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ON T -PARTIAL G-METRIC SPACES AND AN APPLICATION IN DYNAMIC
PROGRAMMING

∗,1,aYOUSSEF TOUAIL, 1,bAMINE JAID, AND 1,cDRISS EL MOUTAWAKIL

ABSTRACT. In this paper, a new class of spaces called T -partial G-metric spaces (X ,G) is introduced.
In this direction, the generated topology satisfies the T2-separation axiom. Furthermore, related fixed
point theorems are given without using neither the compactness of the space X nor the symmetry of G.
This results upgrade and extend many theorems in the literature. At the end of this work, an application
to dynamic programming is presented to illustrate the usability of the obtained results.

1. Introduction and Preliminaries

Fixed point theory plays a crucial role in determining the existence and the uniqueness of solutions for
functional equations in dynamic programming, differential and integral equations, etc. It is initially
formulated in the setting of metric spaces and has expanded into more generalized spaces. Among
these general spaces, the G-metric space is particularly relevant to our study.
In 2009, Mustafa and Sims [5] introduced the concept of generalized metric spaces (in short G-metric
spaces), as follows:

Definition 1.1. A G-metric on a nonempty set X is a mapping G : X ×X ×X → R+ satisfies:
(1) G(x,y,z) = 0 if x = y = z,
(2) 0 < G(x,y,z) for all x,y,z ∈ X with x ̸= y,
(3) G(x,x,y)≤ G(x,y,z) for all x,y,z ∈ X with y ̸= z,
(4) G(x,y,z) = G(p(x,y,z)), where p is a permutation of x,y,z,
(5) G(x,y,z)≤ G(x,a,a)+G(a,y,z) for all x,y,z,a ∈ X .

Example 1.2. ([5]) The previous properties may be easily interpreted in the setting of metric spaces.
Let (X ,d) be a metric space and define G : X ×X ×X → R+ by:

G(x,y,z) = d(x,y)+d(x,z)+d(y,z),

for all x,y,z ∈ X .
Then (X ,G) is a G-metric space. In this case, G(x,y,z) can be interpreted as the perimeter of the
triangle of vertices x,y and z.

A G-metric space (X ,G) is called symmetric if G(x,y,y)=G(y,x,x), for all x,y∈X . It is well known
that the function dG(x,y) = G(x,y,y) generates a Hausdorff topology if and only if G is symmetric.
So, to skip symmetry condition, the authors in [5] took two symmetric equivalent functions dG
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dG
s on X and proved that G-metric spaces are provided with a Hausdorff topology τG. Namely, their

definitions are as follows:

(1.1) dG
m(x,y) = max{G(x,y,y);G(y,x,x)}

and

(1.2) dG
s (x,y) = G(x,y,y)+G(y,x,x).

In 2012, it was showed in [3] that in the symmetric case, many fixed point theorems on G-metric spaces
are particular cases of existing fixed point theorems in metric spaces. In our work, we focus the study
on the case of non-symmetry.
On the other side, Matthews [4] has introduced the notion of a partial metric space as a part of the
study of denotational semantics of dataflow networks. In partial metric spaces, the self-distance of an
arbitrary point need not be equal to zero.
Zand and Nezhad [12] have introduced a new generalized metric space named Gp-metric spaces as a
generalization of both partial metric spaces and G-metric spaces. The following is the definition of a
Gp-metric space:

Definition 1.3. Let X be nonempty set. A function Gp : X ×X ×X → R+ is a Gp-metric on X if the
following conditions hold:

(1) x = y = z if Gp(x,y,z) = Gp(x) = Gp(y) = Gp(z),
(2) Gp(x)≤ Gp(x,x,y)≤ Gp(x,y,z) for all y ̸= z,
(3) Gp(x,y,z) = Gp(p(x,y,z)), where p is a permutation of x,y, and z,
(4) Gp(x,y,z)≤ Gp(x,a,a)+Gp(a,y,z)−Gp(a,a,a) for all x,y,z,a ∈ X .

The pair (X ,Gp) is called a Gp-metric space.

We point out that the topology generated by Gp-metrics is not T2. Aamri and El Moutawakil [1]
presented a substantial modification of the Banach contraction principle. They introduced the notion of
τ-distance functions in a general topological space (X ,τ). The authors in [6] employ this concept to
establish a fixed point theorem for contractive mappings in bounded metric spaces. This idea is based
on eliminating the need for compactness. To gain a more thorough understanding of this topic, we
recommend interested readers to consult the latest research articles [7, 8, 9, 10].
In this article, we will make modifications to Gp-metrics to introduce a new class of spaces called
T -partial G-metric spaces. This novel kind of spaces extends G-metric spaces and satisfies the T2-
separation axiom. In this context, a generalization of the main theorem in [6] is obtained by using
τ-distances.
Finally, an application to the study of existence and uniqueness of solutions for a class of functional
equations arising in dynamic programming is presented under new and weak conditions.
Now, we recall some facts which will be used in the next. Let (X ,τ) be a topological space and
p : X ×X → [0,∞) be a function. For any ε > 0 and any x ∈ X , let Bp(x,ε) = {y ∈ X : p(x,y)< ε}.

Definition 1.4. ([1]) The function p is said to be τ-distance if for each x ∈ X and any neighborhood V
of x, there exists ε > 0 such that Bp(x,ε)⊂V .

Definition 1.5. ([1]) Let (X ,τ) be a topological space with a τ-distance p.
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(1) A sequence {xn} in a Hausdorff topological space X is a p-Cauchy if it satisfies the usual
metric condition with respect to p, in other words, if lim p(xn,xm) = 0.

(2) X is S-complete if for every p-Cauchy sequence (xn), there exists x in X with lim p(x,xn) = 0.
(3) X is p-Cauchy complete if for every p-Cauchy sequence (xn), there exists x in X with limxn = x

with respect to τ .
(4) X is said to be p-bounded if sup{p(x,y)/x,y ∈ X}< ∞.

Lemma 1.6. ([1])
Let (X ,τ) be a Hausdorff topological space with a τ-distance p, then

(1) p(x,y) = 0 implies x = y.
(2) Let (xn) be a sequence in X such that limn→∞ p(x,xn) = 0 and limn→∞ p(y,xn) = 0, then x = y.

Theorem 1.7. ([1])
Let (X ,τ) be a Hausdorff topological space with a τ-distance p. Suppose that X is p-bounded and
S-complete. Let T : X −→ X be a mapping satisfying: there exists k ∈ [0,1) such that for all x,y ∈ X,
we have p(T x,Ty)≤ kp(x,y).
Then T has a unique fixed point.

2. Main results

At the beginning of this section, we introduce a new definition:

Definition 2.1. Let X be nonempty set. A function G : X ×X ×X → R+ is a T -partial G-metric on X
if the following conditions hold:

(1) G(x,y,z) = G(x) or G(x,y,z) = G(y) or G(x,y,z) = G(z) then x = y = z,
(2) G(x,x,y)≤ G(x,y,z) for all y ̸= z,
(3) G(x)< G(x,y,z) for all x ̸= y,
(4) G(x,y,z) = G(p(x,y,z)), where p is a permutation of x,y,z, and
(5) G(x,y,z)≤G(x,a,a)+G(a,y,z)−min{G(x),G(y)} for all x,y,z,a∈X , where G(x)=G(x,x,x).

The pair (X ,G) is called a T -partial G-metric space.

Clearly, every G-metric space is a T -partial G-metric space with G(x) = 0 for all x ∈ X . However,
the converse of this fact need not hold, as we will present in the following example:

Example 2.2. Let (X ,G) be a G-metric space. Then (X ,G′) is a T -partial G-metric space for
G′(x,y,z) = G(x,y,z)+ ε , for all x,y,z ∈ X with ε > 0.

The following are related topological notions of a T -partial G-metric space:

Definition 2.3. Let (X ,G) be a T -partial G-metric, x ∈ X and ε > 0.
(1) BG(x,ε) = {y ∈ X : G(x,y,y)< G(x)+ ε} is called the open ball with center x and radius ε .
(2) A sequence {xn} in X converges to a point x ∈ X if and only if limn,m→∞ G(x,xn,xm) = G(x).
(3) A sequence {xn} ⊂ X is a Cauchy sequence if limm,n→∞ G(xn,xm,xm) exists and is finite.
(4) X is complete if every Cauchy sequence {xn} ⊂ X converges to a point x ∈ X .
(5) X is said to be bounded if sup{G(x,y,z)/x,y,z ∈ X}< ∞.
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Lemma 2.4. Let (X ,G) be a T -partial G-metric space and p : X ×X → R+ be a function defined by

p(x,y) = eG(x,y,y)−1.(2.1)

Then p is a τG-distance on X, where τG is the topology induced by G.

Proof. Let (X ,τG) be the topological space with the topology τG and V an arbitrary neighborhood of an
arbitrary x ∈ X , then there exists ε > 0 such that BG(x,ε)⊂V , where BG(x,ε) = {y ∈ X ,G(x,y,y)<
G(x)+ ε} is the open ball in (X ,G).
It is easy to see that Bp(x,eε −1)⊂ BG(x,ε), indeed:
Let y∈Bp(x,eε −1), then p(x,y)< eε −1, which implies that eG(x,y,y)< eG(x)+ε . Therefore, G(x,y,y)<
G(x)+ ε . □

Lemma 2.5. Let (X ,G) be a bounded T -partial G-metric space, then (X , p) is a bounded topological
space with the τ-distance p defined in Lemma 2.4.

Lemma 2.6. Let (X ,G) be a complete T -partial G-metric space, then (X ,τG) is a S-complete
topological space.

Proof. Let {xn} be a p-Cauchy sequence, which implies that limn,m p(xn,xm)= 0, and hence G(xn,xm,xm)−→
0. Therefore, {xn} ⊂ (X ,G) is a Cauchy sequence. Now, since (X ,G) is complete, there exists u ∈ X
such that lim p(u,xn) = 0. □

Proposition 2.7. A T -partial G-metric on a nonempty X generates a Hausdorff topology τG on X
with a base of the family of open balls {BG(x,ε) : x ∈ X ,ε > 0}.

Proof. Let x ̸= y ∈ X . Putting dz := G(x,y,z)−max{G(x),G(y)}> 0, where z ∈ X .
There exists an element z0 ∈ X such that:

(2.2) BG

(
x,

dz0

2

)
∩BG

(
y,

dz0

2

)
= /0.

Indeed: If a ∈ BG(x,
dz
2 )∩BG(y,

dz
2 ) for all z ∈ X , we have

G(x,y,a)≤ G(x,a,a)+G(a,y,a)−min{G(x),G(y)}

< G(x)+
da

2
+G(y)+

da

2
−min{G(x),G(y)}

= G(x)+G(y)−min{G(x),G(y)}+G(x,y,a)−max{G(x),G(y)}
= G(x,y,a)

(2.3)

It is easy to see that:

(2.4) G(x)+G(y)−min{G(x),G(y)}−max{G(x),G(y)}= 0.

Therefore, we obtain G(x,y,a)< G(x,y,a), which this is a contradiction.
In addition, we have

(2.5) x ∈ BG

(
x,

dz0

2

)
,y ∈ BG

(
y,

dz0

2

)
.

This finishes the proof. □
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The main result of this work is the following:

Theorem 2.8. Let T : X −→ X be a mapping of a bounded complete T -partial G-metric space (X ,G)
such that

(2.6) inf
x ̸=y∈X

{G(x,y,y)−G(T x,Ty,Ty)}> 0.

Then T has a unique fixed point.

Proof. We set α = inf
x ̸=y∈X

{G(x,y,y)−G(T x,Ty,Ty)}. Hence, for all x ̸= y ∈ X , we get

(2.7) G(T x,Ty,Ty)≤ G(x,y,y)−α,

which implies that

(2.8) eG(T x,Ty,Ty) ≤ keG(x,y,y),

for all x ̸= y ∈ X where k = e−α < 1. Also,

(2.9) p(T x,Ty)≤ kp(x,y),

for all x ̸= y ∈ X where k < 1 and p is the function defined in Lemma (2.4).
Finally, using Lemmas 2.7, 2.4, 2.5, 2.6 and Theorem 1.7, we conclude that T has a unique fixed point
in X . □

Example 2.9. Consider the set X = {2,3,4,5} and the function G : X ×X ×X → R+ defined by:

(x,y,z) G(x,y,z)
(x,y,z) /∈ {(3,4,4),(4,3,3)} |x− y|+ |x− z|+ |y− z|+1

(3,4,4) 4
(4,3,3) 5

It is straightforward to show that (X ,G) is a complete T -partial G-metric space. Define a mapping T
as follows:

(2.10) T 2 = T 3 = 2 and T 4 = T 5 = 3.

So, we obtain
G(2,3,3)−G(T 2,T 3,T 3) = 2
G(2,4,4)−G(T 2,T 4,T 4) = 2
G(2,5,5)−G(T 2,T 5,T 5) = 4
G(3,4,4)−G(T 3,T 4,T 4) = 1
G(4,3,3)−G(T 4,T 3,T 3) = 2
G(3,5,5)−G(T 3,T 5,T 5) = 2
G(4,5,5)−G(T 4,T 5,T 5) = 2

Therefore, for all x ̸= y ∈ X we have

(2.11) G(x,y,y)−G(T x,Ty,Ty)≥ 1.
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In other words:

(2.12) inf
x ̸=y∈X

{G(x,y,y)−G(T x,Ty,Ty)}> 0.

Then, all conditions of Theorem 2.8 are satisfied and T has the unique fixed point 2 = T 2.

Remark 2.10. In the above example, we did not need the symmetry condition, since

(2.13) G(4,3,3) = 5 ̸= 4 = G(3,4,4),

which is a main condition for which G(x,y,y) become a metric.

If we take G(x) = 0, we obtain:

Corollary 2.11. Let T : X −→ X be a mapping of a bounded complete G-metric space (X ,G) such
that inf

x ̸=y∈X
{G(x,y,y)−G(T x,Ty,Ty)}> 0. Then T has a unique fixed point.

3. Application

In this section, we investigate the existence and uniqueness of a solution for a specific category of
functional equations in the field of dynamic programming. Our study draws inspiration from the works
of Belman [2, 11]. To achieve this purpose, suppose that X and Y are Banach spaces, S ⊂ X is the
state space and D ⊂Y is the decision space. Let ρ : S×D → S, g : S×D →R and G : S×D×R→R,
where R is the field of real numbers. B(S) denotes the set of all bounded real-valued functions on S.
For a ∈ B(S), denote ||a||= supx∈S |a(x)| and define:

(3.1) G(h,k, l) = sup
x∈S

{|h(x)− k(x)|, |h(x)− l(x)|, |k(x)− l(x)|}+max{||h||, ||k||, ||l||},

where h,k, l ∈ B(S).
(B(s),G) is a complete T -partial G-metric space.
Consider the following functional equation:

(3.2) f (x) = sup
y∈D

{g(x,y)+G (x,y, f (ρ(x,y)))},

where g and G are bounded.
We define T : B(S)→ B(S) by:

(3.3) T f (x) = sup
y∈D

{g(x,y)+G (x,y, f (ρ(x,y)))}.

In the following, we prove the existence and uniqueness of the solution for the functional (3.2).

Theorem 3.1. Let T : B(S)→ B(S) be an operator defined by (3.3) and assume the following condition
is satisfied:
There exists M > 0 such that:

(3.4) |G (x,y,h(x))−G (x,y,k(x))| ≤ G(h,k,k)−max{||T h||, ||T k||}−M,

for all (h,k,x,y) ∈ B(S)×B(S)×S×D, where h(x) ̸= k(x).
Then the functional equation (3.2) has a unique bounded solution.
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Proof. Let ε be an arbitrary positive number, let x ∈ S and h,k ∈ B(S), by the definition of T , there
exist y,z ∈ D such that:

(3.5) g(x,z)+G (x,z,h(ρ(x,z)))≤ T (h(x))< g(x,y)+G (x,y,h(ρ(x,y)))+ ε

and

(3.6) g(x,y)+G (x,y,k(ρ(x,z)))≤ T (k(x))< g(x,z)+G (x,z,k(ρ(x,z)))+ ε.

It follows that:

(3.7) T (h(x))−T (k(x))< |G (x,y,h(ρ(x,y)))−G (x,y,k(ρ(x,y)))|+ ε.

Thus

(3.8) T (h(x))−T (k(x))< G(h,k,k)−max{||T h||, ||T k||}−M+ ε.

Similarly, we can find

(3.9) T (k(x))−T (h(x))< G(h,k,k)−max{||T h||, ||T k||}−M+ ε.

In view of (3.8) and (3.9), we obtain

(3.10) |T (h(x))−T (k(x))|< G(h,k,k)−max{||T h||, ||T k||}−M+ ε.

Therefore

(3.11) G(T h,T k,T k)< G(h,k,k)−M+ ε.

Since ε is taken arbitrary, then we obtain

(3.12) G(T h,T k,T k)< G(h,k,k)−M,

for all h ̸= k ∈ B(S).
Equivalently

(3.13) inf
h̸=k

{G(h,k,k)−G(T h,T k,T k)}> 0.

Finally, by using Theorem 2.6, we conclude that the functional (3.2) has a unique bounded solution. □
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