7→ WgO(σ; z) := 2k k !

(2k)!

∑
λ`k

C ′
λ

(z)6=0

χ2λ(e)

C ′
λ

(z)
ωλ(σ).

Note that all ωλ, and therefore also W g O(·; z), take the same value at permutations σ1,σ2 with the
same coset-type (where equivalently σ1 has the same coset-type as σ2 if and only if σ1 ∈ Hkσ2Hk ).

Theorem 12. (Conjugacy invariance, [15, Theorem 3.3]) Let T = (Ti j ) be an n×n real symmetric random
matrix with the invariance property that OT Ot has the same distribution as T for any orthogonal matrix
O. For any sequence iii = (i1, . . . , i2k ), we have

E
[
Ti1i2 Ti3i4 · · ·Ti2k−1i2k

]= ∑
σ,τ∈M2k

δ′σ(iii )WgO(σ−1τ;n) E
[
Tr′τ(T )

]
.

Theorem 13. (Left-right invariance, [15, Theorem 3.5]) Let X be a real n ×p random matrix which has
the same distribution as OXQ for any orthogonal matrices O,Q. Then, for two sequences iii = (i1, . . . , i2k )
and jjj = ( j1, . . . , j2k ), we have

E
[

Xi1 j1 Xi2 j2 · · ·Xi2k j2k

]= ∑
σ1,σ2,τ1,τ2∈M2k

δ′σ1
(iii )δ′σ2

( jjj )WgO(σ−1
1 τ1;n)WgO(σ−1

2 τ2; p) E[Tr′
τ−1

1 τ2
(X X t )].

Remark 14. Again the proof of the theorems follows from a decomposition of T or X as ODOt or ODQ t

respectively (with D diagonal with the same distribution of eigenvalues or singular values as T or X
respectively, O and Q Haar-distributed random orthogonal matrices, and D,O and Q independent),
combined with the use of the following result (see [16, Corollary 3.4] and [14]).

Theorem 15. Let O = (Oi j )1Éi , jÉn be an n ×n Haar-distributed orthogonal matrix. For sequences
iii = (i1, . . . , i2k ), jjj = ( j1, . . . , j2k ) of positive integers in [n], we have∫

O(n)
Oi1 j1Oi2 j2 · · ·Oi2k j2k dO = ∑

σ,τ∈M2k

δ′σ(iii )δ′τ( jjj )WgO(σ−1τ;n).

Note that the statement of Theorem 13 above is slightly different from that in [15], the conclusion
following from the proof on [15, p. 9], and being compatible with the invariances of ensembles such as
X ∼ Unif(Kp,Mn (R)) under taking transpose.
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3. Proof of Theorem 2

Let us start with the case where E =Mn(F). By Proposition 7 it suffices to show that

VarN∞
(‖x‖2

2

)= N∞
(‖x‖4

2

)
N∞(1)

−
(

N∞
(‖x‖2

2

)
N∞(1)

)2

' 1,

where in this case

N∞( f ) =
∫

[−1,1]n

f (x) · ∏
1Éi< jÉn

∣∣x2
i −x2

j

∣∣β · ∏
1ÉiÉn

|xi |β−1 d x

with β= dimR(F). Since all the functions f we need to consider are symmetric and in addition their
values only depend on what the absolute values of the coordinates of their input are, we have

VarN∞
(‖x‖2

2

)= Ñ∞
(‖x‖4

2

)
Ñ∞(1)

−
(

Ñ∞
(‖x‖2

2

)
Ñ∞(1)

)2

where

Ñ∞( f ) :=
∫

[0,1]n

f (x) · ∏
1Éi< jÉn

∣∣x2
i −x2

j

∣∣β · ∏
1ÉiÉn

|xi |β−1 d x = 1

2n N∞( f )

for all the functions considered. Furthermore, by symmetry again,

(35) VarN∞
(‖x‖2

2

)= n
Ñ∞

(
x4

1

)
Ñ∞(1)

+n(n −1)
Ñ∞

(
x2

1 x2
2

)
Ñ∞(1)

−n2

(
Ñ∞

(
x2

1

)
Ñ∞(1)

)2

.

Employing now the transformation x = (x1, x2, . . . , xn) ∈ [0,1]n 7→ (p
x1,

p
x2, . . . ,

p
xn

)
which has

Jacobian x ∈ (0,1)n 7→ 2−n ∏
i x−1/2

i , we can obtain the following:

Ñ∞(1) = 2−n
∫

[0,1]n

∏
1ÉiÉn

x
β
2 −1

i · ∏
1Éi< jÉn

∣∣xi −x j
∣∣βd x = 2−n I0

(
n;
β

2
,1,

β

2

)
,

Ñ∞(x2
1) = 2−n

∫
[0,1]n

x1
∏

1ÉiÉn
x
β
2 −1

i · ∏
1Éi< jÉn

∣∣xi −x j
∣∣βd x = 2−n I1

(
n;
β

2
,1,

β

2

)
,

Ñ∞
(
x2

1 x2
2

)= 2−n
∫

[0,1]n

x1x2
∏

1ÉiÉn
x
β
2 −1

i · ∏
1Éi< jÉn

∣∣xi −x j
∣∣βd x = 2−n I2

(
n;
β

2
,1,

β

2

)
,

and finally

Ñ∞
(
x4

1

)= 2−n
∫

[0,1]n

x2
1

∏
1ÉiÉn

x
β
2 −1

i · ∏
1Éi< jÉn

∣∣xi −x j
∣∣βd x = 2−n

(
I1

(
n;
β

2
,1,

β

2

)
− I1,1,1

(
n;
β

2
,1,

β

2

))
(recall the notation in Subsection 2.2). Using the formulas in (15) and (16), we see that

Ñ∞
(
x2

1

)
Ñ∞(1)

= nβ/2

1+ (2n −1)β/2
,

Ñ∞
(
x2

1 x2
2

)
Ñ∞(1)

= n(n −1)β2/4

(1+ (2n −1)β/2)(1+ (n −1)β)
,
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Ñ∞
(
x4

1

)
Ñ∞(1)

= nβ/2

1+ (2n −1)β/2
− 1+ (n −1)β/2

2+ (2n −1)β/2
· nβ/2(1+ (n −1)β/2)

(1+ (2n −1)β/2)(1+ (n −1)β)

= nβ/2(1/2+3(n −1)β/4)

(1+ (2n −1)β/2)(1+ (n −1)β)
+ nβ2/8(1+ (n −1)β/2)

(2+ (2n −1)β/2)(1+ (2n −1)β/2)(1+ (n −1)β)
.

Plugging these into (35), we deduce that

n
Ñ∞

(
x4

1

)
Ñ∞(1)

+n(n −1)
Ñ∞

(
x2

1 x2
2

)
Ñ∞(1)

− n2

(
Ñ∞

(
x2

1

)
Ñ∞(1)

)2

= n4β2/4−n3β2/8+n2β/2(1/2−β/4)

(1+ (2n −1)β/2)(1+ (n −1)β)
+ n3β3/16+n2β2/8(1−β/2)

(2+ (2n −1)β/2)(1+ (2n −1)β/2)(1+ (n −1)β)

− n4β2/4

(1+ (2n −1)β/2)(1+ (n −1)β)

(
1− β/2

1+ (2n −1)β/2

)
= n2β/2(1/2−β/4)

(1+ (2n −1)β/2)(1+ (n −1)β)
+ n3β3/16+n2β2/8(1−β/2)

(2+ (2n −1)β/2)(1+ (2n −1)β/2)(1+ (n −1)β)

+ n3β2/8(β/2−1)

(1+ (2n −1)β/2)2(1+ (n −1)β)

=n3β2/8+n2β/2
(
(1/2−β/4)(2−β/2)+β/4(1−β/2)

)
(2+ (2n −1)β/2)(1+ (2n −1)β/2)(1+ (n −1)β)

+ n3β2/8(β/2−1)

(2+ (2n −1)β/2)(1+ (2n −1)β/2)2(1+ (n −1)β)

= 1

8β
+O

( 1

n

)
.

This agrees with the conclusion of [41, Theorem 1] (see more specifically the end of Section 4 in [41]).

We now turn to the cases of the subspaces of F-self-adjoint matrices. Recall that by Proposition 7 it
suffices to show

VarN∞
(‖x‖2

2

)= N∞
(‖x‖4

2

)
N∞(1)

−
(

N∞
(‖x‖2

2

)
N∞(1)

)2

= n
N∞

(
x4

1

)
N∞(1)

+n(n −1)
N∞

(
x2

1 x2
2

)
N∞(1)

−n2

(
N∞

(
x2

1

)
N∞(1)

)2

' 1,(36)

where now

N∞( f ) =
∫

[−1,1]n

f (x) · ∏
1Éi< jÉn

∣∣xi −x j
∣∣βd x

with β= dimR(F). For each of the functions f in (36) we can write

N∞( f ) =
∫

[− 1
2 , 1

2 ]n

2n f (2x1, . . . ,2xn) · ∏
1Éi< jÉn

∣∣2xi −2x j
∣∣βd x

= 2n+βn(n−1)/2+s
∫

[− 1
2 , 1

2 ]n

f (x1, . . . , xn) · ∏
1Éi< jÉn

∣∣xi −x j
∣∣βd x

= 2n+βn(n−1)/2+s
∫

[0,1]n

f
(
t1 − 1

2
, . . . , tn − 1

2

)
· ∏
1Éi< jÉn

∣∣ ti − t j
∣∣βd ttt ,
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where s is the degree of homogeneity of f . Thus, upon writing

J∞(g ) =
∫

[0,1]n

g (ttt ) · ∏
1Éi< jÉn

∣∣ ti − t j
∣∣βd ttt ,

we see that, to verify (36), we need to estimate

J∞
((

t1 − 1

2

)2)= J∞(t 2
1 )− J∞(t1)+ 1

4
J∞(1) = 1

n
J∞(m(2))− 1

n
J∞(m(1))+ 1

4
J∞(1),

J∞
((

t1 − 1

2

)2(
t2 − 1

2

)2)= J∞(t 2
1 t 2

2 )− J∞(t 2
1 t2 + t1t 2

2 )+ 1

4
J∞(t 2

1 + t 2
2 )+ J∞(t1t2)− 1

4
J∞(t1 + t2)+ 1

16
J∞(1)

= 2

n(n −1)
J∞(m(22))−

2

n(n −1)
J∞(m(2,1))+ 1

2n
J∞(m(2))

+ 2

n(n −1)
J∞(m(12))−

1

2n
J∞(m(1))+ 1

16
J∞(1),

J∞
((

t1 − 1

2

)4)= J∞(t 4
1 )−2J∞(t 3

1 )+ 3

2
J∞(t 2

1 )− 1

2
J∞(t1)+ 1

16
J∞(1)

= 1

n
J∞(m(4))− 2

n
J∞(m(3))+ 3

2n
J∞(m(2))− 1

2n
J∞(m(1))+ 1

16
J∞(1).

We will do so by recalling the decompositions of the monomial symmetric functions in the bases of
the Schur or the zonal or the quaternionic zonal polynomials (see tables (19) and (20)), and by using
integration formula (17). Denote by Iκn (λ) the integral∫

[0,1]n

P 1/κ
λ (ttt )

∏
1Éi< jÉn

∣∣ ti − t j
∣∣2κd ttt =

∫
[0,1]n

sκλ(ttt )
∏

1Éi< jÉn

∣∣ ti − t j
∣∣2κd ttt .

For simplicity and to make it easier to check the tedious computations, in what follows we treat the
cases of C,R and H separately (note moreover that, even though the below computations could be
done for more general values of β (see Remark 19), and would still have an interpretation via a random
matrix model (see [18]), this interpretation would not correspond to the same type of variance problem
as the one we are interested in here).

Proposition 16. (Case of β= 2, κ= 1; Hermitian matrices) The following estimates are true:

N∞
(
x2

1

)
N∞(1)

= 2
J∞

((
t1 − 1

2

)2)
J∞(1)

= 1

4
− 1

16n2 +O
( 1

n3

)
,(37)

N∞
(
x2

1 x2
2

)
N∞(1)

= 4
J∞

((
t1 − 1

2

)2(
t2 − 1

2

)2)
J∞(1)

= 1

16
− 1

32n
− 1

32n2 +O
( 1

n3

)
and

N∞
(
x4

1

)
N∞(1)

= 4
J∞

((
t1 − 1

2

)4)
J∞(1)

= 3

32
+O

( 1

n2

)
.

As a consequence,

VarN∞
(‖x‖2

2

)= n
N∞

(
x4

1

)
N∞(1)

+n(n −1)
N∞

(
x2

1 x2
2

)
N∞(1)

−n2

(
N∞

(
x2

1

)
N∞(1)

)2

= 1

32
+O

( 1

n

)
.
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Moreover,

(38)
N∞

(
x1x2

)
N∞(1)

= 2
J∞

((
t1 − 1

2

)(
t2 − 1

2

))
J∞(1)

=− 1

4n
− 1

8n2 − 1

16n3 +O
( 1

n4

)
(this is an estimate we will need in the following section).

Proof. We begin with the simple observation that for all κ we have

J∞(1) = Iκn ((0)) and J∞(m(1)) = Iκn ((1)) = n

2
Iκn ((0)).

Furthermore, when κ= 1,

J∞(m(12)) = I 1
n((12)) = I 1

n((0))
n(n −1)

4

n −1

2n −1
= I 1

n((0))
n(n −1)

2

(1

4
− 1

8n
− 1

16n2 − 1

32n3 +O
( 1

n4

))
= I 1

n((0))n
(n

8
− 3

16
+ 1

32n
+ 1

64n2 +O
( 1

n3

))
and I 1

n((2)) = I 1
n((0))

n(n +1)

4

n +1

2n +1
= I 1

n((0))n
(n

8
+ 3

16
+ 1

32n
− 1

64n2 +O
( 1

n3

))
.

Therefore,

J∞(m(2)) = I 1
n((2))− I 1

n((12)) = I 1
n((0))n

(3

8
− 1

32n2 +O
( 1

n3

))
,

which also gives

(39) J∞
((

t1 − 1

2

)2)= 1

n
J∞(m(2))− 1

n
J∞(m(1))+ 1

4
J∞(1) = I 1

n((0))
(1

8
− 1

32n2 +O
( 1

n3

))
.

Note also that
(40)

J∞
((

t1− 1

2

)(
t2− 1

2

))
= 2

n(n −1)
J∞(m(12))−

1

n
J∞(m(1))+ 1

4
J∞(1) = I 1

n((0))
(
− 1

8n
− 1

16n2 −
1

32n3 +O
( 1

n4

))
.

Next observe that

I 1
n((13)) = I 1

n((0))
n(n −1)(n −2)

24

n −2

2n −1
= I 1

n((0))
n(n −1)

2

( n

24
− 7

48
+ 3

32n
+ 3

64n2 +O
( 1

n3

))
= I 1

n((0))n
(n2

48
− 3n

32
+ 23

192
− 3

128n
+O

( 1

n2

))
,

I 1
n((2,1)) = I 1

n((0))
n(n −1)(n +1)

6

n +1

2n +1

n −1

2n −1
= I 1

n((0))
n(n −1)

2

( n

12
+ 1

12
− 1

16n
− 1

16n2 +O
( 1

n3

))
= I 1

n((0))n
(n2

24
− 7

96
+O

( 1

n2

))
and

I 1
n((3)) = I 1

n((0))
(n +2)(n +1)n

24

n +2

2n +1
= I 1

n((0))n
(n2

48
+ 3n

32
+ 23

192
+ 3

128n
+O

( 1

n2

))
.

It follows that

J∞(m(2,1)) = I 1
n((2,1))−2I 1

n((13)) = I 1
n((0))

n(n −1)

2

(3

8
− 1

4n
− 5

32n2 +O
( 1

n3

))
and

J∞(m(3)) = I 1
n((3))− I 1

n((2,1))+ I 1
n((13)) = I 1

n((0))n
( 5

16
+O

( 1

n2

))
.
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Moreover,

I 1
n((14)) = I 1

n((0))
n(n −1)(n −2)(n −3)

96

n −2

2n −1

n −3

2n −3
= I 1

n((0))
n(n −1)

2

( n2

192
− n

24
+ 27

256
− 9

128n
− 33

1024n2 +O
( 1

n3

))
= I 1

n((0))n
( n3

384
− 3n2

128
+ 113n

1536
− 45

1536
+ 39

2048n
+O

( 1

n2

))
,

I 1
n((2,12)) = I 1

n((0))
(n +1)n(n −1)(n −2)

32

n +1

2n +1

n −2

2n −1
= I 1

n((0))
n(n −1)

2

(n2

64
− n

32
− 11

256
+ 7

128n
+ 53

1024n2 +O
( 1

n3

))
= I 1

n((0))n
( n3

128
− 3n2

128
− 3n

512
+ 25

512
− 3

2048n
+O

( 1

n2

))
,

I 1
n((22)) = I 1

n((0))
n(n −1)(n +1)n

48

n +1

2n +1

n −1

2n −1
= I 1

n((0))
n(n −1)

2

(n2

96
+ n

96
− 1

128
− 1

128n
− 1

512n2 +O
( 1

n3

))
= I 1

n((0))n
( n3

192
− 7n

768
+ 3

1024n
+O

( 1

n2

))
,

while

I 1
n((3,1)) = I 1

n((0))
(n +2)(n +1)n(n −1)

32

n +2

2n +1

n −1

2n −1
= I 1

n((0))n
( n3

128
+3n2

128
− 3n

512
− 25

512
− 3

2048n
+O

( 1

n2

))
and

I 1
n((4)) = I 1

n((0))
(n +3)(n +2)(n +1)n

96

n +3

2n +3

n +2

2n +1
= I 1

n((0))n
( n3

384
+3n2

128
+113n

1536
+ 45

512
+ 39

2048n
+O

( 1

n2

))
.

It follows that

J∞(m(22)) = I 1
n((22))− I 1

n((2,12))+ I 1
n((14)) = I 1

n((0))
n(n −1)

2

( 9

64
− 17

128n
− 11

128n2 +O
( 1

n3

))
and

J∞(m(4)) = I 1
n((4))− I 1

n((3,1))+ I 1
n((2,12))+ I 1

n((14)) = I 1
n((0))n

( 35

128
+O

( 1

n2

))
.

We conclude that

J∞
((

t1 − 1

2

)2(
t2 − 1

2

)2)= 2

n(n −1)
J∞(m(22))−

2

n(n −1)
J∞(m(2,1))+ 1

2n
J∞(m(2))

+ 2

n(n −1)
J∞(m(12))−

1

2n
J∞(m(1))+ 1

16
J∞(1)

= I 1
n((0))

( 1

64
− 1

128n
− 1

128n2 +O
( 1

n3

))
,(41)

while

J∞
((

t1 − 1

2

)4)= 1

n
J∞(m(4))− 2

n
J∞(m(3))+ 3

2n
J∞(m(2))− 1

2n
J∞(m(1))+ 1

16
J∞(1)

= I 1
n((0))

( 3

128
+O

( 1

n2

))
.(42)

This completes the proof of Theorem 2 when F=C. �
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Proposition 17. (Case of β= 1, κ= 1
2 ; R-self-adjoint matrices) The following estimates are true:

N∞
(
x2

1

)
N∞(1)

= 2
J∞

((
t1 − 1

2

)2)
J∞(1)

= 1

4
− 1

8n
+ 1

16n2 +O
( 1

n3

)
,(43)

N∞
(
x2

1 x2
2

)
N∞(1)

= 4
J∞

((
t1 − 1

2

)2(
t2 − 1

2

)2)
J∞(1)

= 1

16
− 3

32n
+ 3

32n2 +O
( 1

n3

)
and

N∞
(
x4

1

)
N∞(1)

= 4
J∞

((
t1 − 1

2

)4)
J∞(1)

= 3

32
− 5

64n
+O

( 1

n2

)
.

As a consequence,

VarN∞
(‖x‖2

2

)= 1

16
+O

( 1

n

)
.

Moreover,

(44)
N∞

(
x1x2

)
N∞(1)

= 2
J∞

((
t1 − 1

2

)(
t2 − 1

2

))
J∞(1)

=− 1

4n
+ 1

8n2 − 1

16n3 +O
( 1

n4

)
.

Proof. When κ= 1
2 ,

J∞(m(12)) = I 1/2
n ((12)) = I 1/2

n ((0))
n(n −1)

4

n

2n +1
= I 1/2

n ((0))
n(n −1)

2

(1

4
− 1

8n
+ 1

16n2 − 1

32n3 +O
( 1

n4

))
= I 1/2

n ((0))n
(n

8
− 3

16
+ 3

32n
− 3

64n2 +O
( 1

n3

))
and I 1/2

n ((2)) = I 1/2
n ((0))

n(n +2)

12

n +3

n +2
= I 1/2

n ((0))n
( n

12
+ 1

4

)
.

Therefore,

J∞(m(2)) = I 1/2
n ((2))− 2

3
I 1/2

n ((12)) = I 1/2
n ((0))n

(3

8
− 1

16n
+ 1

32n2 +O
( 1

n3

))
,

which also gives

(45) J∞
((

t1 − 1

2

)2)= 1

n
J∞(m(2))− 1

n
J∞(m(1))+ 1

4
J∞(1) = I 1/2

n ((0))
(1

8
− 1

16n
+ 1

32n2 +O
( 1

n3

))
.

Note also that
(46)

J∞
((

t1−1

2

)(
t2−1

2

))
= 2

n(n −1)
J∞(m(12))−

1

n
J∞(m(1))+1

4
J∞(1) = I 1/2

n ((0))
(
− 1

8n
+ 1

16n2−
1

32n3+O
( 1

n4

))
.

Next observe that

I 1/2
n ((13)) = I 1/2

n ((0))
n(n −1)(n −2)

24

n −1

2n +1
= I 1/2

n ((0))
n(n −1)

2

( n

24
− 7

48
+ 5

32n
− 5

64n2 +O
( 1

n3

))
= I 1/2

n ((0))n
(n2

48
− 3n

32
+ 29

192
− 15

128n
+O

( 1

n2

))
,

I 1/2
n ((2,1)) = I 1/2

n ((0))
n(n −1)(n +2)

16

n +3

n +2

n

2n +1
= I 1/2

n ((0))
n(n −1)

2

( n

16
+ 5

32
− 5

64n
+ 5

128n2 +O
( 1

n3

))
= I 1/2

n ((0))n
(n2

32
+ 3n

64
− 15

128
+ 15

256n
+O

( 1

n2

))
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and

I 1/2
n ((3)) = I 1/2

n ((0))
(n +4)(n +2)n

120

n +5

n +2
= I 1/2

n ((0))n
( n2

120
+ 3n

40
+ 1

6

)
.

It follows that

J∞(m(2,1)) = I 1/2
n ((2,1))− 3

2
I 1/2

n ((13)) = I 1/2
n ((0))

n(n −1)

2

(3

8
− 5

16n
+ 5

32n2 +O
( 1

n3

))
and

J∞(m(3)) = I 1/2
n ((3))− 3

5
I 1/2

n ((2,1))+ 1

2
I 1/2

n ((13)) = I 1/2
n ((0))n

( 5

16
− 3

32n
+O

( 1

n2

))
.

Moreover,

I 1/2
n ((14)) = I 1/2

n ((0))
n(n −1)(n −2)(n −3)

96

n −1

2n +1

n −2

2n −1
= I 1/2

n ((0))
n(n −1)

2

( n2

192
− n

24
+ 31

256
− 5

32n
+ 95

1024n2 +O
( 1

n3

))
= I 1/2

n ((0))n
( n3

384
− 3n2

128
+ 125n

1536
− 71

512
+ 255

2048n
+O

( 1

n2

))
,

I 1/2
n ((2,12)) = I 1/2

n ((0))
(n +2)n(n −1)(n −2)

80

n +3

n +2

n −1

2n +1

= I 1/2
n ((0))

n(n −1)

2

(n2

80
− n

160
− 27

320
+ 15

128n
− 15

256n2 +O
( 1

n3

))
= I 1/2

n ((0))n
( n3

160
− 3n2

320
− 5n

128
+ 129

1280
− 45

512n
+O

( 1

n2

))
,

I 1/2
n ((22)) = I 1/2

n ((0))
n(n −1)(n +2)(n +1)

96

n +3

n +2

n +2

2n +3

n

2n +1

= I 1/2
n ((0))

n(n −1)

2

( n2

192
+ n

96
+ 3

256
− 1

128n
+ 7

1024n2 +O
( 1

n3

))
= I 1/2

n ((0))n
( n3

384
+ n2

128
− 7n

1536
− 5

512

15

2048n
+O

( 1

n2

))
,

while

I 1/2
n ((3,1)) = I 1/2

n ((0))
(n +4)(n +2)n(n −1)

144

n +5

n +2

n

2n +1
= I 1/2

n ((0))n
( n3

288
+5n2

192
+ 29n

1152
− 21

256
+ 21

512n
+O

( 1

n2

))
and

I 1/2
n ((4)) = I 1/2

n ((0))
(n +6)(n +4)(n +2)n

1680

n +7

n +4

n +5

n +2
= I 1/2

n ((0))n
( n3

1680
+ 3n2

280
+ 107n

1680
+ 1

8

)
.

It follows that

J∞(m(22)) = I 1/2
n ((22))− 2

3
I 1/2

n ((2,12))+ 3

5
I 1/2

n ((14)) = I 1/2
n ((0))

n(n −1)

2

( 9

64
− 23

128n
+ 13

128n2 +O
( 1

n3

))
and

J∞(m(4)) = I 1/2
n ((4))−4

7
I 1/2

n ((3,1))− 2

15
I 1/2

n ((22))+4

9
I 1/2

n ((2,12))−2

5
I 1/2

n ((14)) = I 1/2
n ((0))n

( 35

128
− 29

256n
+O

( 1

n2

))
.
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We conclude that

J∞
((

t1 − 1

2

)2(
t2 − 1

2

)2)= 2

n(n −1)
J∞(m(22))−

2

n(n −1)
J∞(m(2,1))+ 1

2n
J∞(m(2))

+ 2

n(n −1)
J∞(m(12))−

1

2n
J∞(m(1))+ 1

16
J∞(1)

= I 1/2
n ((0))

( 1

64
− 3

128n
+ 3

128n2 +O
( 1

n3

))
,(47)

while

J∞
((

t1 − 1

2

)4)= 1

n
J∞(m(4))− 2

n
J∞(m(3))+ 3

2n
J∞(m(2))− 1

2n
J∞(m(1))+ 1

16
J∞(1)

= I 1/2
n ((0))

( 3

128
− 5

256n
+O

( 1

n2

))
.(48)

This completes the proof of Theorem 2 when F=R. �

Proposition 18. (Case of β= 4, κ= 2; H-self-adjoint matrices) The following estimates are true:

N∞
(
x2

1

)
N∞(1)

= 2
J∞

((
t1 − 1

2

)2)
J∞(1)

= 1

4
+ 1

16n
+ 1

64n2 +O
( 1

n3

)
,(49)

N∞
(
x2

1 x2
2

)
N∞(1)

= 4
J∞

((
t1 − 1

2

)2(
t2 − 1

2

)2)
J∞(1)

= 1

16
− 3

256n2 +O
( 1

n3

)
and

N∞
(
x4

1

)
N∞(1)

= 4
J∞

((
t1 − 1

2

)4)
J∞(1)

= 3

32
+ 5

128n
+O

( 1

n2

)
.

As a consequence,

VarN∞
(‖x‖2

2

)= 1

64
+O

( 1

n

)
.

Moreover,

(50)
N∞

(
x1x2

)
N∞(1)

= 2
J∞

((
t1 − 1

2

)(
t2 − 1

2

))
J∞(1)

=− 1

4(n −1)
.

Proof. When κ= 2,

J∞(m(12)) = I 2
n((12)) = I 2

n((0))
n(n −1)

16

2n −3

n −1
= I 2

n((0))
n(n −1)

2

(1

4
− 1

8n
− 1

8n2 − 1

8n3 +O
( 1

n4

))
= I 2

n((0))n
(n

8
− 3

16

)
and I 2

n((2)) = I 2
n((0))

n(2n +1)

6

2n

4n −1
= I 2

n((0))n
(n

6
+ 1

8
+ 1

32n
+ 1

128n2 +O
( 1

n3

))
.

Therefore,

J∞(m(2)) = I 2
n((2))− 4

3
I 2

n((12)) = I 2
n((0))n

(3

8
+ 1

32n
+ 1

128n2 +O
( 1

n3

))
,

which also gives

(51) J∞
((

t1 − 1

2

)2)= 1

n
J∞(m(2))− 1

n
J∞(m(1))+ 1

4
J∞(1) = I 2

n((0))
(1

8
+ 1

32n
+ 1

128n2 +O
( 1

n3

))
.
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Note also that

J∞
((

t1−1

2

)(
t2−1

2

))
= 2

n(n −1)
J∞(m(12))−

1

n
J∞(m(1))+1

4
J∞(1) =−I 2

n((0))
1

8(n −1)
= I 2

n((0))
(
− 1

8n
−

∞∑
i=2

1

8ni

)
.

Next observe that

I 2
n((13)) = I 2

n((0))
n(n −1)(n −2)

96

2n −5

n −1
= I 2

n((0))
n(n −1)

2

( n

24
− 7

48
+ 1

16n
+ 1

16n2 +O
( 1

n3

))
= I 2

n((0))n
(n2

48
− 3n

32
+ 5

48
+O

( 1

n2

))
,

I 2
n((2,1)) = I 2

n((0))
n(n −1)(2n +1)

20

n

4n −1

2n −3

n −1
= I 2

n((0))
n(n −1)

2

( n

10
+ 1

40
− 11

160n
− 59

640n2 +O
( 1

n3

))
= I 2

n((0))n
(n2

20
− 3n

80
− 3

64
− 3

256n
+O

( 1

n2

))
and

I 2
n((3)) = I 2

n((0))
(n +1)(2n +1)n

24

2n +1

4n −1
= I 2

n((0))n
(n2

24
+ 3n

32
+ 29

384
+ 15

512n
+O

( 1

n2

))
.

It follows that

J∞(m(2,1)) = I 2
n((2,1))− 12

5
I 2

n((13)) = I 2
n((0))

n(n −1)

2

(3

8
− 7

32n
− 31

128n2 +O
( 1

n3

))
and

J∞(m(3)) = I 2
n((3))− 3

2
I 2

n((2,1))+ 8

5
I 2

n((13)) = I 2
n((0))n

( 5

16
+ 3

64n
+O

( 1

n2

))
.

Moreover,

I 2
n((14)) = I 2

n((0))
n(n −1)(n −2)(n −3)

1536

2n −5

n −1

2n −7

n −2
= I 2

n((0))
n(n −1)

2

( n2

192
− n

24
+ 25

256
− 5

128n
− 5

128n2 +O
( 1

n3

))
= I 2

n((0))n
( n3

384
− 3n2

128
+ 107n

1536
− 35

1536
+O

( 1

n2

))
,

I 2
n((2,12)) = I 2

n((0))
(2n +1)n(n −1)(n −2)

112

n

4n −1

2n −5

n −1

= I 2
n((0))

n(n −1)

2

(n2

56
− 11n

224
− 15

896
+ 129

3584n
+ 705

14336n2 +O
( 1

n3

))
= I 2

n((0))n
( n3

112
− 15n2

448
+ 29n

1792
+ 27

1024
+ 27

4096n
+O

( 1

n2

))
,

I 2
n((22)) = I 2

n((0))
n(n −1)(2n +1)(2n −1)

60

2n

4n −1

2n −2

4n −3

2n −3

4n −4

= I 2
n((0))

n(n −1)

2

(n2

60
− n

120
− 1

64
− 1

128n
− 5

1024n2 +O
( 1

n3

))
= I 2

n((0))n
( n3

120
− n2

80
− 7n

1920
+ 1

256
+ 3

2048n
+O

( 1

n2

))
,

while

I 2
n((3,1)) = I 2

n((0))
(2n +2)(2n +1)n(n −1)

72

2n +1

4n −1

2n −3

4n −4
= I 2

n((0))n
(n3

72
+n2

96
− 25n

1152
− 43

1536
− 25

2048n
+O

( 1

n2

))
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and

I 2
n((4)) = I 2

n((0))
(2n +3)(2n +2)(2n +1)n

240

2n +2

4n +1

2n +1

4n −1
= I 2

n((0))n
( n3

120
+3n2

80
+25n

384
+ 71

1280
+ 51

2048n
+O

( 1

n2

))
.

It follows that

J∞(m(22)) = I 2
n((22))− 4

3
I 2

n((2,12))+ 48

35
I 2

n((14)) = I 2
n((0))

n(n −1)

2

( 9

64
− 7

64n
− 127

1024n2 +O
( 1

n3

))
and

J∞(m(4)) = I 2
n((4))− 8

5
I 2

n((3,1))+ 1

3
I 2

n((22))+ 16

9
I 2

n((2,12))− 64

35
I 2

n((14)) = I 2
n((0))n

( 35

128
+ 29

512n
+O

( 1

n2

))
.

We conclude that

J∞
((

t1 − 1

2

)2(
t2 − 1

2

)2)= 2

n(n −1)
J∞(m(22))−

2

n(n −1)
J∞(m(2,1))+ 1

2n
J∞(m(2))

+ 2

n(n −1)
J∞(m(12))−

1

2n
J∞(m(1))+ 1

16
J∞(1)

= I 2
n((0))

( 1

64
− 3

1024n2 +O
( 1

n3

))
,(52)

while

J∞
((

t1 − 1

2

)4)= 1

n
J∞(m(4))− 2

n
J∞(m(3))+ 3

2n
J∞(m(2))− 1

2n
J∞(m(1))+ 1

16
J∞(1)

= I 2
n((0))

( 3

128
+ 5

512n
+O

( 1

n2

))
.(53)

This completes the proof of Theorem 2 in all cases. �

Remark 19. We can unify the above computations, which can be made for all large enough β, as
follows: as long as β= 2κ is bounded away from zero, i.e. βÊβ0 for some fixed β0 > 0, we have

1

Iβ/2
n ((0))

·
(∫

[− 1
2 , 1

2 ]n
m(4)(xxx) |∆n(xxx)|βd xxx + 2

∫
[− 1

2 , 1
2 ]n

m(22)(xxx) |∆n(xxx)|βd xxx

)

−
(

1

Iβ/2
n ((0))

∫
[− 1

2 , 1
2 ]n

m(2)(xxx) |∆n(xxx)|βd xxx

)2

=
(

3

128
n + 5(β−2)

256β

)
+

(
1

64
n2 − β+4

128β
n + β2 −9β+14

128β2

)
−

(
1

64
n2 + β−2

64β
n + 7β2 −32β+28

256β2

)
+Oβ0

(
1

n

)
= 1

64β
+Oβ0

(
1

n

)
.

4. Almost isotropicity of BE in the subspaces of self-adjoint matrices

Here we establish Theorem 4.

Proof in the case where E is the subspace of Hermitian matrices. The orthonormal basis that we fix is
the following:

{J kk : 1 É k É n}
⋃{ 1p

2

(
J kl + J l k)

: k < l
}⋃{ ip

2

(
J kl − J lk)

: k < l
}
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where J kl is the single-entry matrix whose only non-zero entry is the (k, l )-th one and is equal to 1.
According to Theorem 8, we have

1

vol(BE )

∫
BE

Tk1l1 Tk2l2 dT = 0

whenever {k1,k2} 6= {l1, l2}. This immediately shows that any pair of marginals of the distribution which
correspond to one diagonal and (either the real or the imaginary part of) one non-diagonal entry is
linearly uncorrelated. Similarly, if they correspond to two non-diagonal entries (k1, l1), (k2, l2) with
(k2, l2) ∉ {(k1, l1), (l1,k1)} we can observe the following:

0 = 1

vol(BE )

∫
BE

Tk1l1 Tk2l2 dT

= 1

vol(BE )

∫
BE

(
Re(Tk1l1 )Re(Tk2l2 )− Im(Tk1l1 ) Im(Tk2l2 )

)
dT

+ i

vol(BE )

∫
BE

(
Re(Tk1l1 ) Im(Tk2l2 )+ Im(Tk1l1 )Re(Tk2l2 )

)
dT,

while

0 = 1

vol(BE )

∫
BE

Tk1l1 Tl2k2 dT

= 1

vol(BE )

∫
BE

(
Re(Tk1l1 )Re(Tl2k2 )− Im(Tk1l1 ) Im(Tl2k2 )

)
dT

+ i

vol(BE )

∫
BE

(
Re(Tk1l1 ) Im(Tl2k2 )+ Im(Tk1l1 )Re(Tl2k2 )

)
dT

= 1

vol(BE )

∫
BE

(
Re(Tk1l1 )Re(Tk2l2 )+ Im(Tk1l1 ) Im(Tk1l2 )

)
dT

+ i

vol(BE )

∫
BE

(−Re(Tk1l1 ) Im(Tk2l2 )+ Im(Tk1l1 )Re(Tk2l2 )
)

dT.

Combined, these show that all the above integrals are equal to 0.
Let us examine the remaining cases, where the marginals correspond to two different diagonal

entries (k,k), (l , l ), or to the real and to the imaginary part of the same non-diagonal entry (k, l ), k 6= l .
In the latter case, we can write

0 = 1

vol(BE )

∫
BE

Tkl Tkl dT(54)

= 1

vol(BE )

∫
BE

(
Re(Tkl )2 − Im(Tkl )2)dT + 2i

vol(BE )

∫
BE

Re(Tkl ) Im(Tkl )dT,

which shows that the marginals are uncorrelated.
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In the former case, we have from Theorem 8 and from Proposition 16 that

1

vol(BE )

∫
BE

Tkk Tl l dT = WgU (e;n)
1

vol(BE )

∫
BE

Tre (T )dT +WgU ((12);n)
1

vol(BE )

∫
BE

Tr(12)(T )dT

= 1

(n −1)(n +1)

1

vol(BE )

∫
BE

(
Tr(T )

)2 dT − 1

n(n −1)(n +1)

1

vol(BE )

∫
BE

Tr(T 2)dT

= 1

(n −1)(n +1)

(
n

N∞
(
x2

1

)
N∞(1)

+n(n −1)
N∞

(
x1x2

)
N∞(1)

)
− 1

(n −1)(n +1)

N∞
(
x2

1

)
N∞(1)

= 1

n +1

(
N∞

(
x2

1

)
N∞(1)

+n
N∞

(
x1x2

)
N∞(1)

)

=− 1

8n(n +1)
+O

( 1

n3

)
.

Moreover, turning to second moments of the marginals, we see that

1

vol(BE )

∫
BE

T 2
kk dT = WgU (e;n)

1

vol(BE )

∫
BE

Tre (T )dT +WgU ((12);n)
1

vol(BE )

∫
BE

Tr(12)(T )dT

+WgU ((12);n)
1

vol(BE )

∫
BE

Tre (T )dT +WgU (e;n)
1

vol(BE )

∫
BE

Tr(12)(T )dT

=− 1

8n(n +1)
+O

( 1

n3

)
− 1

n(n −1)(n +1)

1

vol(BE )

∫
BE

(
Tr(T )

)2 dT + 1

(n −1)(n +1)

1

vol(BE )

∫
BE

Tr(T 2)dT

=− 1

8n(n +1)
+O

( 1

n3

)
− 1

n(n −1)(n +1)

(
n

N∞
(
x2

1

)
N∞(1)

+n(n −1)
N∞

(
x1x2

)
N∞(1)

)
+ n

(n −1)(n +1)

N∞
(
x2

1

)
N∞(1)

=− 1

8n(n +1)
+O

( 1

n3

)
− 1

n(n −1)(n +1)

(
1

8
+O

( 1

n2

))
+ n

(n −1)(n +1)

(
1

4
− 1

16n2 +O
( 1

n3

))
= n

4(n −1)(n +1)
+O

( 1

n2

)
.

On the other hand, when we consider a non-diagonal entry (k, l ), (54) shows that

1

vol(BE )

∫
BE

Re(Tkl )2 dT = 1

vol(BE )

∫
BE

Im(Tkl )2 dT.
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To compute this integral, we note that

1

vol(BE )

∫
BE

2Re(Tkl )2 dT = 1

vol(BE )

∫
BE

(
Re(Tkl )2 + Im(Tkl )2)dT = 1

vol(BE )

∫
BE

Tkl Tlk dT

= WgU ((12);n)
1

vol(BE )

∫
BE

Tre (T )dT +WgU (e;n)
1

vol(BE )

∫
BE

Tr(12)(T )dT

=− 1

n(n −1)(n +1)

(
1

8
+O

( 1

n2

))
+ n

(n −1)(n +1)

(
1

4
− 1

16n2 +O
( 1

n3

))
= n

4(n −1)(n +1)
+O

( 1

n3

)
.

We conclude that the covariance matrix Cov(BE ) of BE has the following form: all its diagonal

entries are = n
4(n−1)(n+1) +O

(
1

n2

)
, while the only non-zero non-diagonal entries are those giving the

correlation between marginals corresponding to two different diagonal entries of T ∈ BE , and these

are =− 1
8n(n+1) +O

(
1

n3

)
. It follows that, in order to find all eigenvalues of Cov(BE ), it suffices to find the

eigenvalues of the n ×n submatrix DBE which involves only the marginals corresponding to diagonal

entries of T ∈ BE (since the remaining eigenvalues are all = n
4(n−1)(n+1) +O

(
1

n2

)
as immediately seen

from the form of Cov(BE )).

The submatrix DBE is of the form
(a −b)In +b Jn

where Jn is the matrix with all entries equal to 1 and a = n
4(n−1)(n+1) +O

(
1

n2

)
, b =− 1

8n(n+1) +O
(

1
n3

)
. It

is not difficult to see that such a matrix can only have two eigenvalues: the eigenvalue a + (n −1)b
(corresponding to the vector (1,1, . . . ,1)) and the eigenvalue a −b (which will have mutliplicity n −1).

In our case, these eigenvalues are = 1
8(n+1) +O

(
1

n2

)
and = n

4(n−1)(n+1) +O
(

1
n2

)
respectively. This shows

that all eigenvalues of DBE , and thus of Cov(BE ) too, are approximately equal.
Finally, the covariance matrix Cov(BE ) of the volume-normalised unit ball BE can be found by

multiplying Cov(BE ) by [vol(BE )]−2/n2 ' n. �

Proof in the case where E is the subspace of R-self-adjoint matrices. Our aim is to compute integrals of
the form

1

vol(BE )

∫
BE

T j1l1 T j2l2 dT, 1 É j1, j2, l1, l2 É n,

so we apply Theorem 12 with k = 2. Here

M2k = M4 =
{{

{1,2}, {3,4}
}
,
{
{1,3}, {2,4}

}
,
{
{1,4}, {2,3}

}}
and if we express the pair partitions as permutations in S2k per our convention

= {
e, (23), (243)

}
.

Therefore,
M−1

4 M4 := {
σ−1τ :σ,τ ∈ M4

}= {
e, (23), (24), (243), (234)

}
,

and all these permutations have coset-type (2) except for the trivial permutation e which has coset-type
(12).

Moreover,

H2 =
〈

(12), (34), (13)(24)
〉= {

e, (12), (34), (13)(24), (12)(34), (14)(23), (1324), (1423)
}
.
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To compute the orthogonal Weingarten function on S4, we first find the zonal spherical functions ω(2)

and ω(12). It is easily seen that

ω(2)(σ) = 1

8

∑
ζ∈H2

χ(4)(σζ) = 1 for every σ ∈ S4.

On the other hand,

ω(12)(e) = 1

8

∑
ζ∈H2

χ(22)(ζ) = 1,

while

ω(12)(σ) =ω(12)((23)) = 1

8

∑
ζ∈H2

χ(22)((23)ζ
)=−1

2
for every σ ∈ S4 with coset-type (2)

(in particular for every permutation σ ∈ M−1
4 M4 \ {e}).

We can now compute:

WgO(σ;n) = 8

24

∑
λ`2

χ2λ(e)

C ′
λ

(n)
ωλ(σ)

= 1

3

(
χ(4)(e)ω(2)(σ)

C ′
(2)(n)

+ χ(22)(e)ω(12)(σ)

C ′
(12)

(n)

)
=


n+1

n(n−1)(n+2) if σ= e

− 1
n(n−1)(n+2) if σ ∈ M−1

4 M4 \ {e}
.

The orthonormal basis that we have fixed is the following:

{J kk : 1 É k É n}
⋃{ 1p

2

(
J kl + J lk)

: k < l
}
.

According to Theorem 12, we have

1

vol(BE )

∫
BE

Ti1i2 Ti3i4 dT = 0

if there is at least one index that appears an odd number of times among the i j , j = 1, . . . ,4. This
immediately shows that marginals of the distribution which correspond to two different non-diagonal
entries or to one non-diagonal and one diagonal entry are linearly uncorrelated.

The only other case, where we have correlation, is when i1 = i2 = j 6= k = i3 = i4. In this case

1

vol(BE )

∫
BE

T j j Tkk dT = WgO(e;n)
1

vol(BE )

∫
BE

Tr′e (T )dT +WgO((23);n)
1

vol(BE )

∫
BE

Tr′(23)(T )dT

+WgO((243);n)
1

vol(BE )

∫
BE

Tr′(243)(T )dT

= n +1

n(n −1)(n +2)

1

vol(BE )

∫
BE

(
Tr(T )

)2 dT − 2

n(n −1)(n +2)

1

vol(BE )

∫
BE

Tr(T 2)dT

= n +1

n(n −1)(n +2)

(
n

N∞
(
x2

1

)
N∞(1)

+n(n −1)
N∞

(
x1x2

)
N∞(1)

)
− 2

(n −1)(n +2)

N∞
(
x2

1

)
N∞(1)

= 1

n +2

N∞
(
x2

1

)
N∞(1)

+ n +1

n +2

N∞
(
x1x2

)
N∞(1)

=− 1

4n(n +2)
+O

( 1

n3

)
.
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Turning to second moments, we first handle the case i1 = i3 = j 6= k = i2 = i4:

1

vol(BE )

∫
BE

( 1p
2

(
T j k +Tk j

))2 dT = 1

vol(BE )

∫
BE

2T 2
j k dT

= 2

(
WgO((23);n)

1

vol(BE )

∫
BE

Tr′e (T )dT +WgO(e;n)
1

vol(BE )

∫
BE

Tr′(23)(T )dT

+WgO((24);n)
1

vol(BE )

∫
BE

Tr′(243)(T )dT

)
= 2

(
− 1

n(n −1)(n +2)

1

vol(BE )

∫
BE

(
Tr(T )

)2 dT + n +1

n(n −1)(n +2)

1

vol(BE )

∫
BE

Tr(T 2)dT

− 1

n(n −1)(n +2)

1

vol(BE )

∫
BE

Tr(T 2)dT

)
=− 2

n(n −1)(n +2)

(
n

N∞
(
x2

1

)
N∞(1)

+n(n −1)
N∞

(
x1x2

)
N∞(1)

)
+ 2

(n −1)(n +2)
n

N∞
(
x2

1

)
N∞(1)

= 2

n +2

(
N∞

(
x2

1

)
N∞(1)

− N∞
(
x1x2

)
N∞(1)

)

= 1

2(n +2)
+O

( 1

n2

)
.

Finally,

1

vol(BE )

∫
BE

T 2
j j dT = ∑

σ∈M4

(
WgO(σ−1e;n)

1

vol(BE )

∫
BE

Tr′e (T )dT +WgO(σ−1(23);n)
1

vol(BE )

∫
BE

Tr′(23)(T )dT

+WgO(σ−1(243);n)
1

vol(BE )

∫
BE

Tr′(243)(T )dT

)
= 1

vol(BE )

∫
BE

T j j Tkk dT +2 · 1

vol(BE )

∫
BE

T 2
j k dT

= 1

2(n +2)
+O

( 1

n2

)
.

We conclude that the covariance matrix Cov(BE ) of BE has the following form: all its diagonal

entries are = 1
2(n+2) +O

(
1

n2

)
, while the only non-zero non-diagonal entries are those giving the cor-

relation between marginals corresponding to two different diagonal entries of T ∈ BE , and these are

=− 1
4n(n+2) +O

(
1

n3

)
.

As before, it follows that the volume-normalised unit ball BE is in almost isotropic position. This
completes the proof of Theorem 4 in the orthogonal case too. �

5. Entrywise negative correlation property of BMn (R) or BMn (C)

According to one of the main results in [41], a necessary condition for the variance conjecture to be true

for the unit ball of any p-Schatten norm on Mn(F) is that the corresponding density fa,b,c (x) ·e−‖x‖p
p d x

appearing in Lemma 6 and Proposition 7 satisfies a certain negative correlation property: more
specifically, we need to have

(55)
Mp (x2

i x2
j )

Mp (1)
= Mp

(
x2

1 x2
2

)
Mp (1)

<
(

Mp
(
x2

1

)
Mp (1)

)2

= Mp
(
x2

i

)
Mp (1)

Mp
(
x2

j

)
Mp (1)

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

31

1 Feb 2024 13:32:01 PST
221101-Vritsiou Version 2 - Submitted to Rocky Mountain J. Math.



for any i 6= j . This could be used to deduce similar inequalities for the original uniform densities on
the unit balls of the p-Schatten norms which satisfy the conjecture: in [41] we showed that, if p is
large enough (and, as a limiting case, if p =∞ as well), then (55) holds true and, combined with the
invariances of Kp,Mn (F), implies that

∫
K p,Mn (F)

|Ti , j |2|Ti ,r |2 dT =
∫

K p,Mn (F)

|T j ,i |2|Tr,i |2 dT <
(∫

K p,Mn (F)

|Ti , j |2 dT

)(∫
K p,Mn (F)

|Ti ,r |2 dT

)

for all i , j ,r , j 6= r . However, it was unclear from our method whether a similar negative corre-
lation property is true for the remaining pairs of entries, that is, when we consider the integrals∫

K p,Mn (F)
|Ti , j |2|Tl ,r |2 dT with i 6= l , j 6= r .

We can now check that this fails to be true and that we do not have negative correlation for the
remaining pairs of entries of T ∼ Unif

(
K∞,Mn (F)

)
when F is either R or C (of course it doesn’t fail by

much since the variance conjecture is correct in these cases). The key ingredients we will use to check
this are the relevant tools in the Weingarten calculus coming from [15] and the estimates we obtained
in Section 3 (which also allow us to verify again the negative correlation property for pairs of entries
coming from the same row or the same column).

Proof when F=C. To compute and compare the integrals

1

vol(K∞)

∫
K∞

|Ti , j |2|Tl ,r |2 dT,

(
1

vol(K∞)

∫
K∞

|T1,1|2 dT

)2

,

we apply Theorem 9 with k = 2 or 1 respectively. Starting with the latter, we see that

1

vol(K∞)

∫
K∞

|T1,1|2 dT = 2

vol(K∞)

∫
K∞

Re2(T1,1)dT = 2

vol(K∞)

∫
K∞

Im2(T1,1)dT

= 1

n2 · 1

vol(K∞)

∫
K∞

Tr(T T ∗)dT

as expected from the isotropicity of K ∞,Mn (C),

= 1

n2 · N∞
(‖x‖2

2

)
N∞(1)

= 1

2n
.

Moreover,

4

vol(K∞)

∫
K∞

Re2(Ti , j )Re2(Tl ,r )dT = 4

vol(K∞)

∫
K∞

Im2(Ti , j ) Im2(Tl ,r )dT = 4

vol(K∞)

∫
K∞

Re2(Ti , j ) Im2(Tl ,r )dT

= 1

vol(K∞)

∫
K∞

|Ti , j |2|Tl ,r |2 dT = 1

vol(K∞)

∫
K∞

Ti , j Tl ,r Ti , j Tl ,r dT
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and when i 6= l , j 6= r

= WgU (e;n,n)
1

vol(K∞)

∫
K∞

(
Tr(T T ∗)

)2 dT

+WgU ((12);n,n)
1

vol(K∞)

∫
K∞

Tr
(
(T T ∗)2)dT

= n2 +1

(n(n2 −1))2

N∞
(‖x‖4

2

)
N∞(1)

− 2

n(n2 −1)2

N∞
(‖x‖4

4

)
N∞(1)

= n2 +1

(n(n2 −1))2

n4

4n2 −1
− 2

n(n2 −1)2

3n3 −n

2(4n2 −1)

= n6 −2n4 +n2

n2(n2 −1)2(4n2 −1)
= 1

4n2 −1
.

We thus see that

1

vol(K∞)

∫
K∞

|Ti , j |2|Tl ,r |2 dT >
(

1

vol(K∞)

∫
K∞

|Ti , j |2 dT

)(
1

vol(K∞)

∫
K∞

|Tl ,r |2 dT

)
> (

1−O(1/n2)
) 1

vol(K∞)

∫
K∞

|Ti , j |2|Tl ,r |2 dT

(the latter inequality being a necessary consequence of the variance conjecture holding true).
On the other hand,

1

vol(K∞)

∫
K∞

|Ti , j |2|Ti ,r |2 dT = 1

vol(K∞)

∫
K∞

|T j ,i |2|Tr,i |2 dT

= (
WgU (e;n,n)+WgU ((12);n,n)

) · 1

vol(K∞)

∫
K∞

((
Tr(T T ∗)

)2 +Tr
(
(T T ∗)2)) dT

= 1

n2(n +1)2

2n4 +3n3 −n

2(4n2 −1)
= 1

2n(2n +1)
<

(
1

vol(K∞)

∫
K∞

|T1,1|2 dT

)2

in accordance with the conclusions from [41]. �

Proof when F=R. Applying Theorem 13 with k = 1 or 2, we can obtain:

1

vol(K∞)

∫
K∞

|T1,1|2 dT = 1

n2 · 1

vol(K∞)

∫
K∞

Tr(T T t )dT = 1

n2 · N∞
(‖x‖2

2

)
N∞(1)

= 1

2n +1
;

1

vol(K∞)

∫
K∞

|Ti , j |2|Tl ,r |2 dT = ∑
τ1,τ2∈M4

WgO(τ1;n)WgO(τ2;n)
1

vol(K∞)

∫
K∞

Tr′
τ−1

1 τ2
(T T t )dT

= ((
WgO(e;n)

)2 +2
(
WgO((23);n)

)2) 1

vol(K∞)

∫
K∞

(
Tr(T T t )

)2 dT

+ (
4WgO(e;n)WgO((23);n)+2

(
WgO((23);n)

)2) 1

vol(K∞)

∫
K∞

Tr
(
(T T t )2)dT

= n2 +2n +3

(n(n −1)(n +2))2

N∞
(‖x‖4

2

)
N∞(1)

− 4n +2

(n(n −1)(n +2))2

N∞
(‖x‖4

4

)
N∞(1)

= n +1

n(2n +1)(2n +3)
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when i 6= l , j 6= r , while

1

vol(K∞)

∫
K∞

|Ti , j |2|Ti ,r |2 dT = 1

vol(K∞)

∫
K∞

|T j ,i |2|Tr,i |2 dT

= ∑
τ1,τ2,σ2∈M4

WgO(τ1;n)WgO(σ−1
2 τ2;n)

1

vol(K∞)

∫
K∞

Tr′
τ−1

1 τ2
(T T t )dT

=
( ∑
σ2∈M4

WgO(σ−1
2 ;n)

)2
N∞

(‖x‖4
2

)
N∞(1)

+2

( ∑
σ2∈M4

WgO(σ−1
2 ;n)

)2
N∞

(‖x‖4
4

)
N∞(1)

= 1

(n(n +2))2

(
n4 +n3 +n

(2n +1)(2n +3)
+ 3n3 +4n2 −n

(2n +1)(2n +3)

)
= 1

(2n +1)(2n +3)
.

These show that we have analogous conclusions as in the unitary case. �
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