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Abstract

In this paper, we address uniform �nite-time stability of time-varying parameter-
dependent systems. Speci�cally, we provide a new Lyapunov and converse Lyapunov
conditions for uniform �nite-time stability of time-varying system. Furthermore, we
show that uniform �nite-time stability leads to uniqueness of solutions in forward
time. In addition, we establish necessary and su�cient conditions for continuity of
the settling-time function of a nonlinear time-varying system. Finally, we give an ap-
plication of our result for perturbed system.

keywords: Nonlinear time-varying system, parameter-dependent system, Lyapunov
stability, Uniform �nite-time-stability

1 Introduction

Finite-time stability involves dynamical systems whose trajectories converge to an equilib-
rium state in �nite time. Since �nite time convergence implies a non uniqueness of system
solutions in backward time, these systems have non-Lipschitz dynamics. Su�cient conditions
that ensure uniqueness of solutions in forward time in the absence of Lipschitz continuity are
given in [6]. In addition, it is shown in [4][Theorem 4.3, p. 59] that uniqueness of solutions in
forward time along with continuity of the system dynamics ensure that the system solutions
are continuous functions of the system initial conditions even when the dynamics are not
Lipschitz continuous.

The most complete contribution to the stability analysis of nonlinear dynamical systems
is due to Lyapunov [13]. The notions of uniform asymptotic and exponential stability in
dynamical systems theory imply convergence of the system trajectories to a Lyapunov stable
equilibrium state over an in�nite horizon: [22] investigate the asymptotic stability of the zero
solution and boundedness of all solutions of a certain third order nonlinear ordinary vector
di�erential equation and in [14], the author presents a practical method to solve the problem
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of global output feedback tracking trajectories for a class of EulerLagrange systems which
globally exponentially stabilize trajectories.

A converse Lyapunov theorem will be expecting for theoretical and practicalusage. In
fact, converse Lyapunov theorems always attract much attention within stability theory. [11]
threw �rst light on this question for deterministic systems.

In [10], a converse theorem for uniform asymptotic stability is established, and con�rms
that if the origin is uniformly asymptotically stable, then there is a Lyapunov function that
meets some conditions. Motivated by robust control analysis and design, the authors in
[12] establish a smooth converse Lyapunov theorem for uniform global asymptotic robust
stability. The author in [21], give a Lyapunov characterization of a concept of, non-uniform
in time, global exponential robust stability of the origin. In [9], a converse Lyapunov theorem
of a concept of global asymptotic robust non-uniform stability of the origin is shown. The
authors in [1] and [5] studied this problem when the origin is not necessary an equilibrium
point. When the perturbed term is small, then the trajectory will be ultimately bound and
tends to the origin when the ultimate bound approaches to zero. In [2], the author present
a converse Lyapunov theorem for the notion of uniform practical stability for nonlinear time
varying systems in presence of small perturbation.

The key work of converse Lyapunov theorems is to construct auxiliary functions that
satisfy the conditions of the respective theorems. Usually some K-class or KL-class functions
from stability de�nition play an important role in constructing Lyapunov functions. With
regard to �nite-time stability, the settling-time function will take place of K-class or KL-class
functions.

The existence of a Hölder continuous Lyapunov function assumes importance in litera-
ture where we investigate the sensitivity of stability properties to perturbations of systems
with a �nite-time-stable equilibrium under the assumption of the existence of a Lipschitz
continuous Lyapunov function. For the sake of completeness, it should be noticed that a
more recent notion of �nite-time stability, which is strictly related to Lyapunov asymptotic
stability, has been given in [3]-[16] for continuous autonomous systems and in [18]-[7] for
nonlinear time varying dynamical systems. This di�erent concept of �nite-time stability
requires convergence of system trajectories to an equilibrium state in �nite-time. Several
�nite-time stabilization results have been obtained by combining the �nite-time stability
results [17]-[8]-[19].

In this paper, we extend the results of [3], [17] and [7] to address uniform �nite-time
stability for time-varying systems. In addition, we establish a new necessary and su�cient
conditions for continuity of the settling-time function, that is, the time at which a system
trajectory reaches an equilibrium state. Then, we give an application of perturbed system
to show the applicability of the result.

The rest of this paper is organized as follows. In Section 2, we give the basic concepts
about uniform-�nite-time stability. In Section 3, we provide a new Lyapunov and converse
Lyapunov results for uniform �nite-time stability of time-varying parameter dependent sys-
tems in terms of scalar di�erential inequalities, Such that the uniform stability in �nite time
of this system can not be attained by the theorems given by [3], [17] and [7]. In section 4, we
present an application of our results for perturbed system and we prove it with a numerical
example.
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2 Preliminaries results

In this section, we introduce notation and de�nitions, and present some key results needed
for developing the main results of this paper. We consider the system:

ẋ = f ξ(t, x), x ∈ Rn, (2.1)

where x(t) ∈ Rn, t ∈ R, ξ and f ξ : [0,+∞) × Rn −→ Rn is such that f ξ(., .) is jointly
continuous in t and x, and for every t ∈ [0,+∞), f ξ(t, 0) = 0.

De�nition 2.1. 1) A scalar continuous function α(r), de�ned for r ∈ [0,+∞) is said to
belong to class K if it is strictly increasing and α(0) = 0. It is said to belong to class
K∞ If more α(r) → ∞ as r → ∞.

2) A scalar continuous function β(r, s), de�ned for r ∈ [0,+∞) and s ∈ [0,∞) is said to
belong to class KL if, for each �xed s, the mapping β(r, s) belongs to class K with
respect to r and, for each �xed r, the mapping β(r, s) is decreasing with respect to s
and β(r, s) → 0 as s → ∞.

3) A scalar function γ(r), de�ned for r ∈ [0,+∞) is said to belong to class KI, if it is a
class K-function, locally Lipschitz continuous in some neighborhood outside the origin
and satis�es: there exists ϵ > 0 such that∫ ϵ

0

dz

γ(z)
< +∞.

The Lie derivative of Vξ : R+ × Rn → R along f : R+ × Rn → Rn is de�ned by

LfVξ : R+ × Rn → R, LfVξ =
∂Vξ

∂t
+

∂Vξ

∂x
f(t, x).

The next result presents the classical comparison principle for nonlinear time-varying
dynamical systems.

Theorem 2.1. [10] Consider the nonlinear dynamical system (2.1) with n = 1 and let
x(t), t ≥ t0, be the solution to (2.1) with x(t0) = x0. Assume that there exists a continuously
di�erentiable function Vξ : R+ × Rn → R+ such that

LfVξ ≤ wξ(t, Vξ(t, x)), ∀(t, x) ∈ R+ × Rn, (2.2)

where wξ(t, .) : R → R is continuous on R for all t ∈ [t0,+∞), and wξ(., y) : R → R is
continuous on [t0,+∞) for all y ∈ R, and

ż(t) = wξ(t, z(t)), zξ0(t0) = zξ, t ∈ Iz0,t0 , (2.3)

has a unique solution zξ(t), t ∈ Izξ0,t0 , where Iz0,t0 designates the maximal interval of exis-
tence of a solution zξ(t) of (2.3)with zξ(t0) = z0.
If [t0, t0 + τ ] ⊂ Ix0,t0 ∩ Izξ0,t0 and Vξ(t0, x0) ≤ zξ0, z0 ∈ R, then

Vξ(t, x(t)) ≤ zξ(t), ∀t ∈ [t0, t0 + τ ].
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Now, we develop the notion of �nite-time stability for time-varying nonlinear dynamical sys-
tems. The following de�nition generalizes De�nition of [3] to time-varying systems. Without
loss of generality, let D ⊂ Rn an open set containing 0. We assume that for each x ∈ D and
t0 ∈ R+Ix0,t0 is chosen to be the the maximal interval of existence of a solution x(t) of (2.1)
with x(t0) = x0.
In this case, we denote the trajectory or solution curve of (2.1) on Ix0,t0 satisfying the
consistency property φ(t0, t0, x0) = x0 and the semi-group property φ(t2, t1, ϕ(t1, t0, x0)) =
φ(t2, t0, x0) for every x0 ∈ D, t0 ∈ R+ , and t1 ≤ t2 ∈ Ix0,t0 by φ(., t0, x0).

De�nition 2.2. [7]
Consider the nonlinear dynamical system (2.1). The zero solution x(t) = 0 to (2.1) is
�nite-time stable, if there exist an open neighborhood N of the origin and a function Tξ :
R+ × N \ {0} → R+, called the settling-time function, such that the following statements
hold:

1) Finite-time convergence: if for every t0 ∈ [0,+∞), and x0 ∈ N \ {0}, φξ(t, t0, x0) is
de�ned on [t0, Tξ(t0, x0)), φξ(t, t0, x0) ∈ N \ {0} for all t ∈ [t0, Tξ(t0, x0)), and

lim
t→Tξ(t0,x0)

φξ(t, t0, x0) = 0.

ii) Lyapunov stability : if for all η > 0, there exists δ = δ(t0, η) > 0, such that Bδ(0) ⊂ N ,
and for every x0 ∈ Bδ(0) \ {0}, φξ(t, t0, x0) ∈ Bη(0), ∀t ∈ [t0, Tξ(t0, x0)).

Finally, the zero solution x(t) = 0 to (2.1) is globally �nite-time stable if it is �nite-time
stable with N = Rn.

Remark 2.2.
Note that the de�nition of uniform �nite-time stability di�ers from that of �nite time stability
in that it requires Lyapunov stability to be uniform with respect to the initial time. Since the
classical de�nition of uniform asymptotic stability requires uniform Lyapunov stability as
well as uniform attractivity with respect to the initial time, a more mainstream de�nition for
uniform �nite-time stability would involve uniform Lyapunov stability with uniform �nite-
time convergence.
We show that if the zero solution x(t) = 0 to (2.1) is �nite-time stable, then (2.1) possesses a
unique solution φξ(., t0, x0) for every initial condition in an open neighborhood of the origin,
including the origin, and φξ(t, t0, x0) = 0 for all t ≥ Tξ(t0, x0), t0 ∈ [0,+∞), x0 ∈ N , where
Tξ(t0, 0) = t0.

De�nition 2.3. [7]
The zero solution x(t) = 0 to the system (2.1) is said to be Uniformly �nite-time stable
(UFTS) if: there exist an open neighborhood N of the origin and a function Tξ : R+ ×N \
{0} → R+, called the settling-time function, such that the following statements hold:

1) Finite-time convergence: if for every t0 ∈ [0,+∞), and x0 ∈ N \ {0}, φξ(t, t0, x0) is
de�ned on [t0, Tξ(t0, x0)), φξ(t, t0, x0) ∈ N \ {0} for all t ∈ [t0, Tξ(t0, x0)), and

lim
t→Tξ(t0,x0)

φξ(t, t0, x0) = 0.
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ii) Uniform Lyapunov stability : if for all η > 0, there exists δ = δ(η) > 0, such that
Bδ(0) ⊂ N , and for every x0 ∈ Bδ(0) \ {0}, φξ(t, t0, x0) ∈ Bη(0), ∀t ∈ [t0, Tξ(t0, x0))
and every t0 ∈ [0,+∞)

Finally, the zero solution x(t) = 0 to (2.1) is globally uniformly �nite-time stable if it is
uniformly �nite-time stable with N = Rn.

The set of the solutions ϕξ(t, t0, x0) corresponding to the common initial condition x0 we will

denote as S(x0), let S =
⋃

x0∈N

S(x0) be the set of all possible solutions of (2.1) starting in N .

Proposition 2.3. the nonlinear dynamical system (2.1) is uniformly-�nite-time stable at
the origin if

1) there exist a class K function αξ(.) and a positive constant c, independent of t0, such that

∥φξ(t, t0, x0)∥ ≤ αξ (∥x0∥) , ∀t ≥ t0 ≥ 0, ∀x0 ∈ S(x0).

2) there exist a function Tξ0 : S → R+ such that for all x0 ∈ N , and φξ(t, t0, x0) = 0, ∀t ≥
t0 + Tξ(t, φξ(t, t0, x0)).
Tξ0 is called the settling-time function of the solution φξ(t, t0, x0).
If Tξ(t0, x0) = supφξ(t,t0,x0)∈S(x0)Tξ0(φξ(t, t0, x0)) < +∞, then Tξ(., .) is the settling-time
function of the system (2.1).

A su�cient condition of �nite-time stable can be formulated for (2.1) using the Lyapunov
theory. Let us recall the following theorem

Theorem 2.4. [15]
Suppose there exists a continuous Lyapunov function Vξ : Rn → R+

locally Lipschitz, positive de�nite and radially unbounded such that the following conditions
hold:

V̇ξ(t, x) ≤ −γ(Vξ(t, x)),

where γξ is KI − function.
Then the origin is �nite-time stable for (2.1), and the settling-time function

Tξ(x) ≤
∫ Vξ(t,x)

0

dz

γξ(z)
,

A particular possible choice is γξ(s) = csp, where c > 0 and p ∈ (0, 1).

Theorem 2.5.
There exist real numbers c > 0 and p ∈ (0, 1) and an open neighborhood D ⊂ Rn of the
origin such that

V̇ξ(x) ≤ −c(Vξ(x))
p, ∀x ∈ D \ {0} (2.4)

Then the origin is a �nite-time-stable equilibrium of (2.1). Moreover, the settling-time func-
tion Tξ of the system (2.1) satis�es:

Tξ(x) ≤
1

c(1− p)
V 1−p
ξ (x), ∀x ∈ D,

and Tξ(.) is continuous on D .
If in addition D = Rn, Vξ is proper, and V̇ξ takes negative values on Rn \ {0}, then the

origin is a globally �nite-time-stable equilibrium of (2.1).

519 Sep 2023 01:55:30 PDT
230516-Ellouze Version 2 - Submitted to Rocky Mountain J. Math.



3 Lyapunov and converse Lyapunov theory for uniform

�nite-time stability

We start this section by considering an example of uniform �nite-time stable system with a
continuous but non Lipschitzian vector �eld. This system class is di�erent from that given
by [7].

Example 1. Consider the scalar nonlinear time-varying dynamical system

ẏξ(t) = −kξ(t)sign(yξ(t))|yξ(t)|λ + γξyξ(t), y(tξ0) = yξ0, t ≥ t0, (3.1)

where sign(yξ) :=
yξ
|yξ|

, yξ ̸= 0, yξ0 ∈ R+, γξ > 0, ξ > 0, kξ(.) is a continuous function on R
and kξ(t) > 0 for almost all t ∈ [t0,+∞), and λ ∈ (0, 1). The right-hand side of (3.1) is
continuous everywhere and locally Lipschitz continuous everywhere except the origin. Hence,
every initial condition yξ0 ∈ R+ \ {0} has a unique solution in forward time on a su�ciently
small time interval. Let λ ∈ (0, 1).
Let zξ(t) = |yξ(t)|1−λ, the derivative of zξ(t) along the trajectories of system (3.1) is given
by:

żξ(t) = γξzξ(t)− (1− λ)kξ(t), (3.2)

and the solution to (3.2) is given by:

zξ(t, t0, zξ0) = sign(yξ0)[zξ0e
−γξ(t−t0) − (1− λ)e−γξt(∫ t

t0

kξ(τ)e
γξτ dτ

)
],

(3.3)

∀t0 ≤ t, zξ0 = zξ(t0) ̸= 0.
In this case, for every zξ0 ∈ R, since kξ(.) is continuous on R and kξ(t) > 0 for almost all
t ∈ [t0,+∞), there exist T1ξ := T1ξ(t0, zξ0) ≥ t0 such that∫ T1ξ

t0

kξ(τ)e
γξτ dτ =

zξ0
1− λ

eγξt0 . (3.4)

Note that if Kξ : [t0,+∞) → R is a continuously di�erentiable function such that∫
kξ(τ)e

γξτ dτ = Kξ(τ).

i.e. K̇ξ(t) = kξ(t)e
γξt > 0, for all t ∈ [t0, T1ξ], then Kξ(.) is strictly increasing function and

its inverse function K−1
ξ (.) exists.

From (3.4)we are:

[Kξ(Tξ1)−Kξ(t0)] =
zξ0

1− λ
eγξt0 ,

which implies that

T1ξ(t0, zξ0) = K−1
ξ

(
Kξ(t0) +

zξ0
1− λ

eγξt0
)
.

Hence

Tξ(t0, y0) = K−1
ξ

(
Kξ(t0) +

|yξ0|1−λ

1− λ
eγξt0

)
(3.5)
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Note that Tξ(t0, yξ0) is the setting-time function of a �nite time stable system (3.1) and
Tξ(., .) is unique since kξ(t) > 0 for almost all t ∈ [t0,+∞). Thus the zero solution yξ = 0
to equation (3.1) is globally uniformly �nite-time stable. ▲

Next, we present necessary and su�cient conditions for �nite-time stability using a Lya-
punov function involving a vector di�erentiable inequality. For the following result, we
de�ne:

V̇ξ =
∂Vξ

∂t
+

∂Vξ

∂x
f ξ(t, x)

for a given continuously di�erentiable function Vξ : [0,+∞)×N −→ R+.

Theorem 3.1. Consider the nonlinear dynamical system (2.1). Then the following state-
ments hold:

i) If there exist a continuously di�erentiable function Vξ : [0,+∞) × N −→ R+, a class K
function αξ(.) and βξ(.), a function kξ : [0,+∞) −→ R+ is continuously di�erentiable,
such that kξ(t) > 0 for almost all t ∈ [0,+∞), a real number λ ∈ (0, 1), γξ > 0 and an
open neighborhood M ⊂ N , of the origin such that, ∀x ∈ M, ∀t ∈ [0,+∞),

Vξ(t, 0) = 0, t ∈ [0,+∞) (3.6)

e−γξtαξ(∥x∥) ≤ V 1−λ
ξ (t, x) ≤ e−γξtβξ(∥x∥), (3.7)

V̇ξ(t, x) ≤ −kξ(t)(Vξ(t, x))
λ + γξVξ(t, x). (3.8)

Then the system (2.1) is uniformly �nite-time stable.

ii) If N = Rn and there exist a class K∞ function αξ(.) and βξ(.), a function kξ : [0,+∞) −→
R+ such that kξ(t) > 0 for almost all t ∈ [0,+∞), and an open neighborhood M ⊂ N
of the origin such that (3.6)-(3.8) hold, then the system (2.1) is globally uniformly
�nite-time stable.

Proof. i) Let t0 ∈ [0,+∞), let η > 0 be such that Bη(0) = {x ∈ N , ∥x∥ < η}, de�ne
ν := α(η), and de�ne Dν := {x ∈ Bη(0) \ V 1−λ

ξ (t0, x)e
γt0 < ν}. Since V 1−λ

ξ (t0, .) is
continuous and Vξ(t0, 0) = 0, it follows that Dν is nonempty and there exists δ = δ(η, t0) > 0
such that V 1−λ

ξ (t0, x)e
γt0 < ν, ∀ x ∈ Bδ(0). Hence, Bδ(0) ⊂ Dν .

Furthermore, it follows from (3.8) and Theorem 2.1 that

Vξ(t, x(t)) ≤ yξ(t, t0, Vξ(t0, x0)), ∀x0 ∈ Bδ(0), t ∈ [t0,+∞),

where yξ(., ., .) is given by (3.1) with yξ(t) = Vξ(t, x(t)).
Now, it follows from (3.1) and (3.7) that for every x0 ∈ Bδ(0) ⊂ Dη,

e−γξtαξ(∥x∥) ≤ V 1−λ
ξ (t, x)

≤ V 1−λ
ξ (t0, x0)e

−γξ(t−t0)−

(1− λ)e−γξt

(∫ t

t0

kξ(τ)e
γξτ dτ

)
which implies that

719 Sep 2023 01:55:30 PDT
230516-Ellouze Version 2 - Submitted to Rocky Mountain J. Math.



αξ(∥x∥) ≤ V 1−λ
ξ (t, x)eγξt

≤ V 1−λ
ξ (t0, x0)e

γξt0−

(1− λ)

(∫ t

t0

kξ(τ)e
γξτ dτ

)
< αξ(η)− (1− λ)

(∫ t

t0

kξ(τ)e
γτ dτ

)
that ∥x(t)∥ ≤ η for every x0 ∈ Bδ(0), ∀t ≥ T1ξ, where T1ξ is given by (3.5).

Which implies the �nite-time stability of the zero solution x(t) = 0 to (2.1) and the �nite-
time convergence of the trajectory of (2.1), ∀t0 ∈ [0,+∞), and x0 ∈ Bδ(0).

Let η > 0 and let δ = δ(η) > 0 , be such that βξ(δ) = αξ(η). Hence, it follows from (4.5)
that, for all t0 ∈ [0,+∞) and x0 ∈ Bδ(0), it follows from (3.8) and Theorem (2.1) that

Vξ(t, x(t)) ≤ yξ(t, t0, Vξ(t0, x0)), ∀x0 ∈ Bδ(0), t ∈ [t0,+∞),

where yξ(., ., .) is given by (3.1) with y(t) = Vξ(t, x(t))

e−γξtαξ(∥x∥) ≤ V 1−λ
ξ (t, x)

≤ V 1−λ
ξ (t0, x0)e

γξ(t−t0)−

(1− λ)eγξt
(∫ t

t0

kξ(τ)e
−γξτ dτ

)
which implies that

αξ(∥x∥) ≤ V 1−λ
ξ (t, x)eγξt

≤ V 1−λ
ξ (t0, x0)e

γξt0−

(1− λ)

(∫ t

t0

kξ(τ)e
γξτ dτ

)
< βξ(∥x0∥)− (1− λ)

(∫ t

t0

kξ(τ)e
γξτ dτ

)
< αξ(η)

and hence,
∥x(t)∥ ≤ η, ∀t ≥ T1ξ.

Which implies uniform �nite-time stability of the zero solution x(t) = 0 to (2.1).
ii) Let αξ(.) and βξ(.) are class K∞ function let δ = δ(η) > 0 be such that ∥x0∥ ≤ δ, there

exist η > 0 such that βξ(δ) ≤ αξ(η). Hence, it follows from (4.5) that, for all t0 ∈ [0,+∞)
and x0 ∈ Bδ(0),

αξ(∥x∥) ≤ V 1−λ
ξ (t0, x0)e

γξt0 − (1− λ)

(∫ t

t0

kξ(τ)e
γξτ dτ

)
≤ α(η)− (1− λ)

(∫ t

t0

kξ(τ)e
γξτ dτ

)
, ∀t ≥ t0

and hence,
∥x(t)∥ ≤ η, ∀t ≥ t0, ∀t0 ∈ [0,+∞).

Finite-time convergence follows as in the proof of i) implying global uniform �nite-time
stability of the system (2.1).
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Remark 3.2. It is necessary to indicate that the exponential term that we have shown it in
the expression of Vξ is the one that allowed us to reach stability in �nite time for a class of
system larger than that given in the literature. This example shows this di�erence.

Example 2. We consider the system

ẋ = −ξt2 x
1
3 + sin(ξt)x (3.9)

with the function
f ξ(t, x(t)) = −ξt2(x(t))

1
3 + sin(ξt)x(t)

is continuous. Considering a continuously di�erentiable function Vξ : [0,+∞)×N −→ R+,
a Lyapunov function associated to system (3.9)

Vξ(t, x) =
1

2
eξtx

3
2 ,

which verify Vξ(t, 0) = 0, ∀t ∈ [0,+∞).
It is easy to compute V̇ξ(t, x) along the solutions of the system (3.9):

V̇ξ(t, x) =
∂Vξ

∂t
+

∂Vξ

∂x
f ξ(t, x)

= −3

4
ξt2eξtx

5
6 + (ξ +

3

2
sin(ξt))

1

2
eξtx

3
2

≤ −3

4
ξt2eξtx

5
6 + (ξ +

3

2
)
1

2
eξtx

3
2

Then
V̇ξ(t, x) ≤ −kξ(t)(Vξ(t, x))

λ + γξVξ(t, x)

with kξ(t) :=
3

2
13
9

ξt2e

4

9
ξt
, λ :=

5

9
and γξ := ξ + 3

2
.

Let vξ(t) = (Vξ(t, x(t)))
4
9 , then we have

v̇ξ(t) ≤
(
ξ +

3

2

)
vξ(t)−

4

9

3

2
13
9

ξt2e
4
9
ξt.

Thus,

vξ(t) ≤ vξ(t0)e
−(ξ+ 3

2)(t−t0) − 4

9
e−(ξ+

3
2)t
(∫ t

t0

3

2
13
9

ξτ 2e
4
9
ξτe(ξ+

3
2)τ dτ

)
vξ(t) ≤ vξ(t0)e

−γξ(t−t0) − (1− λ)e−γξt

(∫ t

t0

k(τ)eγξτ dτ

)
vξ(t) ≤ vξ(t0)e

−(ξ+ 3
2)(t−t0) − 4

9
e

4
9
ξt ((t− t0)(t+ t0 − 2))

with vξ(t) =
1

2
e

4
9
ξtx

2
3 and vξ(t0) =

1

2
4
9

e
4
9
ξt0x

2
3
0 , implies that

x
2
3 ≤ x0

2
3 e−

4
9
ξ(t−t0)e−(ξ+ 3

2
)(t−t0) − 2

4
9
4

9
((t− t0)(t+ t0 − 2))

x
2
3 ≤ x0

2
3 e−( 13

9
ξ+ 3

2
)(t−t0) − 2

22
9

9
((t− t0)(t+ t0 − 2))
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(x(t))2 ≤

(
x(t0)

2
3 e−( 13

9
ξ+ 3

2
)(t−t0) − 2

22
9

9
((t− t0)(t+ t0 − 2))

)3

.

Hence, by Theorem3.1, we prove the uniform �nite-time stability which indicate that the
main result of this section may be valid under the weaker assumption of �nite-time stability
with a continuous settling-time function Tξ(t0, x0) and t is the smallest real t chooses such
as (

x(t0)
2
3 e−( 13

9
ξ+ 3

2
)(t−t0) − 2

22
9

9
((t− t0)(t+ t0 − 2))

)
is strictly positive.
Fig.1. shows the state trajectory of the system (3.9) for initial condition x0 = 1, t0 = 0 and
t ∈ [0, 20] .

Lyapunov and converse Lyapunov results for �nite-time stability naturally involve �nite-
time scalar di�erential inequalities. The regularity properties of a Lyapunov function sat-
isfying such an inequality strongly depend on the regularity properties of the settling-time
function.

Theorem 3.3. Let λ ∈ (0, 1), γξ > 0 and let N an open neighborhood of the origin, we
assume that there exists a class K−function µξ : [0, r] −→ R+, where r > 0, such that
Br(0) ⊂ N and

∥f ξ(t, x)∥ ≤ e−γξλtµξ(∥x∥), ∀t ∈ [0,+∞), ∀x ∈ Br(0).

If the system (2.1) is uniformly �nite-time stable, and the settling-time function Tξ(., .) is
continuous at (t, 0), t ≥ t0, then there exist a class K−function αξ(.), a positive function
kξ(t) > 0 a continuously di�erentiable function, Vξ : [0,+∞)×N −→ R+ and a neighborhood
M ⊂ N of the origin such that that Vξ(t, x) is de�ned for all (t, x) ∈ [0,+∞)×M

Vξ(t, 0) = 0, t ∈ [0,+∞) (3.10)

e−γξtαξ(∥x∥) ≤ V 1−λ
ξ (t, x), ∀t ∈ [0,+∞), (3.11)

V̇ξ(t, x) ≤ −kξ(t)(Vξ(t, x))
λ + γξVξ(t, x), ∀t ∈ [0,+∞), (3.12)
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proof:
First, the settling-time function Tξ : [0,+∞)×N −→ R+ is continuous. Now, consider the
Lyapunov function candidate Vξ : [0,+∞)×N −→ R+ given by

Vξ(t, x) = [Tξ(t, x)− t]

1

1− λeγξt.

Note that

Vξ(t, 0) = [Tξ(t, 0)− t]

1

1− λeγξt = [t− t]

1

1− λeγξt = 0,

for all t ∈ [0,+∞), which proof (3.10).

Next, since the system (2.1) is uniformly �nite-time stable, then the solution of the system
(2.1) converge to Bη. Hence ∀η > 0, there exists δ = δ(η) > 0 such that ∀x ∈ Bδ(0),
∥ϕ(τ, t, x)∥ < η, ∀τ ≥ t ≥ 0,
Now since

ϕ(τ, t, x) = x+

∫ τ

t

f ξ(s, x(s)) ds, ∀τ ≥ t,

it follows that, with τ = Tξ(t, x),

∥x∥ ≤ ∥
∫ Tξ(t,x)

t

f ξ(s, x(s)) ds∥

≤
∫ Tξ(t,x)

t

∥f ξ(s, x(s))∥ ds

≤
∫ Tξ(t,x)

t

e−γξλsµξ(∥x(s)∥) ds

≤ e−γξλt

∫ Tξ(t,x)

t

µξ(η) ds

≤ e−γξλtµξ(η)[Tξ(t, x)− t], ∀x ∈ Bδ(0).

Let M = Bδ(0) ⊂ N , and note that ∀x ∈ M,∀t ∈ [0,+∞):

Vξ(t, x)
1− λ = [Tξ(t, x)− t]eγξ(1−λ)t

≥
(

∥x∥
µξ(η)

)
eγξt

≥ eγξtαξ(∥x∥),

where αξ(∥x∥) =
(

∥x∥
µξ(η)

)
, x ∈ M is a class K function, this proves (3.11).

Finally, consider the Lyapunov derivative V̇ξ(t, x(t)) for some trajectory x(t) starting at
t0 ∈ [0,+∞) and x0 ∈ M. In this case, note that Tξ(., .) is continuous

Ṫξ(t, x) = lim
s→t

Tξ(s, x(s))− Tξ(t, x(t))

s− t

= lim
s→t

Tξ(t0, x(t0))− Tξ(t0, x(t0))

s− t
= 0

Hence, it follows that

1119 Sep 2023 01:55:30 PDT
230516-Ellouze Version 2 - Submitted to Rocky Mountain J. Math.



V̇ξ(t, x(t)) = (
1

1− λ
[Tξ(t, x(t))− t]

λ

1− λ [Ṫξ(t, x(t))− 1] + γξ[Tξ(t, x)− t]

1

1− λ )eγξt

= − 1

1− λ
e(1−λ)γξt(Vξ(t, x))

λ + γξVξ(t, x).

which proves (3.12) with kξ(t) =
1

1− λ
ξ1−λe(1−λ)γξt. 2

Remark 3.4. It is clear that theorem3.3 is a converse result respect to theorem3.1.

4 Application of stability of perturbed system

Now we consider the following perturbed system

ẋ = f ξ(t, x) + gξ(t, x)

(4.1)

where t ≥ 0, x ∈ Rn, f is assumed to be locally Lipschitz in the state and piecewise
continuous in the time.
(A1) Suppose that the nominal system

ẋ = f ξ(t, x)

(4.2)

is uniformly Fnite-time stable with

∥f ξ(t, x)∥ ≤ e−γξλtµξ(∥x∥), ∀t ∈ [0,+∞), ∀x ∈ Br(0).

(A2) We suppose also that there exist a strictly positive function σ such that

∥∂Vξ

∂x
gξ(t, x)∥ ≤ σ(ξ)Vξ(t, x) (4.3)

Corollary 4.1. Under assumptions (A1) and (A2), the perturbed system (4.1) is globally
uniformly �nite-time stable.

Proof. Under assumptions (A1) and using the Theorem (3.3), there exist a Lyapunov func-
tion Vξ which veri�es:

Vξ(t, 0) = 0, t ∈ [0,+∞) (4.4)

e−γξtαξ(∥x∥) ≤ V 1−λ
ξ (t, x) ≤ e−γξtβξ(∥x∥), (4.5)

V̇ξ(t, x) ≤ −kξ(t)(Vξ(t, x))
λ + γξVξ(t, x). (4.6)

The derivative of Vξ along the trajectories of system (4.1) is given by

V̇ξ =
∂Vξ

∂t
+

∂Vξ

∂x
f ξ(t, x) +

∂Vξ

∂x
gξ(t, x)
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V̇ξ(t, x(t)) ≤ −kξ(t)(Vξ(t, x))
λ + γξVξ(t, x) + σ(ξ)Vξ(t, x)

≤ −kξ(t)(Vξ(t, x))
λ + (γξ + σ(ξ))Vξ(t, x)

Then the system (4.1) is uniformly �nite-time stable.

Example 3. We consider the system

ẋ = −ξt2 x
1
3 + sin(ξt)x+ ξx (4.7)

with the functions
f ξ(t, x(t)) = −ξt2(x(t))

1
3 + sin(ξt)x(t)

and
gξ(t, x(t)) = ξx(t)

are continuous. Considering a continuously di�erentiable function Vξ : [0,+∞)×N −→ R+,
a Lyapunov function associated to system (4.7)

Vξ(t, x) =
1

2
eξtx

3
2 ,

which verify Vξ(t, 0) = 0, ∀t ∈ [0,+∞).
It is easy to compute V̇ξ(t, x) along the solutions of the system (4.7):

V̇ξ(t, x) =
∂Vξ

∂t
+

∂Vξ

∂x
f ξ(t, x) +

∂Vξ

∂x
gξ(t, x)

= −3

4
ξt2eξtx

5
6 + (ξ +

3

2
sin(ξt))

1

2
eξtx

3
2 +

3

4
ξeξtx

3
2

≤ −3

4
ξt2eξtx

5
6 + (ξ +

3

2
)
1

2
eξtx

3
2 +

3

4
ξeξtx

3
2

Then
V̇ξ(t, x) ≤ −kξ(t)(Vξ(t, x))

λ + (γξ + σ(ξ))Vξ(t, x)

with kξ(t) :=
3

2
13
9

ξt2e

4

9
ξt
, λ :=

5

9
, γξ := ξ + 3

2
and σ(ξ) := 3

2
ξ Let vξ(t) = (Vξ(t, x(t)))

4
9 ,

then we have

v̇ξ(t) ≤
(
5

2
ξ +

3

2

)
vξ(t)−

4

9

3

2
13
9

ξt2e
4
9
ξt.

Thus,

vξ(t) ≤ vξ(t0)e
−( 5

2
ξ+ 3

2)(t−t0) − 4

9
e−(

5
2
ξ+ 3

2)t
(∫ t

t0

3

2
13
9

ξτ 2e
4
9
ξτe(

5
2
ξ+ 3

2)τ dτ

)
vξ(t) ≤ vξ(t0)e

−( 5
2
ξ+ 3

2)(t−t0) − 4

9
e

4
9
ξt ((t− t0)(t+ t0 − 2))

with vξ(t) =
1

2
e

4
9
ξtx

2
3 and vξ(t0) =

1

2
4
9

e
4
9
ξt0x

2
3
0 , implies that

x
2
3 ≤ x0

2
3 e−( 53

18
ξ+ 3

2
)(t−t0) − 2

22
9

9
((t− t0)(t+ t0 − 2))
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Thus,

(x(t))2 ≤

(
x(t0)

2
3 e−( 53

18
ξ+ 3

2
)(t−t0) − 2

22
9

9
((t− t0)(t+ t0 − 2))

)3

.

Hence, by Theorem 3.1, we prove the uniform �nite-time stability of the perturbed system
which is the goal of this section with the continuous settling-time function Tξ(t0, x0) and t is
the smallest real t chooses such as(

x(t0)
2
3 e−( 53

18
ξ+ 3

2
)(t−t0) − 2

22
9

9
((t− t0)(t+ t0 − 2))

)

is strictly positive. Fig.2. shows the state trajectory of the system (4.7) for initial condition
x0 = 1, t0 = 0 and t ∈ [0, 20] .

Conclusion:
This paper extends the notion of �nite-time stability for time-varying dynamical systems
to uniform �nite-time stability of new time-varying dynamical systems with a perturbation.
Speci�cally, Lyapunov and converse Lyapunov results for uniform �nite-time stability in-
volving �nite-time scalar di�erential inequalities are established.
The question now is how to study the uniform �nite time stability of time varying paramter
dependent system with delays.
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