PLANE-FILLING CURVES OF SMALL DEGREE OVER FINITE FIELDS

SHAMIL ASGARLI AND DRAGOS GHIOCA

Abstract

A plane curve C in \mathbb{P}^{2} defined over \mathbb{F}_{q} is called plane-filling if C contains every $\mathbb{F}_{q^{-}}$ point of \mathbb{P}^{2}. Homma and Kim, building on the work of Tallini, proved that the minimum degree of a smooth plane-filling curve is $q+2$. We study smooth plane-filling curves of degree $q+3$ and higher.

1. Introduction

The study of space-filling curves in \mathbb{R}^{2} starts with the work of Peano [Pea90] in the 19th century. About 100 years later, Nick Katz [Kat99] studied space-filling curves over finite fields and raised open questions about their existence. One version of Katz's question was the following. Given a smooth algebraic variety X over a finite field \mathbb{F}_{q}, does there always exist a smooth curve $C \subset$ X such that $C\left(\mathbb{F}_{q}\right)=X\left(\mathbb{F}_{q}\right)$? In other words, is it possible to pass through all of the (finitely many) \mathbb{F}_{q}-points of X using a smooth curve? Gabber [Gab01] and Poonen [Poo04] independently answered this question in the affirmative.

We will consider the special case when $X=\mathbb{P}^{2}$. We say that a curve $C \subset \mathbb{P}^{2}$ is plane-filling if $C\left(\mathbb{F}_{q}\right)=\mathbb{P}^{2}\left(\mathbb{F}_{q}\right)$. Equivalently, C is a plane-filling curve C if $\# C\left(\mathbb{F}_{q}\right)=q^{2}+q+1$. In a natural sense, plane-filling curves are extremal. There are other classes of extremal curves with respect to the set of \mathbb{F}_{q}-points, including blocking curves [AGY23] and tangent-filling curves [AG23].

From Poonen's work [Poo04], we know that there exist smooth plane-filling curves of degree d over \mathbb{F}_{q} whenever d is sufficiently large with respect to q. It is natural to ask for the minimum degree of a smooth plane-filling curve over \mathbb{F}_{q}. Homma and Kim [HK13] proved that the minimum degree is $q+2$. More precisely, by building on the work of Tallini [Ta161a, Tal61b], they showed that a plane-filling curve of the form

$$
(a x+b y+c z)\left(x^{q} y-x y^{q}\right)+y\left(y^{q} z-y z^{q}\right)+z\left(z^{q} x-z x^{q}\right)=0
$$

is smooth if and only if the polynomial $t^{3}-\left(c t^{2}+b t+a\right) \in \mathbb{F}_{q}[t]$ has no \mathbb{F}_{q}-roots. In a sequel paper [Hom20], Homma investigated further properties of plane-filling curves of degree $q+2$. The automorphism group of these special curves was studied by Duran Cunha [DC18]. As another direction, Homma and Kim [HK23] investigated space-filling curves in $\mathbb{P}^{1} \times \mathbb{P}^{1}$.

In light of the aforementioned results, we aim to determine if there is a "gap" in the range of possible degrees for smooth plane-filling curves. Towards this goal, we investigate the existence of smooth plane-filling curves of degree $q+3$ and higher. The guiding question for our paper is the following.

Question 1.1. Let q be a prime power. Does there exist a smooth plane-filling curve of degree $q+3$ defined over \mathbb{F}_{q} ?

More generally, one can ask about the existence of degree $q+r+1$ smooth plane-filling curves (see Theorem 1.8 for context). A positive answer to these questions would provide an effective version of Poonen's theorem in the particular case of plane-filling curves.

The three binomials $x^{q} y-x y^{q}, y^{q} z-y z^{q}$, and $z^{q} x-z x^{q}$ generate the ideal of polynomials defining plane-filling curves; see [HK13, Proposition 2.1] for proof of this assertion. Thus, any plane-filling curve of degree $q+3$ must necessarily be defined by

$$
Q_{1}(x, y, z) \cdot\left(x^{q} y-x y^{q}\right)+Q_{2}(x, y, z) \cdot\left(y^{q} z-y z^{q}\right)+Q_{3}(x, y, z) \cdot\left(z^{q} x-z x^{q}\right)=0
$$

for some homogeneous quadratic polynomials $Q_{1}, Q_{2}, Q_{3} \in \mathbb{F}_{q}[x, y, z]$. The difficulty is finding suitable Q_{1}, Q_{2}, Q_{3} for which the corresponding curve is smooth.

Our first result gives a necessary and sufficient condition for the plane-filling curve C_{k} to be smooth at all the \mathbb{F}_{q}-points.
Theorem 1.2. For each $k \in \mathbb{F}_{q}$, consider the plane-filling curve C_{k} defined by

$$
\begin{equation*}
x^{2}\left(x^{q} y-x y^{q}\right)+y^{2}\left(y^{q} z-y z^{q}\right)+\left(z^{2}+k x^{2}\right)\left(z^{q} x-z x^{q}\right)=0 . \tag{1}
\end{equation*}
$$

Then C_{k} is smooth at every \mathbb{F}_{q}-point of \mathbb{P}^{2} if and only if the polynomial $x^{7}+k x^{3}-1$ has no zeros in \mathbb{F}_{q}.

In fact, we will prove a more general theorem (namely, Theorem 1.8) which will immediately imply Theorem 1.2 as a special case.

To ensure that Theorem 1.2 is not vacuous, we need to show that there exists some $k \in \mathbb{F}_{q}$ such that $x^{7}+k x^{3}-1$ has no zeros in \mathbb{F}_{q}.
Proposition 1.3. There exists a value $k \in \mathbb{F}_{q}$ such that $x^{7}+k x^{3}-1 \in \mathbb{F}_{q}[x]$ has no zeros in \mathbb{F}_{q}.
Proof. When $x=0$, there is no $k \in \mathbb{F}_{q}$ such that $x^{7}+k x^{3}-1=0$. For each $x \in \mathbb{F}_{q}^{*}$, there is a unique value of $k \in \mathbb{F}_{q}$ such that $x^{7}+k x^{3}-1=0$. Thus, there are at most $q-1$ values of $k \in \mathbb{F}_{q}$ such that the polynomial $x^{7}+k x^{3}-1$ has a zero in \mathbb{F}_{q}.

The next result improves Proposition 1.3.
Theorem 1.4. There exist at least $\frac{q}{6}-1-\frac{28}{3} \sqrt{q}$ many values of $k \in \mathbb{F}_{q}$ such that $x^{7}+k x^{3}-1 \in \mathbb{F}_{q}[x]$ has no zeros in \mathbb{F}_{q}.

Note that Theorem 1.2 and Proposition 1.3 together yields that for each odd q, there exists at least one value $k \in \mathbb{F}_{q}$ for which the corresponding curve C_{k} has no singular \mathbb{F}_{q}-points. Note that smoothness at \mathbb{F}_{q}-points is not enough, in general, to guarantee that the curve is smooth (that is, smooth at all of its $\overline{\mathbb{F}_{q}}$-points). For instance, let L_{1} be an $\mathbb{F}_{q^{3}}$-line with no \mathbb{F}_{q}-points; let L_{2} and L_{3} be the $\operatorname{Gal}\left(\mathbb{F}_{q^{3}} / \mathbb{F}_{q}\right)$-conjugates of L_{1}. Then the cubic curve $C=L_{1} \cup L_{2} \cup L_{3}$ is defined over \mathbb{F}_{q}, and yet has no \mathbb{F}_{q}-points. So, C is vacuously smooth at all of its \mathbb{F}_{q}-points but is singular at three $\mathbb{F}_{q^{3}}$-points. For a more involved example of this phenomenon, see Example 4.1.

However, we expect that the curves in Theorem 1.2 are smooth if and only if they are smooth at all their \mathbb{F}_{q}-points. Our main conjecture below restates this prediction.

Conjecture 1.5. Suppose q is odd. The plane-filling curve C_{k} defined by (1) is smooth if and only if the polynomial $x^{7}+k x^{3}-1$ has no zeros in \mathbb{F}_{q}.

We have verified Conjecture 1.5 using Macaulay2 [GS] for all odd prime powers $q<200$. When $q=2^{m}$ is even, the curve C_{k} defined by (1) turns out to be singular (for every $k \in \mathbb{F}_{q}$). As
a replacement, we consider another curve D_{k} in this case:

$$
\begin{equation*}
x^{2}\left(x^{q} y-x y^{q}\right)+y^{2}\left(y^{q} z-y z^{q}\right)+\left(z^{2}+k x y\right)\left(z^{q} x-z x^{q}\right)=0 . \tag{2}
\end{equation*}
$$

We make a similar conjecture regarding the smoothness of the curves D_{k}.
Conjecture 1.6. Suppose q is even. The plane-filling curve D_{k} defined by (2) is smooth if and only if the polynomial $x^{7}+k x^{5}+1$ has no zeros in \mathbb{F}_{q}.

The polynomial $x^{7}+k x^{5}+1$ featured above is prominent because one can show, similar to Theorem 1.2, that a plane-filling curve D_{k} is smooth at all of its \mathbb{F}_{q}-points (when q is even) if and only if $x^{7}+k x^{5}+1$ has no \mathbb{F}_{q}-roots. We have verified Conjecture 1.6 using Macaulay2 [GS] for $q=2^{m}$ when $1 \leq m \leq 9$.

We prove the following as partial progress towards Conjecture 1.5.
Theorem 1.7. Suppose q is odd. There exists a suitable choice of $k \in \mathbb{F}_{q}$ such that the plane-filling curve C_{k} defined by (1) is smooth at all $\mathbb{F}_{q^{2}}$-points.

A similar argument as the one employed in Theorem 1.7 yields an analogous result when q is even, and the curve C_{k} is replaced by D_{k}.

To prove Theorem 1.7, we will prove that any plane-filling curve of degree $q+3$ which is smooth at \mathbb{F}_{q}-points and has no \mathbb{F}_{q}-linear component must be smooth at each of its $\mathbb{F}_{q^{2}}$-points.

We also investigate plane-filling curves of degree $q+r+1$ where $r \geq 2$ is arbitrary.
Theorem 1.8. For each $k \in \mathbb{F}_{q}$, consider the plane-filling curve $C_{k, r}$ defined by

$$
x^{r}\left(x^{q} y-x y^{q}\right)+y^{r}\left(y^{q} z-y z^{q}\right)+\left(z^{r}+k x^{r}\right)\left(z^{q} x-z x^{q}\right)=0 .
$$

Then $C_{k, r}$ is smooth at every \mathbb{F}_{q}-point of \mathbb{P}^{2} if and only if the polynomial $x^{r^{2}+r+1}+k x^{r+1}-1=0$ has no zeros in \mathbb{F}_{q}.

Structure of the paper. In Section 2, we prove Theorem 1.4. We devote Section 3 to Theorem 1.7, and Section 4 to Theorem 1.8.

2. Proof of Theorem 1.4

We begin this section by noting that Theorem 1.2 is a special case of Theorem 1.8 which will be proven in Section 4. Our Theorem 1.2 provides a criterion that tests whether the plane-filling curve C_{k} defined by (1) is smooth at every \mathbb{F}_{q}-point.

The following technical result will be employed in our proof of Theorem 1.4.
Lemma 2.1. The polynomial $x^{3} y^{3}(x+y)\left(x^{2}+y^{2}\right)+\left(x^{2}+x y+y^{2}\right)$ is irreducible in $\overline{\mathbb{F}_{q}}[x, y]$.
Proof. The proof employs a technique seen in Eisenstein's criterion. First, suppose $p=\operatorname{char}\left(\mathbb{F}_{q}\right) \neq$ 3. Assume, to the contrary, that $f(x, y):=x^{3} y^{3}(x+y)\left(x^{2}+y^{2}\right)+\left(x^{2}+x y+y^{2}\right)$ is reducible over the algebraic closure $\overline{\mathbb{F}_{q}}$. Write $f(x, y)=g(x, y) \cdot h(x, y)$, and express

$$
\begin{aligned}
& g(x, y)=g_{m}(x, y)+g_{m+1}(x, y)+\cdots+g_{s}(x, y) \\
& h(x, y)=h_{n}(x, y)+h_{n+1}(x, y)+\cdots+h_{t}(x, y)
\end{aligned}
$$

where $g_{i}(x, y)$ and $h_{j}(x, y)$ are homogeneous of degree i and j, respectively, for $m \leq i \leq s$ and $n \leq j \leq t$. From $f(x, y)=g(x, y) \cdot h(x, y)$, we see that

$$
\left\{\begin{array}{l}
g_{m} h_{n}=x^{2}+x y+y^{2} \\
g_{s} h_{t}=x^{3} y^{3}(x+y)\left(x^{2}+y^{2}\right) \\
\sum_{i+j=k} h_{i} g_{j}=0 \text { for } 2<k<9
\end{array}\right.
$$

Since the characteristic $p \neq 3$, the polynomial $x^{2}+x y+y^{2}$ factors into distinct linear factors in $\overline{\mathbb{F}_{q}}[x, y]$. Let $x+\lambda y$ be one of those linear factors with $\lambda \in \overline{\mathbb{F}_{q}}$. Then $x^{2}+x y+y^{2}$ is divisible by $x+\lambda y$ but not by $(x+\lambda y)^{2}$. Thus, exactly one of g_{m} or h_{n} is divisible by $x+\lambda y$. Without loss of generality, assume $x+\lambda y$ divides g_{m}, and not h_{n}. Then using $\sum_{i+j=k} h_{i} g_{j}=0$ for $2<k<9$, we inductively see that $x+\lambda y$ divides g_{j} for each $m \leq j \leq s$. In particular, $x+\lambda y$ divides $g_{s} h_{t}$. This is a contradiction because $x+\lambda y$ does not divide $x^{3} y^{3}(x+y)\left(x^{2}+y^{2}\right)$. Indeed, $x^{2}+x y+y^{2}$ and $x^{3} y^{3}(x+y)\left(x^{2}+y^{2}\right)$ are relatively prime.

When $p=3$, a similar argument works from the other end of the polynomial: the leading term $x^{3} y^{3}(x+y)\left(x^{2}+y^{2}\right)$ is divisible by $x+y$ but not by $(x+y)^{2}$. We deduce that $f(x, y)$ is irreducible over $\overline{\mathbb{F}_{q}}$ for every prime power q.
Proof of Theorem 1.4. Our goal is to give a lower bound on the number of $k \in \mathbb{F}_{q}$ such that the polynomial $x^{7}+k x^{3}-1$ has no roots in \mathbb{F}_{q}. As x ranges in \mathbb{F}_{q}^{*} (note that there is no $k \in \mathbb{F}_{q}$ for which $x=0$ would be a root of $x^{7}+k x^{3}-1$), the number of "bad" choices of k are parametrized by $\frac{1-x^{7}}{x^{3}}$. We will show that there are many choices of x and y such that $\frac{1-x^{7}}{x^{3}}$ and $\frac{1-y^{7}}{y^{3}}$ give rise to the same value of k. Setting these expressions equal to each other, we obtain the following.

$$
\frac{1-x^{7}}{x^{3}}=\frac{1-y^{7}}{y^{3}} \Rightarrow x^{7} y^{3}-y^{3}=y^{7} x^{3}-x^{3}
$$

After rearranging and dividing both sides by $x-y$, we obtain an affine curve $\mathcal{C} \subset \mathbb{A}^{2}$ defined by

$$
x^{3} y^{3}(x+y)\left(x^{2}+y^{2}\right)+x^{2}+x y+y^{2}=0,
$$

for $x, y \in \mathbb{F}_{q}^{*}$ and $x \neq y$. Let G be a graph whose vertex set is \mathbb{F}_{q}^{*}, and there is an edge between x and y if (x, y) lies on the affine curve \mathcal{C}. We consider undirected edges, so the pairs (x, y) and (y, x) correspond to the same edge.

Claim 1. The number of edges of G is at least $\frac{q}{2}-6-28 \sqrt{q}$.
Let $\tilde{\mathcal{C}} \subset \mathbb{P}^{2}$ be the projectivization of \mathcal{C}. By Lemma 2.1, the curve $\tilde{\mathcal{C}}$ is geometrically irreducible. By Hasse-Weil inequality for geometrically irreducible curves [AP96, Corollary 2.5], $\# \tilde{\mathcal{C}}\left(\mathbb{F}_{q}\right) \geq$ $q+1-56 \sqrt{q}$. Since the line at infinity $z=0$ can contain at most 5 distinct \mathbb{F}_{q}-points, we have $\# C\left(\mathbb{F}_{q}\right) \geq q-4-56 \sqrt{q}$; furthermore, we exclude the points for which $x y=0$ and there is only one such point $[0: 0: 1] \in \tilde{\mathcal{C}}$. We also need to rule out the points on the diagonal, namely $x=y$; in this case, $4 x^{9}+3 x^{2}=0$ which contributes at most 7 additional points with $x \neq 0$. Thus, the number of $(x, y) \in C\left(\mathbb{F}_{q}\right)$ with $x \neq y$ is at least $q-12-56 \sqrt{q}$. The claim follows since the edges are undirected.

Claim 2. Every connected component of G is a complete graph K_{n} where $n \in\{1,2,3,4,5,6\}$. If (x, y) and (x, z) are both edges of G, then $\frac{1-x^{7}}{x^{3}}=\frac{1-y^{7}}{y^{3}}$ and $\frac{1-x^{7}}{x^{3}}=\frac{1-z^{7}}{z^{3}}$. Consequently, $\frac{1-y^{7}}{y^{3}}=\frac{1-z^{7}}{z^{3}}$ and (y, z) lies on the curve \mathcal{C}, so (y, z) is an edge in G too. Thus, each connected component of G is a clique. In addition, from the equation of \mathcal{C}, the degree of each vertex $x \in G$ is at most 6 .

For each $1 \leq i \leq 6$, let m_{i} denote the number of cliques of size i in G. Counting the number of edges in G leads to the following equality.

$$
\# E(G)=\sum_{i=1}^{6} \frac{i(i-1)}{2} \cdot m_{i}
$$

Each clique of size i in G increases the number of "good" values of k by an additive factor of $i-1$ because each clique corresponds to one "bad" value of k, i.e., a value $k \in \mathbb{F}_{q}$ for which the equation $x^{7}+k x^{3}-1=0$ is solvable for some $x \in \mathbb{F}_{q}$. More precisely,

$$
\begin{aligned}
& \#\left\{k \in \mathbb{F}_{q} \mid x^{7}+k x^{3}-1 \text { has no zeros in } \mathbb{F}_{q}\right\} \\
& =q-\sum_{i=1}^{6} m_{i} \\
& =1+(q-1)-\sum_{i=1}^{6} m_{i} \\
& =1+\sum_{i=1}^{6} i \cdot m_{i}-\sum_{i=1}^{6} m_{i} \\
& =1+\sum_{i=1}^{6}(i-1) \cdot m_{i} \\
& \geq 1+\frac{1}{3} \sum_{i=1}^{6} \frac{(i-1) i}{2} \cdot m_{i} \geq 1+\frac{1}{3} \# E(G) \geq 1+\frac{1}{3}\left(\frac{q}{2}-6-28 \sqrt{q}\right)
\end{aligned}
$$

as desired.

3. Smoothness at $\mathbb{F}_{q^{2}}$-POINTS

In this section, we show that a plane-filling curve C of degree $q+3$ has the following special property: being smooth at $\mathbb{F}_{q^{-}}$-points implies being smooth at $\mathbb{F}_{q^{2}}$-points under a mild condition.

Proposition 3.1. Suppose C is a plane-filling curve of degree $q+3$ such that
(i) The curve C is smooth at all the \mathbb{F}_{q}-points.
(ii) The curve C has no \mathbb{F}_{q}-linear component.

Then C is smooth at each $\mathbb{F}_{q^{2}}$-point.
Proof. Assume, to the contrary, that C is singular at some $\mathbb{F}_{q^{2}}$-point Q. Then Q is not an $\mathbb{F}_{q^{-}}$ point due to the hypothesis (i). Let Q^{σ} denote the Galois conjugate of Q under the Frobenius automorphism. More explicitly, if $Q=[x: y: z] \in \mathbb{P}^{2}$, then $Q^{\sigma}=\left[x^{q}: y^{q}: z^{q}\right]$. Note that Q^{σ} is also contained in C (since C is defined over \mathbb{F}_{q}). Moreover, Q^{σ} is also a singular point of C.

Consider the line L joining Q and Q^{σ}, which is an \mathbb{F}_{q}-line by Galois theory. By hypothesis (ii), the line L must intersect C in exactly $q+3$ points (counted with multiplicity). However, L already contains $q+1$ distinct \mathbb{F}_{q}-points of C (because C is plane-filling), and passes through the two singular points Q and Q^{σ}, each contributing intersection multiplicity at least 2 . Thus, the total intersection multiplicity between L and C is at least $(q+1)+2+2=q+5$, a contradiction.

Remark 3.2. We can weaken the hypothesis of Proposition 3.1 by replacing the condition $\operatorname{deg}(C)=$ $q+3$ with $\operatorname{deg}(C) \leq q+4$. Indeed, the same proof works verbatim.

Next, we show that the plane-filling curves C_{k} of degree $q+3$ considered in equation (1) indeed satisfy condition (ii) when q is odd.

Proposition 3.3. The curve C_{k} defined by (1) has no \mathbb{F}_{q}-linear components when q is odd.
Proof. There are three types of \mathbb{F}_{q}-lines in \mathbb{P}^{2}.
Type I. The line L is given by $z=0$.
The curve C_{k} meets the line $\{z=0\}$ at finitely many points determined by $x^{2}\left(x^{q} y-x y^{q}\right)=0$. In particular, $\{z=0\}$ is not a component of C.

Type II. The line L is given by $x=a z$ for some $a \in \mathbb{F}_{q}$.
The curve C_{k} meets the line $\{x=a z\}$ at finitely many points determined by

$$
(a z)^{2}\left((a z)^{q} y-(a z) y^{q}\right)+y^{2}\left(y^{q} z-y z^{q}\right)+\left(z^{2}+k(a z)^{2}\right)\left(z^{q}(a z)-z(a z)^{q}\right)=0
$$

After simplifying and using $a^{q}=a$, the last term cancels and we obtain:

$$
a^{3} z^{q+2} y-a^{3} z^{3} y^{q}+y^{q+2} z-y^{3} z^{q}=0
$$

In particular, $\{x=a z\}$ is not a component of C.
Type III. The line L is given by $y=a x+b z$ for some $a, b \in \mathbb{F}_{q}$.
If $a=0$ or $b=0$, then $y=b z$ or $y=a x$, and the analysis is very similar to the previous case. We will assume that $a \neq 0$ and $b \neq 0$. We substitute $y=a x+b z$ into the equation (1) and collect terms to obtain:

$$
\begin{aligned}
& \left(b+a^{3}-k\right) x^{q+2} z+\left(2 a^{2} b\right) x^{q+1} z^{2}+\left(b^{2} a-1\right) x^{q} z^{3}+ \\
& \left(-b-a^{3}+k\right) x^{3} z^{q}+(-2 a b) x^{2} z^{q+1}+\left(-a b^{2}+1\right) x z^{q+2}=0
\end{aligned}
$$

The coefficient of $x^{q+1} z^{2}$ is $2 a^{2} b$, which is nonzero since q is odd (so $2 \neq 0$), $a \neq 0$ and $b \neq 0$. Thus, L is not a component of C_{k}.

We are now in a position to prove Theorem 1.7 on the existence of $k \in \mathbb{F}_{q}$ such that the planefilling curve C_{k} is smooth at all its $\mathbb{F}_{q^{2}}$-points.

Proof of Theorem 1.7. The result follows immediately from Proposition 1.3, Proposition 3.1, and Proposition 3.3.

4. Higher degree plane-Filling curves

We begin by establishing Theorem 1.8, which provides a necessary and sufficient condition for the plane-filling curve $C_{k, r}$ to be smooth at all the \mathbb{F}_{q}-points.
Proof of Theorem 1.8. We consider the curve $C_{k, r}$ given by the equation:

$$
\begin{equation*}
x^{r} \cdot\left(x^{q} y-x y^{q}\right)+y^{r} \cdot\left(y^{q} z-y z^{q}\right)+\left(z^{r}+k x^{r}\right) \cdot\left(z^{q} x-z x^{q}\right)=0 . \tag{3}
\end{equation*}
$$

We analyze the singular locus of $C_{k, r}$ and get the equations:

$$
\begin{gather*}
r x^{r-1} \cdot\left(x^{q} y-x y^{q}\right)+x^{r} \cdot\left(-y^{q}\right)+k r x^{r-1} \cdot\left(z^{q} x-z x^{q}\right)+\left(z^{r}+k x^{r}\right) \cdot z^{q}=0 \tag{4}\\
x^{r} \cdot x^{q}+r y^{r-1} \cdot\left(y^{q} z-y z^{q}\right)+y^{r} \cdot\left(-z^{q}\right)=0 \tag{5}\\
y^{r} \cdot y^{q}+r z^{r-1} \cdot\left(z^{q} x-z x^{q}\right)+\left(z^{r}+k x^{r}\right) \cdot\left(-x^{q}\right)=0 . \tag{6}
\end{gather*}
$$

We next analyze the possibility that we have a singular point when $x y z=0$.

If $x=0$, then equation (4) yields $z=0$, which is then employed in (6) to derive $y=0$, contradiction.

If $y=0$, then equation (5) yields $x=0$ and then equation (4) yields $z=0$, contradiction.
If $z=0$, then equation (5) yields $x=0$ and then equation (6) yields $y=0$, contradiction.
So, the only possible singular points are of the form $[x: 1: z]$.
We search for possible singular points $[x: 1: z] \in \mathbb{P}^{2}\left(\mathbb{F}_{q}\right)$. Then equations (4), (5) and (6) read:

$$
\begin{gather*}
-x^{r}+z^{r+1}+k x^{r} z=0 \tag{7}\\
x^{r+1}-z=0 \tag{8}\\
1-z^{r} x-k x^{r+1}=0 \tag{9}
\end{gather*}
$$

Substituting $z=x^{r+1}$ from equation (8) into equations (7) and (9), we obtain

$$
-x^{r}+x^{r^{2}+2 r+1}+k x^{2 r+1}=0 \text { and } 1-x^{r^{2}+r+1}-k x^{r+1}=0,
$$

that is, there exists a singular \mathbb{F}_{q}-rational point on $C_{k, r}$ if and only if there exists $x \in \mathbb{F}_{q}^{*}$ such that

$$
\begin{equation*}
x^{r^{2}+r+1}+k x^{r+1}-1=0, \tag{10}
\end{equation*}
$$

as desired.
We end the proof by mentioning that some care is needed to treat the case when the characteristic p of the field divides the degree of the curve (i.e., p divides $r+1$ in this setting). Indeed, the singular locus of any projective curve $\{f=0\}$ is defined by $\left\{f=\frac{\partial f}{\partial x}=\frac{\partial f}{\partial y}=\frac{\partial f}{\partial z}=0\right\}$. When p divides $\operatorname{deg}(f)$, it is not enough to consider the points in the locus $\left\{\frac{\partial f}{\partial x}=\frac{\partial f}{\partial y}=\frac{\partial f}{\partial z}=0\right\}$. Fortunately, in our case, the \mathbb{F}_{q}-point $[x: 1: z]$ is automatically on the curve $C_{k, r}$ because $C_{k, r}$ is plane-filling.

It may be natural to make a prediction identical to Conjecture 1.5 for higher-degree curves. However, some care is needed, as the following two examples show. We found these examples using Macaulay2 [GS].

Example 4.1. Let $r=5, q=11$, and $k=9$. The plane-filling curve $C_{9,5}$ over \mathbb{F}_{11} is smooth at all the \mathbb{F}_{11}-points because the polynomial $x^{31}+9 x^{6}-1$ is an irreducible polynomial over \mathbb{F}_{11}. However, $C_{9,5}$ is singular at two Galois-conjugate $\mathbb{F}_{11^{2}}$-points.

In the previous example, the curve $C_{9,5}$ is irreducible over \mathbb{F}_{11}. Thus, $C_{9,5}$ satisfies the two conditions of Theorem 3.1 and yet it is singular at two $\mathbb{F}_{11^{2}}$-points. Since $\operatorname{deg}\left(C_{9,5}\right)=q+6$, we see that Remark 3.2 is close to being sharp.
Example 4.2. Let $r=7, q=5$. In this case, the plane-filling curve $C_{k, 7}$ defined over \mathbb{F}_{5} is singular for each $k \in \mathbb{F}_{5}$. Indeed, the associated polynomial $x^{57}+k x^{8}-1$ has an \mathbb{F}_{5}-root for $k \in\{0,2,3,4\}$. For these values of k, the curve $C_{k, r}$ is singular at an \mathbb{F}_{5}-point. For $k=1$, the curve $C_{1,7}$ is singular at four points, namely, two pairs of Galois-conjugate $\mathbb{F}_{5^{2}}$-points.

The two examples above illustrate that Conjecture 1.5 needs to be modified for plane-filling curves of degree $q+r+1$ when r is arbitrary. We propose two related conjectures on the smoothness of the curve $C_{k, r}$ from Theorem 1.8. Recall that $C_{k, r} \subset \mathbb{P}^{2}$ is defined by

$$
x^{r}\left(x^{q} y-x y^{q}\right)+y^{r}\left(y^{q} z-y z^{q}\right)+\left(z^{r}+k x^{r}\right)\left(z^{q} x-z x^{q}\right)=0
$$

where $r \geq 2$ is a positive integer and $k \in \mathbb{F}_{q}$.

Conjecture 4.3. Let $r \geq 2$. There exists an integer $m:=m(r)$ with the following property. For all finite fields \mathbb{F}_{q} with cardinality $q>m$ and characteristic not dividing r, there exists some $k \in \mathbb{F}_{q}$ such that the curve $C_{k, r}$ is smooth.

Using Macaulay 2 [GS], we enumerated through values of r in the range $[2,17]$ and q in the range $[2,100]$ with $\operatorname{gcd}(r, q)=1$. We found only the following pairs (r, q) for which $C_{k, r}$ is singular for every $k \in \mathbb{F}_{q}:(r, q)=(7,5),(13,3),(16,9)$, and $(17,7)$.
Conjecture 4.4. Let $r \geq 2$. There exists an integer $s:=s(r)$ with the following property. For all finite fields \mathbb{F}_{q} with characteristic not dividing r, and for all $k \in \mathbb{F}_{q}$, if $C_{k, r}$ is smooth at all of its $\mathbb{F}_{q^{s}}$-points, then $C_{k, r}$ is smooth.

As a motivation for Conjecture 4.4, we mention the following general fact about pencils of plane curves. The family of plane curves C_{k} forms a pencil of plane curves since the parameter $k \in \mathbb{F}_{q}$ appears linearly in the defining equation. If \mathcal{L} is a pencil of plane curves in \mathbb{P}^{2} parametrized by \mathbb{A}^{1}, then \mathbb{F}_{q}-members of \mathcal{L} are defined by $f(x, y, z)+k g(x, y, z)=0$ where $k \in \mathbb{F}_{q}$ is arbitrary. We will use X_{k} to denote this plane curve in the following proposition.
Proposition 4.5. Let \mathcal{L} be a pencil of plane curves $\left\{X_{k}\right\}_{k \in \mathbb{F}_{q}}$ of degree d defined over a finite field \mathbb{F}_{q}. Suppose that for every $s \geq 1$, there exists some $k \in \mathbb{F}_{q}$ such that X_{k} is smooth at all of its $\mathbb{F}_{q^{s}}$-points. Then there exists some $\ell \in \mathbb{F}_{q}$ such that X_{ℓ} is smooth.
Proof. Assume, to the contrary, that X_{k} is singular for each $k \in \mathbb{F}_{q}$. For each $k \in \mathbb{F}_{q}$, let $n_{k} \in \mathbb{N}$ such that the curve X_{k} is singular at some $\mathbb{F}_{q^{n} k}$-point. Let $N:=\prod_{k \in \mathbb{F}_{q}} n_{k}$. By construction, no X_{k} is smooth at all of its $\mathbb{F}_{q^{N}}$-points, contradicting the hypothesis.

Proposition 4.5 asserts that to find a smooth member of any pencil \mathcal{L} defined over \mathbb{F}_{q}, it is sufficient to find a member which is smooth at all points of an (arbitrary) finite degree. Conjecture 4.4 strengthens the conclusion by predicting that for a pencil of plane-filling curves, one finds a smooth member by only checking smoothness at all points of fixed finite degree.

Acknowledgements

The authors are grateful to the anonymous referee for the valuable comments.

REFERENCES

[AG23] Shamil Asgarli and Dragos Ghioca, Tangent-filling plane curves over finite fields, Bull. Aust. Math. Soc. (2023), published online on May 2, 2023, available at https://arxiv.org/abs/2302.13420.
[AGY23] Shamil Asgarli, Dragos Ghioca, and Chi Hoi Yip, Plane curves giving rise to blocking sets over finite fields, Des. Codes Cryptogr. 91 (2023), no. 11, 3643-3669.
[AP96] Yves Aubry and Marc Perret, A Weil theorem for singular curves, Arithmetic, geometry and coding theory (Luminy, 1993), 1996, pp. 1-7.
[DC18] Gregory Duran Cunha, Curves containing all points of a finite projective Galois plane, J. Pure Appl. Algebra 222 (2018), no. 10, 2964-2974.
[Gab01] O. Gabber, On space filling curves and Albanese varieties, Geom. Funct. Anal. 11 (2001), no. 6, 1192-1200.
[Hom20] Masaaki Homma, Fragments of plane filling curves of degree $q+2$ over the finite field of q elements, and of affine-plane filling curves of degree $q+1$, Linear Algebra Appl. 589 (2020), 9-27.
[HK13] Masaaki Homma and Seon Jeong Kim, Nonsingular plane filling curves of minimum degree over a finite field and their automorphism groups: supplements to a work of Tallini, Linear Algebra Appl. 438 (2013), no. 3, 969-985.
[HK23] , Filling curves for $\mathbb{P}^{1} \times \mathbb{P}^{1}$, Comm. Algebra 51 (2023), no. 6, 2680-2687.
[Kat99] Nicholas M. Katz, Space filling curves over finite fields, Math. Res. Lett. 6 (1999), no. 5-6, 613-624.
[GS] Daniel R. Grayson and Michael E. Stillman, Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/.
[Pea90] Giuseppe Peano, Sur une courbe, qui remplit toute une aire plane, Math. Ann. 36 (1890), no. 1, 157-160.
[Poo04] Bjorn Poonen, Bertini theorems over finite fields, Ann. of Math. (2) $\mathbf{1 6 0}$ (2004), no. 3, 1099-1127.
[Ta161a] Giuseppe Tallini, Le ipersuperficie irriducibili d'ordine minimo che invadono uno spazio di Galois, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 30 (1961), 706-712.
[Tal61b]_, Sulle ipersuperficie irriducibili d'ordine minimo che contengono tutti i punti di uno spazio di Galois $S_{r, q}$, Rend. Mat. e Appl. (5) 20 (1961), 431-479.

Department of Mathematics and Computer Science, Santa Clara University, 500 El Camino REAL, USA 95053

Email address: sasgarli@scu.edu
Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Canada V6T 1Z2

Email address: dghioca@math.ubc.ca

