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CONNECTIVITY DEGREES OF COMPLEMENTS OF CLOSED SETS IN CONTINUA

MAURICIO CHACÓN-TIRADO AND CÉSAR PICENO

ABSTRACT. In the literature, various types of points and meager sets whose complements are connected
have been studied, such as colocally connected points, non-weak cut points/sets, non-block points/sets,
shore points/sets, etc. We extend that study, in the following way: considering a continuum X and a
natural number n, we investigate sets A ∈ 2X meeting the criterion that X −A has at most n components,
and we introduce degrees of connectivity of the complement of A. When n = 1 and A is meager or a
singleton, these new definitions are equivalent to the known definitions of non-cut points/sets.

1. Introduction

One of the main topics of interest in topology is being able to determine whether a space is connected
or not, and, when a space X is connected, it is interesting to determine how “strongly connected” X is.
In the case of continua, various types of points and sets whose complements are connected have been
studied, and some “degree of connectivity” of these complements has also been investigated. One of
the most relevant works in this regard was published by R.L. Moore [8], where the existence of non-cut
points in all continua is demonstrated. Another important result concerning the degree of connectivity
of the complement of a point in a continuum is the one obtained by R. H. Bing [1], which states that
for any point of a nondegenerate metrizable continuum, there is a proper continuumwise connected
dense subset containing that point. Some of the articles that can be consulted on the topic are [3], [4],
[5], [6], [9], [12] and [13].

If the space is not connected, we are also interested in knowing if it is composed of a finite number
of components and how “strongly disconnected” is the space. In a continuum, it is of particular
interest to study sets that cut the space, and if they do (or not), we are also interested in knowing the
degree of connectivity of their complements. For example, in Section 5, we show that in a locally
connected continuum X , if A ∈ 2X and X −A has a finite number of components, then each component
is continuumwise connected.

Besides this introduction, this paper contains 4 more sections. In Section 2, we provide the definitions
that we will use throughout the paper. In particular, we define degrees of connectivity, which we call
n-Q1 to n-Q7, and n-Qo, being n-Q1 the strongest one and n-Q7 the weakest one. Something we wish
to emphasize is the uniformity of the definitions for classifying the degree of connectivity of a space,
which makes some results straightforward.

In Section 3, for each degree of connectivity we consider the hyperspace of closed sets whose
complements have that degree of connectivity, we explore the relationships between those hyperspaces,
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CONNECTIVITY DEGREES OF COMPLEMENTS OF CLOSED SETS IN CONTINUA 2

whose elements we call non-n-cut sets. We provide conditions to ensure when a complement that
is n-Q7 implies also that is n-Q1. We offer tools to discover new non-n-cut sets from others and
ultimately examine the Borel classes of some hyperspaces of non-n-cut sets.

In Section 4, we delve into investigating the types of functions that preserve non-n-cut sets under
their image or preimage.

Finally, in Section 5, we investigate the relationships between a continuum X and its hyperspaces of
non-n-cut sets. Among other interesting results, we provide a characterization of the arc. We discover
that for irreducible continua, certain hyperspaces of non-n-cut sets coincide. Additionally, we prove
that if X is aposyndetic with respect to A and the complement of A has at most n components, then for
every neighborhood U containing A, there exists a neighborhood V ⊂U of A such that the complement
of V has at most n components.

2. Definitions and notation

In this paper all spaces are metric. The set N represents the positive integers. Given a subset A of a
space X , the closure and the interior of A are denoted by clX(A) and intX(A), respectively, and we omit
the subindex when we feel there is no risk of confusion regarding our space. A map is a continuous
function. A continuum is a compact connected space with more than one point.

A continuum X is aposyndetic at p with respect to A, where p ∈ X and A ⊂ X , provided that there is
a continuum B ⊂ X −A such that p ∈ intX(B). A continuum X is aposyndetic with respect to A if X
is aposyndetic at p with respect to A for all p ∈ X −A. A continuum X is aposyndetic at p provided
that X is aposyndetic at p with respect to each singleton {q} ⊂ X −{p}. A continuum X is mutually
aposyndetic if for each two distinct points p,q ∈ X , there exist two subcontinua (definition below) A
and B of X such that p ∈ int(A), q ∈ int(B), and A∩B = /0.

A compact metric space X is indecomposable provided that each subcontinuum of X has empty
interior. A continuum X is said to be irreducible about A ⊂ X provided that no proper subcontinuum
of X contains A. A continuum X is said to be irreducible provided that X is irreducible about {p,q} for
some p,q ∈ X , in which case we say X is irreducible between p and q. A space Y is continuumwise
connected if any pair of points is contained in a continuum X ⊂ Y . Let S 1 = {x ∈ R2 : ||x||= 1}.

Given a non-empty space X and n ∈ N, we consider the following hyperspaces of X :

2X = {A ⊂ X : A is non-empty and compact},

M(X) = {A ∈ 2X : A has empty interior},

Cn(X) = {A ∈ 2X : A has at most n components},

D0(X) = {A ∈ 2X : A has dimension 0},
and

Fn(X) = {A ∈ 2X : A has at most n elements}.
These hyperspaces are endowed with the Hausdorff metric. We write C(X) instead of C1(X), the
elements of C(X) are called subcontinua of X .

Clearly Fn(X)⊂Cn(X)⊂ 2X and F1(X) is homeomorphic to X .
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CONNECTIVITY DEGREES OF COMPLEMENTS OF CLOSED SETS IN CONTINUA 3

For a finite collection X1, . . . ,Xm of subsets of X , we define ⟨X1, . . . ,Xm⟩ as the set {A ∈ 2X : A ⊂
X1 ∪ . . .∪Xm and A∩Xi ̸= /0 for each i ∈ {1, . . . ,m}}.

It is known that if X1, . . . ,Xm are closed subsets of X , then
⟨X1, . . . ,Xm⟩ is closed in 2X and that the collection of all subsets of the form ⟨U1, . . . ,Um⟩, where
U1, . . . ,Um are open subsets of X , is a base for the topology of 2X (see [7]).

The objective of the following definition is to introduce the degree of connectivity of a space.

Definition 2.1. Given a non-empty space X and n ∈ N, we say that X is:

(1) n-Q1 if there exists B ∈ Fn(X), such that for each x ∈ X, there exists a continuum D ⊂ X such
that x ∈ int(D) and B∩D ̸= /0;

(2) n-Q2 if there exists B ∈ Fn(X) such that, for each x ∈ X, there exists a continuum D ⊂ X such
that x ∈ D and B∩D ̸= /0;

(3) n-Q3 if for every x ∈ X, there exists B ∈ Fn(X) with x ∈ B, such that for every non-empty open
set U of X, there exists a continuum D ⊂ X such that B∩D ̸= /0 ̸= D∩U;

(4) n-Qo if there exists B ∈ Fn(X) such that for every non-empty open set U of X, there exists a
continuum D ⊂ X such that B∩ int(D) ̸= /0 ̸= int(D)∩U;

(5) n-Q4 if there exists B ∈ Fn(X), such that for every non-empty open set U of X, there exists a
continuum D ⊂ X such that B∩D ̸= /0 ̸= D∩U;

(6) n-Q5 if for each finite family U of non-empty open sets contained in X, there exists D ∈Cn(X)
such that D∩U ̸= /0, for every U ∈ U ;

(7) n-Q6 if for each collection of n + 1 non-empty open sets U1, . . . ,Un+1 of X, there exists
D ∈Cn(X) such that D∩Ui ̸= /0 for every i ∈ {1 . . . ,n+1}.

(8) n-Q7 if X has at most n components.

Note 2.2. Clearly, for each n ∈ N and m ∈ {o}∪{1, . . . ,6}, being n-Qm implies being (n+1)-Qm,
and being n-Q(m+ 1), if m ∈ {1, . . . ,5}. Also, being n-Q1 implies being n-Qo, being n-Qo implies
being n-Q4, being n-Q4 implies being (n+1)-Q3, and being n-Q6 implies being n-Q7. In the following
figure, what has been stated here is represented.

(n+1)-Q1 (n+1)-Q2 (n+1)-Q3 (n+1)-Q4 (n+1)-Q5 (n+1)-Q6 (n+1)-Q7

n-Q1 n-Q2 n-Q3 n-Q4 n-Q5 n-Q6 n-Q7

n-Qo (n+1)-Qo

FIGURE 1. Relationships between degrees of connectivity.
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Notice that in Figure 1, it is indicated that there is no relationship between n-Qo and n-Q3. Coun-
terexamples to this fact are Example 3.2 for n-Qo ⇏ n-Q3 and a punctured dyadic solenoid for
n-Q3 ⇏ n-Qo. On the other hand, we were unable to prove or deny n-Q2 ⇒ n-Qo. A question related
to this, is Question 3.3.

The following definitions are provided to classify sets based on the degree of connectivity of their
complements. Most of them are generalizations of those presented in [3] and [5].

Definition 2.3. Given a non-degenerate compact metric space X and n ∈ N, an element A ∈ 2X is said
to be:

(1) set of colocal connectedness of degree n of X provided that A = X or X −A is n-Q1;
(2) not a weak cut set of degree n of X provided that A = X or X −A is n-Q2;
(3) nonblock set of degree n of X if A = X or X −A is n-Q3;
(4) a set that does not block opens of degree n of X provided that A = X or X −A is n-Qo;
(5) weak nonblock set of degree n of X provided that A = X or X −A is n-Q4;
(6) a shore set of degree n of X provided that A = X or X −A is n-Q5;
(7) not a strong center set of degree n of X provided that A = X or X −A is n-Q6.

We consider the following subspaces of 2X , these are called hyperspaces of non-cut sets of degree n
of X :

I. CCn(X) = {A ∈ 2X : A is a set of colocal connectedness of degree n of X};
II. NWCn(X) = {A ∈ 2X : A is not a weak cut set of degree n of X};

III. NBn(X) = {A ∈ 2X : A is a nonblock set of degree n of X};
IV. NBOn(X) = {A ∈ 2X : A does not block opens of degree n of X};
V. NB∗

n(X) = {A ∈ 2X : A is a weak nonblock set of degree n of X};
VI. Sn(X) = {A ∈ 2X : A is a shore set of degree n of X};

VII. NSCn(X) = {A ∈ 2X : A is not a strong center set of degree n of X};
VIII. NCn(X) = {A ∈ 2X : X −A has at most n components}.

Note 2.4. For a continuum X, according to our definitions and the definitions P1, P2, P3, P4, P5 given
in [3], p is a P1 point if and only if X −{p} is 1-Q1; p is a P2 point if and only if X −{p} is 1-Q2; p
is a P3 point if and only if X −{p} is 1-Q4; p is a P4 point if and only if X −{p} is 1-Q5, and p is a
P5 point if and only if X −{p} is 1-Q6.

Note 2.5. The sets NWC(X), NB(F1(X)), NB∗(F1(X)), S(X), NC(X) defined in [5], coincide with
the sets NWC1(X)∩M(X), NB1(X)∩M(X), NB∗

1(X)∩M(X), S1(X)∩M(X) and NC1(X)∩M(X),
respectively.

3. General properties of non-n-cut sets

This section presents several key results in the context of hyperspaces of non-n-cut sets of continua.
These results establish relationships between different families of non-n-cut sets, shedding light on
their structural properties and interconnections.

The following theorem is immediate from Note 2.2.

Theorem 3.1. Given a continuum X and n ∈ N, the following conditions hold:
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(1) If Hn(X) represents a hyperspace of non-n-cut sets, then Hn(X)⊂ Hn+1(X);
(2) CCn(X)⊂ NWCn(X)⊂ NBn(X)⊂ NB∗

n(X)⊂ Sn(X)⊂ NSCn(X)⊂ NCn(X);
(3) CCn(X)⊂ NBOn(X)⊂ NB∗

n(X); and
(4) NB∗

n(X)⊂ NBn+1(X).

The following example shows that the inclusion NBO1(X)⊂ NB1(X) is false in general.

Example 3.2. The harmonic fan is the set ([0,1]×{0})∪ (∪{(x, x
n) : x ∈ [0,1],n ∈ N}), considered

as a subspace of R2. Let X be the harmonic fan and let A = {(1
2 ,0)}. Then, A ∈ NBO1(X) and

A /∈ NB1(X).

From Example 3.2 and 3 from Theorem 3.1, we know that there are continua X such that NWC1(X) ̸=
NBO1(X). What we do not know is the following:

Question 3.3. Does there exist a continuum X such that NWC1(X) ̸⊂ NBO1(X)?

Note 3.4. The examples (P2 \P1), (P4 \P3), (P5 \P4) and (P6 \P5) presented in [3] satisfy that⋃
∞
n=1CCn(X) ⊊ NWC1(X),

⋃
∞
n=1 NB∗

n(X) ⊊ S1(X),
⋃

∞
n=1 Sn(X) ⊊ NSC1(X) and

⋃
∞
n=1 NSCn(X) ⊊

NC1(X) respectively. While the examples a) and b) of Remark 3.3 of [5] satisfy that ∪∞
n=1NWCn(X)⊊

NB1(X) and NB1(X) ⊊ NB∗
1(X) respectively. Additionally, by Example 3.2 and Theorem 3.1.3, we

have that CC1(X)⊂ NBO1(X) can also be proper. Finally, in the case of the dyadic solenoid X, we
have that NBO1(X)⊂ NB∗

1(X) is also a proper inclusion.

Definition 3.5. Let X be a continuum and A ∈ 2X . We say that A is colocally connected of degree
closed if A = X or there exists a set B ∈ 2X satisfying the following conditions: B∩A = /0 and for every
y ∈ X −A, there exists a continuum D ⊂ X −A such that y ∈ int(D) and D∩B ̸= /0.

We denote the set of all subsets of X that are colocally connected of degree closed by CC2X .

Theorem 3.6. For every continuum X, CC2X =
⋃

∞
n=1CCn(X).

Proof. The contention
⋃

∞
n=1CCn(X)⊂CC2X is clear. For the converse contention, let A ∈CC2X and

B be a closed set satisfying the conditions of Definition 3.5. Then, for each y ∈ X −A, there exists a
continuum Dy ⊂ X −A such that y ∈ int(Dy) and Dy ∩B ̸= /0. Hence, D = {int(Dy) : y ∈ X −A} is an
open cover of B. Given that B ∈ 2X , there exists finite subcover {int(D1), . . . , int(Dn)} ⊂ D of B. For
each i ≤ n, choose xi ∈ Di ∩B. Let Bn = {x1, . . . ,xn}. Observe that for every y ∈ X −A, Dy ⊂ X −A
is such that y ∈ int(Dy) and Dy ∩B ̸= /0. Hence, Dy ∩Di ̸= /0 for some i ≤ n. Therefore, D = Dy ∪Di
is a continuum such that D ⊂ X −A, y ∈ int(D) and D∩Bn ̸= /0. Hence, A ∈CCn(X). In conclusion,
CC2X ⊂

⋃
∞
n=1CCn(X). □

Lemma 3.7. Let X be a continuum and let A ∈CCn(X), for some n ∈ N. If X −A is connected, then
A ∈CC1(X).

Proof. If A = X , we are done. Assume A ̸= X . Let B ∈ Fn(X) as in Definition 2.1.1 for X −A. For
each b ∈ B, let Xb = {y ∈ X −A : there exists a continuum D ⊂ X −A such that b ∈ D and y ∈ int(D)}.
Notice that each Xb is open and {Xb : b ∈ B} is a cover of X −A. Assume b,c ∈ B satisfy Xb ∩Xc ̸= /0,
and let y ∈ Xb ∩Xc and z ∈ Xc, thus there exist D,E,F subcontinua of X −A such that y ∈ int(D),b ∈
D,y ∈ int(E),c ∈ E, and z ∈ int(F),c ∈ F , thus D∪E ∪F is a subcontinuum of X −A containing z in
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CONNECTIVITY DEGREES OF COMPLEMENTS OF CLOSED SETS IN CONTINUA 6

its interior and containing b, thus z ∈ Xb, therefore Xc ⊂ Xb, and analogously Xb ⊂ Xc. In conclusion
{Xb : b ∈ B} is a partition of X −A, since X −A is connected, we have that Xb = X −A for some b ∈ B.
Thus the set {b} satisfies Definition 2.3.1 to show that A ∈CC1(X). □

Examples 3.2 and 3.9 illustrate that we cannot replace the sets CCn(X) and CC1(X) in Lemma 3.7
with NWCn(X) and NWC1(X), NBn(X) and NB1(X), or NBOn(X) and NBO1(X), respectively.

Theorem 3.8. Let Hn(X) represents a hyperspace of non-cut sets of degree n of a continuum X. If
CCn(X) = Hn(X) for some n > 1, then CCm(X) = Hm(X) for each m < n.

Proof. Let m < n. By Theorem 3.1, CCm(X) ⊂ Hm(X) ⊂ Hn(X) = CCn(X). Let A ∈ Hm(X), by
Theorem 3.1, A ∈ NCm(X). Let U1 . . .Uk be the components of X −A; given that X −Ui ∈ NC1(X) for
each i ≤ k, X −Ui ∈CC1(X) (Lemma 3.7). Hence, for each i ≤ k, there exists xi ∈Ui such that for each
y ∈Ui, there exists a continuum D ⊂Ui such that y ∈ int(D) and xi ∈ D. Therefore, for B = {x1, . . . ,xk}
and each y ∈ X −A, there exists a continuum D such that y ∈ int(D), D∩A = /0 and D∩B ̸= /0. Given
that k ≤ m, A ∈CCm(X). We conclude that Hm(X) =CCm(X). □

The following example shows that the converse of Theorem 3.8 is not true.

Example 3.9. For the continuum X = {(x,sin(1
x )) : x ∈ [−1,0)∪ (0,1]}∪ ({0}× [−1,1]), we have

CC1(X) = NWC1(X) = NB1(X) = NB∗
1(X) = S1(X) = NSC1(X). However CCn(X) ̸= NWCn(X) and

CCn(X) ̸= NBn(X), for each n ≥ 3, and CCn(X) ̸= NB∗
n(X), CCn(X) ̸= Sn(X), CCn(X) ̸= NSCn(X) for

each n ≥ 2.

Given the previous results, it is natural to ask the following.

Question 3.10. For which spaces X and for which hyperspaces of non-cut sets of degree 1 H1(X), the
following implication holds: if CC1(X) = H1(X), then CCn(X) = Hn(X) for every n ∈ N?

Partial answers to Question 3.10 are given in Theorem 3.14 and Corollary 5.2.

Theorem 3.11. Let X be a continuum and A ∈ 2X . If A ∈CCn(X), then for each component K of X −A,
we have A ∈CC1(A∪K).

Proof. If A = X , we are done. Assume A ̸= X . Let A ∈CCn(X), notice A ∈ NCn(X). Let B ∈ Fn(X)
as in Definition 2.1.1 for X −A and let K be a component of X −A. Let y ∈ K, thus there exists a
continuum D ⊂ X −A such that B∩D ̸= /0, y ∈ int(D). Since K is a component of X −A and y ∈ K,
then D ⊂ K, therefore B∩K ̸= /0. Let B′ = B∩K, thus B′ ∈ Fn(X) satisfies Definition 2.1.1 for K to
show that A ∈CCn(A∪K); by Lemma 3.7, A ∈CC1(A∪K).

□

Theorem 3.12. Let Hn(X) represents a hyperspace of non-cut sets of degree n of a continuum X. If⋃
∞
n=1CCn(X) =

⋃
∞
n=1 Hn(X), then CC1(X) = H1(X).

Proof. Let A ∈ H1(X). Therefore, A ∈ NC1(X) and A ∈CCm(X) for some m ∈ N. Hence, Theorem
3.11 implies A ∈CC1(X). □

Theorem 3.13. Let Hn(X) represents a hyperspace of non-cut sets of degree n of a continuum X.
Let A ∈ 2X be such that X −A has exactly n components. Then, A ∈ Hn(X) if and only if for each
component K of X −A, A ∈ H1(A∪K).
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CONNECTIVITY DEGREES OF COMPLEMENTS OF CLOSED SETS IN CONTINUA 7

Proof. Clearly, A ∈ NCn(X) and for each component K of X −A, A ∈ NC1(A∪K).
Let K be a component of X −A.
Assume A ∈CCn(X),NWCn(X),NB∗

n(X) or NBOn(X). We prove that A ∈CC1(A∪K),NWC1(A∪
K),NB∗

1(A∪K), or NBO1(A∪K), respectively. Let B ∈ Fn(X −A) be a set that satisfies the respective
definitions for X −A. Notice that B must intersect each component of X −A, and the intersection of B
with each component consists of exactly one point. Thus K ∩B consists of only one point, and K ∩B
satisfies the respective definitions for A to assert that A ∈CC1(A∪K),NWC1(A∪K),NB∗

1(A∪K) or
NBO1(A∪K), respectively.

Assume A ∈ NBn(X). We prove that A ∈ NB1(A∪K). For each x ∈ K, we can find Bx ∈ Fn(X −A)
that satisfies the Definition 2.1.3 for X −A and x ∈ Bx. Notice that Bx must intersect each component of
X −A, and the intersection of Bx with each component consists of exactly one point. Thus Bx∩K = {x}
is the set that asserts that A ∈ NB1(A∪K).

Assume A ∈ Sn(X). We prove that A ∈ S1(A ∪K). Let U be a finite family of open sets of
(A∪K)−A = K. Let V = U ∪{R : R is a component of X −A and R ̸= K}. Given that V is a finite
family of open sets contained in X −A, there exists D ∈Cn(X −A) such that D intersects each element
of the family V . Since D intersects each component of X −A, D has exactly n components. Thus
D∩K ∈C1(K) and D∩K intersects each element of U . Therefore, A ∈ S1(A∪K).

Assume A ∈ NSCn(X). Let U,V be two open sets such that U ∪V ⊂ K. Let V = {U,V}∪{R : R is
a component of X −A and R ̸= K}. Given that V is a family of n+1 open sets contained in X −A,
there exists D ∈Cn(X −A) such that D intersects each element of the family V . Since D intersects
each component of X −A, D has exactly n components. Thus D∩K ∈C1(K) and D∩K intersects U
and V . Therefore, A ∈ NSC1(A∪K).

Let K1, . . .Kn be the components of X −A. Assume that for each Ki, A ∈CC1(A∪Ki), so Ki is a 1-Q1
space. For each i ∈ {1, . . . ,n}, choose xi ∈ Ki such that {xi} witnesses that Ki is a 1-Q1 space. Then,
B = {x1, . . .xn} witnesses

⋃n
i=1 Ki is a n-Q1 space, so A ∈CCn(X). Analogously, if A ∈ NWC1(A∪Ki)

for each i ∈ {1, . . .n}, or A ∈ NB∗
1(A∪Ki) for each i ∈ {1, . . .n}, or A ∈ NBO1(A∪Ki) for each

i ∈ {1, . . .n}, then A ∈ NWCn(X), or A ∈ NB∗
n(X), or A ∈ NBOn(X), respectively.

Assume that for each i ∈ {1, . . . ,n}, A ∈ NB1(A∪Ki), so Ki is a 1-Q3 space. For each i ∈ {1, . . . ,n},
choose xi ∈ Ki. For x ∈ X −A, let j be such that x ∈ K j. Notice that B = {x}∪ ({x1, . . .xn}−{x j})
witnesses

⋃n
i=1 Ki is a n-Q3 space, so A ∈ NBn(X).

Assume that for each i ∈ {1, . . . ,n}, A ∈ S1(A∪Ki), so Ki is a 1-Q5 space. Let U be a finite family
of non-empty open sets contained in

⋃n
i=1 Ki. For each i ∈ {1, . . . ,n}, let Ui = {Ki}∪{U ∩Ki : U ∈

U and U ∩Ki ̸= /0}. Since Ki is a 1-Q5 space, there exists Di ∈C(Ki) such that Di ∩U ̸= /0 for every
U ∈ Ui. Hence, D = ∪n

i=1Di ∈Cn(
⋃n

i=1 Ki) satisfies D∩U ̸= /0 for each U ∈ U . Therefore
⋃n

i=1 Ki is
a n-Q5 space, so A ∈ Sn(X).

Assume that for each i∈{1, . . . ,n}, A∈NSC1(A∪Ki), so Ki is a 1-Q6 space. Let U = {U1, . . . ,Un+1}
be a family of n+ 1 non-empty open sets contained in

⋃n
i=1 Ki. Let K be a component of X −A

such that K ∩Ui ̸= /0 ̸= K ∩U j for some i ̸= j. Since K is a 1-Q6 space, there exists DK ∈ C(X)
such that DK ∩Ui ̸= /0 ̸= /0 ̸= DK ∩U j. Now, for each m ∈ {1, . . . ,n+ 1}, choose xm ∈ Um. Hence,
D = DK ∪{xm : m ∈ {1, . . . ,n+1}−{i, j}} ∈Cn(X) satisfies D∩U ̸= /0 for each U ∈ U . Therefore⋃n

i=1 Ki is a n-Q6 space, so A ∈ NSCn(X). □
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CONNECTIVITY DEGREES OF COMPLEMENTS OF CLOSED SETS IN CONTINUA 8

In Example 3.9, if A = {(−1,0)}, the set X −A has 1 component. However, although A belongs to
NWC3(X),NB3(X),NB∗

2(X),S2(X) and NSC2(X), it does not belong to NWC1(X), NB1(X), NB∗
1(X),

S1(X), or NSC1(X). This implies that the result in Theorem 3.13 is false if we remove the condition
that X −A has exactly n components.

Theorem 3.14. If H1(X) is a hyperspace of non-cut sets such that H1(X) = NC1(X), then Hn(X) =
NCn(X) for each n ∈ N.

Proof. By Theorem 3.1, Hn(X)⊂ NCn(X). Let A ∈ NCn(X). If A = X , then A ∈ Hn(X). Suppose that
X −A has exactly m components, for some m ∈ {1, . . . ,n}. Observe that for each component K of
X −A, X −K ∈ NC1(X) = H1(X). Since X − (X −K) = (A∪K)−A, we have A ∈ H1(A∪K). By
Theorem 3.13, A ∈ Hm(X)⊂ Hn(X). Therefore Hn(X) = NCn(X). □

By Theorems 3.6, 3.12 and 3.14, we obtain the following result.

Corollary 3.15. The following conditions are equivalent:
• CC1(X) = NC1(X);
• CCn(X) = NCn(X) for some n ∈ N;
• CCn(X) = NCn(X) for each n ∈ N;
•

⋃
∞
n=1CCn(X) =

⋃
∞
n=1 NCn(X);

• CC2X =
⋃

∞
n=1 NCn(X).

Recognizing or obtaining new non-cut sets of degree n from those already known is of great interest;
Theorems 3.16 and 3.20 address this.

Theorem 3.16. Let X be a continuum and n∈N. Let A∈ 2X and let C ∈ 2X be such that int(A)⊂C ⊂A.
(1) If A ∈ NBOn(X), then C ∈ NBOn(X);
(2) if A ∈ NB∗

n(X), then C ∈ NB∗
n(X);

(3) if A ∈ Sn(X), then C ∈ Sn(X);
(4) if A ∈ NSCn(X), then C ∈ NSCn(X);
(5) if A ∈ NCn(X), then C ∈ NCn(X); and

Proof. (1) Let A∈NBOn(X) and let B∈Fn(X −A) witnessing that X −A if a n-Qo space. Let V be
a non-empty open set of X −C. Given that int(A)⊂C ⊂ A, VA =V −A is a non-empty open set
of X −A. Therefore, there exists a continuum D⊂X −A such that int(D)∩VA ̸= /0 ̸= int(D)∩B,
which implies that int(D)∩V ̸= /0 ̸= int(D)∩B. Hence, B witnesses that X −C is a n-Qo space,
so C ∈ NBOn(X).

(2) Let A ∈ NB∗
n(X), and let B ∈ Fn(X −A) witnessing that X −A is a n-Q4 space. Given that

int(A)⊂C ⊂ A, for every non-empty open set V of X −C, VA =V −A ̸= /0 is an open set of
X −A. Therefore, there exists a continuum D ⊂ X −A ⊂ X −C such that D∩VA ̸= /0 ̸= D∩B,
which implies that D∩V ̸= /0. Hence, B witnesses that X −C is a n-Q4 space, so C ∈ NB∗

n(X).
(3) Let A ∈ Sn(X) and let U be a finite family of non-empty open sets of X −C. Given that

int(A)⊂C ⊂ A, the family V = {U −A : U ∈ U } is a finite family of non-empty open sets
of X −A. Therefore, there exists D ∈Cn(X −A) such that D∩V ̸= /0 for each V ∈ V , which
implies that D∩U ̸= /0 for each U ∈ U . Hence, X −C is a n-Q5 space, so C ∈ Sn(X).
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CONNECTIVITY DEGREES OF COMPLEMENTS OF CLOSED SETS IN CONTINUA 9

(4) Let A ∈ NSCn(X) and let U1, . . . ,Un+1 be a collection of n+1 non-empty open sets of X −C.
For each i ∈ {1, . . . ,n+ 1}, let Vi = Ui −A. We have V1, . . . ,Vn+1 is a collection of n+ 1
non-empty open sets of X −A. Therefore, there exists D ∈Cn(X −A) such that D∩Vi ̸= /0 for
each i ∈ {1, . . . ,n+1}. Hence, X −C is a n-Q6 space, so C ∈ NSCn(X).

(5) Notice that X −A ⊂ X −C ⊂ X − int(A) = cl(X −A). Hence, X −C has at most the same
number of components as X −A.

□

Example 3.17 shows that Theorem 3.16 cannot be extended to the sets CCn(X), NWCn(X), and
NBn(X).

Example 3.17. Let X be the circle of pseudo-arcs and let f : X → S 1 be the quotient map from X
onto the circle described in [2]. Then f is an onto, monotone and open map. Hence, for every x ∈ S 1,
f−1(x) ∈ CC1(X) (see Proposition 4.5 and Proposition 4.7), and no proper subset of f−1(x) is an
element of CC1(X),NWC1(X) neither NB1(X).

The following lemma gives us a characterization of the elements in NBOn(X).

Proposition 3.18. Let X be a continuum and A ∈ 2X . Then, A ∈ NBOn(X) if and only if for each
non-empty finite family U of non-empty open sets contained in X −A, there exists D ∈Cn(X −A) such
that int(D)∩U ̸= /0 for all U ∈ U .

Proof. Let A ∈ NBOn(X) and let B ∈ Fn(X −A) witnessing that X −A is a n-Qo space. Let U =
{U1, . . .Um} be a non-empty finite family of non-empty open sets contained in X −A. Then, for
each i ∈ {1, . . . ,m}, there exists Di ∈C(X −A), such that int(Di)∩Ui ̸= /0 ̸= int(Di)∩B. Therefore,
D = ∪m

i=1Di ∈Cn(X −A) satisfies int(D)∩U ̸= /0 for each U ∈ U .
Now suppose that A ∈ 2X satisfies that for each non-empty finite family U of non-empty open sets

of X −A, there exists D ∈ Cn(X −A) such that int(D)∩U ̸= /0 for each U ∈ U . If A = X , we have
A ∈ NBOn(X).

Assume A ̸= X . For D ∈Cn(X −A), define α(D) =
⋃
{K ∈C(X −A) : K ∩D ̸= /0}.

Claim: There exists D ∈Cn(X −A) such that α(D) is dense in X −A and each component of D has
non-empty interior.

Proof of Claim:
Let F = {{K1,K2, . . . ,Km} : m ∈ N, for each i, j ∈ {1, . . . ,m}, Ki ∈C(X −A), int(Ki) ̸= /0, and if

i ̸= j,α(Ki)∩α(K j) = /0}.
By the properties of A, if {K1, . . . ,Km} ∈ F , then m ≤ n. Let M be the maximum number of

elements of the members of F and let {K1, . . . ,KM} ∈ F .
Notice that

⋃M
i=1 α(Ki) is dense in X −A. Let D =

⋃M
i=1 Ki, notice that D ∈Cn(X −A) and α(D) is

dense in X −A. The claim is proved.
Now, take D as in the claim and let B ∈ Fn(X) containing exactly one point in the interior of each

component of D. If U is any non-empty open set of X −A, then there exist a continuum F such that
int(F)∩U ̸= /0 and a continuum K ⊂ X −A such that K ∩D ̸= /0 ̸= K ∩ (U ∩ int(F)).

Let E be a component of D that intersects K. Therefore, E∪K∪F ∈C(X−A), B∩int(E∪K∪F) ̸= /0
and int(E ∪K ∪F)∩U ̸= /0. Thus B witnesses that X −A is a n-Qo space, so A ∈ NBOn(X). □

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

7 Aug 2024 10:16:05 PDT
240409-Piceno Version 2 - Submitted to Rocky Mountain J. Math.



CONNECTIVITY DEGREES OF COMPLEMENTS OF CLOSED SETS IN CONTINUA 10

The following lemma gives us a characterization of the elements in CCn(X).

Lemma 3.19. Let X be a continuum, A ∈ 2X and n ∈ N. Then, A ∈CCn(X)−{X} if and only if for
each open set U with A ⊂U, there exists an open set V such that A ⊂V ⊂U and X −V ∈Cn(X).

Proof. Let A ∈CCn(X)−{X} and let U be an open set such that A ⊂U . Let B ∈ Fn(X −A) witnessing
that X −A is a n-Q1 space. For each y ∈ X −U , let Dy be a continuum such that y ∈ int(Dy), Dy∩B ̸= /0
and Dy ⊂ X −A. Since X −U is compact and {int(Dy) : y ∈ X −U} is an open cover of X −U , there
exists a finite subcover {int(D1), . . . , int(Dk)} of X −U . Let V = (X −∪k

i=1Di)⊂U , observe that V is
an open set, A ⊂V ⊂U and X −V = ∪k

i=1Di ∈Cn(X).
Now suppose that A ∈ 2X is such that for each open set U such that A ⊂U , there exists an open set

V such that A ⊂V ⊂U and X −V ∈Cn(X). Observe that X −A ̸= /0 must have at most n components.
Choose B ∈ Fn(X) such that B intersects each component of X −A. Let y ∈ X −A, let Vy ⊂ X −A
be a closed neighborhood of y and let U = X − (Vy ∪B). Since A ⊂U , there exists V open such that
A ⊂V ⊂U and X −V ∈Cn(X), which implies that the component D of X −V ⊂ X −A containing y is
a continuum such that B∩D ̸= /0 and y ∈ int(D). □

Theorem 3.20. Let X be a continuum and n ∈ N. Let A,C ∈ 2X such that C is a union of some
components of A.

(1) If A ∈CCn(X), then C ∈CCn(X);
(2) if A ∈ NWCn(X), then C ∈ NWCn(X); and
(3) if A ∈ NCn(X), then C ∈ NCn(X).

Proof. If A = X , the result is trivial. Assume A ̸= X .
(1) Let A ∈ CCn(X) and B ∈ Fn(X −A) witnessing that X −A is a n-Q1 space. Let x ∈ X −C.

If x ∈ X −A, there exists a continuum G containing x in its interior such that G∩B ̸= /0 and
B ⊂ X −A. Now, assume x ∈ A−C, and let D be the component of x in A−C. Since A is
compact, there exist two open sets U and V such that C ⊂U , D ⊂V , U ∩V = /0, A ⊂U ∪V ;
moreover, by Lemma 3.19, we may assume that E = X − (U ∪V ) has at most n components.
Therefore, E∪V = X −U ∈Cn(X) (Theorem 5.6 from [10]) and contains x in its interior. Since
the component of E∪V containing x has a non-empty interior in X −A, there exists a continuum
G containing x in its interior such that G∩B ̸= /0 and B ⊂ X −C. Hence, C ∈CCn(X).

(2) Let A ∈ NWCn(X) and B ∈ Fn(X −A) witnessing that X −A is an n-Q2 space. Let x ∈ X −C.
If x ∈ X −A, there exists a continuum F containing x such that F ⊂ X −A, and F ∩B ̸= /0.
Now, assume x ∈ A−C. Let D be the component of A containing x. Since A is compact,
there exist two open sets U and V such that C ⊂ U , D ⊂ V , U ∩V = /0, A ⊂ U ∪V . Thus,
there exists a continuum G such that D ⊊ G ⊂U (Corollary 5.5 of [10]). Choose r ∈ G−A.
Since r ∈ X −A, there exists a continuum F containing r such that F ⊂ X −A and F ∩B ̸= /0.
Therefore, F ∪G is a continuum containing x such that F ⊂ X −C, and (F ∪G)∩B ̸= /0. In
conclusion, B witnesses that X −C is an n-Q2 space, thus C ∈ NWCn(X).

(3) Let A ∈ NCn(X). Let x ∈ X −C. If x ∈ X −A, the component of x in X −A is contained in the
component of x in X −C. Now, assume x ∈ A−C. Let D be the component of A containing
x. Since A is compact, there exist two open sets U and V such that C ⊂U , D ⊂V , U ∩V = /0,
A ⊂ U ∪V . Thus, there exists a continuum G such that D ⊊ G ⊂ U (Corollary 5.5 of [10]).
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CONNECTIVITY DEGREES OF COMPLEMENTS OF CLOSED SETS IN CONTINUA 11

Choose r ∈ G−A. Since r ∈ X −A, the component of r in X −C contains G and contains the
component of r in X −A, and the component of x in X −C is the same as the component of r in
X −C. Thus, each component of X −C contains some component of X −A, so C ∈ NCn(X).

□

The following examples show that we cannot generalize the previous theorem to the hyperspaces
NBn(X), NBOn(X), NB∗

n(X), Sn(X) and NSCn(X).

Example 3.21. Let Y be the dyadic solenoid, let S ⊂ Y be an arc and let h : I ×{0} → S be an
homeomorphism. Define X = Y ∪h (I × I), A = {p} ∪ (I × I) where p is a point of X not in the
composant of I × I, and let C = {p}. Observe that A ∈ NB1(X) and C /∈ NB1(X).

Example 3.22. Let Y be a compactification of the ray with remainder S 1, let S ⊂ S 1 be an arc and
h : I ×{0} → S an homeomorphism. Define X = Y ∪h (I × I), A = {p}∪ (I × I) where p ∈ S 1 − S,
and C = {p}. Observe that A ∈ NBO1(X), C is a component of A and C /∈ NSC1(X).

In Proposition 2.4 of [3], the authors studied what is the Borel type class of the sets CC1(X)∩F1(X),
S1(X)∩F1(X), NSC1(X)∩F1(X), and NC1(X)∩F1(X). We extend the analysis for some hyperspaces
of non-cut sets of degree n.

Proposition 3.23. Let X be a continuum and n ∈ N. The following is true.

(i) CCn(X) is of type Gδ ,
(ii) NBOn(X) is of type Gδ ,

(iii) Sn(X) is of type Gδ , and
(iv) NSCn(X) is of type Gδ .

Proof. (i) For each k ∈N, define CCk
n as the union of all the sets ⟨U1, . . . ,Um⟩ ⊂ 2X with m ∈N, Ui

non-empty and open in X , diam(Ui)<
1
k for each i, such that there exists B ∈ Fn(X) satisfying

that for every z ∈ X −
⋃m

i=1Ui, there exists a continuum D ⊂ X −
⋃m

i=1Ui such that z ∈ int(D)
and B∩D ̸= /0. It holds that CCn(X) =

⋂
∞
k=1CCk

n.
(ii) Let B be a countable base with /0 /∈ B. For each U ⊂ B finite, define the set NBOU as

follows:

NBOU =
⋃
{⟨X −K⟩ : K ∈Cn(X),∀U ∈ U , int(K)∩U ̸= /0}∪ (

⋃
U∈U

⟨X ,U⟩).

Let C = {U : U is a non-empty finite subset of B}. It holds that NBOn(X) =
⋂

U ∈C NBOU .
(iii) Let B and C as in (ii). For each U ⊂ B finite, define the set SU as follows:

SU =
⋃
{⟨X −K⟩ : K ∈Cn(X),∀U ∈ U ,K ∩U ̸= /0}∪ (

⋃
U∈U

⟨X ,U⟩).

It holds that Sn(X) =
⋂

U ∈C SU .
(iv) Let B and SU as in (ii). It holds that NSCn(X) =

⋂
{SU : U ⊂ B non-empty with at most

n+1 elements}.
□
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CONNECTIVITY DEGREES OF COMPLEMENTS OF CLOSED SETS IN CONTINUA 12

In Example 2.5 from [3], the authors show a continuum X where NWC1(X)∩F1(X) is not Borel,
consequently, NWC1(X) itself is not Borel. In (ii), they show that the sets CC1(X)∩F1(X), S1(X)∩
F1(X), NSC1(X)∩F1(X), and NC1(X)∩F1(X) do not necesarilly fall into the category of Fσ , implying
the same for CC1(X), S1(X), NSC1(X), and NC1(X). Finally, in (iii), the authors furnish an example
where NC1(X)∩F1(X) lacks the Gδ property, hence NC1(X) is not Gδ .

Theorem 3.24. If X is a compact metric space, then M(X) is a Gδ set in 2X .

Proof. Let {Un : n ∈ N} be a countable base of X . For each n ∈ N, we define

Un = {A ∈ 2X : Un ⊂ A}.

It is clear that each Un is closed and 2X −M(X) = ∪nUn which is an Fσ set. Hence, M(X) is a Gδ

set. □

As a consequence of the following corollary, we can specify the Borel type class of some sets
mentioned in Note 2.5.

Corollary 3.25. Let X be a continuum and n ∈ N. The following is true.
(i) CCn(X)∩M(X) is of type Gδ ,

(ii) NBOn(X)∩M(X) is of type Gδ ,
(iii) Sn(X)∩M(X) is of type Gδ , and
(iv) NSCn(X)∩M(X) is of type Gδ .

4. Properties of non-n-cut sets preserved by continuous functions

The results presented herein highlight how different types of mappings, such as onto mappings, open
mappings, and monotone mappings, preserve some properties of non-n-cut sets.

We start with a lemma.

Lemma 4.1. Let f : X → Y be an onto mapping between continua. If y ∈ Y , and D ∈ 2X are such that
f−1(y)⊂ intX(D), then y ∈ intY ( f (D)).

Proof. Let y ∈ Y , D ∈ 2X and assume f−1(y)⊂ intX(D). Notice that y ∈ Y − f (X − intX(D))⊂ f (D)
and Y − f (X − intX(D)) is open in Y . Thus y ∈ intY ( f (D)). □

Proposition 4.2. Let f : X → Y be an onto mapping between continua, let A ∈ 2Y and let n ∈ N. The
following statements hold:

(1) If f−1(A) ∈CCn(X), then A ∈CCn(Y );
(2) if f−1(A) ∈ NWCn(X), then A ∈ NWCn(Y );
(3) if f−1(A) ∈ NBn(X), then A ∈ NBn(Y );
(4) if f−1(A) ∈ NB∗

n(X), then A ∈ NB∗
n(Y );

(5) if f−1(A) ∈ Sn(X), then A ∈ Sn(Y );
(6) if f−1(A) ∈ NSCn(X), then A ∈ NSCn(Y ); and
(7) if f−1(A) ∈ NCn(X), then A ∈ NCn(Y ).

Proof. Observe that the statements are true if A = Y . Suppose that A ̸= Y .
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CONNECTIVITY DEGREES OF COMPLEMENTS OF CLOSED SETS IN CONTINUA 13

(1) Assume that f−1(A) ∈ CCn(X). Let B ∈ Fn(X − f−1(A)) witnessing that X − f−1(A) is a
n-Q1 space. Let y ∈ Y −A. For each x ∈ f−1(y), there exists a continuum Dx contained
in X − f−1(A) such that x ∈ intX(Dx) and B∩Dx ̸= /0. By compactness of f−1(y), we can
find a finite number of elements x1, . . . ,xn ∈ f−1(y) such that f−1(y) ⊂

⋃m
i=1 Dxi . Notice

that
⋃m

i=1 Dxi ⊂ X − f−1(A) is in Cn(X) and contains f−1(y) in its interior. By Lemma 4.1,
f (
⋃m

i=1 Dxi)⊂ Y −A is a subcontinuum of Y such that f (B)∩ f (
⋃n

i=1 Dai) ̸= /0 and has y in its
interior, so f (B) witnesses that Y −A is a n-Q1 space, therefore A ∈CCn(Y ).

(2) Assume that f−1(A) ∈ NWCn(X). Let B ∈ Fn(X) witnessing that X − f−1(A) is a n-Q2 space,
let y ∈ Y −A and x ∈ f−1(y). Since X − f−1(A) is n-Q2, there exists a continuum D ⊂ X such
that D∩ f−1(A) = /0, w ∈ D and D∩B ̸= /0. Therefore f (D)⊂Y −A is a continuum, x ∈ f (D)
and f (B)∩ f (D) ̸= /0, so f (B) witnesses that Y −A is a n-Q2 space, therefore A ∈ NWCn(Y ).

(3) Assume that f−1(A) ∈ NBn(X). Let y ∈ Y −A and x ∈ f−1(y). Let B ∈ Fn(X) witnessing that
X − f−1(A) is a n-Q3 space and x ∈ B. Let U ⊂ Y −A be and non-empty open set. Notice that
f−1(U)⊂ X − f−1(A) is a non-empty open set of X ; since X − f−1(A) is n-Q3, there exists a
continuum D ⊂ X − f−1(A) such that D∩B ̸= /0 and D∩ f−1(U) ̸= /0, thus f (D)⊂ Y −A is
a continuum such that f (D)∩ f (B) ̸= /0, f (D)∩U ̸= /0 and y ∈ f (B), so f (B) witnesses that
Y −A is a n-Q3 space, therefore A ∈ NBn(Y ).

(4) Assume that f−1(A) ∈ NB∗
n(X). Let B ∈ Fn(X) witnessing that X − f−1(A) is a n-Q4 space.

Let U ⊂ Y −A be and non-empty open set. Notice that f−1(U)⊂ X − f−1(A) is a non-empty
open set of X ; since X − f−1(A) is n-Q4, there exists a continuum D ⊂ X − f−1(A) such that
D∩B ̸= /0 and D∩ f−1(U) ̸= /0, thus f (D)⊂ Y −A is a continuum such that f (D)∩ f (B) ̸= /0
and f (D)∩U ̸= /0, so f (B) witnesses that Y −A is a n-Q4 space, therefore A ∈ NB∗

n(Y ).
(5) Assume that f−1(A) ∈ Sn(X). Let U1, . . . ,Um be a finite number of non-empty open sets

contained in Y −A. Since f−1(U1), . . . , f−1(Um) is a finite number of non-empty open sets
contained in X − f−1(A) and X − f−1(A) is a n-Q5 space, there exists an element D ∈Cn(X)
such that D ⊂ X − f−1(A), D∩ f−1(Ui) ̸= /0 for each i ∈ {1, . . . ,m}, hence f (D)⊂Y −A is an
element of Cn(Y ) such that f (D)∩Ui ̸= /0 for each i ∈ {1, . . . ,m}. So Y −A is a n-Q5 space,
therefore A ∈ Sn(Y ).

(6) Assume that f−1(A) ∈ NSCn(X). Let U1, . . . ,Un+1 be non-empty open sets contained in
Y −A. Since f−1(U1), . . . , f−1(Un+1) are non-empty open sets contained in X − f−1(A) and
X − f−1(A) is a n-Q6 space, there exists an element D ∈ Cn(X) such that D ⊂ X − f−1(A),
D∩ f−1(Ui) ̸= /0 for each i ∈ {1, . . . ,n+1}, hence f (D)⊂ Y −A is an element of Cn(Y ) such
that f (D)∩Ui ̸= /0 for each i∈ {1, . . . ,n+1}. So Y −A is a n-Q6 space, therefore A∈NSCn(Y ).

(7) Assume that f−1(A) ∈ NCn(X). Since Y −A = f (X − f−1(A)) and X − f−1(A) has at most n
components, then Y −A has at most n components. Therefore A ∈ NCn(X).

□

In the following example, we show that it is not possible to extend Proposition 4.2 to the hyperspace
NBOn(X). A weaker result is presented in Proposition 4.4.

Example 4.3. Let Y be the Knaster buckethandle continuum, p ∈ Y be the endpoint of Y , and let
α : [0,1) → K be an onto injective mapping such that α(0) = p, where K is the composant of Y
containing p. Define X = (Y ×{0})∪{(α(t),1− t) : t ∈ [0,1)} ⊂ Y × [0,1] and let f : X → Y be the
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CONNECTIVITY DEGREES OF COMPLEMENTS OF CLOSED SETS IN CONTINUA 14

projection onto Y . Then f is an onto mapping. Note that for z ∈ Y −K, f−1(z) = {(z,0)} ∈ NBO1(X),
and {z} /∈

⋃
∞
n=1 NBOn(Y ).

Proposition 4.4. Let f : X → Y be an onto and open mapping between continua, let A ∈ 2Y and let
n ∈ N. If f−1(A) ∈ NBOn(X), then A ∈ NBOn(Y ).

Proof. Assume that f−1(A) ∈ NBOn(X). If A =Y , then A ∈ NBOn(X). Assume A ̸=Y . Let B ∈ Fn(X)
witnessing that X − f−1(A) is a n-Qo space. Let U be an open set of Y −A. Then, there exists
D ∈ C(X) such that D ⊂ X − f−1(A) and B∩D ̸= /0 ̸= int(D)∩ f−1(U). Hence, f (D) ⊂ Y −A and
f (B)∩ f (D) ̸= /0, and since f is open, int( f (D))∩U ̸= /0, which implies that Y −A is a n-Qo space,
therefore A ∈ NBOn(Y ). □

Proposition 4.5. Let f : X → Y be an onto monotone mapping between continua, let A ∈ 2Y and let
n ∈ N. The following statements hold:

(1) If A ∈CCn(Y ), then f−1(A) ∈CCn(X);
(2) if A ∈ NWCn(Y ), then f−1(A) ∈ NWCn(X); and
(3) if A ∈ NCn(Y ), then f−1(A) ∈ NCn(X).

Proof. Observe that the statements are true if A = Y . Suppose that A ̸= Y .
(1) Assume A ∈ CCn(Y ). Let B ∈ Fn(Y −A) witnessing that Y −A is a n-Q1 space and B′ ∈

Fn(X − f−1(A)) such that f (B′) = B. Let x ∈ X − f−1(A). Choose D ∈ C(Y ) such that
D ⊂ Y −A, B∩D ̸= /0 and f (x) ∈ intY (D). Hence f−1(D)⊂ X − f−1(A) is a continuum with
B′∩ f−1(D) ̸= /0 and x ∈ intX( f−1(D)). So f−1(A) ∈CCn(X).

(2) Assume A ∈ CCn(Y ). Let B ∈ Fn(Y −A) witnessing that Y −A is a n-Q2 space and B′ ∈
Fn(X − f−1(A)) such that f (B′) = B. Let x ∈ X − f−1(A). By the properties of B, there exists
a continuum D ⊂ Y −A such that f (x) ∈ D and B∩D ̸= /0. Hence, f−1(D)⊂ X − f−1(A) is a
continuum with x ∈ f−1(D) and f−1(D)∩B′ ̸= /0. So f−1(A) ∈ NWCn(X).

(3) Let A ∈ NCn(Y ). Observe that f−1(Y −A) = X − f−1(A) has at most n components, therefore
f−1(A) ∈ NCn(X).

□

The following example shows that Theorem 4.5 does not hold for the hyperspaces NBn(Y ),NB∗
n(Y ),Sn(Y )

and NSCn(Y ). We do not know if Proposition 4.5 holds for NBOn(X).

Example 4.6. Let Y be the dyadic solenoid, let S ⊂ Y be an arc and let h : I × {0} → S be a
homeomorphism. Take X = Y ∪h (I × I) and let f : X → Y be defined as f (x) = x, if x ∈ Y , and
f (x) = h(x1,0) if x = (x1,x2) ∈ I× I. Observe that f : X →Y is an onto, monotone mapping. However,
for A = {h(1

2 ,0)} ∈ NB1(Y ) and f−1(A) /∈ NSC1(X).

However, if we add to the conditions of Theorem 4.5 that the map f : X → Y is open, Theorem 4.5
holds for the remaining hyperspaces of non-cut sets.

Proposition 4.7. Let f : X →Y be an onto, open and monotone mapping between continua, let A ∈ 2Y

and let n ∈ N. The following statements hold:
(1) If A ∈ NBn(Y ), then f−1(A) ∈ NBn(X);
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CONNECTIVITY DEGREES OF COMPLEMENTS OF CLOSED SETS IN CONTINUA 15

(2) if A ∈ NBOn(Y ), then f−1
n (A) ∈ NBOn(X);

(3) if A ∈ NB∗
n(Y ), then f−1(A) ∈ NB∗

n(X);
(4) if A ∈ Sn(Y ), then f−1(A) ∈ Sn(X); and
(5) if A ∈ NSCn(Y ), then f−1(A) ∈ NSCn(X).

Proof. Observe that the statements are true if A = Y . Suppose that A ̸= Y .
(1) Assume A ∈ NBn(Y ). Let x ∈ X − f−1(A). Since Y −A is a n-Q3 space, let B ∈ Fn(Y −A)

satisfying that f (x) ∈ B and for each non-empty open set U ⊂ Y −A, there exists a continuum
D ⊂ Y −A such that D∩B ̸= /0 ̸= D∩U .

Let B′ ∈ Fn(X − f−1(A)) be such that x ∈ B′ and f (B′) = B. If V ⊂ X − f−1(A) is a non-
empty open set of X , then f (V ) is open in Y −A, so there exists a continuum D such that
B∩D ̸= /0 ̸= D∩ f (V ). Hence, f−1(D)⊂ X − f−1(A) is a continuum and f−1(D)∩V ̸= /0 ̸=
f−1(D)∩B′. So, X − f−1(A) is a n-Q3 space and f−1(A) ∈ NBn(X).

(2) Assume A ∈ NBOn(Y ). Let B ∈ Fn(Y −A) witnessing that Y −A is a n-Qo space. Let B′ ∈
Fn(X − f−1(A)) be such that f (B′) = B. Consider a non-empty open set U ⊂ X − f−1(A).
Since f (U) ⊂ Y −A is non-empty and open, there exists a continuum D ⊂ Y −A such that
B ∩ int(D) ̸= /0 ̸= int(D)∩ f (U). Hence f−1(D) ⊂ X − f−1(A) is a continuum and B′ ∩
int( f−1(D)) ̸= /0 ̸= int( f−1(D))∩U . So X − f−1(A) is a n-Qo space and f−1(A) ∈ NBOn(X).

(3) Assume A ∈ NB∗
n(Y ). Let B ∈ Fn(Y −A) witnessing that Y −A is a n-Q4 space. Let B′ ∈

Fn(X − f−1(A)) be such that f (B′) = B. Consider a non-empty open set U ⊂ X − f−1(A).
Since f (U) ⊂ Y −A is non-empty and open, there exists a continuum D ⊂ Y −A such that
B∩D ̸= /0 ̸= D∩ f (U). Hence f−1(D)⊂ X − f−1(A) is a continuum and B′∩ f−1(D) ̸= /0 ̸=
f−1(D)∩U . So X − f−1(A) is a n-Q4 space and f−1(A) ∈ NB∗

n(X).
(4) Assume A ∈ Sn(Y ). Let U1, . . . ,Um be a finite number of non-empty open sets contained in

X − f−1(A). Since f (U1), . . . , f (Um) is a finite number of non-empty open sets contained
in Y −A and A ∈ Sn(Y ), there exists an element D ∈ Cn(Y −A) such that D∩ f (Ui) ̸= /0 for
each i ∈ {1, . . . ,m}. Hence f−1(D) ∈ Cn(X − f−1(A)), satisfies f−1(D)∩Ui ̸= /0 for each
i ∈ {1, . . . ,m}. So, f−1(A) ∈ Sn(X).

(5) Assume A∈NSCn(Y ). Let U1, . . . ,Un+1 be a finite number of non-empty open sets contained in
X − f−1(A). Since f (U1), . . . , f (Un+1) is a collection of n+1 non-empty open sets contained
in Y − A and A ∈ NSCn(Y ), there exists an element D ∈ Cn(Y ) such that D ⊂ Y − A and
D∩ f (Ui) ̸= /0 for each i ∈ {1, . . . ,n+1}. Hence f−1(D) ∈Cn(X), f−1(D)⊂ X − f−1(A) and
f−1(D)∩Ui ̸= /0 for each i ∈ {1, . . . ,n+1}. So, f−1(A) ∈ NSCn(X).

□

5. Relations between X and the hyperspaces of non-cut sets of degree n of X

The first result we present provides an initial insight into the relationship between hyperspaces of non-
n-cut sets, when the original space exhibits certain specific characteristics. We will explore properties
of the original space that may lead to the coincidence of some of its hyperspaces of non-n-cut sets. On
the other hand, while the fact that a set is a non-n-cut set may not be particularly relevant by itself,
studying a hyperspace of these sets can lead to interesting conclusions.
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Theorem 5.1. If X is a locally connected continuum, then NC1(X) =CC1(X).

Proof. We only have to prove that NC1(X)⊂CC1(X). Let A ∈ NC1(X) and let x,y ∈ X −A. Let Ux
and Uy be open connected neighborhoods of x and y, respectively, such that cl(Ux)∩A = /0 = cl(Uy)∩A.
Since X −A is an open connected set, X −A is arcwise connected (Theorem 8.26 of [10]), so let Y be
an arc in X −A joining x to y. Observe that D = Y ∪ cl(Ux)∪ cl(Uy) is a continuum avoiding A with
x,y ∈ int(D). In conclusion, A ∈CC1(X). □

Corollary 5.2. If X is a locally connected continuum, then CCn(X) = NCn(X) for each n ∈ N.

Proof. See Corollary 3.15. □

The following example shows that Theorem 5.1 does not hold if we replace the locally connected
continuum condition with the mutually aposyndetic continuum condition or the Kelley continuum
condition.

Example 5.3. Let X the suspension over the Cantor set, so X is mutually aposyndetic and Kelley. Let
p and q the vertices of X, and let A be a set consisting of two points in the same arc-component of
X −{p,q}. Then, A ∈ NC1(X), A /∈ NB1(X) and A /∈CC1(X). Notice that F1(X) = NC1(X)∩F1(X) =
CC1(X)∩F1(X).

We do not know a non-locally connected continuum X where NC1(X) = NWC1(X). Hence, we find
the following question interesting:

Question 5.4. If CC1(X) = NC1(X) or NWC1(X) = NC1(X), is X locally connected?

Note 5.5. When X is an indecomposable continuum, we have CCn(X) =NWCn(X) =NBOn(X) = {X}
and Cn(X)⊂ NB∗

n(X), for each n ∈ N.

With the following example, we show that {X}=CCn(X) = NWCn(X) = NBOn(X) does not imply
that the space is indecomposable.

Example 5.6. For a space X = A∪B, where A and B are two indecomposable continua and A∩B
consists only of one point, we have CCn(X) = NWCn(X) = NBOn(X) = {X}, for each n ∈ N.

As mentioned earlier, the condition of X being locally connected implies that NCn(X) =CCn(X)
for each n ∈ N. As part of the research related to Question 5.4, for a continuum X and a set A ∈ 2X ,
we are exploring certain conditions under which A ∈ NCn(X) implies A ∈CCn(X). With that goal, we
generalize the definition of semi-local connectivity given by Whyburn in [13] from points to sets, and
we define a continuum X to be semi-locally connected at a set A provided that if U is an open subset of
X containing A, there is an open subset V of X lying in U and containing A such that X −V has a finite
number of components.

Proposition 5.7. Let X be a continuum. If A ∈
⋃

∞
i=1CCi(X), then X is semi-locally connected at A.

Proof. It follows from Lemma 3.19. □

While it may seem intuitive that the converse of Theorem 5.7 holds, this is not the case. In Example
5.8, the vertex is a point of semi-local connectivity but does not belong to

⋃
∞
i=1CCi(Fω).
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Example 5.8. Define Fω =
⋃

∞
n=1{(x, x

n) : x ∈ [0, 1
n ]}, considered as a subspace of R2. Let A = {(0,0)}.

Then, Fω is semi-locally connected at A but A /∈
⋃

∞
i=1CCi(Fω).

The following theorem is based on results (6.1) and (6.21) of [13].

Theorem 5.9. Let X be a continuum and A ∈ 2X . If X is semi-locally connected at A, then each
component of X −A is a continuumwise connected open set.

Proof. Let D be a component of X −A. Let {Un}∞
n=1 be a sequence of open sets such that for each n,

A ⊂Un, cl(Un+1)⊂Un, A =
⋂

∞
n=1Un and X −Un has a finite number of components. For each a ∈ D,

let Ca =
⋃
{K : K is the component of X −Un containing a, for some n ∈ N}. Notice that for each

a,b ∈ D, a ∈Ca, Ca is continuumwise connected and Ca ∩Cb ̸= /0 implies Ca =Cb.
Now we prove that Ca is open for each a ∈ D. If x ∈ Ca, then x is an element the component of

X −Un containing a, for some n ∈N. Therefore x /∈ cl(Un+1), so x ∈ int(K), where K is the component
of X −Un+1. Hence x ∈ int(Ca).

Since, D−Ca = ∪{Cb : b ∈ D−Ca} is an open set and D is connected, Ca must be equal to D. □

The following theorem is useful to understand better the characteristics of the sets A, for which X is
semi-locally connected at A.

Theorem 5.10. Let X be a continuum and A ∈ 2X . Then, X is aposyndetic with respect to A if and only
if it is semi-locally connected at A.

Proof. Assume that X is aposyndetic with respect to A and let U be an open set such that A ⊂U . Then,
for each p ∈ X −A, there exists a subcontinuum Cp of X such that p ∈ int(Cp) and Cp ∩A = /0. Hence,
{int(Cp) : p∈X−A} is an open cover of X−U . Therefore, there exists a finite set {p1, . . . , pn}⊂X−A
such that X −U ⊂

⋃n
i=1Cpi . Notice that V = X −

⋃n
i=1Cpi ⊂U and X −V has at most n components.

In conclusion, X is semi-locally connected at A.
Now, suppose that X is semi-locally connected at A and let x ∈ X −A. Let U be an open set such

that A ⊂U ⊂ cl(U)⊂ X −{x}. Hence, there exists an open set V such that A ⊂V ⊂U and X −V has
a finite number of components. Therefore, the component of X −V containing x is a continuum with x
in its interior. We conclude that X is aposyndetic with respect to A. □

Corollary 5.11. Let X be a continuum and let A ∈ 2X such that X is semi-locally connected at A. If
A ∈ NC1(X), then A ∈CC1(X).

Proof. Let x,y be two different points in X −A, then by Theorem 5.9, there exists a continuum K
such that {x,y} ⊂ K and K ∩A = /0. By Theorem 5.10, there exist two continua Kx and Ky such that
x ∈ int(Kx), y ∈ int(Ky) and Kx ∩A = /0 = Ky ∩A. Let D = K ∪Kx ∪Ky, observe that {x,y} ∈ int(D)
and D∩A = /0. Hence, A ∈CC1(X). □

Corollary 5.12. Let X be a continuum, n ∈N and A ⊂ X such that X is semi-locally connected at A. If
A ∈ NCn(X), then A ∈CCn(X).

Proof. Assume A ∈ NCn(X). Using the same arguments as in the proof of 5.10, we obtain that for each
component K of X −A, K ∈CC1(A∪K). Hence, by Theorem 3.13, A ∈CCn(X). □
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By Theorem 3.1, Proposition 5.7, Theorem 5.10 and Corollary 5.12, we obtain the following result,
which is a characterization of the elements of CCn(X).

Corollary 5.13. Let X be a continuum and n ∈ N. Then, A ∈CCn(X) if and only if X is aposyndetic
with respect to A and A ∈ NCn(X).

As an application of Corollary 5.13 we present a continuum X in which NC1(X)∩ D0(X) =
CC1(X)∩D0(X) and X is not aposyndetic with respect to some A ∈ D0(X).

Example 5.14. Let Y be the harmonic fan with vertex v and let X = Y × [0,1]/({v}× [0,1]). Notice
that X is not aposyndetic with respect to {[(v,0)]} and NC1(X)∩D0(X) = {A ∈ D0(X) : [(v,0)] /∈
A}=CC1(X)∩D0(X)

Proposition 5.15. Let X be a continuum and A ∈ NSC1(X). If X is aposyndetic at p with respect to A,
for some p ∈ X −A, then A ∈ NB∗

1(X).

Proof. Assume that X is aposyndetic at p with respect to A, let C ⊂ X −A be a continuum containing
p in its interior. Let B = {p}. Take U an open set of X −A. Since X −A is a 1-Q6 space, for U and
V = int(C), there exists a continuum D ⊂ X −A such that D∩U ̸= /0 ̸= D∩V . Then E =C∪D ⊂ X −A
is a continuum such that b ∈ int(E) and E ∩U ̸= /0. Hence, A ∈ NB∗

1(X). □

In [3, Proposition 2.2] the authors proved that NC1(X)∩ F1(X) = CC1(X)∩ F1(X) when X is
aposyndetic. It is natural to ask if the converse is also true. We see in the next example that the answer
is negative.

Example 5.16. Let C be the Cantor set, Z = C ×S 1 and X = Z/(C ×{q}), where q is a point
in S 1. Notice that X is not aposyndetic at the point [C ×{q}] and NC1(X)∩F1(X) = {{p} : p ∈
X −{[C ×{q}]}}=CC1(X)∩F1(X).

For irreducible continua, the converse of [3, Proposition 2.2] is true, we give a stronger result in the
following theorem.

Theorem 5.17. Let X be an irreducible continuum. If NC1(X)∩F1(X) = NWC1(X)∩F1(X) then X is
an arc.

Proof. By Corollary 2 of [1], let p,q ∈ X be distinct such that {p},{q} ∈ NC1(X). Hence, {p},{q} ∈
NWC1(X). Given that {p},{q} ∈ NWC1(X), X must be irreducible only between p and q. Since
NC1(X)∩F1(X) = NWC1(X)∩F1(X) and X is irreducible between p and q, if z ∈ X −{p,q}, then
{z} /∈ NWC1(X), so {z} /∈ NC1(X). Therefore, by Section 3 of [1], X must be an arc. □

With Theorem 5.17, we can provide a partial answer to Question 5.4.

Corollary 5.18. Let X be an irreducible continuum. Then NC1(X) = NWC1(X) if and only if X is an
arc.

The following example shows that Theorem 5.17 does not hold if we replace the hyperspace
NWC1(X) by a weaker one.

Example 5.19. If X is a dyadic solenoid, then X is irreducible, and NC1(X)∩F1(X) = F1(X) =
NB1(X)∩F1(X).
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Also, for irreducible continua, we have the following results.

Theorem 5.20. Let X be an irreducible continuum. Then NWC1(X) =CC1(X).

Proof. The contention CC1(X)⊂ NWC1(X) follows from Theorem 3.1.
We prove NWC1(X)⊂CC1(X). Assume that X is irreducible between a and b and let A ∈NWC1(X).
Claim 1: If B is a component of A, then a ∈ B or b ∈ B.
Proof of Claim 1. Assume B is a component of A; by Theorem 3.20, B ∈ NWC1(X). If a /∈ B and

b /∈ B, then there exists a continuum D ⊂ X −B such that a,b ∈ D, which is a contradiction to the
irreducibility of X . Thus a ∈ B or b ∈ B.

Claim 2: The set A has at most two components.
Proof of Claim 2. By Claim 1, each component of A contains a or contains b, so A has at most two

components.
Claim 3: If A is connected, then A ∈CC1(X).
Proof of Claim 3. Without loss of generality, assume a ∈ A. If b ∈ A, then B = X ∈CC1(X). Assume

b /∈ A, let x ∈ X −A and let E ⊂ X −A be a continuum with b,x ∈ E. Let V be an open set such
that x ∈ V and cl(V )∩A = /0. Let K be the component of X −V that contains A, and observe that
b /∈ K. Let k ∈ K −A; since A ∈ NWC1(X), there exists a continuum D ⊂ X −A such that b,k ∈ D.
As X is irreducible between a,b, we have D∪K = X , b /∈ K and K ∩V = /0, so V ⊂ D, which implies
x ∈ int(D). So E ∪D is a continuum with b ∈ E ∪D and x ∈ int(E ∪D), so A ∈CC1(X).

Claim 4: If A is not connected, then A ∈CC1(X).
Proof of Claim 4. Assume A is not connected. By Claim 2, A has two components E and F . By

Claim 1, without loss of generality assume a ∈ E and b ∈ F . Let p ∈ X −A, let x ∈ X −A and V be
an open set such that x ∈V ⊂ cl(V )⊂ X −A. Let KE and KF be the components of X −V containing
E and F respectively. Since KE ∪KF ̸= X , KE ∩KF = /0. Take e ∈ KE −A and f ∈ KF −A. Since
A ∈ NWC1(X), there exists a continuum D ⊂ X −A containing {e, f}. Therefore D∪KE ∪KF is a
continuum containing a and b. Since X is irreducible between a and b, D∪KE ∪KF = X . Hence
V ⊂ D. This implies A ∈CC1(X).

From Claims 1,2,3,4 and 5, we conclude that A ∈ NWC1(X) implies A ∈CC1(X). □

The following example shows that the previous result does not hold if we replace 1 by n > 1.

Example 5.21. Let X = {(x,sin(1
x )) : x ∈ (0,1]}∪{(0,x) : x ∈ [−1,1]}. Notice that X is irreducible

and {(0,−1)} ∈ NWC2(X)−CC2(X).

Theorem 5.22. Let X be a decomposable continuum and let C ∈ NB1(X). If A,B ∈C(X)−{X} are
such that A∪B = X and C∩B = /0, then C ∈ NWC1(X).

Proof. Let p ∈ X −C, given that C ∈ NB1(X) and int(B) ̸= /0, there exists a continuum K ⊂ X −C,
such that p ∈ K and K ∩B ̸= /0. Therefore, C ∈ NWC1(X). □

Corollary 5.23. Let X be a decomposable, irreducible continuum and let C ∈ NB1(X). If A,B ∈
C(X)−{X} are such that A∪B = X and C∩B = /0, then C ∈CC1(X).

Proof. Apply Theorem 5.20 and Theorem 5.22. □
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Corollary 5.24. Let X be a decomposable continuum and irreducible between p and q. If {p} ∈
NB1(X), then {p} ∈CC1(X).

The next example shows that in Corollary 5.24, we cannot replace the condition irreducible between
p and q by the condition irreducible about A ∈ 2X .

Example 5.25. Let X = Y ∪ I, where Y is the dyadic solenoid and I is an arc such that Y ∩ I = {p}. In
this case, X is irreducible about I ∪{x}, where x ∈ Y and p are in distinc composants of Y . Notice
I ∈ NB1(X) but I /∈ NWC1(X).

By Theorem 5.24 and Lemma 3.10 from [3], we obtain the following result.

Corollary 5.26. Let X be a decomposable continuum and irreducible between p and q. If {p} ∈
NB1(X), then X is locally connected at p.
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