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1 Introduction

The existence and uniqueness of almost periodic solutions represents one of the most pop-
ular questions in the field of differential equations. The diversity of application domains
for this type of function has motivated several researchers to study the properties of these
functions and their generalisations to solve these problems (See [10, 17, 18, 19, 20]).
Among the first works dealing the study of differential equations with piecewise constant
argument, we can quote the article of Shah and Wiener[23]. This type of differential
equations has recently found great interest. In fact, this class of equations can describe
some hybrid dynamical systems and biomedical models. These equations combines both
differential and difference equations.
Yuan and Hong [22] investigated the existence of almost periodic solutions of the differ-
ential equation:

x′(t) = M(t)x(t) +Mb(t)x([t]) + g(t, x(t), x([t])).

Xia et al. [25] discussed the existence of almost periodic solution for the forced perturbed
equations with piecewise constant argument of the form:

x′(t) = M(t)x(t) +Mb(t)x([t]) + f(t) + εg(t, x(t), x([t]), ε), t ∈ R
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Piao [21] considered the following differential equation:

x′(t) = Mx(t) +Mbx([t]) + g(t), (1)

where M and Mb are constant matrices, g is pseudo almost periodic function. He intro-
duced the notion of pseudo almost periodic sequences to prove the existence of pseudo
almost periodic solution and he gave sufficient hypothesis to obtain the uniqueness.
In [16], the authors have addressed a more general model

x′(t) = M(t)x(t) +Mb(t)x([t]) +M0x(t− [t]) +M1x
′(t− [t]) + g(t), t ∈ R.

They gave a sufficient conditions to obtain a pseudo almost periodic solution of the equa-
tion in different cases.
Zhang and Li [28] presented some existence and uniqueness results concerning weighted
pseudo almost periodic solution by applying the theory of exponential dichotomy and the
contraction mapping.
In [3], the authors used the composition theorems to find the uniqueness of measure
pseudo almost periodic solution for generalized differential equation with piecewise con-
stant argument.
Dimbour and Valmorin in [14], investigated the existence and uniqueness of asymptotically
antiperiodic solution for the following nonlinear differential equation:

x′(t) = Mx(t) +Mbx([t]) + g(t, x([t]))

Later, Dimbour [13] studied the differential equation (1), where M generates a semi group.
He presented sufficient hypothesis that allows to obtain a pseudo asymptotic periodic so-
lution and to ensure its uniqueness.
More recently, Ait Dads et al. [2] presented some properties of exponential dichotomiy
and proved the existence and uniqueness of pseudo-S-asymptotically w periodic solution
of equation with piecewise constant argument.
After its definition by the physicist Bloch, the type of periodic functions bearing his name
found increasing interest. Indeed, applications of this type of periodicity can be found in
many fields such as solid state physics, condensed matter and quantum mechanics.
Bloch periodic functions are wave functions describing the quantum states of nearly free
electrons subjected to the periodic potential of the infinite perfect crystal lattice. It should
be mentioned that periodicity and anti-periodicity are two special cases of this kind.
In practice, we may encounter some functions that are not exactly Bloch periodic but
asymptotically Bloch periodic which contains two components [15]: the principal ( Bloch
periodic) component and the corrective part, or pseudo asymptotically Bloch ([4, 5, 6, 9])
or semi-bloch k periodic or Stepanov semi Bloch periodic function and Stepanov semi
Bloch anti-periodic function ([8]) or pseudo (w, k) Bloch type periodic function which is
uniquely written as the sum of a periodic part and an ergodic perturbation.
Chang and Wei [24] defined the space of weighted pseudo Bloch periodic functions. They
established some important properties such as composition and convolution theorems of
such functions (see also [7]).
Motivated by this work, we treat the following differential equations with piecewise con-
stant argument:
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x′(t) = M(t)x(t) +Mb(t)x([t]) + g(t), (2)

x′(t) = M(t)x(t) +Mb(t)x([t]) + f(t, x(t), x([t])), (3)

where M(t) generates an exponentially stable evolutionary process, Mb(t) a bounded
linear operator, [.] is the greatest integer function, g : R→ X is a measure pseudo Bloch
(w, k)-periodic function and f : R× X× X→ X is bounded continuous.
We prove the existence and uniqueness of a measure pseudo Bloch periodic solution for
the equation model without using the exponential dichotomy outcomes.
To organise our work, we divide the content into four parts :
In the second part, the corresponding difference equation is treated and its explicit solution
is given. After this, we recall some definitions and preliminary lemmas, we define the new
notion of pseudo (w, k) Bloch periodic sequences and we give some important properties.
The main results concerning the existence and uniqueness of solution are mentioned in
the third part.
Finally, we finish by giving an illustrative example.

2 Preliminaries

2.1 Measure pseudo Bloch periodic functions

Let U be the set of positives measures λ such that λ([r, s]) <∞, ∀r, s ∈ R,
and λ(R) = +∞.
We assume the hypothesis
(H) ∀τ ∈ R, there ∃α > 0 and a bounded interval I such that

λ(a+ τ : a ∈ A) ≤ αλ(A), (4)

when A ∈ L and A ∩ I = ∅ with λ([−s, s]) =
∫ s
−s dλ(t); for s > 0 and

λ(j) = λ(j, j + 1) =
∫ j+1

j
dλ(t) for j ∈ Z.

Lemma 1 If λ verify (H), then :
i) For τ ∈ R and s ∈ R, there exists α > 0 such that :

λ([s+ τ, s+ τ + 1]) ≤ αλ([s, s+ 1]). (5)

ii) For τ > 0 and s > τ, there exists β > 0 such that :

λ([−s− τ, s+ τ ]) ≤ βλ([−s, s]). (6)

Proof. i) When we take A = [s, s+ 1], we find the result.

ii) For A = [−s, s], we have

λ([−s+ τ, s+ τ ]) ≤ ατλ([−s, s])
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and
λ([−s− τ, s− τ ]) ≤ α−τλ([−s, s]).

Then

λ([−s− τ, s+ τ ]) ≤ λ([−s+ τ, s+ τ ]) + λ([−s− τ, s− τ ]) ≤ βλ([−s, s]).

Remark 1 Let ρ : R→]0,∞) a function locally integrable over R such that :

i) For s > 0, lim
s→∞

∫ s
−s ρ(t)dt =∞.

ii) For all τ ∈ R and s ∈ R, there exists v > 0 such that :

ρ(s+ τ) ≤ vρ(s).

Hence,

if dλ(t) = ρ(t)dt then ( 5) and ( 6) are satisfied.

Let X be a complex Banach space. We defineBC(R,X) = {f : R→ X, bounded, continuous on R}.

Definition 1 Let k ∈ R and w ∈ R.

BPCw,k(R,X) =
{
f ∈ BC(R,X),∀t ∈ R : f(t+ w) = eikwf(t)

}
,

ErgC (R,X, λ) =

{
f ∈ BC(R,X), lim

s→+∞

1

λ([−s, s])

∫ s

−s
‖f(t)‖ dλ(t) = 0

}
.

Remark 2 [15]
w and k are called the Bloch period and the Bloch wave vector respectively.

Definition 2 [24] Let k ∈ R and w ∈ R.
f : R→ X is called continuous measure pseudo (w, k) Bloch periodic or f ∈ PBPCw,k (R,X, λ),
if there exist f1 ∈ BPCw,k(R,X) and f2 ∈ ErgC (R,X, λ) such that:

f = f1 + f2.

Lemma 2 [24]
Let k ∈ R and w ∈ R and λ satisfy (H).

PBPCw,k (R,X, λ) = BPCw,k(R,X)⊕ ErgC (R,X, λ) .

Lemma 3 [24] Let f, g ∈ PBPCw,k (R,X, λ). If (H) hold, then the following properties
are true:
(1)for each c ∈ R, c·f ∈ PBPCw,k (R,X, λ).
(2)f + g ∈ PBPCw,k (R,X, λ).
(3) f(·+b) ∈ PBPCw,k (R,X, λ) for every b ∈ R.
(4) PBPCw,k (R,X, λ) is a Banach space under the supremum norm.
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2.2 Discontinuous measure pseudo Bloch periodic functions

We define

BCP (R,X) =

{
f : R→ X, bounded, continuous on R/Z,∀j ∈ Z : lim

s→j−
f(t) <∞, lim

s→j+
f(t) <∞

}
Definition 3 Let k ∈ R and w ∈ R.

BPw,k(R,X) =
{
f ∈ BCP (R,X),∀t ∈ R : f(t+ w) = eikwf(t)

}
,

Erg (R,X, λ) =

{
f ∈ BCP (R,X), lim

s→+∞

1

λ([−s, s])

∫ s

−s
‖f(t)‖ dλ(t) = 0

}
.

Lemma 4 1)BCP (R,X) is a Banach space with the sup-norm. ([1])
2)If λ satisfy (H), then Erg (R,X, λ) is translation invariant. ([27], Lemma 2.1)

Definition 4 Let k ∈ R and w ∈ R.
f : R → X is called measure pseudo (w, k) Bloch periodic or f ∈ PBPw,k (R,X, λ), if
there exist f1 ∈ BPw,k(R,X) and f2 ∈ Erg (R,X, λ) such that:

f = f1 + f2.

From Lemma 4 and by the same arguments used in [24], we can state these two lemmas.

Lemma 5 Let k ∈ R and w ∈ R and λ satisfy (H).

PBPw,k (R,X, λ) = BPw,k(R,X)⊕ Erg (R,X, λ) .

Lemma 6 Let f, g ∈ PBPw,k (R,X, λ). If (H) hold, then the following properties are
true:
(1)for each c ∈ R, c·f ∈ PBPw,k (R,X, λ).
(2)f + g ∈ PBPw,k (R,X, λ).
(3) f(·+b) ∈ PBPw,k (R,X, λ) for every b ∈ R.
(4) PBPw,k (R,X, λ) is a Banach space under the supremum norm.

We define
BPCw,k(R×Γ,X) =

{
% ∈ BC(R× Γ,X), %(t+ w, x) = eikw%(t, x) ∀t ∈ R uniformly in x ∈ Γ

}
,

Erg (R× Γ,X, λ) =

{
ς : R× Γ→ X,∀x ∈ Γ, lim

s→+∞

1

λ([−s, s])

∫ s

−s
‖ς(t, x)‖ dλ(t) = 0 uniformly in x ∈ Γ

}
.

Definition 5 A function f : R × Γ → X is said to be generalized pseudo (w, k) Bloch
periodic function if it admits the decomposition

f = f1 + f2,

where f1 ∈ BPCw,k(R× Γ,X) and f2 ∈ Erg (R× Γ,X, λ). We denote PBPw,k(R× Γ,X)
the set of all such functions.

Now, we are interested in the sequence part.
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2.3 Measure pseudo Bloch periodic sequences

We denote Us the set of sequences measures λ : Z→ +∞.

Lemma 7 [28] Let λ satisfy (H) such that λ(j) =
∫ j+1

j
dλ(t) for j ∈ Z.

Then λ ∈ Us and for κ ∈ R, there exist b1 ≥ 0, b2 ≥ 0 such that, for S large enough, we
have

b1

∫ S+κ

−(S+κ)
dλ(t) ≤

[S]∑
j=−[S]

λ(j) ≤ b2

∫ S+κ

−(S+κ)
dλ(t).

Definition 6 Let k ∈ R and w ∈ Z.

BPw,k,seq (Z,X, λ) =
{
x : Z→ X : bounded, ∀j ∈ Z : x(j + w) = eikwx(j)

}
,

Ergseq (Z,X, λ) =

{
x : Z→ X : bounded, lim

N→+∞

1

λ([−N,N ])

N∑
j=−N

‖x(j)‖λ(j) = 0

}
.

Definition 7 For λ ∈ Us, k ∈ R and w ∈ Z, x : Z → X a bounded sequence is called
measure pseudo Bloch (w, k) periodic sequence ( or x ∈ PBPw,k,seq (Z,X, λ), if there exist
x1 ∈ BPw,k,seq(Z,X) and x2 ∈ Ergseq (Z,X, λ) such that:

x = x1 + x2.

Lemma 8 [27] For λ ∈ Us, (H) hold and j ∈ Z we have:
If x ∈ Ergseq (Z,X, λ), then x(.− j) ∈ Ergseq (Z,X, λ).

Lemma 9 For λ ∈ Us, (H) hold and j ∈ Z we have:
If x ∈ PBPw,k,seq (Z,X, λ), then x(.− j) ∈ PBPw,k,seq (Z,X, λ).

Proof. For n ∈ Z, x(n− j) = x1(n− j) + x2(n− j) with
x1(n+w− j) = x1(n− j+w) = eikwx1(n− j) and from Lemma 8, x2(.− j) is ergodic.

Lemma 10 [28] Let ~ : R → X continuous, λ satisfy (H) such that λ(j) =
∫ j+1

j
dλ(t)

for j ∈ Z. Assume that x ∈ Ergseq (Z,X, λ) and there exist η > 0 and a finite Sb ⊂ Z
such that

‖~(t)‖ ≤ η.max{n∈Sb}‖x(j + n)‖, t ∈ [j, j + 1), j ∈ Z.

Then ~ ∈ Erg (R,X, λ).

Lemma 11 Let x = x1 + x2 ∈ PBPw,k,seq (Z,X, λ), with

x1 ∈ BPw,k,seq(Z,X), x2 ∈ Ergseq (Z,X, λ) and (H) hold. Then x1(Z) ⊂ co x(Z).

Proof. Let
f(t) = (x([t] + 1)− x([t]))(t− [t]) + x([t]),

f1(t) = (x1([t] + 1)− x1([t]))(t− [t]) + x1([t]),

f2(t) = (x2([t] + 1)− x2([t]))(t− [t]) + x2([t]).
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We have f = f1 +f2, the functions f ,f1 and f2 are continuous and f(n) = x(n) for n ∈ Z.

f1(t+ w) = (x1([t+ w] + 1)− x1([t+ w]))(t+ w − [t+ w]) + x1([t+ w])

= (eikwx1([t] + 1)− eikwx1([t]))(t− [t]) + eikwx1([t]) = eikwf1(t).

Then f1 ∈ BPw,k(R,X).
On other hand

‖f2(t)‖ ≤ 2.max {‖x2(n)‖, ‖x2(n+ 1)‖} ≤ 2.max{j∈[[0,1]]} {‖x2(n+ j)‖} , t ∈ [n, n+1), n ∈ Z.

Using lemma 10, we check that f2 ∈ Erg (R,X, λ). Hence f ∈ PBPw,k(R,X).

From [24] lemma 3.4, we deduce that f1(R) ⊂ f(R) = co x(Z).
Since f(n) = x(n) (f1(n) = x1(n)) for n ∈ Z, we can conclude that x1(Z) ⊂ co x(Z).

Lemma 12 For λ ∈ Us, (H) hold, k ∈ R and w ∈ Z, x : Z→ X

PBPw,k,seq (Z,X, λ) = BPw,k,seq(Z,X)⊕ Ergseq (Z,X, λ) .

Proof. Let x ∈ PBPw,k,seq (Z,X, λ).
We assume that exists two decompositions of x : x = x11 + x21 = x12 + x22. Then
(x11−x12)+(x21−x22) = 0 with x11−x12 ∈ BPw,k,seq(Z,X) and x21−x22 ∈ Ergseq (Z,X, λ).
From Lemma 11, we have x11 = x12 and x21 = x22 then the decomposition of x is unique.

Lemma 13 i) If (H) hold, w ∈ Z and x(n) ∈ PBPw,k,seq (Z,X, λ), (n ∈ Z), then there
exists a function f ∈ PBPw,k (R,X, λ) such that: f(n) = x(n), for n ∈ Z.

Proof. i) For w ∈ Z and t ∈ R, we take f(t) = x([t]) = x1([t]) + x2([t]) = f1(t) + f2(t).
Then,

f1(t+ w) = x1([t+ w]) = x1([t] + w) = eikwx1([t]) = eikwf1(t),
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and
1

λ([−s, s])

∫ s

−s
‖f2(t)‖ dλ(t)

=
1

λ([−s, s])

∫ s

−s
‖x2([t])‖ dλ(t)

≤ 1

λ([−s, s])

[s+1]∑
j=−[s+1]

∫ j+1

j

‖x2([t])‖ dλ(t)

≤ 1

λ([−s, s])

[s]+1]∑
j=−[s]−1]

∫ j+1

j

‖x2(j)‖ dλ(t)

≤ λ([−[s]− 1, [s] + 1])

λ([−s, s])
.

1

λ([−[s]− 1, [s] + 1])

[s]+1∑
j=−[s]−1

‖x2(j)‖λ(j)

≤ β

λ([−[s]− 1, [s] + 1])

[s]+1∑
j=−[s]−1

‖x2(j)‖λ(j).

Hence f ∈ PBPw,k (R,X, λ).

Remark 3 The proof of the previous lemma can be found by considering the following
continuous function f(t) = (x([t] + 1)−x([t]))(t− [t]) +x([t]). Therefore, we also have: if
x(n) ∈ PBPw,k,seq (Z,X, λ), (n ∈ Z), then there exists a function f ∈ PBPCw,k (R,X, λ)
such that: f(n) = x(n), for n ∈ Z. (for the ergodic part, see [16] Proposition 2.2)

From Lemma 12 in Assel, Hammami and Miraoui [3], we can mention this lemma :

Lemma 14 If (H) hold and g ∈ Erg (R,X, λ), then

lim
N→+∞

1

λ([−N,N ])

N∑
j=−N

∫ j+1

j

‖g(u)‖ duλ(j) = 0.

Lemma 15 If (H) hold and f ∈ PBPw,k (R,X, λ), then for a ∈ R,

Ia(j) =

∫ j+a

j

f(u)du ∈ PBPw,k,seq (Z,X, λ) .

Proof. Without loss of generality, we assume that a > 0.
Ia(j) =

∫ j+a
j

f1(u)du+
∫ j+a
j

f2(u)du, with f1 ∈ BP (R,X, λ) and f2 ∈ Erg (R,X, λ).

For j ∈ Z,
∫ j+w+a
j+w

f1(u)du =
∫ j+a
j

f1(u+ w)du = eikw
∫ j+a
j

f1(u)du.

8

20 Jan 2024 13:47:51 PST
231225-Miraoui Version 2 - Submitted to Rocky Mountain J. Math.



lim
N→+∞

1

λ([−N,N ])

N∑
j=−N

∥∥∥∥∫ j+a

j

f2(u)du

∥∥∥∥λ(j)

≤ lim
N→+∞

1

λ([−N,N ])

N∑
j=−N

∫ j+a

j

‖f2(u)‖ duλ(j)

≤ lim
N→+∞

1

λ([−N,N ])

N∑
j=−N

[a]∑
l=0

∫ j+l+1

j+l

‖f2(u)‖ duλ(j)

≤
∑[a]

l=0 lim
N→+∞

1

λ([−N,N ])

N+l∑
j=−N−l

∫ j+1

j

‖f2(u)‖ duλ(j − l)

≤
∑[a]

l=0 lim
N→+∞

αβ

λ([−N − l, N + l])

N+l∑
j=−N−l

∫ j+1

j

‖f2(u)‖ duλ(j).

3 Main results

3.1 Difference equation

We consider the differential equations

x′(t) = M(t)x(t) +Mb(t)x([t]) + g(t), (7)

x′(t) = M(t)x(t) +Mb(t)x([t]) + f(t, x(t), x([t])), (8)

where M(t) generates an exponentially stable evolutionary process, Mb(t) is a bounded
linear operator, [.] is the greatest integer function, g : R→ X is a measure pseudo Bloch
(w, k)-periodic function and f : R× X× X→ X is bounded continuous.

Definition 8 A solution of equation (7) ( or (8)) on R is a function x(.) that satisfies :
1) x(.) is continuous on R.
2) The derivative x′(.) exists at each point t ∈ R, with possible exception of the points [t],
where one -sided derivatives exists.
3) System (7) ( or (8)) is satisfied on each interval [j, j + 1[ with j ∈ Z.

For the function =(u) = Ev(t, u)x(u) with u ≤ t, we have

d=
du

(u) =
dEv(t, u)

du
x(u) + Ev(t, u)x′(u)

= −M(u)Ev(t, u)x(u) + Ev(t, u)M(u)x(u) + Ev(t, u)Mb(u)x([u]) + Ev(t, u)g(u)

= Ev(t, u)Mb(u)x([u]) + Ev(t, u)g(u).
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Then ∫ t

[t]

d=(u)

du
du =

∫ t

[t]

Ev(t, u)Mb(u)x([u]) + Ev(t, u)g(u)du.

Therefore

Ev(t, t)x(t)− T (t− [t])x([t]) =

∫ t

[t]

Ev(t, u)Mbx([u]) + Ev(t, u)g(u))du.

Hence, the solution of the equation (7) is : ∀t ∈ [[t], [t] + 1[:

x(t) = Ev(t, [t])x([t]) +

∫ t

[t]

Ev(t, u) [Mb(u)x([t]) + g(u)] du. (9)

If we denote n=[t] and we use the continuity of solution, then we obtain :

x(n+ 1) = Ev(n+ 1, n)x(n) +

∫ n+1

n

Ev(n+ 1, u) [Mb(u).x(n) + g(u)] du.

We find the equation’s form:

x(n+ 1) = Q(n).x(n) + l(n), n ∈ Z (10)

where

Q(n) = Ev(n+ 1, n) +

∫ n+1

n

Ev(n+ 1, u)Mb(u)du.

l(n) =

∫ n+1

n

Ev(n+ 1, u)g(u)du.

We assume :
C) M(t) generates an exponentially stable evolutionary process (Ev(t, u))t≥u in X, a
family of bounded linear operators, satisfy the following hypothesis :
(1) ∀t ≥ 0, Ev(t, t) = I, I is the identity operator.
(2) ∀t ≥ u ≥ r, Ev(t, u)Ev(u, r) = Ev(t, r).
(3) The map (t, u)→ Ev(t, u)x is continuous for every fixed x ∈ X.
(4) ∀t ≥ u, Ev(t+ w, u+ w) = Ev(t, u).
(5) ∃mEv > 0 and δ > 0, such that ‖Ev(t, u)‖ ≤ mEve

−δ(t−u), ∀t ≥ u.

3.2 Solution study

Lemma 16 If (H), (C) hold and g ∈ PBPw,k (R,X, λ), then l(n) ∈ PBPw,k,seq (Z,X, λ) .

Proof.
If g ∈ PBPw,k (R,X, λ), then we can write g = g1 + g2 with g1 ∈ BPw,k (R,X, λ) and
g2 ∈ Erg (R,X, λ).
Hence,

l(n) =

∫ n+1

n

Ev(n+ 1, s)g(s)ds =

∫ n+1

n

Ev(n+ 1, s)g1(s)ds+

∫ n+1

n

Ev(n+ 1, s)g2(s)ds
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We have∫ n+w+1

n+w

Ev(n+w+1, s)g1(s)ds =

∫ n+1

n

Ev(n+w+1, s+w)g1(s+w)ds = eikw
∫ n+1

n

Ev(n+1, s)g1(s)ds.

On other hand

1

λ([−N,N ])

N∑
j=−N

∥∥∥∥∫ j+1

j

Ev(j + 1, s)g2(s)ds

∥∥∥∥λ(j)

≤ mEv

λ([−N,N ])

N∑
j=−N

∫ j+1

j

‖g2(s)‖ dsλ(j).

Then, l(n) =

∫ n+1

n

Ev(n+ 1, u)g(u)du ∈ PBPw,k,seq (Z,X, λ) .

Lemma 17 If (H), (C) hold, g ∈ PBPw,k (R,X, λ), Mb is w periodic
and supp∈Z(‖Q(p)‖) < 1, then

x(n) = l(n− 1) +
n−2∑
k=−∞

( n−1∏
j=k+1

Q(j)

)
l(k)

is a measure pseudo Bloch periodic solution sequence of difference system (10).
(x(n) ∈ PBPw,k,seq (Z,X, λ)).

Proof If we have

x(n) = l(n− 1) +
n−2∑
p=−∞

n−1∏
j=p+1

Q(j)l(p),

then

x(n+ 1) = l(n) +
n−1∑
p=−∞

n∏
j=p+1

Q(j)l(p)

= l(n) +

( n−2∑
p=−∞

n∏
j=p+1

Q(j)l(p) + (Q(n− 1)l(n− 1))

)

= l(n) +

( n−2∑
p=−∞

Qn

n−1∏
j=p+1

Q(j)l(p) + (Q(n− 1)l(n− 1))

)

= l(n) +Q(n)

( n−2∑
p=−∞

n−1∏
j=p+1

Q(j)l(p) + (Q(n− 1)l(n− 1))

)
= l(n) +

(
Q(n)x(n)

)
.

Hence, x(n) = l(n− 1) +
∑n−2

p=−∞
∏n−1

j=p+1Q(j)l(p) is a solution of the equation (10).

Now, we verify that x(n) ∈ PBPw,k,seq (Z,X, λ). Clearly

x(n) = x1(n) + x2(n),
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with

x1(n) = l1(n− 1) +
n−2∑
p=−∞

n−1∏
j=p+1

Q(j)l1(p)

and

x2(n) = l2(n− 1) +
n−2∑
p=−∞

n−1∏
j=p+1

Q(j)l2(p).

We have

x1(n+ w) = l1(n+ w − 1) +
n+w−2∑
p=−∞

n+w−1∏
j=p+1

Q(j)l1(p)

= eikwl1(n− 1) +
n−2∑
p=−∞

n−1∏
j=p+1

Q(j + w)l1(p+ w)

= eikwl1(n− 1) +
n−2∑
p=−∞

( n−1∏
j=p+1

Q(j + w)

)
eikwl1(p)

= eikwl1(n− 1) + eikw
n−2∑
p=−∞

( n−1∏
j=p+1

Q(j)

)
l1(p)

= eikwx1(n).
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Now, we prove that x2 is the ergodic perturbation of x .

1

λ([−N,N ])

N∑
j=−N

‖x2(j)‖λ(j)

=
1

λ([−N,N ])

N∑
j=−N

∥∥∥∥∥l2(j − 1) +

j−2∑
q=−∞

(

j−1∏
p=q+1

Q(p))l2(q)

∥∥∥∥∥λ(j)

≤ 1

λ([−N,N ])

N∑
j=−N

‖l2(j − 1)‖λ(j)

+
1

λ([−N,N ])

N∑
j=−N

∥∥∥∥∥
j−2∑
q=−∞

(

j−1∏
p=q+1

Q(p))(l2(q))

∥∥∥∥∥λ(j)

≤ 1

λ([−N,N ])

N∑
j=−N

‖l2(j − 1)‖λ(j)

+
1

λ([−N,N ])

N∑
j=−N

j−2∑
q=−∞

(supp∈Z ‖Q(p)‖)j−q−1 ‖l2(q))‖λ(j)

≤ 1

λ([−N,N ])

N−1∑
j=−N−1

‖l2(j)‖λ(j + 1)

+
1

λ([−N,N ])

N∑
j=−N

+∞∑
q=1

(supp∈Z ‖Q(p)‖)q ‖l2(j − 1− q))‖λ(j).

≤ 1

λ([−N,N ])

N+1∑
j=−N−1

‖l2(j − 1)‖λ(j)

+
1

λ([−N,N ])

+∞∑
q=1

(supp∈Z ‖Q(p)‖)q
N−(1+q)∑

j=−N−(1+q)

‖l2(j))‖λ(j + 1 + q).

≤ λ([−N − 1, N + 1])

λ([−N,N ])

1

λ([−N − 1, N + 1])

N+1∑
j=−N−1

‖l2(j)‖λ(j + 1)

+
+∞∑
q=1

(supp∈Z ‖Q(p)‖)qλ([−(N + q + 1), N + q + 1])

λ([−N,N ])
.

α

λ([−(N + q + 1), N + q + 1])

N+(1+q)∑
j=−N−(1+q)

‖l2(j))‖λ(j).

≤ αβ

λ([−N − 1, N + 1])

N+1∑
j=−N−1

‖l2(j)‖λ(j)

+
+∞∑
q=1

(supp∈Z ‖Q(p)‖)q. αβ

λ([−(N + q + 1), N + q + 1])

N+(1+q)∑
j=−N−(1+q)

‖l2(j))‖λ(j).

From lemma 16 and the limit theorem of series, we can find the result.
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Theorem 1 If (H), (C) hold, g ∈ PBPw,k (R,X, λ), Mb is w periodic and
supp∈Z(‖Q(p)‖) < 1, then

the system (7) has a measure pseudo Bloch periodic solution.

(
x(.) ∈ PBPw,k (R,X, λ)

)
.

Proof. We have

x(t) = Ev(t, [t])x([t]) +

∫ t

[t]

Ev(t, u)[Mb(u)x([t]) + g(u)]du

= Ev(t, [t])x1([t]) +

∫ t

[t]

Ev(t, u)[Mb(u)x1([t]) + g1(u)]du

+ Ev(t, [t])x2([t]) +

∫ t

[t]

Ev(t, u)[Mb(u)x2([t]) + g2(u)]du.

We denote

x1(t) = Ev(t, [t])x1([t]) +

∫ t

[t]

Ev(t, u)[Mb(u)x1([t]) + g1(u)]du,

and

x2(t) = Ev(t, [t])x2([t]) +

∫ t

[t]

Ev(t, u)[Mb(u)x2([t]) + g2(u)]du.

We have

x1(t+ ω) = Ev(t+ ω, [t] + ω)x1([t] + ω)

+

∫ t

[t]

Ev(t+ ω, u+ ω)Mb(u+ ω)x1([t] + ω)du

+

∫ t

[t]

Ev(t+ ω, u+ ω)g1(u+ ω)du

= eikωx1(t).

On other hand,

1

λ([−s, s])

∫ s

−s
‖x2(t)‖ dλ(t) ≤ 1

λ([−s, s])

[s]+1∑
[−s]−1

∫ j+1

j

‖x2(t)‖ dλ(t)

≤ J1 + J2 + J3,

where

J1 =
1

λ([−s, s])

[s]+1∑
[−s]−1

∫ j+1

j

‖Ev(t, [t])x2([t]))‖ dλ(t),

J2 =
1

λ([−s, s])

[s]+1∑
[−s]−1

∫ j+1

j

∫ t

[t]

‖Ev(t, u)(Mb(u)x2([t]))‖ dudλ(t),

J3 =
1

λ([−s, s])

[s]+1∑
[−s]−1

∫ j+1

j

∫ t

[t]

‖Ev(t, u)(g2(u))‖ dudλ(t).

14

20 Jan 2024 13:47:51 PST
231225-Miraoui Version 2 - Submitted to Rocky Mountain J. Math.



First, we start by J1.

J1 ≤
1

λ([−s, s])

[s]+1∑
[−s]−1

∫ j+1

j

‖Ev(t, [t])‖ ‖x2([t])‖ dλ(t)

≤ mEv

λ([−s, s])

[s]+1∑
[−s]−1

∫ j+1

j

‖x2([t])‖ dλ(t)

≤ mEv

λ([−s, s])

[s]+1∑
[−s]−1

‖x2(j)‖λ(j).

Now, we turn to J2.

J2 ≤
1

λ([−s, s])

[s]+1∑
[−s]−1

∫ j+1

j

∫ j+1

j

‖Ev(t, u)(Mb(u)x2([t]))‖ dudλ(t)

≤ mEv ‖Mb‖
λ([−s, s])

[s]+1∑
[−s]−1

‖x2(j)‖λ(j).

We finish by J3.

J3 ≤
1

λ([−s, s])

[s]+1∑
[−s]−1

∫ j+1

j

∫ t

[t]

‖Ev(t, u)‖ ‖g2(u)‖ dudλ(t)

≤ 1

λ([−s, s])

[s]+1∑
[−s]−1

∫ j+1

j

∫ j+1

j

‖Ev(t, u)‖ ‖g2(u)‖ dudλ(t)

≤ mEv

λ([−s, s])

[s]+1∑
[−s]−1

∫ j+1

j

‖g2(u)‖ duλ(j).

From Lemma 14 and Lemma 16, we prove that the solution x(.) ∈ PBPw,k (R,X, λ).

Lemma 18 Let f ∈ PBPw,k(R×Γ,X), x ∈ PBPw,k (R,X, λ) and f = f1+f2, x = x1+x2,
Γ ⊂ X× X and x1(R)× x1(Z) ⊂ Γ. If f verify

(A.1) ∃L1 > 0, such that :

For all φ1, φ2, ξ1, ξ2 ∈ X and t ∈ R

‖f(t, φ1, ξ1)− f(t, φ2, ξ2)‖ ≤ L1(‖φ1 − φ2‖+ ‖ξ1 − ξ2‖),

then f2(., x1(.), x1([.])) ∈ Erg (R,X, λ) .

Proof. We have x1(R) is bounded and f1 is uniformly continuous, then

∀ε > 0, there exist finite open balls Bp with center (τ
(p)
1 , τ

(p)
2 ) ∈ Γ, p = 1, 2, ..., q, and

15
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radius small enough such that x1(R)× x1(Z) ⊂ ∪qp=1Bp and∥∥∥f1(t, τ1, τ2 − f1(t, τ (p)1 , τ
(p)
2 )
∥∥∥ < ε

3
for τ = (τ1, τ2) ∈ Bp, t ∈ R.

We have R = ∪qp=1Fp where Fp is the open set Fp = {t ∈ R, (x1(t), x1([t])) ∈ Bp}.
Let E1 = F1, Ep = Fp \ ∪p−1i=1Fi, 2 ≤ p ≤ q. Hence Ep ∩ Ei = ∅, if p 6= i, 1 ≤ p, i ≤ q.

Since f2(., τ
(p)
1 , τ

(p)
2 ) ∈ Erg (R,X, λ), then there exists s0 > 0 such that

q∑
p=1

1

λ([−s, s])

∫ s

−s

∥∥∥f2(., τ (p)1 , τ
(p)
2 )
∥∥∥ dλ(t) <

ε

3
, s > s0.

We have

1

λ([−s, s])

∫ s

−s
‖f2(t, x1(t), x1([t]))‖ dλ(t)

≤ 1

λ([−s, s])

q∑
p=1

∫
[−s,s]∩Ep

∥∥∥f2(t, x1(t), x1([t]))− f2(t, τ (p)1 , τ
(p)
2 )
∥∥∥+

∥∥∥f2(., τ (p)1 , τ
(p)
2 )
∥∥∥ dλ(t)

≤ 1

λ([−s, s])

q∑
p=1

∫
[−s,s]∩Ep

∥∥∥f(t, x1(t), x1([t])− f(t, τ
(p)
1 , τ

(p)
2 )
∥∥∥

+
∥∥∥f1(t, x1(t), x1([t])− f1(t, τ (p)1 , τ

(p)
2 )
∥∥∥+

∥∥∥f2(t, τ (p)1 , τ
(p)
2 )
∥∥∥ dλ(t)

Using the hypothesis (A.1), we can write

1

λ([−s, s])

∫ s

−s
‖f2(t, x1(t), x1([t]))‖ dλ(t)

≤ 1

λ([−s, s])

q∑
p=1

∫
[−s,s]∩Ep

L1(
∥∥∥x1(t)− τ (p)1

∥∥∥+
∥∥∥x1([t])− τ (p)2

∥∥∥
+
∥∥∥f1(t, x1(t), x1([t])− f1(t, τ (p)1 , τ

(p)
2 )
∥∥∥+

∥∥∥f2(t, τ (p)1 , τ
(p)
2 )
∥∥∥ dλ(t)

From previous increases, we have :

For s > s0,
1

λ([−s, s])

∫ s

−s
‖f2(t, x1(t), x1([t]))‖ dλ(t) < ε. Then, we obtain the result.

Lemma 19 Let f = f1 + f2 ∈ PBP (R× X× X,X).

If (H) hold and f satisfies the hypothesis

(A.1) ∃L1 > 0, such that :

For all φ1, φ2, ξ1, ξ2 ∈ X and t ∈ R

‖f(t, φ1, ξ1)− f(t, φ2, ξ2)‖ ≤ L1(‖φ1 − φ2‖+ ‖ξ1 − ξ2‖).
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(A.2) f1(t+ w, eikwx, eikwy) = eikwf1(t, x, y) for all (t, x, y) ∈ R× X× X.

Then for each x ∈ PBPw,k (R,X, λ) such that x(n) ∈ PBPw,k,seq (Z,X, λ), we have
f(., x(.), x([.])) ∈ PBPw,k (R,X, λ).

Proof.
We have f = f1 + f2 and x = x1 + x2, then we can write
f(t, x(t), x([t])) = f1(t, x1(t), x1([t]))+f(t, x(t), x([t]))−f(t, x1(t), x1([t]))+f2(t, x1(t), x1([t])) =
F1(t) + F2(t) + F3(t),
where F1(t) = f1(t, x1(t), x1([t])), F2(t) = f(t, x(t), x([t]))−f(t, x1(t), x1([t])) and F3(t) =
f2(t, x1(t), x1([t])).

We have F1(t+ w) = f1(t+ w, x1(t+ w), x1([t+ w])) = f1(t+ w, eikwx1(t), e
ikwx1([t])) =

eikwf1(t, x1(t), x1([t])) = eikwF1(t). Therefore F1 ∈ BPw,k (R,X).

It remains to prove that F2 and F3 are ergodic.
From the hypothesis (A.1), we have

lim
s→∞

1

λ([−s, s])

∫ s

−s
‖f(t, x(t), x([t]))− f(t, x1(t), x1([t]))‖ dλ(t)

≤ lim
s→∞

L1

λ([−s, s])

∫ s

−s
‖x(t)− x1(t)‖ dλ(t) + lim

s→∞

L1

λ([−s, s])

∫ s

−s
‖x([t])− x1([t]))‖ dλ(t)

≤ lim
s→∞

L1

λ([−s, s])

∫ s

−s
‖x2(t)‖ dλ(t) + lim

s→∞

L1

λ([−s, s])

∫ s

−s
‖x2([t])‖ dλ(t)

≤ lim
s→∞

L1

λ([−s, s])

∫ s

−s
‖x2(t)‖ dλ(t) + lim

s→∞

L1

λ([−s, s])

[s]+1∑
−[s]−1

‖x2(j)‖λ(j).

Since x2 is ergodic, hence F2 is ergodic.
From Lemma 18, we can deduce that F3 ∈ Erg (R,X, λ). Finally, we can confirm that
f(., x(.), x([.])) ∈ PBPw,k (R,X, λ).

Theorem 2 Let f ∈ PBPw,k(R×X×X,X). If (H), (C), (A.1) and (A.2) hold, Mb is
ω periodic and supp∈Z(‖Qp‖) < 1, then there exist L > 0 such that ∀ 0 < L1 < L, the
equation (8) has a unique continuous measure pseudo Bloch periodic solution.

Proof. From Lemma 19, if x ∈ PBPCw,k (R,X, λ) ∩ PBPw,k,seq (Z,X, λ), then
f(., x(.), x([.])) ∈ PBPw,k (R,X, λ).
Hence, by Theorem 1 there exists a measure pseudo Bloch periodic solution of system (8).
We consider the application
K : PBPCw,k (R,X, λ)∩PBPw,k,seq (Z,X, λ)→ PBPCw,k (R,X, λ)∩PBPw,k,seq (Z,X, λ)

17

20 Jan 2024 13:47:51 PST
231225-Miraoui Version 2 - Submitted to Rocky Mountain J. Math.



defined by :

Kx(t) = Ev(t, [t])x([t]) +

∫ t

[t]

Ev(t, u) [Mb(u)x([t]) + f(u, x(u), x([u])] du. (11)

For x, y ∈ PBPCw,k (R,X, λ) such that x(n), y(n) ∈ PBPw,k,seq (Z,X, λ), it is easy to
verify that Kx−Ky is a solution of this equation

φ′(t) = M(t)φ(t) +Mb(t)φ([t]) + f(t, x(t), x([t])− f(t, y(t), y([t]).

Then
Kx(n+ 1)−Ky(n+ 1) = Q(n)(Kx(n)−Ky(n)) +H(n), n ∈ Z (12)

and

Kx(n)−Ky(n) = H(n− 1) +
n−2∑
k=−∞

(
n−1∏
j=k+1

Q(j))H(k),

where H(n) =
∫ n+1

n
Ev(n+ 1, u)(f(u, x(u), x([u])− f(u, y(u), y([u]))du.

Hence, from ((A.1)) and ((C.5))

‖Kx([t])−Ky([t])‖ ≤ mEv

δ
(

1

1− supp∈Z(‖Qp‖)
)2L1 ‖x− y‖∞ .

We recall that

Kx(t)−Ky(t) = Ev(t, [t])(x([t])− y([t])) +

∫ t

[t]

Ev(t, u)Mb(u)(x([t]− y([t]))du

+

∫ t

[t]

Ev(t, u)(f(u, x(u), x([u])− f(u, y(u), y([u]))du.

Therefore

‖Kx(t)−Ky(t)‖ ≤ (mEv+
mEv ‖Mb‖

δ
) ‖x([t])− y([t])‖+mEv

δ
‖f(u, x(u), x([u])− f(u, y(u), y([u])‖ .

We deduce that :

‖Kx(t)−Ky(t)‖ ≤ 2
mEv

δ
((mEv +

mEv ‖Mb‖
δ

)(
1

1− supp∈Z(‖Q(p)‖)
) + 1)L1 ‖x− y‖∞ .

We denote a0 =
mEv

δ
> 0, a1 =

1

1− supp∈Z(‖Q(p)‖)
> 0 and a2 = ‖Mb‖+ δ > 0.

Hence , if 0 < L1 < L =
1

2(a0)2a1a2 + 2a0
, then

G is a contraction mapping on PBPCw,k (R,X, λ)∩PBPw,k,seq (Z,X, λ) which is a closed
subset of the Banach space PBPCw,k (R,X, λ).
By the Banach-Picard fixed point theorem, we conclude that the equation (8) has a unique
continuous measure pseudo Bloch periodic solution.
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4 Example

We consider, for t ∈ R, x ∈ [0, π] the following differential equation :

{
∂ϕ
∂t

(t, x) = ∂2ϕ
∂x2

(t, x) + ν(t, x)ϕ(t, x) + zϕ([t], x) + g(t, ϕ(t, x), ϕ([t], x))

ϕ(t, 0) = ϕ(t, π) = 0,
(13)

where ν : R× [0, π]→ R, ν(t+ ω, x) = ν(t, x) and ∃c > 0, such that ν(t, x) ≤ −c.

Let (X, ‖.‖) = (L2[0, π], ‖.‖2 ) and we take the bounded linear operator
Mb : L2[0, π]→ L2[0, π] defined by Mb(t)x = zx, where z is real constant.
We define the operator M by :

Mφ = φ
′′

D(M) =
{
φ ∈ L2[0, π], φ

′′ ∈ L2[0, π], φ(0) = φ(π) = 0
}
.

The corresponding semi group T on L2[0, π] satisfies: for t ≥ 0, ‖T (t)‖ ≤ e−t ([11]).
We define M(t) as follows :

D(M(t)) = D(M),

M(t) = M + ν(t, .).

M(t) generate the w periodic evolution process Ev defined by Ev(t, u) = T (t−u)e
∫ t
u ν(s,x)ds.

Then, we have ‖Ev(t, u)‖ ≤ e−(c+1)(t−u) ([12, 26]).

On the other side, from [5] we can say : if f can be written in the following form :

f(t, x1, y1) = f1(t, x1, y1) + f2(t, x1, y1) =
1

5
(B(t)(x1 + y1) + e−t

2
(

x1
1+ | x1 |

+
y1

1+ | y1 |
)),

where B is a bounded continuous w periodic function, then we have :

f1(t+w, eikwx1, e
ikwy1) = B(t+w)(eikwx1 +eikwy1) = eikwB(t)(x1 +y1) = eikwf1(t, x1, y1),

and

‖f(t, x1(t, .), y1(t, .))− f(t, x2(t, .), y2(t, .))‖2 ≤
1

5
(| B(t) | +1)(‖x1(t, .)− x2(t, .)‖2+‖y1(t, .)− y2(t, .)‖2).

Subsequently f verify the hypothesis of lemma (19).

The system (13) can be seen as an application of the equation (8) with ϕ(t) = ϕ(t, .).

supp∈Z ‖Qp‖ ≤ mE(e−δ +
1− e−δ

δ
‖Mb‖). (14)

For this example, we have mEv = 1, δ = c+ 1 and ‖Mb‖ =| z | .

If | z |< δ, then supp∈Z ‖Qp‖ < 1 and L1 < L =
(1− e−δ)(δ2 − δ | z |)
4δ − 2δe−δ + 2e−δ | z |

, (L > 0).

Then, the system (13) has an unique continuous measure pseudo-asymptotically Bloch
periodic solution.
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