
ON THE INDEX DIVISORS AND MONOGENITY OF CERTAIN NONIC
NUMBER FIELDS

OMAR KCHIT

Abstract. In this paper, for any nonic number field K generated by a root α of a
monic irreducible trinomial F(x) = x9 + ax + b ∈ Z[x] and for every rational prime p,
we characterize when p divides the index of K. We also describe the prime power
decomposition of the index i(K). In such a way we give a partial answer of Problem
22 of Narkiewicz ([23]) for this family of number fields. In particular if i(K) , 1, then
K is not mongenic. We illustrate our results by some computational examples.

1. Introduction

Let K be a number field of degree n and ZK its ring of integers. For any primitive
element α ∈ ZK of K, it is well known that Z[α] is a free Z-module of rank n, from
which it follows that the index (ZK : Z[α]) is finite. A well known formula linking
(ZK : Z[α]), ∆(α), and dK is given by:

(1.1) ∆(α) = ±(ZK : Z[α])2
× dK,

where dK is the absolute discriminant of K and∆(α) is the discriminant of the minimal
polynomial of α over Q. The index of K, denoted by i(K), is the greatest common
divisor of the indices of all integral primitive elements of K. Say i(K) = gcd {(ZK :
Z[θ]) |K = Q(θ) and θ ∈ ZK}. A rational prime p dividing i(K) is called a prime
common index divisor of K. If K is monogenic, then ZK has a power integral basis,
i.e., a Z-basis of the form (1, θ, . . . , θn−1), and the index of K is trivial, say i(K) = 1.
Therefore a field having a prime common index divisor is not monogenic. In 1930,
Engstrom [10] was the first one who studied the prime power decomposition of the
index of a number field. He showed that for number fields of degree n ≤ 7, νp(i(K)) is
determined by the form of the factorization of pZK, where νp is the p-adic valuation
of Q. It is an interesting problem to classify these number fields with non-trivial
index, which are of course not monogenic. In [27], Śliwa showed that, if p is a non-
ramified ideal in K, then νp(i(K)) is determined by the factorization of pZK. These
results were generalized by Nart ([24]), who developed a p-adic characterization of
the index of a number field. In [22], Nakahara studied the index of non-cyclic but
abelian biquadratic number fields. In [12] Gaál et al. characterized the field indices
of biquadratic number fields having Galois group V4. In [2], for any quartic number
field K defined by a trinomial x4 + ax + b, Davis and Spearman characterized when
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p = 2, 3 divides i(K). In [5], for any quartic number field K defined by a trinomial
x4 + ax2 + b, El Fadil and Gaál gave necessary and sufficient conditions on a and
b, which characterize when a rational prime p divides i(K). In [4], for any rational
prime p, El Fadil characterized when p divides the index i(K) for any quintic number
field K defined by a trinomial x5 + ax2 + b. In [7], for every rational prime p, El Fadil
and Kchit characterized νp(i(K)) for any septic number field defined by a trinomial
x7 + ax3 + b. In [8], they studied the index divisors and monogenity of the number
fields defined by the trinomials x12 + axm + b. In ([17], [19]), the authors studied the
integral closedness ofZ[α] in a number field K defined by general type of trinomials:
xn + axm + b. Their results give a partial answer to the problem of monogenity of K,
but does not characterize when K is not monogenic. In [18], Jakhar gave sufficient
conditions on a, b,m, q, s so that a rational prime p divides the index of the number
field defined by the trinomial xqs

− axm
− b. He determined some cases when the field

K is not monogenic, but its results does not characterize all the prime divisors of the
index of these number fields. In this paper, for any nonic number field K defined
by a monic irreducible trinomial x9 + ax + b ∈ Z[x] and for every rational prime p,
we characterize when p divides the index i(K). Based on Engstrom’s results given in
[10], we evaluate νp(i(K)) in some cases.

2. Main Results

Throughout this section, K is a number field generated by a complex root α of a
monic irreducible trinomial F(x) = x9 + ax + b ∈ Z[x]. Without loss of generality, we
assume that for every rational prime p, νp(a) ≤ 7 or νp(b) ≤ 8.
We start with the following theorem, which characterizes when the ring Z[α] is
integrally closed.

Theorem 2.1. The ringZ[α] is integrally closed if and only if the following conditions hold:
(1) If p divides both a and b, then νp(b) = 1.
(2) If 2 does not divide a and divides b, then (a, b) ∈ {(1, 0), (3, 2)} (mod 4).
(3) If 3 divides a and does not divide b, then

(a, b) ∈ {(0, 2), (0, 5), (3,−1), (3, 2)(6,−1), (6, 5), (0, 4), (0, 7), (3, 1), (3, 7), (6, 1), (6, 4)} (mod 9).

(4) For every rational prime p < {2, 3} dividing 224a9 + 318b8, if νp(ab) = 0, then
νp(224a9 + 318b8) = 1.

If all these conditions hold, then K is monogenic and i(K) = 1.

In the next theorems for every rational prime p, we characterize when p divides
the index i(K) and evaluate νp(i(K)) in some cases.
Let us denote by ∆ the discriminant of F(x) and for every rational prime p, let

∆p =
∆

pνp(∆)
.

The following theorem characterizes when 2 divides i(K).
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Theorem 2.2. The rational prime 2 divides the index i(K) if and only if one of the following
conditions is satisfied:

(1) (a, b) ≡ (1, 2) (mod 4).
(2) (a, b) ≡ (3, 4) (mod 8).
(3) (a, b) ∈ {(15, 0), (7, 8)} (mod 16).
(4) (a, b) ≡ (28, 0) (mod 32).
(5) (a, b) ∈ {(4, 0), (52, 32)} (mod 64).
(6) a ≡ 112 (mod 128) and b ≡ 128 (mod 256).
(7) (a, b) ∈ {(368, 256), (112, 256), (240, 0), (496, 0), (448, 0)} (mod 512).
(8) a ≡ 240 (mod 256) and b ≡ 256 (mod 512).
(9) (a, b) ≡ (64, 0) (mod 1024).

In particular, if one of the above conditions holds, then K is not monogenic.

Remark 1. Based on Engstrom’s results given in [10], the following table provides
ν2(i(K)) for some cases of Theorem 2.2:

Table 1. ν2(i(K))

Conditions ν2(i(K))
(a, b) ≡ (1, 2) (mod 4) 1
(a, b) ≡ (7, 8) (mod 16) and ν2(∆) is odd

3(a, b) ≡ (7, 8) (mod 16), ν2(∆) = 28, and ∆2 ≡ 3 (mod 4)
(a, b) ≡ (7, 8) (mod 16), ν2(∆) = 2k ≥ 30, and ∆2 ≡ 1 (mod 4)
(a, b) ≡ (368, 256) (mod 512) 1
a ≡ 240 (mod 256) and b ≡ 256 (mod 512) 3

The following theorem characterizes when 3 divides i(K).

Theorem 2.3. The following table provides ν3(i(K)):

Table 2. ν3(i(K))

Conditions ν3(i(K))
(a, b) ∈ {(18, 62), (72, 8)} (mod 81) and a + b ≡ −1 (mod 243)

ν3(∆) = 2k and
1(a, b) ≡ (45, 35) (mod 81) and a + b ≡ 161 (mod 243)

(a, b) ≡ {(18, 19), (72, 73)} (mod 81) and b − a ≡ 1 (mod 243)
∆3 ≡ −1 (mod 3)(a, b) ≡ (45, 46) (mod 81) and b − a ≡ 82 (mod 243)

Otherwise 0

In particular, if i(K) , 1, then K is not monogenic.

Theorem 2.4. For every rational prime p ≥ 5 and for every (a, b) ∈ Z2 such that x9+ax+b is
irreducible, p does not divide the index i(K), where K is the number field defined by x9+ax+b.
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3. Preliminaries

Our proofs are based on Newton polygon techniques applied on prime ideal
factorization, which is a standard method which is rather technical but very efficient
to apply. We have introduced the corresponding concepts in several former papers.
Here we only give the theorem of index of Ore which plays a key role for proving
our main results.
Let K = Q(α) be a number field generated by a complex root α of a monic irreducible
polynomial F(x) ∈ Z[x]. We shall use Dedekind’s theorem [25, Chapter I, Proposition
8.3] and Dedekind’s criterion [1, Theorem 6.1.4]. Let ϕ ∈ Zp[x] be a monic lift to
an irreducible factor of F(x) modulo p, F(x) = a0(x) + a1(x)ϕ(x) + · · · + al(x)ϕ(x)l the
ϕ-expansion of F(x), and N+ϕ(F) the principal ϕ-Newton polygon of F(x). Let Fϕ be

the field Fp[x]/(ϕ), then to every side S of N+ϕ(F) with initial point (i,ui), and every
i = 0, . . . , l, let the residue coefficient ci ∈ Fϕ defined as follows:

ci =


0, if (s + i,us+i) lies strictly above S,(

as+i(x)
pus+i

)
mod (p, ϕ(x)), if (s + i,us+i) lies on S.

Let −λ = −h/e be the slope of S, where h and e are two positive coprime integers and
l = l(S) its length. Then d = l/e is the degree of S. Hence, if i is not a multiple of e, then
(s+ i,us+i) does not lie on S, and so ci = 0. Let R1(F)(y) = tdyd+ td−1yd−1+ · · ·+ t1y+ t0 ∈

Fϕ[y], called the residual polynomial of F(x) associated to the side S, where for every
i = 0, . . . , d, ti = cie. If R1(F)(y) is square free for each side of the polygon N+ϕ(F), then
we say that F(x) is ϕ-regular.

Let F(x) =
r∏

i=1

ϕi
li

be the factorization of F(x) into powers of monic irreducible

coprime polynomials over Fp, we say that the polynomial F(x) is p-regular if F(x) is a
ϕi-regular polynomial with respect to p for every i = 1, . . . , r. Let N+ϕi

(F) = Si1+· · ·+Siri

be the ϕi-principal Newton polygon of F(x) with respect to p. For every j = 1, . . . , ri,

let R1i j(F)(y) =
si j∏

s=1

ψ
ai js

i js (y) be the factorization of R1i j(F)(y) in Fϕi[y]. Then we have the

following theorem of index of Ore:

Theorem 3.1. ([9, Theorem 1.7 and Theorem 1.9])
Under the above hypothesis, we have the following:

(1)

νp((ZK : Z[α])) ≥
r∑

i=1

indϕi(F).

The equality holds if F(x) is p-regular.

30 Jul 2023 04:53:36 PDT
230704-Kchit Version 4 - Submitted to Rocky Mountain J. Math.



THE INDEX DIVISORS AND MONOGENITY OF CERTAIN NONIC NUMBER FIELDS 5

(2) If F(x) is p-regular, then

pZK =

r∏
i=1

ti∏
j=1

si j∏
s=1

p
ei j

i js

is the factorization of pZK into powers of prime ideals ofZK, where ei j is the smallest
positive integer satisfying ei jλi j ∈ Z and the residue degree of pi js over p is given by
fi js = deg(ϕi) × deg(ψi js) for every (i, j, s).

If the theorem of Ore fails, that is, F(x) is not p-regular, then in order to complete
the factorization of F(x), Guàrdia, Montes, and Nart introduced the notion of high
order Newton polygon ([13]). Similar to first order, for each order r, they introduced
the valuation ωr, the key polynomial ϕr(x) for this valuation, the Newton polygon
Nr(F) of any polynomial F(x) with respect to ωr and ϕr(x), and for each side Ti of
Nr(F), the residual polynomial Rr(F)(y), and the index of F(x) in order r. For more
details, we refer to [13].

In [10], Engstrom determined νp(i(K)), from the factorization of pZK, for every
number filed of degree n ≤ 7. Moreover, his results characterize νp(i(K)) for an
arbitrary number field in certain particular cases, according to the factorization of
p in K. Here are the results used to calculate νp(i(K)) in the case of number fields
defined by x9 + ax + b.

Theorem 3.2. ([10, Corollary, p. 230])
Let p be a rational prime. For every positive integer f , letP f be the number of distinct prime
ideals of ZK lying above p with residue degree f and N f the number of monic irreducible
polynomials of Fp[x] of degree f . If K is a number field of degree n in which

pZK = p
e1
1 p

e2
2 · · · p

es
s ,

where P fi < N fi for fi , 1, and ei = 1 for fi = 1 except for one prime ideal, then

νp(i(K)) = s1 +

s∑
i=1

si

(
r − pi

(
si + 1

2

))
,

where r is the number of first residue degree and first ramification index prime ideals dividing
p and si = ⌊r/pi

⌋.

Theorem 3.3. ([10, Theorem 6])
If K is a number field of degree n in which

2ZK = p
a
1p

b
2p

2
3p

c
4p

d
5, with residue degree 1 each ideal factor,

where a ≥ b ≥ 2 > c ≥ d, then

ν2(i(K)) =
{

2 + c + 2d if a > 2,
3 + c + 2d if a = 2.
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4. Proofs ofMain Results

Throughout this section, if pZK =

r∏
i=1

ti∏
j=1

si j∏
s=1

p
ei j

i js, then ei j denotes the ramification

index of pi js and fi js denotes its residue degree for every (i, j, s).
For every rational prime p and every integer m let mp = m/pνp(m).

Proof of Theorem 2.1.
Let K = Q(α) be a number field defined by a monic irreducible trinomial F(x) =
x9 + ax + b ∈ Z[x]. Since ∆ = 224a9 + 318b8 is the discriminant of F(x), thanks to the
index formula (1.1), we have the following:

(1) If p divides both a and b, then p does not divide the index (ZK : Z[α]) if and
only if νp(b) = 1.

(2) If p = 2 and 2 does not divide b, then 2 does not divide (ZK : Z[α]).
(3) If p = 2, 2 divides b and does not divide a, then F(x) ≡ x(x − 1)8 (mod 2).

Let ϕ1 = x and ϕ2 = x − 1, then F(x) = · · · + 36ϕ2
2 + (a + 9)ϕ2 + a + b + 1.

Hence 2 does not divide (ZK : Z[α]) if and only if ν2(a + b + 1) = 1; that is
(a, b) ∈ {(1, 0), (3, 2)} (mod 4).

(4) If p = 3 and 3 does not divide a, then 3 does not divide (ZK : Z[α]).
(5) If p = 3, 3 divides a, and b ≡ −1 (mod 3), then F(x) ≡ (x − 1)9 (mod 3).

Let ϕ = x − 1. Then F(x) = · · · + 36ϕ2 + (a + 9)ϕ + a + b + 1. Hence 3
does not divide (ZK : Z[α]) if and only if ν3(a + b + 1) = 1; that is (a, b) ∈
{(0, 2), (0, 5), (3,−1), (3, 2)(6,−1), (6, 5)} (mod 9).

(6) If p = 3, 3 divides a, and b ≡ 1 (mod 3), then F(x) ≡ (x + 1)9 (mod 3).
Let ϕ = x + 1. Then F(x) = · · · − 36ϕ2 + (a + 9)ϕ − a + b − 1. Hence
3 does not divide (ZK : Z[α]) if and only if ν3(−a + b − 1) = 1; that is
(a, b) ∈ {(0, 4), (0, 7), (3, 1), (3, 7), (6, 1), (6, 4)} (mod 9).

(7) If p < {2, 3}, p2 divides ∆ = 224a9 + 318b8, and νp(ab) = 0, then F(x) admits a
multiple root u modulo p if and only if F(u) = u9 + au + b ≡ 0 (mod p) and

F′(u) = 9u8 + a ≡ 0 (mod p). That is 8au + 9b ≡ 0 (mod p). Let u =
− 9b
8a
∈ Q.

Since νp(8a) = 0, then u ∈ Zp. Let ϕ = x−u. Then F(x) = · · ·+ 36u7ϕ2+Aϕ+B,
with

A = a + 9u8 =
224a7 + 318b8

224a8 =
∆

224a8 , and

B = au + b + u9 =
− 318b9

− 224a9b
227a9 =

− b∆
227a9 .

Since νp(A) = νp(B) = νp(∆) and νp(36u7) = 0, then N+ϕ(F) = S1 has a single side
joining (0, νp(∆)) and (2, 0). Since νp(∆) ≥ 2, by Theorem 3.1, νp((ZK : Z[α])) ≥
⌊νp(∆)/2⌋ ≥ 1. Hence p divides the index (ZK : Z[α]).

□
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For the proof of Theorems 2.2, 2.3, and 2.4, we need the following lemma, which
characterizes the prime common index divisors of K.

Lemma 4.1. ([10])
Let p be a rational prime and K a number field. For every positive integer f , let P f be the
number of distinct prime ideals ofZK lying above p with residue degree f andN f the number
of monic irreducible polynomials of Fp[x] of degree f . Then p divides the index i(K) if and
only if P f > N f for some positive integer f .

Proof of Theorem 2.2.
Since ∆ = 224a9 + 318b8 is the discriminant of F(x), thanks to the index formula (1.1),
if 2 does not divide b, then ν2((ZK : Z[α])) = 0 and so ν2(i(K)) = 0. Assume that 2
divides b. Then we have the following cases:

(1) If ν2(a) = 0, then F(x) ≡ x(x − 1)8 (mod 2). Let ϕ = x − 1. Then x provides
a unique prime ideal of ZK lying above 2 with residue degree 1. For ϕ, let
F(x) = ϕ9+9ϕ8+36ϕ7+84ϕ6+126ϕ5+126ϕ4+84ϕ3+36ϕ2+ (a+9)ϕ+a+b+1.
Then we have the following cases:

(i) If (a, b) ∈ {(1, 0), (3, 2)} (mod 4), then by Theorem 2.1, ν2(i(K)) = 0.
(ii) If (a, b) ≡ (1, 2) (mod 4), then N+ϕ(F) = S1 + S2 has two sides joining (0,w),

(1, 1), and (8, 0) with w ≥ 2. Thus the degree of each side is 1 and so
2ZK = p11p21p

7
22 with residue degree 1 each ideal factor. Since there are

just two monic irreducible polynomials of degree 1 in F2[x], by Lemma
4.1, 2 divides i(K). Applying Theorem 3.2, we get ν2(i(K)) = 1.

(iii) For (a, b) ≡ (3, 0) (mod 4), we have the following sub-cases:
(a) If (a, b) . (7, 8) (mod 16), then the treatment of this case is similar

the case (ii) above, and Table 3 summarizes the obtained results.

Table 3

Cases 2ZK fi ν2(i(K))
(a, b) ∈ {(3, 0), (7, 4)} (mod 8) p1p

4
2 f1 = 1, f2 = 2 0

(a, b) ≡ (3, 4) (mod 8) p1p2p
3
3p

4
4 fi = 1 ≥ 1

(a, b) ∈ {(7, 0), (15, 8)} (mod 16) p1p
2
2p

4
3 f1 = f3 = 1, f2 = 2 0

(a, b) ≡ (15, 0) (mod 16) p1p2p
3
3p

4
4 fi = 1 ≥ 1

(b) If (a, b) ≡ (7, 8) (mod 16), then ν2(∆) ≥ 28. As in the proof of

Theorem 2.1, let b2 =
b
8

and u =
− 9b2

a
. Since 2 does not divide a,

then u ∈ Z2. Let ϕ = x−u, then F(x) = ϕ9+9uϕ8+36u2ϕ7+84u3ϕ6+
126u4ϕ5 + 126u5ϕ4 + 84u6ϕ3 + 36u7ϕ2 + Aϕ + B with

A = a + 9u8 =
∆

224a8, and

B = au + b + u9 =
− b∆
227a9 =

− b2∆

224a9 .

Thus ν2(A) = ν2(B) = ν2(∆) − 24.
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b1- If ν2(∆) is odd, then N+ϕ(F) = S1 + S2 + S3 has three sides joining
(0, ν2(∆)−24), (2, 2), (4, 1), and (8, 0). Thus the degree of each side is
1 and so 2ZK = p11p

2
21p

2
22p

4
23 with residue degree 1 each ideal factor.

Hence 2 divides i(K). Applying Theorem 3.3, we get ν2(i(K)) = 3.
b2- If ν2(∆) = 2k+ 26 is even (k ≥ 1), then N+ϕ2

(F) = S1+S2+S3 has three
sides joining (0, 2k + 2) (2, 2), (4, 1), and (8, 0) with d(S2) = d(S3) = 1
and R11(F)(y) = (y + 1)2

∈ Fϕ[y]. Let us replace ϕ by x − (u + 2k).
Then F(x) = · · · + A4(x − (u + 2k))4 + A3(x − (u + 2k))3 + A2(x − (u +
2k))2 + A1(x − (u + 2k)) + A0 with ν2(A4) = 1, ν2(A3) = ν2(A2) = 2,

A1 = A + 72u72k + 252u6(2k)2 + 504u5(2k)3 + 630u4(2k)4 + 504u3(2k)5 + 252u2(2k)6

+72u(2k)7 + 9(2k)8, and
A0 = B + 2kA + 36u7(2k)2 + 84u6(2k)3 + 126u5(2k)4 + 126u4(2k)5

+84u3(2k)6 + 36u2(2k)7 + 9u(2k)8 + (2k)9.

Clearly, ν2(A1) = k + 3.

- For ν2(∆) = 28; k = 1, we have A0 ≡ B + 2A + 36u722 + 84u623 +

126u524+126u425 (mod 128). Hence A0 ≡
24

a9(−b2∆2+2a∆2+63a2b7
2+

10a3b6
2 + 82a4b5

2 + 124a5b4
2) (mod 128). Since

A0

24 ≡
1
a9(−b2∆2 + 2a∆2 +

7a2b7
2+2a3b6

2+2a4b5
2+4a5b4

2) (mod 8) ≡ −(−b2∆2+6∆2+b2+2) (mod 8),
three cases arise are summarized in Table 4.

Table 4. ν2(∆) = 28

Cases ν2(A0) 2ZK fi ν2(i(K))
∆2 ≡ 1 (mod 8) ≥ 7 p1p2p3p

2
4p

4
5 fi = 1

≥ 1
∆2 ≡ 5 (mod 8) 6 p1p2p

2
3p

4
4 f1 = f3 = f4 = 1, f2 = 2

∆2 ≡ 3, 7 (mod 8) 5 p1p
2
2p

2
3p

4
4 fi = 1 3

- For ν2(∆) ≥ 30; k ≥ 2, we have A0 ≡ B+36u7(2k)2 (mod 23k+3). Hence

A0 ≡
22k+2

a9 (−b2∆2 + 98a3b7
2)) (mod 23k+3). Since

A0

22k+2
≡ −(−b2∆2 +

7b2) (mod 8), three cases arise are summarized in Table 5.

Table 5. ν2(∆) ≥ 30 is even

Cases ν2(A0) 2ZK fi ν2(i(K))
∆2 ≡ 7 (mod 8), ≥ 2k + 5 p1p2p3p

2
4p

4
5 fi = 1

≥ 1
∆2 ≡ 3 (mod 8) 2k + 4 p1p2p

2
3p

4
4 f1 = f3 = f4 = 1, f2 = 2

∆2 ≡ 1, 5 (mod 8) 2k + 3 p1p
2
2p

2
3p

4
4 fi = 1 3
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(2) If ν2(a) ≥ 1, then F(x) ≡ x9 (mod 2). Let ϕ = x. Then F(x) = ϕ9 + aϕ + b. By
assumption, ν2(b) ≤ 8 or ν2(a) ≤ 7.
If 8ν2(b) < 9ν2(a), then Nϕ(F) = S1 has a single side of degree d ∈ {1, 3}.

(i) If d = 1 then R11(F)(y) is irreducible as it is of degree 1. Thus 2ZK = p
9
1

with residue degree 1. Hence ν2(i(K)) = 0.
(ii) If d = 3, then R11(F)(y) = y3 + 1 = (y + 1)(y2 + y + 1) ∈ Fϕ[y]. Thus

2ZK = p
3
1p

3
2 with f1 = 1 and f2 = 2. Hence ν2(i(K)) = 0.

If 8ν2(b) > 9ν2(a), then Nϕ(F) = S1 + S2 has two sides joining (0, ν2(b)),
(1, ν2(a)), and (0, 9) with d(S1) = 1 and d(S2) ∈ {1, 2, 4} since ν2(a) ≤ 7. Let
d = d(S2). Then we have the following cases:

(i) If d = 1; ν2(a) ∈ {1, 3, 5, 7}, then 2ZK = p1p
8
2 with residue degree 1 each

ideal factor. Hence ν2(i(K)) = 0.
(ii) If d = 2 with ν2(b) ≥ 3 and ν2(a) = 2; a ≡ 4 (mod 8) and b ≡ 0 (mod 8),

then Nϕ(F) = S1 + S2 has two sides joining (0, ν2(b)), (1, 2) and (9, 0) with
d(S1) = 1 and R12(F)(y) = (y + 1)2

∈ Fϕ[y]. In this case, we have to use
second order Newton polygon. Let ω2 = 4[ν2, ϕ, 1/4] be the valuation of
second order Newton polygon and g2 = x4

− 2 the key polynomial of ω2,
where [ν2, ϕ, 1/4] is the augmented valuation of ν2 with respect to ϕ and
λ = 1/4. Let F(x) = xg2

2 + 4xg2 + (a + 4)x + b, then we have ω2(x) = 1,
ω2(g2) = 4, and ω2(m) = 4 × ν2(m) for every m ∈ Q2. Table 6 summarizes
the obtained results.

Table 6

Cases g2 2ZK fi ν2(i(K))
(a, b) ∈ {(4, 8), (12, 8)} (mod 16)

x4
− 2

p1p
8
2 fi = 1 0(a, b) ∈ {(12, 16), (28, 16)} (mod 32)

(a, b) ≡ (12, 0) (mod 32) p1p
4
2 f1 = 1, f2 = 2

(a, b) ≡ (28, 0) (mod 32) p11p
4
21p

4
22 fi = 1 ≥ 1

(a, b) ∈ {(4, 16), (20, 16)} (mod 32) x4
− 2x2

− 2
p1p

8
2 fi = 1 0(a, b) ∈ {(4, 32), (36, 32)} (mod 64)

x4
− 2x2

− 6(a, b) ≡ (36, 0) (mod 64) p1p
4
2 f1 = 1, f2 = 2

(a, b) ≡ (4, 0) (mod 64) p11p
4
21p

4
22 fi = 1 ≥ 1

(a, b) ∈ {(20, 0), (52, 0)} (mod 64)
x4
− 2x2

− 4x − 2
p1p

8
2 fi = 1 0

(a, b) ≡ (20, 32) (mod 64) p1p
4
2 f1 = 1, f2 = 2

(a, b) ≡ (52, 32) (mod 64) p11p
4
21p

4
22 fi = 1 ≥ 1

(iii) If d = 4; a ≡ 16 (mod 32) and b ≡ 0 (mod 32), then Nϕ(F) = S1 + S2 has
two sides joining (0, ν2(b)), (1, 4) and (9, 0) with d(S1) = 1 and R12(F)(y) =
(y + 1)4

∈ Fϕ[y]. In this case, we have to use second order Newton
polygon. Let ω2 = 2[ν2, ϕ, 1/2] be the valuation of second order Newton
polygon and g2 = x2

− 2 the key polynomial of ω2, where [ν2, ϕ, 1/2]
is the augmented valuation of ν2 with respect to ϕ and λ = 1/2. Let
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F(x) = xg4
2 + 8xg3

2 + 24xg2
2 + 32xg2 + (a + 16)x + b, then we have ω2(x) = 1,

ω2(g2) = 2, and ω2(m) = 2 × ν2(m) for every m ∈ Q2.
(a) If (a, b) ∈ {(16, 32), (48, 32)} (mod 64), then N+2 (F) = T1 has a single

side joining (0, 10) and (4, 9). Thus 2ZK = p1p
8
2 with residue degree

1 each ideal factor. Hence ν2(i(K)) = 0.
(b) If (a, b) ≡ (16, 0) (mod 64), then N+2 (F) = T1 has a single side joining

(0, 11) and (2, 9) with R21(F)(y) = (y + 1)2
∈ F2[y]. In this case, we

have to use third order Newton polygon. Let ω3 = 2[ω2, g2, 1/2] be
the valuation of third order Newton polygon and g3 = x4

−4x2
−4x+4

the key polynomial of ω3, where [ω2, g2, 1/2] is the augmented
valuation of ω2 with respect to g2, and λ′ = 1/2. Let

F(x) = xg2
3 + ((8x + 8)g2 + 24x + 48)g3 + (48x + 160)g2 + (a + 176)x + b + 192,

then we have ω3(x) = 2, ω3(g2) = 5, ω3(g3) = 10, and ω3(m) =
4 × ν2(m) for every m ∈ Q2. Thus N+3 (F) = T′1 has a single side
joining (0, 23) and (2, 22). It follows that 2ZK = p1p

8
2 with residue

degree 1 each ideal factor. Hence ν2(i(K)) = 0.
(c) For the other cases, we need also to use third order Newton poly-

gon, and its treatment is similar to the case (b) above. The obtained
results are summarized in Table 7.

Table 7

Cases g2 g3 2ZK fi ν2(i(K))
(a, b) ∈ {(48, 64), (112, 64)}

x2
−

2

− p1p
8
2 fi = 1 0(mod 128)

(a, b) ≡ (48, 0) (mod 128) x4
− 2x3

− 4x2 + 4x − 4 p1p
4
2 f1 = 1, f2 = 2

(a, b) ∈ {(112, 128), (240, 128)} x2
− 2x − 2 p1p

4
2p

4
3 fi = 1 ≥ 1(mod 256)

(a, b) ∈ {(112, 0), (368, 0)} x2
− 2x − 2 p1p

2
2p

4
3

f1 = f3 = 1 0(mod 512) f2 = 2

(a, b) ≡ (368, 256) (mod 512) x2
− 2x − 2 p1p

2
2p

2
3

f1 = 1 1f2 = f3 = 2

(a, b) ≡ (112, 256) (mod 512) x2
− 2x − 2 p1p

2
2p

2
3p

2
4

f1 = f3 = f4 = 1
≥ 1f2 = 2

(a, b) ∈ {(240, 256), (496, 256)}

x2
− 2x − 6

p1p
2
2p

2
3p

4
4 fi = 1 3(mod 512)

(a, b) ≡ (240, 0) (mod 512) p1p
2
2p

2
3p

2
4

f1 = f2 = f3 = 1
≥ 1f4 = 2

(a, b) ≡ (496, 0) (mod 512) p1p
2
2p

2
3p

2
4p

2
5 fi = 1 ≥ 1

(iv) If d = 2 with ν2(b) ≥ 7 and ν2(a) = 6; a ≡ 64 (mod 128) and b ≡ 0 (mod 128),
then N+ϕ(F) = S1 + S2 has two sides joining (0, ν2(b)), (1, 6), and (9, 0) with
d(S1) = 1 and R12(F)(y) = (y + 1)2

∈ Fϕ[y]. In this case, we have to use
second order Newton polygon. Let ω2 = 4[ν2, ϕ, 3/4] be the valuation of

30 Jul 2023 04:53:36 PDT
230704-Kchit Version 4 - Submitted to Rocky Mountain J. Math.



THE INDEX DIVISORS AND MONOGENITY OF CERTAIN NONIC NUMBER FIELDS 11

second order Newton polygon and g2 = x4
− 8 the key polynomial of ω2,

where [ν2, ϕ, 3/4] is the augmented valuation of ν2 with respect to ϕ and
λ = 3/4. Let F(x) = xg2

2 + 16xg2 + (a + 64)x + b, then we have ω2(x) = 3,
ω2(g2) = 12, and ω2(m) = 4× ν2(m) for every m ∈ Q2. Table 8 summarizes
the obtained results.

Table 8

Cases g2 2ZK fi ν2(i(K))
(a, b) ∈ {(64, 128), (192, 128)} (mod 256) x4

− 8
p1p

8
2 fi = 1 0(a, b) ∈ {(64, 256), (320, 256)} (mod 512) x4

− 4x2
− 8

(a, b) ∈ {(64, 512), (566, 512)} (mod 1024) x4
− 4x − 24

(a, b) ≡ (576, 0) (mod 1024) x4
− 4x − 24

p1p
4
2 f1 = 1, f2 = 2

(a, b) ≡ (64, 0) (mod 1024) p1p
4
2p

4
3 fi = 1 ≥ 1

(a, b) ∈ {(320, 512), (832, 512)} (mod 1024) x4
− 4x2

− 8
p1p

8
2 fi = 1 0(a, b) ∈ {(320, 0), (832, 0)} (mod 1024) x4

− 2x3
− 4x2

− 8
(a, b) ∈ {(192, 256), (448, 256)} (mod 512)

x4
− 8(a, b) ≡ (192, 0) (mod 512) p1p

4
2 f1 = 1, f2 = 2

(a, b) ≡ (448, 0) (mod 512) p1p
4
2p

4
3 fi = 1 ≥ 1

□

Proof of Theorem 2.3.
If ν3(a) = 0, then since ∆ = 224a9+318b8 is the discriminant of F(x), thanks to the index
formula (1.1), ν3((ZK : Z[α])) = 0 and so ν3(i(K)) = 0. Now assume that 3 divides a.
Then we have the following cases:

(1) If b ≡ −1 (mod 3), then F(x) ≡ (x − 1)9 (mod 3). Let ϕ = x − 1. Then
F(x) = ϕ9+9ϕ8+36ϕ7+84ϕ6+126ϕ5+126ϕ4+84ϕ3+36ϕ2+ (a+9)ϕ+a+b+1.

(i) If (a, b) ∈ {(0, 2), (0, 5), (3,−1), (3, 2)(6,−1), (6, 5)} (mod 9), then by Theorem
2.1, ν3(i(K)) = 0.

(ii) If (a, b) ∈ {(3, 5), (6, 2)} (mod 9), then Nϕ(F) = S1 + S2 has two sides joining
(0,w), (1, 1), and (9, 0) with w ≥ 2. Thus the degree of each side is 1 and
so 3ZK = p1p

8
2 with residue degree 1 each ideal factor. Hence ν3(i(K)) = 0.

(iii) If (a, b) ∈ {(0, 8), (0, 17), (9,−1), (9, 8), (18,−1), (18, 17)} (mod 27), then Nϕ(F) =
S1+S2 has two sides joining (0, 2), (3, 1), and (9, 0). Thus 3ZK = p

3
1p

6
2 with

residue degree 1 each ideal factor. Hence ν3(i(K)) = 0.
(iv) If (a, b) ∈ {(0,−1), (9, 17)} (mod 27), then Nϕ(F) = S1 + S2 + S3 has three

sides joining (0,w), (1, 2), (3, 1), and (9, 0) with w ≥ 3. It follows that
3ZK = p1p

2
2p

6
3 with residue degree 1 each ideal factor. Hence ν3(i(K)) = 0.

(v) If (a, b) ∈ {(18, 8), (18, 35), (45, 8), (45, 62), (72, 35), (72, 62)} (mod 81), then
Nϕ(F) = S1+S2 has two sides joining (0, 3), (3, 1), and (9, 0). It follows that
3ZK = p

3
1p

6
2 with residue degree 1 each ideal factor. Hence ν3(i(K)) = 0.

(vi) If (a, b) ≡ (18, 62) (mod 81), then we have the following sub-cases:
(a) If a + b ≡ 80 (mod 243), then Nϕ(F) = S1 + S2 has two sides joining

(0, 4), (3, 1), and (9, 0) with d(S2) = 1 and R11(F)(y) = y3+ y2+ y+1 =
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12 OMAR KCHIT

(y2 + 1)(y + 1) ∈ Fϕ[y]. Thus 3ZK = p11p12p
6
21 with f11 = f21 = 1 and

f12 = 2. Hence ν3(i(K)) = 0.
(b) If a + b ≡ 161 (mod 243), then Nϕ(F) = S1 + S2 has two sides joining

(0, 4), (3, 1), and (9, 0) with d(S2) = 1 and R11(F)(y) = y3 + y2 + y − 1
which is irreducible over Fϕ. Thus 3ZK = p1p

6
2 with f1 = 3 and

f2 = 1. Hence ν3(i(K)) = 0.
(c) If a+b ≡ −1 (mod 243), then ν3(∆) ≥ 23. As in the proof of Theorem

2.1, let a3 =
a
9

and u =
− b
8a3

. Since 3 does not divide 8a3, then u ∈ Z3.

Let ϕ = x − u, then F(x) = ϕ9 + 9uϕ8 + 36u2ϕ7 + 84u3ϕ6 + 126u4ϕ5 +

126u5ϕ4+84u6ϕ3+36u7ϕ2+Aϕ+B with A = a+9u8 =
∆

224a8 and B =

au+b+u9 =
− b∆
227a9 . Thus ν3(A) = ν3(∆)−16 and ν3(B) = ν3(∆)−18. It

follows that Nϕ(F) = S1+S2+S3 has three sides joining (0, ν3(∆)−18),
(2, 2), (3, 1), and (9, 0) with d(S2) = d(S3) = 1.
If ν3(∆) is odd, then d(S1) = 1 and so 3ZK = p

2
1p2p

6
3 with residue

degree 1 each ideal factor. Hence ν3(i(K)) = 0.
If ν3(∆) is even, then d(S1) = 2 with R11(F)(y) = y2 + B3 ∈ Fϕ[y].
Since (36u7)3 ≡ 1 (mod 3), then two cases arise:

- If ∆3 . a3 (mod 3); ∆3 ≡ 1 (mod 3), then R11(F)(y) is irreducible
over Fϕ and so 3ZK = p

2
1p2p

6
3 with f1 = 2 and f2 = f3 = 1. Hence

ν3(i(K)) = 0.
- If ∆3 ≡ a3 (mod 3); ∆3 ≡ −1 (mod 3), then R11(F)(y) = (y − 1)(y +

1) ∈ Fϕ[y] and so 3ZK = p11p12p21p
6
31 with residue degree 1 each

ideal factor. Hence 3 divides i(K). Applying Theorem 3.2, we get
ν3(i(K)) = 1.

(vii) If (a, b) ≡ (45, 35) (mod 81), then we have the following sub-cases:
(a) If a + b ≡ 80 (mod 243), then Nϕ(F) = S1 + S2 has two sides joining

(0, 4), (3, 1), and (9, 0) with d(S2) = 1 and R11(F)(y) = y3 + y2
− y + 1

which is irreducible over Fϕ. Thus 3ZK = p1p
6
2 with f1 = 3 and

f2 = 1. Hence ν3(i(K)) = 0.
(b) If a+ b ≡ 161 (mod 243), then ν3(∆) ≥ 23. As in the case (ivc) above,

let a3 =
a
9
, u =

− b
8a3
∈ Z3, and ϕ = x − u, then 3 divides i(K) if and

only if ν3(∆) is even and ∆3 ≡ −1 (mod 3). In this case also, we
have 3ZK = p11p12p21p

6
31 with residue degree 1 each ideal factor.

Applying Theorem 3.2, we get ν3(i(K)) = 1.
(c) If a + b ≡ −1 (mod 243), then Nϕ(F) = S1 + S2 + S3 has three sides

joining (0,w), (1, 3), (3, 1), and (9, 0) with w ≥ 5, d(S1) = d(S3) = 1,
and R12(F)(y) = y2 + y − 1 which is irreducible over Fϕ. Thus
3ZK = p1p2p

6
3 with f1 = f3 = 1 and f2 = 2. Hence ν3(i(K)) = 0.

(viii) If (a, b) ≡ (72, 8) (mod 81), then we have the following sub-cases:
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(a) If a + b ≡ 80 (mod 243), then Nϕ(F) = S1 + S2 has two sides joining
(0, 4), (3, 1), and (9, 0) with d(S2) = 1 and R11(F)(y) = y3 + y2 + 1 =
(y − 1)(y2

− y − 1) ∈ Fϕ[y]. Thus 3ZK = p11p12p
6
21 with f11 = f21 = 1

and f12 = 2. Hence ν3(i(K)) = 0.
(b) If a + b ≡ 161 (mod 243), then Nϕ(F) = S1 + S2 has two sides joining

(0, 4), (3, 1), and (9, 0) with d(S2) = 1 and R11(F)(y) = y3+y2
−1 which

is irreducible over Fϕ. Thus 3ZK = p1p
6
2 with f1 = 3 and f2 = 1.

Hence ν3(i(K)) = 0.
(c) If a + b ≡ −1 (mod 243), then ν3(∆) ≥ 23. As in the case (ivc) above,

let a3 =
a
9
, u =

− b
8a3
∈ Z3, and ϕ = x − u, then 3 divides i(K) if and

only if ν3(∆) is even and ∆3 ≡ −1 (mod 3). In this case also, we
have 3ZK = p11p12p21p

6
31 with residue degree 1 each ideal factor.

Applying Theorem 3.2, we get ν3(i(K)) = 1.
(2) If b ≡ 1 (mod 3), then F(x) ≡ (x + 1)9 (mod 3). Let ϕ = x + 1. Then F(x) =

ϕ9
− 9ϕ8 + 36ϕ7

− 84ϕ6 + 126ϕ5
− 126ϕ4 + 84ϕ3

− 36ϕ2 + (a + 9)ϕ − a + b − 1.
(i) If (a, b) ∈ {(0, 4), (0, 7), (3, 1), (3, 7), (6, 1), (6, 4)} (mod 9), then by Theorem

2.1, ν3(i(K)) = 0.
(ii) The treatment of the other cases is similar to the case b ≡ −1 (mod 3)

above. Table 9 summarizes the obtained results.
(3) If b ≡ 0 (mod 3), then F(x) ≡ x9 (mod 3). Let ϕ = x. Then F(x) = ϕ9 + aϕ + b.

By assumption, ν3(b) ≤ 8 or ν3(a) ≤ 7.
If 8ν3(b) < 9ν3(a), then Nϕ(F) = S1 has a single side joining (0, ν3(b)) and (9, 0)
with degree d ∈ {1, 3}.

(i) If d = 1, then R11(F)(y) is irreducible as it is of degree 1. Thus 3ZK = p
9
1

with residue degree 1. Hence ν3(i(K)) = 0.
(ii) If d = 3, then −λ1 = −1/3,−2/3 is the slope of S1. Since e1 = 3 divides the

the ramification index of any prime ideal ofZK lying above 3, then there
is at most three prime ideals of ZK lying above 3 with residue degree 1
each ideal factor. Hence ν3(i(K)) = 0.

If 8ν3(b) > 9ν3(a), then Nϕ(F) = S1 + S2 has two sides joining (0, ν3(b)),
(1, ν3(a)), and (9, 0) with d(S1) = 1 and d(S2) ∈ {1, 2, 4} since ν3(a) ≤ 7. Let
d = d(S2). Then we have the following cases:

(i) If d = 1; ν3(a) ∈ {1, 3, 5, 7}, then 3ZK = p1p
8
2 with residue degree 1 each

ideal factor. Hence ν3(i(K)) = 0.
(ii) If d = 2, then R12(F)(y) = a3y2 + b3 ∈ Fϕ[y]; that is R12(F)(y) = ±(y2 + 1) or

R12(F)(y) = ±(y − 1)(y + 1). Thus 3ZK = p1p
4
2 with f1 = 1 and f2 = 2 or

3ZK = p11p
4
21p

4
22 with f11 = f21 = f22 = 1 respectively. Hence ν3(i(K)) = 0.

(iii) If d = 4, then R12(F)(y) = a3y4 + b3 ∈ Fϕ[y]; that is R12(F)(y) = ±(y4 + 1) =
±(y2

− y − 1)(y2 + y − 1) or R12(F)(y) = ±(y4
− 1) = ±(y − 1)(y + 1)(y2 + 1).

Thus 3ZK = p11p
2
21p

2
22 with f11 = 1 and f21 = f22 = 2 or 3ZK = p11p

2
21p

2
22p

2
23

with f11 = f21 = f22 = 1 and f23 = 2 respectively. Hence ν3(i(K)) = 0.

□
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Table 9

Cases 3ZK fi ν3(i(K))
(a, b) ∈ {(3, 4), (6, 7)} (mod 9) p1p

8
2 fi = 1

0

(a, b) ∈ {(0, 10), (0, 19), (9, 1), (9, 19), (18, 1), (18, 10)}
p3

1p
6
2 fi = 1(mod 27)

(a, b) ∈ {(0, 1), (9, 10)} (mod 27) p1p
2
2p

6
3 fi = 1

(a, b) ∈ {(18, 46), (18, 73), (45, 19), (45, 73), (72, 19),
p3

1p
6
2 fi = 1(72, 46)} (mod 81)

(a, b) ≡ (18, 19) (mod 81) and b − a ≡ 82 (mod 243) p1p
6
2 f1 = 3, f2 = 1

(a, b) ≡ (18, 19) (mod 81) and b − a ≡ 163 (mod 243) p1p2p
6
3 f1 = f3 = 1, f2 = 2

(a, b) ≡ (18, 19) (mod 81) ν3(∆) is odd p2
1p2p

6
3 fi = 1

and ν3(∆) is even, ∆3 ≡ 1 (mod 3) p2
1p2p

6
3 f1 = 2, f2 = f3 = 1

b − a ≡ 1 (mod 243) ν3(∆) is even, ∆3 ≡ −1 (mod 3) p1p2p3p
6
4 fi = 1 1

(a, b) ≡ (45, 46) (mod 81) and b − a ≡ 163 (mod 243) p1p
6
2 f1 = 3, f2 = 1

0(a, b) ≡ (45, 46) (mod 81) and b − a ≡ 1 (mod 243) p1p2p
6
3 f1 = f3 = 1, f2 = 2

(a, b) ≡ (45, 46) (mod 81) ν3(∆) is odd p2
1p2p

6
3 fi = 1

and ν3(∆) is even, ∆3 ≡ 1 (mod 3) p2
1p2p

6
3 f1 = 2, f2 = f3 = 1

b − a ≡ 82 (mod 243) ν3(∆) is even, ∆3 ≡ −1 (mod 3) p1p2p3p
6
4 fi = 1 1

(a, b) ≡ (72, 73) (mod 81) and b − a ≡ 82 (mod 243) p1p
6
2 f1 = 3, f2 = 1

0(a, b) ≡ (72, 73) (mod 81) and b − a ≡ 163 (mod 243) p1p2p
6
3 f1 = f3 = 1, f2 = 2

(a, b) ≡ (72, 73) (mod 81) ν3(∆) is odd p2
1p2p

6
3 fi = 1

and ν3(∆) is even, ∆3 ≡ 1 (mod 3) p2
1p2p

6
3 f1 = 2, f2 = f3 = 1

b − a ≡ 1 (mod 243) ν3(∆) is even, ∆3 ≡ −1 (mod 3) p1p2p3p
6
4 fi = 1 1

Proof of Theorem 2.4.
For p = 5. Since ∆ = 224a9 + 318b8, ν5(∆) ≥ 1 if and only if (a, b) ∈ {(0, 0), (1, 1), (1, 2),
(1, 3), (1, 4)} (mod 5). Thanks to the index formula (1.1), 5 can divides the index i(K)
only if (a, b) ∈ {(0, 0), (1, 1), (1, 2), (1, 3), (1, 4)} (mod 5).

(1) For (a, b) ∈ {(1, 1), (1, 2), (1, 3), (1, 4)} (mod 5), one can easily check that F(x) ≡
ϕi1 · ϕ

2
i2 (mod 5) with deg(ϕi1) = 7, deg(ϕi2) = 1, and ϕi j is irreducible over F5

for every i = 1, . . . , 4 and j = 1, 2. Thus there is at most two prime ideals of
ZK lying above 5 with residue degree 1 each ideal factor. Hence ν5(i(K)) = 0.

(2) If (a, b) ≡ (0, 0) (mod 5), then F(x) ≡ x9 (mod 5). Let ϕ = x. Then F(x) =
ϕ9 + aϕ + b.

(i) If 8ν5(b) < 9ν5(a), then Nϕ(F) = S1 has a single side joining (0, ν5(b)) and
(9, 0) with degree d ∈ {1, 3}.

(a) If d = 1, then R11(F)(y) is irreducible as it is of degree 1. Thus
5ZK = p

9
1 with residue degree 1. Hence ν5(i(K)) = 0.

(b) If d = 3, then R11(F)(y) = y3 + b5 ∈ Fϕ[y]. One can check easily
that, for every value b5 ∈ F

∗

ϕ, R11(F)(y) = ψ1 · ψ2 with deg(ψ1) = 1,
deg(ψ2) = 2, and ψi is irreducible over Fϕ. Thus 5ZK = p

3
1p

3
2 with

f1 = 1 and f2 = 2. Hence ν5(i(K)) = 0.
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(ii) If 8ν5(b) > 9ν5(a), then Nϕ(F) = S1 + S2 has two sides joining (0, ν5(b)),
(1, ν5(a)), and (9, 0) with d(S1) = 1 and d(S2) ∈ {1, 2, 4} since ν5(a) ≤ 7.
Thus ϕ can provides at most five prime ideal of ZK lying above 5 with
residue degree 1 each ideal factor. Hence ν5(i(K)) = 0.

For p = 7. Since ∆ = 224a9 + 318b8, ν7(∆) ≥ 1 if and only if (a, b) ∈ {(0, 0), (3, 1), (3, 6),
(5, 1), (5, 6), (6, 1), (6, 6)} (mod 7). Thanks to the index formula (1.1), 7 can divides the
index i(K) only if (a, b) ∈ {(0, 0), (3, 1), (3, 6), (5, 1), (5, 6), (6, 1), (6, 6)} (mod 7).

(1) For (a, b) ∈ {(3, 1), (3, 6), (5, 1), (5, 6), (6, 1), (6, 6)} (mod 7), one can easily check
that F(x) ≡ ϕi1 · ϕi2 · ϕ

2
i3 (mod 7) with deg(ϕi1) = 4, deg(ϕi2) = 3, deg(ϕi2) = 1,

and ϕi j is irreducible over F7 for every i = 1, . . . , 6 and j = 1, 2, 3. Thus there
is at most two prime ideals of ZK lying above 7 with residue degree 1 each
ideal factor. Hence ν7(i(K)) = 0.

(2) If (a, b) ≡ (0, 0) (mod 7), then F(x) ≡ x9 (mod 7). Let ϕ = x. Then F(x) =
ϕ9 + aϕ + b.

(i) If 8ν7(b) < 9ν7(a), then Nϕ(F) = S1 has a single side joining (0, ν7(b)) and
(9, 0) with degree d ∈ {1, 3}.

(a) If d = 1, then R11(F)(y) is irreducible as it is of degree 1. Thus
7ZK = p

9
1 with residue degree 1. Hence ν7(i(K)) = 0.

(b) If d = 3, then R11(F)(y) = y3 + b5 ∈ Fϕ[y]. Thus there is at most three
prime ideals of ZK lying above 7 with residue degree 1 each ideal
factor. Hence ν7(i(K)) = 0.

(ii) If 8ν7(b) > 9ν7(a), then Nϕ(F) = S1 + S2 has two sides joining (0, ν7(b)),
(1, ν7(a)), and (9, 0) with d(S1) = 1 and d(S2) ∈ {1, 2, 4} since ν7(a) ≤ 7.
Thus ϕ can provides at most five prime ideal of ZK lying above 7 with
residue degree 1 each ideal factor. Hence ν7(i(K)) = 0.

For p ≥ 11, since there is at most 9 prime ideals of ZK lying above p with residue
degree 1 each, and there is at least p ≥ 11 monic irreducible polynomial of degree f
in Fp[x] for every positive integer f , we conclude that p does not divide i(K).

□

5. Examples

Let F(x) = x9 + ax + b ∈ Z[x] be a monic irreducible polynomial and K the nonic
number field generated by a complex root of F(x).

(1) For a = 51 and b = 122, we have (a, b) ≡ (3, 2) (mod 4), (a, b) ≡ (6, 5) (mod 9),
and for every rational prime p < {2, 3}, νp(∆) ≤ 1. By Theorem 2.1, Z[α] is
integrally closed and so K is monogenic. Hence i(K) = 1.

(2) For a = 35 and b = 20, we have (a, b) ≡ (3, 4) (mod 8), then by Theorem 2.2,
i(K) is even. Hence K is not monogenic.

(3) For a = 1392 and b = 768, we have (a, b) ≡ (368, 256) (mod 512), then by
Theorem 2.2, ν2(i(K)) = 1. On the other hand, F(x) is 3-Eisenstein, then
ν3(i(K)) = 0. We conclude that i(K) = 2. Hence K is not monogenic.

(4) For a = 126 and b = 40130, we have (a, b) ≡ (45, 35) (mod 81), a + b ≡
161 (mod 243), ν3(∆) = 26, and ∆3 ≡ −1 (mod 3), then by Theorem 2.3,
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ν3(i(K)) = 1. On the other hand, F(x) is 2-Eisenstein, then ν2(i(K)) = 0. We
conclude that i(K) = 3. Hence K is not monogenic.

(5) For a = 15381 and b = 6634, we have (a, b) ≡ (1, 2) (mod 4), then by The-
orem 2.2, ν2(i(K)) = 1. On the other hand, (a, b) ≡ (72, 73) (mod 81), b −
a ≡ 1 (mod 243), ν3(∆) = 24, and ∆3 ≡ −1 (mod 3), then by Theorem 2.3,
ν3(i(K)) = 1. We conclude that i(K) = 6. Hence K is not monogenic.

(6) For a = 183 and b = 296, we have (a, b) ≡ (7, 8) (mod 16) and ν2(∆) = 29, then
by Theorem 2.2, ν2(i(K)) = 3. On the other hand, (a, b) ≡ (21, 53) (mod 81),
then by Theorem 2.3, ν3(i(K)) = 0. We conclude that i(K) = 8. Hence K is not
monogenic.

(7) For a = 7335 and b = 24184, we have (a, b) ≡ (7, 8) (mod 16), ν2(∆) = 28, and
∆2 ≡ 3 (mod 8), then by Theorem 2.2, ν2(i(K)) = 3. On the other hand, (a, b) ≡
(45, 46) (mod 243), b − a ≡ 82 (mod 243), ν3(∆) = 24, and ∆3 ≡ −1 (mod 3),
then by Theorem 2.3, ν3(i(K)) = 1. We conclude that i(K) = 24. Hence K is not
monogenic.
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[12] I. Gaál, A. Pethö, and M. Pohst, On the indices of biquadratic number fields having Galois group V4,
Arch. Math., 57 (1991), 357–361.

[13] J. Guàrdia, J. Montes, and E. Nart, Newton polygons of higher order in algebraic number theory,
Trans. Amer. Math. Soc., 364(1) (2012), 361–416.
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