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QUADRATIC POLYNOMIAL HAPPY FUNCTIONS

BREEANNE BAKER SWART, SUSAN CROOK, HELEN G. GRUNDMAN, AND LAURA L. HALL-SEELIG

ABSTRACT. Fix a base b and a monic quadratic polynomial function f with nonnegative coefficients.
The corresponding quadratic polynomial happy function maps any positive integer to the sum of the
images under f of its nonzero digits. We study the behavior of these functions under iteration. Our main
result is that for b≥ 4, given any fixed point or element of a cycle under iterations of this happy function,
there exist arbitrarily long arithmetic sequences of positive integers each of which eventually maps to
that number. This extends past results for generalized happy functions in a new direction.

1. Introduction

Fix b ≥ 2. Recall the definition of generalized happy functions and numbers [5]: For e ≥ 2 and
a = ∑

n
i=0 aibi, where 0 ≤ ai ≤ b− 1 are integers with an 6= 0, the happy function Se,b : Z+→ Z+ is

defined by

(1) Se,b(a) = Se,b

(
n

∑
i=0

aibi

)
=

n

∑
i=0

ae
i .

If Sk
e,b(a) = 1 for some k ∈ Z+, then a is called an e-power b-happy number. If e = 2, the number a is

called simply a b-happy number, and if e = 2 and b = 10, a happy number. (See [4] for a survey of
research on happy numbers and generalized happy numbers.)

In this work, we consider the happy functions created by replacing the exponentiation function with
a monic quadratic polynomial function with nonnegative coefficients. More concisely, fix b≥ 2, s≥ 0,
and t ≥ 0. We define S{s,t,b} : Z≥0→ Z≥0 as follows: Set S{s,t,b}(0) = 0 and for integers 1≤ a≤ b−1,
set

S{s,t,b}(a) = a2 +as+ t.

For n > 0, 0≤ ai ≤ b−1, with an 6= 0, define

(2) S{s,t,b}

(
n

∑
i=0

aibi

)
=

n

∑
i=0

S{s,t,b}(ai).

Though S{s,t,b} is the focus of this paper, it is certainly possible to generalize further, allowing other
polynomial functions in the definition of this sort of function.

Let U{s,t,b} denote the set of all fixed points and cycles of S{s,t,b},

U{s,t,b} = {a ∈ Z+ | Sk
{s,t,b}(a) = a for some k ∈ Z+}.
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QUADRATIC POLYNOMIAL HAPPY FUNCTIONS 2

Note that if s = t = 0, then S{s,t,b} = S{0,0,b} = S2,b, the standard 2-power b-happy function, with 1 as a
fixed point. On the other hand, if s or t is nonzero, then 1 is not in the image of S{s,t,b}. For this reason,
we broaden the scope of study from numbers mapping to 1 to numbers mapping to any particular
number u ∈U{s,t,b}. Using standard terminology, given integers b≥ 2, s≥ 0, t ≥ 0, and u ∈U{s,t,b}, a
positive integer a is a u-attracted number (under S{s,t,b}) if, for some k ∈ Z+, Sk

{s,t,b}(a) = u.
In [6], it is proved that for b even, there exist arbitrarily long finite sequences of consecutive b-happy

numbers, and for b odd, there exist arbitrarily long finite 2-consecutive sequences (that is, arithmetic
sequences with constant difference 2) of b-happy numbers. In Section 4 of this paper, we prove the
following analogous result for S{s,t,b}.

Theorem 1. Fix b ≥ 4, s ≥ 0, and t ≥ 0. Let D = gcd(2,s, t,b− 1) and let u ∈U{s,t,b}. There exist
arbitrarily long finite sequences of D-consecutive numbers that are u-attracted under S{s,t,b}.

Since equation (2) holds for any n ∈ Z≥0, S{s,t,b} is what is frequently referred to as a digit function.
It should be noted, however, that the function S{s,t,b} is not what Chase [2] calls a digit map, since it
does not necessarily satisfy the conditions f (1) = 1 and gcd( f (b−1),b) = 1. This means that Chase’s
adaptation of the methods developed by Pan [7] in proving results on sequences of consecutive happy
numbers [3, 6, 9], will not apply to prove parallel results here.

In the following section, we discuss the fixed points and cycles of S{s,t,b}. In Section 3, we present
some basic properties of S{s,t,b} and some important results for the proofs in Section 4, where we prove
the main theorem (Theorem 1) on D-consecutive u-attracted numbers.

2. Fixed Points and Cycles

In this section, we discuss fixed points and cycles of S{s,t,b}. Theorem 2, which is adapted from [8,
Theorem 1], provides an easily computable bound below which at least one element of each cycle
(including fixed points) must lie. This allows us to calculate the fixed points and cycles for any triple
{s, t,b} of integer values with b≥ 2, s≥ 0, and t ≥ 0. In Tables 1 and 2, we provide the fixed points
and cycles of S{s,t,b} for b = 4 and b = 5 with small values of s and t.

Theorem 2. Fix b≥ 2, s≥ 0, and t ≥ 0. Fix M ∈ Z+ such that for each m≥M,

(3) bm > (m+1)
(
(b−1)2 + s(b−1)+ t

)
.

Then, for each a≥ bM, S{s,t,b}(a)< a.

Proof. Let a = ∑
n
i=0 aibi ≥ bM, with an 6= 0. Then n≥M and bn ≤ a. Since, for each 0≤ j ≤ b−1,

S{s,t,b}( j)≤ (b−1)2 + s(b−1)+ t, S{s,t,b}(a)≤ (n+1)
(
(b−1)2 + s(b−1)+ t

)
< bn by assumption.

Since bn ≤ a, the proof is complete. �

Examining the tables, one can find many patterns indicating easily proved generalities. For example,
if s+ t = b−1, then b is a fixed point of S{s,t,b}. Similarly for b≥ 4, if s = 1 and t = b−4, then S{s,t,b}
has the cycle (b+2,2b).

The fact that U{s,t,b} is finite is immediate from Theorem 2. Note that Theorem 2 and its proof are
easily modified to apply to any digit function, substituting the maximum of the absolute value of the
function evaluated at a single digit into the right hand side of inequality (3).
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QUADRATIC POLYNOMIAL HAPPY FUNCTIONS 3

s t Fixed Points and Cycles
0 0 1
0 1 10, (2,5,4)
0 2 9
0 3 4, 12
1 0 12, (6,8)
1 1 (3,13,16), (6,10,14,20)
1 2 4, 8
1 3 (14,24)
2 0 8, (9,11,23,21)
2 1 4, (8,9,13,20)
2 2 (10,20)
2 3 47, (12,18,17), (29,30,35)
3 0 4, (8,10,20), (14,28,22,18)
3 1 29,(30,35)
3 2 18, (12,20), (30,38)
3 3 21, 28, 63, (14,34,26,33,20)

TABLE 1. Sample Base 4 Fixed Points and Cycles

s t Fixed Points and Cycles
0 0 1, 13, 18, (4,16,10)
0 1 7, 22, (2,5)
0 2 6, 12, 17, 21
0 3 11, 16
1 0 12, 20
1 1 6, 16, (7,10)
1 2 (18,28)
1 3 5, 15, (20,23,38,29,28)
2 0 6, 11, 15, (14,32)
2 1 29, (4,25)
2 2 5, 10, 48, (15,17,27)
2 3 (12,22,38,35,17,29,33,30)
3 0 10, (18,36)
3 1 5, 43, (34,39,45), (16,24,58,35)
3 2 38, (24,60)
3 3 28, (20,31,21,38,41,35)

TABLE 2. Sample Base 5 Fixed Points and Cycles
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3. Key Properties

The properties of S{s,t,b} presented in this section are used in Section 4 to prove the main results of this
paper. Lemma 3 provides some basic information about the behavior of S{s,t,b} that is used repeatedly
throughout the paper. Theorem 6 provides a very limited form of a one-sided inverse for S{s,t,b}, one
that is sufficient for completing the proof of Lemma 7 in Section 4.

We begin by noting that for some values of s, t, and b, S{s,t,b}(a) is even, regardless of the input, a,
and for other values of s, t, and b, S{s,t,b}(a) always has the same parity as a. To record this information,
we define two constants, each valued either 1 or 2:

d = d(s, t) = gcd(2,s+1, t)

and
D = D(s, t,b) = gcd(2,s, t,b−1).

Lemma 3. Fix b≥ 2, s≥ 0, t ≥ 0, and a≥ 0.
• S{s,t,b}(a)≡ 0 (mod d).
• S{s,t,b}(a)≡ a (mod D).

Proof. Clearly the lemma holds if a = 0 (by the definition of S{s,t,b}), the first part holds if d = 1, and
the second holds if D = 1. Let a = ∑

n
i=0 aibi with an 6= 0 and, for each i, 0≤ ai ≤ b−1.

If d = 2, then s is odd and t is even, and so

S{s,t,b}(a)≡
n

∑
i=0

(a2
i +ais+ t)≡

n

∑
i=0

(ai +ai)≡ 0 (mod 2).

If D = 2, then s and t are even and b is odd; hence,

S{s,t,b}(a)≡
n

∑
i=0

(a2
i +ais+ t)≡

n

∑
i=0

ai ≡
n

∑
i=0

aibi ≡ a (mod 2). �

Note that it follows from Lemma 3 that if d = 2, then every element of U{s,t,b} is even.
The following two results are key in proving the results in Section 4.

Lemma 4. Let b≥ 4, s≥ 0, and t ≥ 0 be given. Then

gcd(S{s,t,b}(1),S{s,t,b}(2),S{s,t,b}(3)) = d.

Further, if d = 2 and b≥ 5, then

gcd(S{s,t,b}(2),2S{s,t,b}(3),S{s,t,b}(4)) = 2.

Proof. Set g = gcd(S{s,t,b}(1),S{s,t,b}(2),S{s,t,b}(3)). By Lemma 3, d | g.
Since g is a factor of S{s,t,b}(1), S{s,t,b}(2), and S{s,t,b}(3), it is also a factor of S{s,t,b}(3)−

2S{s,t,b}(2)+ S{s,t,b}(1) = 2. If g = 1, then d = 1, as desired. If g = 2, then g | S{s,t,b}(2) implies
that t is even, and then g | S{s,t,b}(1) implies that s is odd. Hence d = gcd(2,s+1, t) = 2, completing
the proof of the first statement.

Now assume that d = 2 and b≥ 5 and let

ĝ = gcd(S{s,t,b}(2),2S{s,t,b}(3),S{s,t,b}(4)).

Then d | ĝ and ĝ | (S{s,t,b}(4)−2S{s,t,b}(3)+S{s,t,b}(2)) = 2. Since d = 2, the result follows. �
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QUADRATIC POLYNOMIAL HAPPY FUNCTIONS 5

We next show that each sufficiently large multiple of d is in the image of S{s,t,b}. This is a variation
of the Frobenius (or Postage Stamp) Problem. We use the following simplification of a result from
Brauer’s work on partitions [1, Theorem 1] in the proof.

Theorem 5 (Brauer). Let a1,a2, . . . ,ak be relatively prime positive integers. There exists C ∈ Z+ such
that for each n≥C, there exist positive integers x1, x2, . . . xk such that a1x1 +a2x2 + · · ·akxk = n.

Theorem 6. Given b≥ 4, s≥ 0, and t ≥ 0, there exists a positive integer N = N(s, t,b) such that for
each n ∈ dZ+ with n≥ N, there exists n′ ∈ dZ+ such that S{s,t,b}(n′) = n.

Proof. First consider the case in which d = 1 or b is even. By Lemma 4,

gcd(S{s,t,b}(1)/d,S{s,t,b}(2)/d,S{s,t,b}(3)/d) = 1.

It follows from Theorem 5 that there exists some N1 ∈ Z+ such that for each n ∈ dZ+ with n≥ dN1,
there exist ni ≥ 0 satisfying n1S{s,t,b}(1)/d +n2S{s,t,b}(2)/d +n3S{s,t,b}(3)/d = n/d. Thus we have
n1S{s,t,b}(1)+n2S{s,t,b}(2)+n3S{s,t,b}(3) = n.

Let

n′ =
n1

∑
i=1

bi +
n2

∑
j=1

2bn1+ j +
n3

∑
k=1

3bn1+n2+k.

Since d = 1 or b is even, n′ ∈ dZ+. Further,

S{s,t,b}(n
′) =

n1

∑
i=1

S{s,t,b}(1)+
n2

∑
j=1

S{s,t,b}(2)+
n3

∑
k=1

S{s,t,b}(3) = n,

as desired.
For the case with d = 2 and b odd, note that b≥ 5. By Lemma 4,

gcd(S{s,t,b}(2)/2,S{s,t,b}(3),S{s,t,b}(4)/2) = 1

and so by Theorem 5, there exists some N2 ∈ Z+ such that for each n ∈ 2Z+ with n≥ 2N2, there exist
ni ≥ 0 satisfying n1S{s,t,b}(2)/2+n2S{s,t,b}(3)+n3S{s,t,b}(4)/2 = n/2. Letting

n′ =
n1

∑
i=1

2bi +
2n2

∑
j=1

3bn1+ j +
n3

∑
k=1

4bn1+2n2+k,

n′ ≡ 2n1 +6n2 +4n3 ≡ 0 (mod 2) and

S{s,t,b}(n
′) =

n1

∑
i=1

S{s,t,b}(2)+
2n2

∑
j=1

S{s,t,b}(3)+
n3

∑
k=1

S{s,t,b}(4) = n.

To complete the proof, set N = N(s, t,b) = max{2N1,2N2}. �
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QUADRATIC POLYNOMIAL HAPPY FUNCTIONS 6

4. Sequences of u-Attracted Numbers

Fix integers b ≥ 4, s ≥ 0, and t ≥ 0. The goal of this section is to prove Theorem 1. Our approach
involves ideas from [6], in particular using the concept of a “good” set, but giving it a different meaning
from that used in the original paper. Recall the definitions of d = d(s, t) and D = D(s, t,b) from the
beginning of Section 3, and of N = N(s, t,b), from Theorem 6.

For fixed s, t, and b, we say that a finite set H ⊆ Z+ is good if for each u ∈U{s,t,b}, there exist k ≥ 0
and n ∈ dZ+ with n≥ N = N(s, t,b) such that, for each h ∈H, Sk

{s,t,b}(h+n) = u. Define I : Z+→ Z+

by I(x) = x+1.

Lemma 7. Fix b≥ 4, s≥ 0, and t ≥ 0. Let F : Z+→ Z+ be the composition of a finite sequence of
the functions S{s,t,b} and Id , and let H be a finite subset of Z+. If F(H) is good, then H is good.

Proof. Let H and F be given with F(H) good. Clearly, if F is the identity function, then H is good.
So we assume that F is of one of the two forms: F = S{s,t,b}F ′ or F = IdF ′, where F ′ is also the
composition of a finite sequence of the functions S{s,t,b} and Id . Noting that, by Lemma 3, F ′(H) is
also contained in a single coset modulo D, we assume by induction that if F ′(H) is good, then H is
good.

Since F(H) is good, for each u ∈U{s,t,b}, there exist k ≥ 0 and n ∈ dZ with n ≥ N such that, for
each h ∈ H, Sk

{s,t,b}(F(h)+n) = u.
If F = IdF ′, then for each h ∈ H,

Sk
{s,t,b}(F

′(h)+(d +n)) = Sk
{s,t,b}(I

dF ′(h)+n) = Sk
{s,t,b}(F(h)+n) = u.

Hence F ′(H) is good, implying that H is good.
On the other hand, if F = S{s,t,b}F ′, then since n ∈ dZ with n ≥ N, by Theorem 6, there exists

n′ ∈ dZ+ such that S{s,t,b}(n′) = n. Fix r ∈ Z+ such that br > N and, for each h ∈H, br > F ′(h). Then
for each h ∈ H, Sk+1

{s,t,b}(F
′(h) + brn′) = Sk

{s,t,b}(S{s,t,b}F
′(h) + S{s,t,b}(n′)) = Sk

{s,t,b}(F(h) + n) = u.
Hence, again, F ′(H) is good, implying that H is good. �

The following lemma provides the base case for the induction used in the proof of Theorem 9.

Lemma 8. Fix b≥ 4, s≥ 0, and t ≥ 0. If H = {h}, then H is good.

Proof. Let u ∈U{s,t,b} and fix v ∈U{s,t,b} such that S{s,t,b}(v) = u. If d = 2, then by Lemma 3, u and
v are even, and, replacing H by S{s,t,b}(H) and applying Lemma 7 if needed, we may assume that h
is even. Fix r such that br > h+N. Let n = brv−h ∈ dZ+. Then, S{s,t,b}(h+n) = S{s,t,b}(brv) = u.
Thus, H is good. �

Now we are ready to prove that any finite set contained in a single coset modulo D is good.

Theorem 9. Fix b≥ 4, s≥ 0, and t ≥ 0. Any finite set H ⊆ Z+ contained in a single coset modulo D
is good.

Proof. Let H ⊆ Z+ be a finite set contained in a single coset modulo D. Note that, by Lemma 3,
S{s,t,b}(H) is also contained in a single coset modulo D, and therefore the same holds for F(H) where
F is the composition of a finite sequence of S{s,t,b} and Id .
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QUADRATIC POLYNOMIAL HAPPY FUNCTIONS 7

If |H|= 1, then by Lemma 8, H is good. So we assume that |H|> 1 and assume by induction that
any finite subset of Z+ of cardinality less than |H| that is contained in a single coset modulo D is good.
Let h1, h2 be distinct elements of H with h1 > h2.

If d = 2, by Lemma 3, S{s,t,b}(H) ⊆ 2Z and so, by Lemma 7, we can replace H by S{s,t,b}(H), if
needed, to assume that h1 and h2 are both even.

Case 1: h1 ≡ h2 (mod b−1). Fix v ∈ Z such that h1−h2 = (b−1)v and note that if d = 2 and b is
even, then v is even. Fix r such that br > bv+h1 +N. Let n = δ0br+1 +br + v−h2, where

δ0 =

{
1 if d = 2 and 2 | (v−h2)

0 otherwise.

Then, regardless of the values of b and d, n ∈ dZ+. Further,

In(h1) = h1 +δ0br+1 +br + v−h2 = δ0br+1 +br + v+(b−1)v = δ0br+1 +br +bv

and
In(h2) = h2 +δ0br+1 +br + v−h2 = δ0br+1 +br + v.

Thus, In(h1) and In(h2) have the same nonzero digits. Hence, S{s,t,b}In(h1) = S{s,t,b}In(h2), and so, by
induction, S{s,t,b}In(H) is good and, by Lemma 7, H is good.

Case 2: h1 6≡ h2 (mod b−1). Fix w = h1−h2. If d = 2 and b is even, set δ1 = 1, otherwise set
δ1 = 0.

Fix r′ ∈ Z+ such that br′ > h1 +1+N and, if t is odd, such that

(4) J = J(t,s,w,r′,δ1) = r′t− (1+δ1)s+δ1−1−S{s,t,b}(w− (1+δ1))

is even.
If t is even and b is odd (so δ1 = 0), then either s is odd and d = 2 or s is even and D = 2. In the

first instance, Lemma 3 implies that S{s,t,b}(w− (1+δ1)) is even. In the second, w = h1−h2 ∈ 2Z, by
assumption, and so Lemma 3 implies that S{s,t,b}(w− (1+δ1)) is odd. Thus, if t is even and b is odd,
J is even.

Now, if J is even, then fix 0≤ j < b−1 such that 2 j ≡ J (mod b−1). If J is odd, then b is even.
Thus, 2 is invertible modulo b−1, and again we can fix 0≤ j < b−1 such that 2 j ≡ J (mod b−1).

If j = 0, set δ ′ = 1, otherwise set δ ′ = 0. If d = 2 and both b and j are odd, set δ2 = 1, otherwise
set δ2 = 0.

Set
n′ = δ2br′+2 +( j+1)br′+δ ′−h2− (1+δ1).

If d = 2 and b is odd, then by the definition of δ2, n′ is even. If d = 2 and b is even, then by the
definition of δ1, n′ is even. Hence, in any case, n′ ∈ dZ. Further,

S{s,t,b}(h1 +n′) = S{s,t,b}(h1 +δ2br′+2 +( j+1)br′+δ ′−h2− (1+δ1))

= S{s,t,b}(δ2br′+2 +( j+1)br′+δ ′+w− (1+δ1))

= S{s,t,b}(δ2)+( j+1)2 +( j+1)s+ t +S{s,t,b}(w− (1+δ1))

= S{s,t,b}(δ2)+ j2 +2 j+1+ js+ s+ t +S{s,t,b}(w− (1+δ1)).
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QUADRATIC POLYNOMIAL HAPPY FUNCTIONS 8

Therefore, using equation (4),

S{s,t,b}(h1 +n′)≡ S{s,t,b}(δ2)+ j2+(
r′t− (1+δ1)s+δ1−1−S{s,t,b}(w− (1+δ1))

)
+1+ js+ s+ t +S{s,t,b}(w− (1+δ1))

≡ S{s,t,b}(δ2)+ j2 + js+(r′+1)t−δ1s+δ1 (mod b−1).

And

S{s,t,b}(h2 +n′) = S{s,t,b}(h2 +δ2br′+2 +( j+1)br′+δ ′−h2− (1+δ1))

= S{s,t,b}(δ2br′+2 +( j+1)br′+δ ′− (1+δ1))

= S{s,t,b}

(
δ2br′+2 + jbr′+δ ′+

(
r′+δ ′−1

∑
i=1

(b−1)bi

)
+(b− (1+δ1))

)
= S{s,t,b}(δ2)+ j2 + js+(1−δ

′)t

+(r′+δ
′−1)

(
(b−1)2 +(b−1)s+ t

)
+(b− (1+δ1))

2 +(b− (1+δ1))s+ t,

implying that

S{s,t,b}(h2 +n′)≡ S{s,t,b}(δ2)+ j2 + js+(r′+1)t−δ1s+δ1

≡ S{s,t,b}(h1 +n′) (mod b−1).

Applying Case 1 to the elements S{s,t,b}(h1 + n′) and S{s,t,b}(h2 + n′) in the set S{s,t,b}In′(H) we
conclude that S{s,t,b}In′(H) is good. Hence, by Lemma 7, H is good. �

We now prove Theorem 1.

Proof of Theorem 1. Let b≥ 4, s≥ 0, t ≥ 0, and u ∈U{s,t,b} be given. Fix an arbitrary m ∈ Z+. Let
H = {D,2D, . . . ,mD}. By Theorem 9, H is good. Hence there exist k ≥ 0 and n ∈ dZ+ such that
n≥ N(s, t,b) and, for each h ∈ H, Sk

{s,t,b}(h+n) = u. Thus,

D+n,2D+n, . . . ,mD+n

is a sequences of length m, of D-consecutive numbers that are u-attracted under S{s,t,b}. �
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