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Abstract. The main purpose of this paper is to obtain necessary and sufficient conditions
under which a nonautonomous, finite-dimensional and two-sided dynamics generated by a
sequence of matrices or a linear ODE exhibits Hyers-Ulam stability. Specifically, in the case
of discrete time we consider a nonautonomous difference equation with possibly noninvertible
coefficients, while in the case of continuous time we deal with a nonautonomous ordinary
differential equation without any bounded growth assumptions.
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1. Introduction

In the recent years many works have been devoted to the investigation of Hyers-Ulam
stability for various classes of differential and difference equations. Roughly speaking, we say
that a given differential or difference equation exhibits Hyers-Ulam stability if in a vicinity of
its approximate solutions, we can construct an exact solution. The importance of this notion
stems from the fact we are usually unable to explicitly solve a given difference or differential
equation, and that any numerical scheme will only result in an approximate solution of the
equation. Thus, it is important to know that close to an approximate solution, there exists
a true solution of our equation.

In the present paper, we consider two classes of nonautonomous dynamics. More precisely,
we deal with a nonautonomous difference equation of the form

xn+1 = Anxn n ∈ Z, (1)

where (An)n∈Z is a sequence of linear operators on Rd, as well as ordinary differential equations

x′ = A(t)x t ∈ R, (2)

where A(t) is a linear operator on Rd for each t ∈ R, and the map t 7→ A(t) is continuous.
In [3], Backes and Dragičević proved that Eq (1) and Eq. (2) are Hyers-Ulam stable provided
that these equations admit an exponential trichotomy (in the sense of Elaydi and Hajek [16]).
Moreover, they established converse result implying that Hyers-Ulam stability of Eq. (1)
and Eq (2) yields the existence of exponential trichotomy for these equations provided that
operators An are invertible and that supt∈R ∥A(t)∥ < +∞ (actually for the approach in [3]
to work, it is sufficient that Eq. (2) admits bounded growth). For related results that deal
with the case when maps n 7→ An and t 7→ A(t) are periodic, we refer to [1, 7, 9, 10, 22]
and references therein. For other relevant contributions to the Hyers-Ulam stability and
shadowing of nonautonomous dynamics, see [2, 4, 5, 6, 13, 14, 18]. In particular, in [4, 5,
6, 14, 18] sufficient conditions under which nonlinear difference (or differential) equations
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obtained by perturbing Eq. (1) (or Eq. (2)) exhibit (conditional) Hyers-Ulam, Hyers-Ulam-
Rassias, or general (parametrized) shadowing properties were discussed. These works contain
no converse results guaranteeing appropriate hyperbolicity of Eq. (1) (or Eq. (2)) under
Hyers-Ulam stability.

The main objective of the present paper is to revisit the above mentioned converse results
from [3], and to remove the assumption on invertibility of coefficients An in Eq. (1) and of
bounded growth related to Eq. (2). More precisely, we prove that the Hyers-Ulam stability
of Eq. (1) is equivalent to exponential trichotomy under a relatively mild condition regarding
the uniqueness of backward bounded solutions. In Example 1 we show that this condition
cannot be omitted.

On the other hand, in the case of continuous time we show that the Hyers-Ulam stability
of Eq. (2) is equivalent to the concept of summable trichotomy. This notion is inspired by the
previously mentioned concept of exponential trichotomy, as well as the notion of summable
dichotomy which goes back to the work of Coppel [11]. For different concepts of trichotomy
and their role in the study of asymptotic behavior of nonautonomous dynamical systems we
refer to [19, 20] and references therein.

2. Discrete time case

2.1. Preliminaries. Throughout this paper, Rd will denote the d-dimensional Euclidean
space equipped with some norm | · |. By ∥ · ∥ we will denote the associated matrix norm on
the space of all linear operators acting on Rd. Let (An)n∈Z be a sequence of (not necessarily
invertible) linear operators on Rd. We consider the associated linear difference equation given
by

xn+1 = Anxn, n ∈ Z. (3)

By A(m,n) we will denote the linear cocycle associated with (3) which is given by

A(m,n) =

{
Am−1 · · ·An m > n;

Id m = n,

where Id denotes the identity operator on Rd. We recall the notion of Hyers-Ulam stability
for (3).

Definition 1. We say that Eq. (3) is Hyers-Ulam stable if there exists L > 0 with the
property that for each δ > 0 and a sequence (yn)n∈Z ⊂ Rd such that

sup
n∈Z

|yn+1 − Anyn| ≤ δ, (4)

there exists a solution (xn)n∈Z ⊂ Rd of Eq. (3) such that

sup
n∈Z

|xn − yn| ≤ Lδ. (5)

We will also consider the stronger concept of Hyers-Ulam stability.

Definition 2. We say that Eq. (3) is Hyers-Ulam stable with uniqueness if there exists L > 0
with the property that for each δ > 0 and a sequence (yn)n∈Z ⊂ Rd such that (4) holds, there
exists a unique solution (xn)n∈Z ⊂ Rd of Eq. (3) satisfying (5).

Remark 1. Obviously, if (3) is Hyers-Ulam stable with uniqueness then it is Hyers-Ulam
stable.
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We also recall the notion of exponential dichotomy.

Definition 3. Let J ∈ {Z,Z+,Z−}, where Z+ = {n ∈ Z : n ≥ 0} and Z− = {n ∈ Z : n ≤
0}. We say that Eq. (3) admits an exponential dichotomy on J if there exist a family of
projections Pn, n ∈ J and constants D,λ > 0 such that the following conditions hold:

• for n, n+ 1 ∈ J ,
Pn+1An = AnPn,

and An|KerPn : KerPn → KerPn+1 is invertible;
• for m,n ∈ J such that m ≥ n,

∥A(m,n)Pn∥ ≤ De−λ(m−n);

• for m,n ∈ J such that m ≤ n,

∥A(m,n)(Id−Pn)∥ ≤ De−λ(n−m),

where

A(m,n) := (A(n,m)|KerPm)
−1 : KerPn → KerPm, m < n.

Remark 2. The following facts are well-known (see for example [8, Lemma 3.1]):

(1) if Eq. (3) admits an exponential dichotomy on Z+ with respect to projections P+
n ,

n ∈ Z+, then

ImP+
n =

{
v ∈ Rd : sup

m≥n
|A(m,n)v| < +∞

}
;

(2) if Eq. (3) admits an exponential dichotomy on Z− with respect to projections P−
n ,

n ∈ Z−, then KerP−
n consists of v ∈ Rd with the property that there exists a sequence

(xm)m≤n ⊂ Rd such that xn = v, xm = Am−1xm−1 for m ≤ n and supm≤n |xm| < +∞.

Finally, we recall the notion of exponential trichotomy originally introduced by Elaydi and
Hajek [16].

Definition 4. We say that (3) admits an exponential trichotomy if the following conditions
hold:

• Eq. (3) admits an exponential dichotomy on Z+ with respect to projections P+
n , n ∈

Z+;
• Eq. (3) admits an exponential dichotomy on Z− with respect to projections P−

n , n ∈
Z−;

• we have that
P−
0 = P−

0 P+
0 = P+

0 P−
0 . (6)

Our first result is the following:

Theorem 1. Suppose that the only bounded sequence (xn)n≤0 ⊂ Rd such that x0 = 0 and
xn+1 = Anxn, n ≤ −1 is the zero-sequence, i.e. xn = 0 for n ≤ 0. Then, the following
properties are equivalent:

(a) Eq. (3) is Hyers-Ulam stable;
(b) Eq. (3) admits an exponential trichotomy.

Proof. (a) =⇒ (b) Suppose that Eq. (3) is Hyers-Ulam stable and let L > 0 be as in the
Definition 1.
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Lemma 1. For m ∈ N and a sequence (wn)n≥−m ⊂ Rd with supn≥−m |wn| < +∞, there

exists a sequence (zn)n∈Z ⊂ Rd such that

zn+1 = Anzn + wn for n ≥ −m, (7)

and
sup
n∈Z

|zn| ≤ L sup
n≥−m

|wn|. (8)

Proof of the lemma. We define a sequence (yn)n∈Z ⊂ Rd by

yn =

{
0 n ≤ −m;

An−1yn−1 + wn−1 n > −m.

Observe that

yn − An−1yn−1 =

{
0 n ≤ −m;

wn−1 n > −m.

In particular, we have that

sup
n∈Z

|yn − An−1yn−1| = sup
n≥−m

|wn|.

Since Eq. (3) is Hyers-Ulam stable, there exists a solution (xn)n∈Z ⊂ Rd of Eq. (3) such that

sup
n∈Z

|xn − yn| ≤ L sup
n∈Z

|yn+1 − Anyn| = L sup
n≥−m

|wn|. (9)

Set
zn := yn − xn, n ∈ Z.

By (9), we have that (8) holds. Moreover, since (xn)n∈Z is a solution of Eq. (3), we have that

zn+1 = yn+1 − xn+1 = Anyn + wn − Anxn = Anzn + wn n ≥ −m,

which yields (7). The proof of the lemma is thus completed. □

Lemma 2. For each sequence (wn)n∈Z ⊂ Rd such that supn∈Z |wn| < +∞, there exists a
sequence (zn)n∈Z ⊂ Rd satisfying

zn+1 = Anzn + wn n ∈ Z, (10)

and
sup
n∈Z

|zn| ≤ L sup
n∈Z

|wn|. (11)

Proof of the lemma. For everym ∈ N, we define a sequence (wm
n )n≥−m by wm

n = wn, n ≥ −m.
By Lemma 1, we conclude that there exists a sequence (zmn )n∈Z ⊂ Rd such that

zmn+1 = Anz
m
n + wm

n = Anz
m
n + wn for n ≥ −m, (12)

and
sup
n∈Z

|zmn | ≤ L sup
n≥−m

|wm
n | ≤ L sup

n∈Z
|wn|. (13)

It follows from (13) that for each n ∈ Z, the sequence (zmn )m is a bounded sequence in Rd,
which therefore has a convergent subsequence. By applying the diagonal procedure, we can
find a subsequence (mj)j∈N of N with the property that the sequence (z

mj
n )j∈N converges for

each n ∈ Z. Let
zn := lim

j→∞
zmj
n , n ∈ Z.
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Take now an arbitrary n ∈ Z. Then, n ≥ −mj for j sufficiently large. By applying (12) for
m = mj and passing to the limit when j → ∞, we conclude that (10) holds. Similarly, (11)
follows from (13). The proof of the lemma is completed. □

Set

S :=

{
v ∈ Rd : sup

n≥0
|A(n, 0)v| < +∞

}
.

Moreover, let U consist of all v ∈ Rd with the property that there exists a sequence (xn)n∈Z− ⊂
Rd such that x0 = v, xn+1 = Anxn for n ≤ −1 and supn∈Z− |xn| < +∞. Clearly, S and U are
subspaces of Rd.

Lemma 3. We have that
Rd = S + U . (14)

Proof of the lemma. Take v ∈ Rd. We define a sequence (wn)n∈Z ⊂ Rd by w−1 = v and
wn = 0 for n ̸= −1. Clearly, supn∈Z |wn| = |v| < +∞. It follows from Lemma 2 that there
exists a sequence (zn)n∈Z ⊂ Rd such that (10) holds and that supn∈Z |zn| < +∞. Observe
that it follows from (10) that

z0 − A−1z−1 = v and zn+1 = Anzn, n ̸= −1.

In particular, we have that zn = A(n, 0)z0 for n ≥ 0. This implies that z0 ∈ S. Moreover,
we define (xn)n∈Z− ⊂ Rd by

xn =

{
zn n < 0,

A−1z−1 n = 0.

Since xn+1 = Anxn for n ≤ −1 and supn∈Z− |xn| < +∞, we have that x0 = A−1z−1 ∈ U .
Hence,

v = z0 − A−1z−1 ∈ S + U .
□

Choose a subspace Z ⊂ U such that

Rd = S ⊕ Z. (15)

Lemma 4. For each sequence (wn)n∈Z+ ⊂ Rd such that supn∈Z+ |wn| < +∞, there exists a
unique sequence (xn)n∈Z+ ⊂ Rd such that x0 ∈ Z, supn≥0 |xn| < +∞ and

xn+1 = Anxn + wn, n ∈ Z+.

Proof of the lemma. Set wn = 0 for n < 0. Since supn∈Z |wn| < +∞, it follows from Lemma 2
that there exists a sequence (zn)n∈Z ⊂ Rd such that (10) holds and that supn∈Z |zn| < +∞.
By (15), there exist v1 ∈ S and v2 ∈ Z such that z0 = v1 + v2. Let

xn = zn −A(n, 0)v1, n ∈ Z+.

It is clear that the sequence (xn)n∈Z+ has the desired properties.
We now establish the uniqueness. Assume that (x̃n)n∈Z+ ⊂ Rd is another sequence such

that supn∈Z+ |x̃n| < +∞, x̃0 ∈ Z and

x̃n+1 = Anx̃n + wn, n ∈ Z+.

Then, xn− x̃n = A(n, 0)(x0− x̃0) for n ∈ Z+. Hence, x0− x̃0 ∈ S ∩Z, and therefore x0 = x̃0.
We conclude that xn = x̃n for n ∈ Z+. □
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It follows from Lemma 4 and [17, Corollary 1.10] (see also [21, Corollary 4.4.]) that Eq. (3)
admits an exponential dichotomy on Z+ with respect to projections P+

n , n ∈ Z+ such that
KerP+

0 = Z.
Take now Z ′ ⊂ S such that

Rd = Z ′ ⊕ U .

Lemma 5. For each sequence (wn)n≤−1 ⊂ Rd such that supn≤−1 |wn| < +∞, there exists a
unique sequence (xn)n∈Z− ⊂ X such that x0 ∈ Z ′, supn≤0 |xn| < +∞ and

xn+1 = Anxn + wn, n ≤ −1.

Proof of the lemma. Set wn = 0 for n ≥ 0. Since supn∈Z |wn| < +∞, it follows from Lemma 2
that there exists a sequence (zn)n∈Z ⊂ Rd such that (10) holds and that supn∈Z |zn| < +∞.
Take v1 ∈ Z ′ and v2 ∈ U such that z0 = v1 + v2. Since v2 ∈ U , there exists a sequence
(tn)n≤0 ⊂ Rd such that supn≤0 |tn| < +∞, t0 = v2 and tn+1 = Antn for n ≤ −1. Set

xn := zn − tn, n ≤ 0.

Then, the sequence (xn)n≤0 has the desired properties. One can easily establish the unique-
ness part. □

The previous lemma together with the assumption in the statement of the theorem implies
(see [17, Corollary 1.11]) that Eq. (3) admits an exponential dichotomy on Z− with respect
to projections P−

n , n ∈ Z− such that ImP−
0 = Z ′. Observe that KerP+

0 = Z ⊂ U = KerP−
0

and ImP−
0 = Z ′ ⊂ S = ImP+

0 . This easily implies that (6) holds. We conclude that Eq. (3)
admits an exponential trichotomy.

(b) =⇒ (a) This implication is established in [3, Corollary 1]. □

Remark 3. The implication (a) =⇒ (b) of Theorem 1 has been established in [3, Proposition
3] in the case when An is an invertible operator for every n ∈ Z. In this case it is not necessary
to make the assumption from Theorem 1.

Example 1. Let us now give an explicit example (inspired by [15, Remark 2]) which illustrates
that the assumption we made in the statement of Theorem 1 cannot be eliminated. For this
purpose, take d = 1 and consider a sequence (An)n∈Z by

An =

{
0 n ≥ −1

2 n < −1.

We claim that the associated equation Eq. (3) is Hyers-Ulam stable. To this end, let

ℓ∞ :=

{
w = (wn)n∈Z ⊂ R : ∥w∥∞ := sup

n∈Z
|wn| < +∞

}
.

Then, (ℓ∞, ∥ · ∥∞) is a Banach space. We define Γ: ℓ∞ → ℓ∞ by

(Γw)n :=


wn−1 n ≥ 0;

0 n = −1;

−
∑−(n+1)

i=1
1
2i
wn+i−1 n ≤ −2,

for w = (wn)n∈Z ∈ ℓ∞. Clearly, ∥Γw∥∞ ≤ ∥w∥∞. Moreover, it is easy to verify that

(Γw)n+1 = An(Γw)n + wn, n ∈ Z. (16)
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Take now a sequence (yn)n∈Z ⊂ R such that supn∈Z |yn+1 − Anyn| ≤ δ for some δ > 0. Set

wn := yn+1 − Anyn, n ∈ Z. (17)

Furthermore, let w := (wn)n∈Z ∈ ℓ∞ and

xn := yn − (Γw)n, n ∈ Z.

By (16) and (17), we have that the sequence (xn)n∈Z is a solution of Eq. (3). Moreover,

sup
n∈Z

|xn − yn| = ∥Γw∥∞ ≤ ∥w∥∞ ≤ δ.

Thus, Eq. (3) is Hyers-Ulam stable. On the other hand, Eq. (3) does not admit exponential
trichotomy as it does not admit exponential dichotomy on Z−.

We can also give a complete characterization of Hyers-Ulam stability with uniqueness.

Theorem 2. The following properties are equivalent:

(1) Eq. (3) is Hyers-Ulam stable with uniqueness;
(2) Eq. (3) admits an exponential dichotomy on Z.

Proof. Suppose that Eq. (3) is Hyers-Ulam stable with uniqueness. By Theorem 1, we have
that Eq. (3) admits an exponential trichotomy. Hence, Eq. (3) admits an exponential di-
chotomy on Z+ with projections P+

n and exponential dichotomy on Z− with projections P−
n .

Furthermore, (6) holds. Hence, ImP−
0 ⊂ ImP+

0 . Take now v ∈ ImP+
0 and write it in the

form v = v1 + v2, where v1 ∈ ImP−
0 and v2 ∈ KerP−

0 . Note that v2 = v − v1 ∈ ImP+
0 .

Moreover, since v2 ∈ KerP−
0 , there exists a sequence (xn)n∈Z− ⊂ Rd such that x0 = v2,

xn = An−1xn−1 for n ≤ 0 and supn≤0 |xn| < +∞. For n ∈ Z, set

x̃n =

{
A(n, 0)v2 n ≥ 0;

xn n < 0.

Clearly, (x̃n)n∈Z is a solution of Eq. (3) and M := supn∈Z |x̃n| < +∞. Finally, we introduce
a sequence (yn)n∈Z ⊂ Rd by yn = L

M
x̃n, n ∈ Z. Note that the sequence (yn)n∈Z is a solution

of Eq. (3). In particular, (4) holds with δ = 1. Hence, (yn)n∈Z is L-shadowed by itself and
the constant solution (0)n∈Z of Eq. (3). By the uniqueness in Definition 2, we conclude that
yn = 0 for each n ∈ Z. Hence, x̃0 = v2 = 0. Consequently, v = v1 ∈ ImP−

0 and we conclude
that ImP−

0 = ImP+
0 . Since KerP+

0 ⊂ KerP−
0 , we have that KerP+

0 = KerP−
0 . This yields

that P−
0 = P+

0 and therefore Eq. (3) admits an exponential dichotomy.
Suppose that Eq. (3) admits an exponential dichotomy. By Theorem 1, we have that

Eq. (3) is Hyers-Ulam stable. It remains to establish the uniqueness. Suppose that for a
sequence (yn)n∈Z ⊂ Rd satisfying (4) with some δ > 0, there are two solutions (xn)n∈Z and
(x̃n)n∈Z of Eq. (3) such that

sup
n∈Z

|xn − yn| ≤ Lδ and sup
n∈Z

|x̃n − yn| ≤ Lδ.

Set wn := xn− x̃n, n ∈ Z. Then, (wn)n∈Z is a solution of Eq. (3) such that supn∈Z |wn| < +∞.
Since Eq. (3) admits an exponential dichotomy, we have that wn = 0 for each n ∈ Z. We
conclude that xn = x̃n for n ∈ Z. The proof of the theorem is completed. □
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3. Continuous time case

Let A : R → Rd×d be a continuous map. We consider the associated linear differential
equation given by

x′ = A(t)x, t ∈ R. (18)

By T (t, s) we denote the evolution family associated to (18).

Definition 5. We say that Eq. (18) is Hyers-Ulam stable if there exists L > 0 with the
property that for each δ > 0 and a continuously differentiable function y : R → Rd satisfying

sup
t∈R

|y′(t)− A(t)y(t)| ≤ δ, (19)

there exists a solution x : R → Rd of Eq. (18) such that

sup
t∈R

|x(t)− y(t)| ≤ Lδ. (20)

Similarly, one can introduce the notion of Hyers-Ulam stability with uniqueness for Eq. (18)
by requiring that x in Definition 5 is unique.

Definition 6. Let J ∈ {R+,R−,R}, where R+ = [0,∞) and R− = (−∞, 0]. We say that
Eq. (18) admits a summable dichotomy on J if there exist a family of projections P (t), t ∈ J
on Rd and a constant K > 0 such that the following holds:

• for t, s ∈ J , T (t, s)P (s) = P (t)T (t, s);
• for t ∈ J , ∫ t

inf J

∥T (t, s)P (s)∥ ds+
∫ sup J

t

∥T (t, s)Q(s)∥ ds ≤ K, (21)

where Q(s) = Id−P (s).

Remark 4. We recall that (18) admits an exponential dichotomy on J if there exist constants
D,λ > 0 such that

∥T (t, s)P (s)∥ ≤ De−λ(t−s) for t, s ∈ J with t ≥ s, (22)

and

∥T (t, s)Q(s)∥ ≤ De−λ(s−t) for t, s ∈ J with t ≤ s. (23)

Clearly, exponential dichotomy is a particular case of a summable dichotomy (as (22) and (23)
imply (21)).

Take now a continuously differentiable function ϕ : [0,∞) → R such that 0 < ϕ(t) ≤ 1 for

t ≥ 0,
∫∞
0

(
1

ϕ(t)
− 1

)
dt = 1 and limn→∞

ϕ(n)
ϕ(n−2−n)

= ∞. We consider the equation

x′ =

(
ϕ′(t)

ϕ(t)
− 1

)
x. (24)

It is proved in [12, p.27] that (24) admits a summable dichotomy (with P (t) = Id) but does
not admit an exponential dichotomy.

Remark 5. It is observed in [11, p.134] the following holds true:
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• if Eq. (18) admits a summable dichotomy on R+ with respect to projections P (t),
t ≥ 0, then

ImP (0) =

{
v ∈ Rd : sup

t≥0
|T (t, 0)v| < +∞

}
=: S;

Furthermore, KerP (0) can be an arbitrary subspace of Rd complemented to S;
• if Eq. (18) admits a summable dichotomy on R− with respect to projections P (t),
t ≤ 0, then

KerP (0) =

{
v ∈ Rd : sup

t≤0
|T (t, 0)v| < +∞

}
=: U ;

Furthermore, ImP (0) can be an arbitrary subspace of Rd complemented to U .

Definition 7. We say that Eq. (18) admits a summable trichotomy if the following conditions
hold:

• Eq. (18) admits a summable dichotomy on R+ with respect to projections P+(t), t ≥ 0;
• Eq. (18) admits a summable dichotomy on R− with respect to projections P−(t), t ≤ 0;
• we have that

P−(0) = P−(0)P+(0) = P+(0)P−(0). (25)

Remark 6. We recall (see [16]) that Eq. (18) admits an exponential trichotomy if:

• Eq. (18) admits an exponential dichotomy on R+ with respect to projections P+(t),
t ≥ 0;

• Eq. (18) admits an exponential dichotomy on R− with respect to projections P−(t),
t ≤ 0;

• (25) holds.

It follows from the discussion in Remark 4 that the notion of exponential trichotomy is a
particular case of the notion of a summable trichotomy.

Theorem 3. The following statements are equivalent:

(a) Eq. (18) is Hyers-Ulam stable;
(b) Eq. (18) admits a summable trichotomy.

Proof. (a) =⇒ (b) Suppose that Eq. (18) is Hyers-Ulam stable.

Lemma 6. For each continuous function z : R → Rd such that supt∈R |z(t)| < +∞, there
exists a continuously differentiable x : R → Rd satisfying

x′(t) = A(t)x(t) + z(t) t ∈ R, (26)

and
sup
t∈R

|x(t)| ≤ L sup
t∈R

|z(t)|. (27)

Proof of the lemma. Set ∥z∥∞ := supt∈R |z(t)| < +∞, and let y : R → Rd be an arbitrary
solution of the equation

y′(t) = A(t)y(t) + z(t), t ∈ R.
Then, supt∈R |y′(t)−A(t)y(t)| = ∥z∥∞. Hence, there exists a solution x̃ : R → Rd of Eq. (18)
such that supt∈R |y(t) − x̃(t)| ≤ L∥z∥∞. Set x(t) := y(t) − x̃(t), t ∈ R. Clearly, x has the
desired properties. □
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Lemma 7. We have that
Rd = S ⊕ U . (28)

Proof of the lemma. Take v ∈ Rd. Choose a nonnegative continuous function ϕ : R → R
whose support is contained in [0, 1] and such that

∫ 1

0
ϕ(s) ds = 1. Let

z(t) = ϕ(t)T (t, 0)v, t ∈ R.
Clearly, z is continuous and supt∈R |z(t)| < +∞. By Lemma 6, there exists a continuously
differentiable function x : R → Rd satisfying (26) and such that supt∈R |x(t)| < +∞. Observe
that x(t) = T (t, 0)x(0) for t ≤ 0, and thus x(0) ∈ U . Moreover, for t ≥ 1 we have that

x(t) = T (t, 0)x(0) +

∫ t

0

ϕ(s)T (t, s)T (s, 0)v ds

= T (t, 0)x(0) +

(∫ 1

0

ϕ(s) ds

)
T (t, 0)v

= T (t, 0)(x(0) + v).

Hence, x(0) + v ∈ S. We conclude that

v = x(0) + v − x(0) ∈ S + U .
□

The following lemma is a direct consequence of Lemma 6.

Lemma 8. The following holds:

• for each continuous function z : [0,∞) → Rd such that supt≥0 |z(t)| < +∞, there

exists a continuously differentiable x : [0,∞) → Rd satisfying

x′(t) = A(t)x(t) + z(t) t ≥ 0, (29)

and supt≥0 |x(t)| ≤ L supt≥0 |z(t)|;
• for each continuous function z : (−∞, 0] → Rd such that supt≤0 |z(t)| < +∞, there

exists a continuously differentiable x : (−∞, 0] → Rd satisfying

x′(t) = A(t)x(t) + z(t) t ≤ 0, (30)

and supt≤0 |x(t)| ≤ L supt≤0 |z(t)|.

By (28), there exist subspaces Z ⊂ U and Z ′ ⊂ S such that

Rd = S ⊕ Z and Rd = Z ′ ⊕ U . (31)

It follows from Lemma 8, Remark 5 and [11, Theorem 1, p.131] that Eq. (18) admits a
summable dichotomy on R+ with respect to projections P+(t), t ≥ 0 and a summable
dichotomy on R− with respect to projections P−(t), t ≤ 0. Moreover, KerP+(0) = Z and
ImP−(0) = Z ′. This easily implies that (25) holds. Therefore, Eq. (18) admits a summable
trichotomy.

(b) =⇒ (a) Suppose that Eq. (18) admits a summable trichotomy. By [11, Lemma 1,
p.68], there exists N ≥ 1 such that ∥T (t, 0)P+(0)∥ ≤ N for t ≥ 0 and ∥T (t, 0)P−(0)∥ ≤ N
for t ≤ 0. We need the following auxiliary result.

Lemma 9. There exists L > 0 with the property that for each continuous z : R → Rd such
that supt∈R |z(t)| < +∞, there exists a continuously differentiable x : R → Rd sastifying (26)
and (27).
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Proof of the lemma. For t ≥ 0, let

x1(t) =

∫ t

0

T (t, s)P+(s)z(s) ds−
∫ ∞

t

T (t, s)Q+(s)z(s) ds,

where Q+(s) = Id−P+(s). Then, (21) implies that supt≥0 |x1(t)| ≤ K supt≥0 |z(t)|. Observe
that

x′
1(t) = A(t)x1(t) + z(t) for t > 0 and x′

1(0+) = A(0)x1(0) + z(0), (32)

where x′
1(0+) denotes the right-derivative of x1 at 0. On the other hand, observe that

x1(0) ∈ KerP+(0) ⊂ KerP−(0). Hence, by setting x1(t) := T (t, 0)x1(0) for t < 0 we can
extend x1 to a bounded function on R. In fact, |x1(t)| ≤ N |x1(0)| for t ≤ 0 and thus
(assuming without any loss of generality that K ≥ 1)

sup
t∈R

|x1(t)| ≤ NK sup
t≥0

|z(t)|. (33)

In addition,
x′
1(t) = A(t)x1(t) for t < 0 and x′

1(0−) = A(0)x1(0), (34)

where x′
1(0−) denotes the left-derivative of x1 at 0.

For t ≤ 0, let

x2(t) =

∫ t

−∞
T (t, s)P−(s)z(s) ds−

∫ 0

t

T (t, s)Q−(s)z(s) ds,

where Q−(s) = Id−P−(s). Then, (21) implies that supt≤0 |x2(t)| ≤ K supt<0 |z(t)|. Observe
that

x′
2(t) = A(t)x2(t) + z(t) for t < 0 and x′

2(0−) = A(0)x2(0) + z(0). (35)

Moreover, x2(0) ∈ ImP−(0) ⊂ ImP+(0). Hence, by setting x2(t) := T (t, 0)x2(0) for t > 0
we can extend x2 to a bounded function on R. Moreover, similarly to (33), we have that

sup
t∈R

|x2(t)| ≤ NK sup
t<0

|z(t)|. (36)

In addition,
x′
2(t) = A(t)x2(t) for t > 0 and x′

2(0+) = A(0)x2(0). (37)

Set x := x1+x2. Then, (32), (34), (35) and (37) imply that (26) holds. Finally, (33) and (36)
yield that (27) holds with L := 2NK. The proof of the lemma is completed. □

Take δ > 0 and let y : R → Rd be a continuously differentiable function such that (19)
holds. It follows from the previous lemma that the equation

x̃′(t) = A(t)x̃(t) + A(t)y(t)− y′(t) t ∈ R
has a solution with the property that supt∈R |x̃(t)| ≤ Lδ. Then, x := x̃ + y is a solution of
Eq.(18) such that supt∈R |x(t)− y(t)| ≤ Lδ. The proof of the theorem is completed. □

Remark 7. In [3], the version of Theorem 3 was established in the particular case when
supt∈R ∥A(t)∥ < +∞. It turns out that in that case, Hyers-Ulam stability of Eq. (18) is
equivalent to exponential trichotomy (see Remark 6).

We now have the following version of Theorem 2 for continuous time.

Theorem 4. The following properties are equivalent:

(1) Eq. (18) is Hyers-Ulam stable with uniqueness;
(2) Eq. (18) admits a summable dichotomy on R.
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Proof. Suppose that Eq. (18) is Hyers-Ulam stable with uniqueness. Then, one can easily
show that x in the statement of Lemma 6 is unique. By the result stated in [11, p.136], we
have that Eq. (18) admits a summable dichotomy. The converse can be easily established
by using that if Eq. (18) admits a summable dichotomy, then the only bounded solution of
Eq. (18) is the trivial one (see again [11, p.136]). □

Remark 8. We would like to briefly compare the results in this section with those obtained
in [13]. In [13] the author has studied the problem of characterizing dichotomies with very
general growth rates for Eq. (18) posed on the half-interval R+ in terms of certain modified
versions of Hyers-Ulam stability. These results in particular yield (see [13, Corollary 2])
characterization of exponential dichotomy of Eq. (18) (on R+) in terms of two types of
Hyers-Ulam stability without imposing any bounded growth conditions.

Our Theorems 3 and 4 yield characterizations of summable dichotomies and trichotomies
in terms of a single and classical concept of Hyers-Ulam stability for Eq. (18) on R. We stress
that the concepts of trichotomy considered in this paper can only be related to Eq. (18) posed
on R (see Definition 7 and Remark 6).

Thus, none of the results in [13] imply the results in this paper and vice-versa.
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[7] D. Barbu, C. Buşe and A. Tabassum, Hyers–Ulam stability and discrete dichotomy, J. Math. Anal. Appl.
423 (2015), 1738–1752.

[8] F. Battelli, M. Franca and K. J. Palmer, Exponential dichotomy for noninvertible linear difference equa-
tions: block triangular systems, J. Difference Equ. Appl. 28 (2022), 1054–1086.
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[15] D. Dragičević and K. J. Palmer, Dichotomies for triangular systems via admissibility, J. Dynam. Diff.
Equat., to appear.

[16] S. Elaydi and O. Hajek, Exponential trichotomy of differential systems, J. Math. Anal. Appl. 129 (1988),
362–374.

[17] D. Henry, Exponential dichotomies, the shadowing lemma and homoclinic orbits in Banach spaces,
Resenhas, 1 (1994), 381–401.

[18] S. Pilyugin, Multiscale conditional shadowing, J Dyn. Diff. Equat. (2021),
https://doi.org/10.1007/s10884-021-10096-0

[19] A. L. Sasu and B. Sasu, Admissibility and exponential trichotomy of dynamical systems described by
skew-product flows, J. Differential Equations 260 (2016), 1656–1689.

[20] A. L. Sasu and B. Sasu, Input-output criteria for the trichotomic behaviors of discrete dynamical systems,
J. Differential Equations 351 (2023), 277–323.

[21] B. Sasu and A. L. Sasu, On the dichotomic behavior of discrete dynamical systems on the half-line, Discr.
Cont. Dyn. Syst. 33 (2013), 3057–3084.

[22] J. Ombach, Shadowing for linear systems of differential equations, Publ. Mat. 37 (1993), 245–253.
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