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Abstract

We generalize an old result due to Lowenthal [1] and a more recent
one due to Hamada [2] on the order of finite generation of the rotation
group SO(3) both for fixed and arbitrary compound transformations.
Unlike the above cited authors, we consider decompositions into factors
with more than two invariant axes and derive a simple estimate for
certain subsets of rotations using intuitive geometric proofs. Particular
examples of potential interest for the applications are considered with
an emphasis on optimization. Possible generalizations are discussed as
well, e.g. dimensional induction, the hyperbolic case and screw motion.

Introduction

If G1,2 are one-parameter subgroups of a connected Lie group G, the order
of finite generation with respect to G1,2 is the minimal number N , such that
every element of G can be expressed in N factors gi ∈ G1,2. Lowenthal [1]
published in 1971 his famous result on the order of the rotation group in R3

Theorem 1 Each SO(3) transformation may be decomposed into

Nγ = 1 +

⌈
π

γ

⌉
. (1)

alternating rotations about two fixed axes with a relative angle γ ∈
(
0,

π

2

]
.

Here and below we use the notation ⌈x⌉ = min{n ∈ Z | x ≤ n} = −⌊−x⌋,
where ⌊x⌋ stands for the integer part of x. Note that the only way to ensure
order three is to pick orthogonal axes that gives the classical Euler setting.
For γ = 60◦, we may decompose into four factors, γ = 45◦ yields five etc.
Below we consider the decomposition conditions for the cases of two and
three factors and then generalize the corresponding results using induction.
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Low Order Cases

In the following we use similar notation to [3]. Let n,ai ∈ S2 denote respec-
tively the invariant unit vectors of the compound rotation R and those in
the decomposition Ri, with orientation chosen such that the relative angles

γij = arccos (ai · aj), βi = arccos (ai · n)

are (positive) acute or right. Similarly, we shall use the notation

γ̃ij = arccos (ai · Raj)

and let ϕ and ϕi denote the rotation angles with the so chosen orientation.

Figure 1: Illustration of Lemma 1: straight lines depict geodesic segments on S2,
while the circle shows the trace of aj under the rotation R by an angle ϕ about n.

Note that in this way n and aj are regarded as points on the closed unit semi-
sphere S̄2+ and γij , βj , respectively as spherical distances. Below we shall
relate lengths of broken geodesics in S̄2+ with decomposability conditions and
thus derive an estimate for the order of SO(3) beginning with the following

Lemma 1 With the above notation each R(n, ϕ) ∈ SO(3) satisfies

γij − 2βj ≤ γ̃ij ≤ γij + 2βj , γij − |ϕ| sinβj ≤ γ̃ij ≤ γij + |ϕ| sinβj .

Proof. The first estimate says that 2βi is the maximal angle, at which R
shifts vectors on the unit sphere (the case of a half-turn). For the second
one we introduce spherical coordinates with polar and azimuthal angles: re-
spectively ϕ and βj and point out that the γ̃jj ≤ |ϕ| sinβj since the geodesic
distance γ̃jj cannot exceed the length of the corresponding arc (Figure 1).
The triangle inequality completes the proof as γ̃ij ∈ [γij − γ̃jj , γij + γ̃jj ]. □

Next, we considered the decomposition problem beginning with two factors:

2

19 Nov 2023 23:12:15 PST
230621-Brezov Version 2 - Submitted to Rocky Mountain J. Math.



Lemma 2 A transformation R ∈ SO(3) is decomposable into a pair of con-
secutive rotations about a1 and a2 (in this order) if and only if γ̃21 = γ21.

Proof. Necessity is easier to prove since the invariant axis theorem yields

(a2,Ra1) = (a2,R2R1 a1) = (Rt
2 a2,R1 a1) = (a2, a1)

that is seen as an equality for the cosines of the positive acute or right angles
γ̃21 and γ21. Next, we note that SO(3) is compact and connected, acting
freely on itself via left shifts, so the map R̃λ= RRt

1(λ) with λ ∈ S1 satisfies

(a2, R̃λa1) = (a2,a1)

and thus, the λ-orbit of a1 is a rotation about a2. But then, R̃λ, and hence
R, can be decomposed into a pair of rotations about a1 and a2 (Figure 2). □

Figure 2: Illustration of Lemma 2, showing the rotation of a1 about n is equivalent
to a rotation about a2 provided that γ̃21 = γ21, hence the decompositionR = R2R1.

With this in mind, it is not hard to prove the following

Lemma 3 The decomposition R = R1R2R1 exists

� for an arbitrary angle ϕ if and only if β1 ≤ γ12;

� for an arbitrary axis n if and only if |ϕ| ≤ 2γ12.

Proof. We use the notation γ = γ12 for convenience and conjugate obtaining

R(n′, ϕ) = R2(ϕ2)R1(ϕ1 + ϕ3), n′ = R1(−ϕ3)n

with β′
1 = ∡(a1,n′) = β1 for an arbitrary angle ϕ3. The locus of R(n′, ϕ)a1

for any fixed angle ϕ ∈ S1 is a circle σ centered at a1 and parameterized with
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ϕ3, whose radius obviously does not exceed 2β1. Therefore, if β1 ≤ γ this
orbit has at least one common point with the γ-orbit of a1 about a2, i.e., one
can set the value of ϕ3 in such a way that the angle γ̃′21 between R(n′, ϕ)a1
and a2 equals γ and the above decomposition is guaranteed by Lemma 2.
The exact same argument leads to the conclusion that the above ϕ3-orbit
has a common point with the γ-orbit of a1 about a2 as long as |ϕ| ≤ 2γ that
proves necessity and sufficiency is implied by the invertibility of Lemma 2. □

Figure 3: Graphical illustration to the proof of Lemma 3 based on orbit incidence.

Next, we discuss a more general result obtained also in [3] in a different way.

Proposition 1 The decomposition R = R3R2R1 exists if and only if

|γ12 − γ23| ≤ γ̃31 ≤ γ12 + γ23. (2)

Proof. Let us consider a dual system of axes {a′k} attached to the rotating
object called the body frame, while the stationary one {ak} is usually referred
to as the fixed frame or the spatial frame. Obviously, the first rotation axis
in the decomposition is the same in the two frames, i.e., a′1 = a1, while the
other pairs are related respectively as a′2 = R′

1a2 and a′3 = R′
2R′

1 a3, where
we denote R′

k = R(c′k). Moreover, suppose that R can be decomposed in
the body frame as R = R′

3R′
2R′

1. Since a′3 is an invariant vector for R′
3,

this yields a′3 = Ra3. Then, the matrix entries g′ij and r′ij in the rotating
(body) frame are naturally expressed in terms of those in the spatial one as

g′12 = g12, g′23 = g23, g′13 = r13
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and the corresponding Gram determinant is given by the expression

G(a′1,a
′
2,a

′
3) = 1 + 2g12 g23 r13 − g212 − g223 − r213 ≥ 0. (3)

Next, we claim that the decompositions in the two dual systems of axes
coexist (each one implies the other) and are related by the following formula

R1R2 . . .Rn=R′
nR′

n−1 . . .R′
1, R′

k=R1R2 . . .Rk−1RkR−1
k−1 . . .R

−1
2 R−1

1

that is easy to prove by induction starting with

R′
2R′

1 = R1R2R−1
1 R1 = R1R2

since we obviously have R̃R(c) R̃−1= R(R̃ c) andR′
1= R1 by construction.

Then, the decomposition R = R′
3R′

2R′
1 is equivalent to R = R1R2R3,

so we need to reorder the vectors in the above Gram determinant, which
is the same as replacing r13 with r31. Moreover, since gij = cos γij and
r31 = cos γ̃31, the quadratic inequality ∆=G(a′3,a

′
2,a

′
1) ≥ 0 is equivalent to

cos (γ12 + γ23) ≤ cos γ̃31 ≤ cos (γ12 − γ23). (4)

Finally, one may always choose the orientation of ai in such a way that

γ12, γ23 ∈
(
0,

π

2

]
so that the solution is given namely by formula (2). This

proves the necessity of (2). Then, one needs to show that ∆ ≥ 0 is sufficient
for the existence of the corresponding rotating frame {a′k}, or simply point
out that the solutions obtained in [4] rely only on the definiteness of ∆. □

One straightforward consequence is the Davenport universality condition

R = R3R2R1 ∀R ∈ SO(3) ⇔ γ12 = γ23 =
π

2
· (5)

Another one is certainly Lemma 3, which follows directly in the case of
coincident first and third axis with the aid of Lemma 1. Note that the non-
orthogonal Euler setting γ12 = γ23 = γ and γ13 = 0 is less restrictive on β1
compared to the Bryan case, in which all relative angles are equal γij ≡ γ.
More precisely, the former yields the estimate β1 ≤ γ, while for the latter we
have 2β1 ≤ γ. We shall see it is a common property of rotational sequences.
Note that with the aid of the famous Rodrigues’ rotation formula (see [4])

R(n, ϕ) = cosϕ I + (1− cosϕ)nnt + sinϕn× (6)

we obtain in the case γ31 = 0 from the inequality of Proposition 1

cos γ̃11 = cos2 β1 + cosϕ sin2 β1 = (cosϕ− 1) sin2 β1 + 1 ≥ cos 2γ12

hence, the necessary and sufficient condition takes the simple form

sin
|ϕ |
2

sinβ1 ≤ sin γ12. (7)
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The Induction Step

We shall use the notation Σk = γ12 + γ23 + . . .+ γk−1,k and Σ̄k = Σk + γk,1
respectively for the lengths of the open and closed spherical paths connecting
the points ai ∈ S̄2+ associated with the rotation axes in the given order.

Moreover, we let ∆ij
k = Σ̄k − 2γij ≥ 0 (k ≥ 3) represent the path defect

given by the triangle inequality on S2, and omit the subscript if possible.
Next, we shall use induction to generalize Proposition 1 for N= k+1 factors.

Lemma 4 The existence of the decomposition R = Rk . . .R2R1, such that
Ri ∈ SO(3), implies either the estimate 2β1 ≤ ∆k,1

k and/or |ϕ| sinβ1 ≤ ∆k,1
k .

Proof. For k = 3 the result follows from Lemma 1 and Proposition 1, while

for k > 3 we proceed by induction noting that γ̃
(k+1)
k+1,k = γ̃

(k)
k+1,k due to the

invariant axis theorem, while the triangle inequality on the sphere yields
γ̃k,1 − γk,k+1 ≤ γ̃k+1,1 ≤ γ̃k,1 + γk,k+1, so the result follows by induction. □

Note that typically no γi,i+1 exceeds the sum of the rest, e.g. in the case
of a closed path, and this condition is both necessary and sufficient as the
lower bound for γ̃k,1 becomes trivial and the triangle inequality is minimal.

Otherwise the precise estimate involves the minimum of ∆12
k , ∆23

k and ∆k,1
k .

Lemma 5 The existence of the decompositions

R = R1(ϕ
′
1)Rk(ϕk) . . .R1(ϕ1), R = Rk(ϕk)R1(ϕ

′
1)Rk−1 . . .R1(ϕ1)

for an arbitrary R ∈ SO(3) implies that 2β1 does not exceed the length of
the geodesic path connecting the points ai on S2+ in the corresponding order.

Proof. For the first decomposition we simply apply Lemma (4) taking into
account that ∆11

k = Σ̄k and the lower bound for γ̃11 is trivial. To show the
second one we express R = R1R′

kRk−1 . . .R1 where R′
k is an appropriate

conjugation of Rk with R1, for which the statement of Lemma 4 asserts that

2β1 ≤ γ12 + γ23 + . . .+ γ′k−1,k + γ′k,1

with γ′k,1 = γk,1 and by the triangle inequality γ′k−1,k ≤ γk−1,1 + γk,1. □

Theorem 2 With the above notation let γ̄ = 1
k Σ̄k be the mean spherical

distance of the path. Then, an arbitrary R ∈ SO(3) can be decomposed into

Nγ̄(β) ≤ 1 +

⌈
2β

γ̄

⌉
(8)

rotations about the ai’s where β = minβi (axes may need to be reordered).
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Proof. The result is a straightforward consequence of Lemma 5 with a proper
permutation of the axes, choosing the initial one to be the ’closest’ to n. □

Now, let us consider the case, in which the angle of the compound rotation
is under control, but we have no information about its axis n starting with

R = R1(ϕ
′
1)Rk . . .R2(ϕ2)R1(ϕ1)

where the condition for the decomposition given by Lemma 5 yields

cos γ̃11 = (a1,Ra1) ≥ cos Σ̄k. (9)

Using Rodrigues’ rotation formula (6) like in equation (7), from the above
scalar product we obtain with the optimal choice of a first axis the condition

sin
|ϕ |
2

sinβ ≤ sin
Σ̄k

2
, β = minβi. (10)

Note that in the latter estimate we assume 2β > Σ̄k ≤ π, since otherwise no
restriction on the angle is necessary. Moreover, it is not hard to show that

γ̃11 = 2arcsin

∣∣∣∣ sin ϕ

2
sinβ

∣∣∣∣ ≤ |ϕ | sinβ (11)

which is also a good approximation for small values of |ϕ |, so the condition

|ϕ | sinβ ≤ Σ̄k

combined with Theorem 2, provides the (not necessarily minimal) estimate

Nγ̄(β, ϕ) ≤ 1 +

⌈
min (|ϕ | sinβ, 2β)

γ̄

⌉
(12)

where the second option is considered only if |ϕ | > 2. In particular, for
unrestricted angle ϕ this brings us back to (8) as π sinβ ≥ 2β ∈ (0, π] and
if there is no information about the invariant axis n, we finally end up with

Theorem 3 With β, γ̄ and ϕ as before, one may decompose R(n, ϕ) into

Nγ̄(ϕ) ≤ 1 +

⌈
|ϕ |
γ̄

⌉
· (13)

rotations about the ai’s for an arbitrary invariant axis n ∈ S2.
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Relations to Classical Results

In this section we see how the problems we focus on correspond wit some
classical results in spherical geometry, such as the theorems of Rodrigues-
Hamilton and Donkin. Let us begin with the setup: if the rotation axes are
associated with points zi on the unit sphere, then they form a polygon with
side lengths γjk = arccos gjk and let γ̃jk = arccos g̃jk with g̃jk denoting the
co-factor of gjk in the Gram determinant g = ω2. Then, the spherical cosine
theorem determines the vertex angles αk in the case of three axes, namely

cosαi = −
g̃jk√

ω2 + g̃2jk

, sinαi =
ω√

ω2 + g̃2jk

(14)

and the decomposition of unity I = R3R2R1 derived in [4] with scalar

parameters τk =
ω

g̃ij
is actually a verification of the famous Rodrigues-

Hamilton theorem (see [6]). Moreover, we have the dual statement, known
as Donkin’s theorem, where the axes of rotation are related to the poles of the
given triangle, which has αk as its side lengths and gij as the corresponding
vertex angles. Note also that the two-axes decompositions discussed in [4]
may be regarded similarly as a manifestation of the Rodrigues-Hamilton
theorem, with the a3 replaced by the compound rotation invariant vector n

τ1 =
ζ̃3

g12ζ1 − ζ2
, τ2 =

ζ̃3
g12ζ2 − ζ1

, τ =
ζ̃3

g12 − ζ1ζ2
(15)

where we denote ζi = n · ai and ζ̃i = n · ãi, respectively. Note that the first
two equalities above provide the scalar parameters for the decomposition

R(τ2a2)R(τ1a1) = R(τn)

while the third one can be interpreted as a necessary and sufficient condition.
Similarly, the classical Euler type decomposition (for non-orthogonal axes)

R(ϕ,n) = R(ϕ3,a1)R(ϕ2,a2)R(ϕ1,a1) = R(ϕ2,a
′
2)R(ϕ1 + ϕ3,a1)

where a′2 = R(ϕ3,a1)a2 may be obtained in this way as

ϕ1 + ϕ3 = 2arctan
ζ̃ ′3

g12ζ1 − ζ ′2
, τ2 =

ζ̃ ′3
g12ζ ′2 − ζ1

, τ =
ζ̃ ′3

g12 − ζ1ζ ′2
(16)

with the notation ζ ′i = n · a′i and ζ̃ ′i = n · ã′i where ã′3 = a1 × a′2. This
problem, however, allows for a simpler treatment [4]. Note that in the case
of gimbal lock a3 = Ra1 the above holds for the unprimed quantities ζi, ζ̃i.
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Optimization of Rotation Sequences

Let us note that in the case of two axes considered by Lowenthal and Hamada
the above estimate for the order becomes exact and in particular, if there
is no additional information about n or ϕ, they all reduce to formula (1).
More generally, for equal relative angles γij the estimate is independent of
the choice of path. However, this is possible only for two or three axes with
gij ≥ 0. In other cases one can minimize the length of the rotation sequence
by maximizing the one of the corresponding spherical path Σ̄k connecting
the ai’s. One straightforward way to do so is by choosing γ = max γij and
proceeding with only two axes, but in some cases this maximum may not be
unique, for instance if the axes determine a proper spherical polygon, we can
also choose the maximal billiard orbit with fixed number of reflections. The
first axis a1, on the other hand, should be chosen closest to n so that β1 is
minimal. Typically one may need to make a compromise between minimiz-
ing β1 and maximizing γ as formula (12) suggests. In practice, however, we
may not have control over any of these parameters. Besides, one typically
strives to minimize not the number of factors in a rotation sequence, but
the energy cost, measured as geodesic length, so more factors can be better.

The case N = 2 is quite unusual as it corresponds to a spherical geodesic
joining a1 and a2 so its length cannot exceed π

2 (the orientation is irrelevant).
Moreover, we only have two parameters in this setting so the decomposition
works on a zero measure set in SO(3). If we go back the same way to a1,
however, the closed geodesic path may reach the desired length γ = π which
gives the classical Euler decomposition, allowing for the decomposition of
each rotation. Yet, there are singularities, e.g. if we take a half-turn in a
plane determined by a1 and a2, two of the angles in the solution would be
coupled, namely ϕ1−ϕ3 = π, ϕ2 = π. This is referred to as ’gimbal lock’ (see
[4]), a well known engineering problem, especially in spacecraft navigation.
Another way to end up with a gimbal lock is to direct the three unit vectors
ai along the edges of a tetrahedron (starting at one vertex) and consider a
rotation about the axis of symmetry (their vector sum) that brings a1 to

a3, which yields this time ϕ1 + ϕ3 = ϕ2 = −2 arctan
√
2
2 ≈ −70.53◦. Note

that here the condition 2β1 ≤ γ is satisfied so we can factorize regardless
of the angle. It would not be the case, however, if we choose for exam-
ple n orthogonal to a1 and in plane of symmetry for a2 and a3. Then |ϕ|
cannot exceed 2π

3 as formula (3) indicates. Note that in the gimbal lock set-
ting, defined as Ra1 = ±a3, we can decompose as R = R2R2 setting ϕ3 = 0
or use it to minimize the overall length of the spherical path |ϕ1|+|ϕ2|+|ϕ3|.
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Figure 4: Plot of Eγ(λ) for different versions of (17): (a) theXYXZ decomposition
of a rotation by an angle ϕ = −120◦ about the vector (3, 4, 5)t, (b) the ZXZX
decomposition of a half-turn about (5, 4, 3)t and (c) the same in the XY ZX setting.

We borrow the next example form [5] (with utter consent of the author).
Consider a decomposition into four factors with one repeated invariant axis

R = R3(ϕ3)R1(λ)R2(ϕ2)R1(ϕ1), R = Ri(λ)R3(ϕ3)R2(ϕ2)R1(ϕ1) (17)

where i = 1, 2. The additional parameter λ may be used for optimization of
rotational sequences by introducing the cost function (total geodesic length)

Eγ(λ) = |λ|+
3∑

i=1

|ϕi(λ)|. (18)

One might expect the minimum to be reached typically at λ = 0, but our
numerical tests reveal quite a different picture (see Figure 4). Not only this
is not the case, but in one of the exmples we have a local maximum at that
point. The cost function has an explicit form and can easily be minimized
that allows higher efficiency. The reader may see all technical details in [5].

Similar arguments clearly hold for the spin cover SU(2) as well and may be
applied to spin systems, and in particular qubits used in quantum computa-
tion, with the proper definition of relative angles in that case. Namely, we
use the Killing form to define the dot product as q1 ·q2 = 1

2tr(q1q2) where q1,2
can be thought of as unit quaternions. Their normalized imaginary parts
play the role of directional vectors and the effective rotation angle is easily
derived from its magnitude and the trace. In SU(2) however this interpre-
tation is a bit artificial, thus we may think instead of decompositions into

Abelian subgroups. The lift SO(3)
π−1

−−→ SU(2) to the spin cover is actually a
lift from RP3 to S3 preserving the local distance functions γij , so the above
results are transferable. We refer to [4] for technical details and [7, 8] for the
relevance to quantum mechanics, in particular to qubits using spin systems.

10

19 Nov 2023 23:12:15 PST
230621-Brezov Version 2 - Submitted to Rocky Mountain J. Math.



Final Remarks

At the end, let us discuss possible generalizations, starting with dimensional
induction. The SO(4) setting is pretty straightforward due to the local prod-
uct structure of the group. Roughly speaking, we apply the above results
individually to each copy of SO(3), measuring the geodesic distance on a
product of unit spheres S2×S2 and imposing our restrictions on pairs of an-
gles. In particular, for plane rotations we have an action of SO(3) in R4 and
our estimates apply directly upon projecting onto the invariant plane. The
method is given in [9] and works in any dimension via Plücker embedding.
For generic orthogonal transformations in Rn the problem is not well studied.

Our next remark concerns rigid motions in E3 represented via screws (see
[10, 11] for details) modeled using unit dual extension to the underlying al-
gebra R → R[ε], incorporating translations as nilpotent elements (ε2 = 0).
We introduce the dual angle φ = φ+ εd and axis vector n = n+ εm ∈ S2[ε]
(i.e., n2 = 1 and m ⊥ n) using the screw displacement d = n · p (with p
denoting the translation vector) and moment m, which provide the Plücker
coordinates of the screw axis n given by Mozzi-Chasles theorem stating that
every rigid motion in E3 is a screw motion, i.e., rotation and translation with
a common axis. Dual extensions allow for invoking the transfer principle in
generalizing results proven for rotations to screw motions by simply replac-
ing the real objects with their dual versions: n, φ, the unit sphere S2[ε], etc.

Finally, it is worth mentioning the isometry group of R2,1 whose spin cover
SL(2,R) ∼= SU(1, 1) plays a major role in geometry and physics. Despite its
similar decomposition properties [4] we need to acknowledge that the differ-
ent types of mappings (elliptic, hyperbolic and parabolic) make things more
complicated, e.g. by introducing new singularities. For the classical order
Lowenthal proves a simple result [12]. It would be interesting to extend our
argument for SO(3) to that setting and see how it invokes the geometry of
the Poincaré disc, which then easily transfers to SO(2, 2). This however goes
beyond the scope of the present study, so we leave it for future investigation.
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Forms via Plücker Embedding, Adv. Appl. Clifford Algebras 27 (2017)
2375-2392.

[10] Condurache D., A Davenport Dual Angles Approach for Minimal Pa-
rameterization of the Rigid Body Displacement and Motion, Mechanism
and Machine Theory 140 (2019) 104-122.

[11] Brezov D., Factorization and Generalized Roots of Dual Complex Matri-
ces with Rodrigues’ Formula, Adv. Appl. Clifford Algebras 30:29 (2020).

[12] Lowenthal F., Uniform Finite Generation of the Isometry Groups of
Euclidean and Non-Euclidean Geometry, Can. J. Math. 23:2 (1971)
364-373.

12

19 Nov 2023 23:12:15 PST
230621-Brezov Version 2 - Submitted to Rocky Mountain J. Math.


