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Abstract. Let N be a non-trivial nest on a Hilbert space H, T (N ) be
the associated nest algebra, and φ be a linear map on T (N ). We prove,
among other results, that φ preserves the commutant or the double
commutant if and only if there is a scalar λ and a linear functional f on
T (N ) such that φ(T ) = λT + f(T )I for every T ∈ T (N ). In fact, we
show a more general result than this. Also, we show that φ is a local Lie
centralizer if and only if there exists a scalar λ and a linear functional f
on T (N ) vanishing on each commutator such that φ(T ) = λT + f(T )I
for every T ∈ T (N ).

1. Introduction, and statements of the results

An active research topic in mathematics is the linear preserver problems.
By a linear preserver we mean a linear map of an algebra A into itself which
preserves certain functions, subsets, relations or certain properties of some
elements in A. Linear preserver problems deal with the characterization of
such maps. The reader is referred to [2, Chapter 7] and [1, 3, 9, 15] for an
account of the topic and a list of references. Let A be a topological algebra,
and a ∈ A. We denote by alg(a) the closure of the set of all polynomials in
a. The commutant {a}′ of a is the following set: {a}′ = {x ∈ A : ax = xa}
and the double commutant {a}′′ is the set of all elements of A commuting
with any element in {a}′. Let X be a real or complex Banach space, and
B(X) be the Banach algebra of all bounded linear operators on X. In [9,
Theorem 1], it is shown that alg(φ(T )) = alg(T ) for every T ∈ B(X) if and
only if {T}′ = {φ(T )}′ for every T ∈ B(X) if and only if {φ(T )}′′ = {T}′′
for every T ∈ B(X) if and only if there is a scalar λ 6= 0 and a linear
functional f on B(X) such that φ(T ) = λT + f(T )I for every T ∈ B(X).
Let H be a real or complex Hilbert space. A nest N on H is a chain (with
respect to inclusion) of closed subspaces of H such that {0} and H lies in
N , and N is closed under the operations of taking arbitrary intersections
and closed linear spans of its elements. The associated nest algebra T (N )
is the algebra of all operators T ∈ B(H) which leave each element N ∈ N
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invariant. When N 6= {{0}, H}, we say that the nest N is non-trivial
(see [5]). Characterization of linear maps that are commutant preservers or
double commutant preservers on nest algebras is one of the main topics of
this article. In fact, we have the following result in this case.

Theorem 1.1. Let N be an arbitrary non-trivial nest on a real or complex
Hilbert space H, and T (N ) be the associated nest algebra. Suppose that
φ : T (N )→ T (N ) is a linear map. The following conditions are equivalent:

(i) alg(φ(T )) = alg(T ) for every T ∈ T (N );
(ii) {T}′ = {φ(T )}′ for every T ∈ T (N );

(iii) {φ(T )}′′ = {T}′′ for every T ∈ T (N );
(iv) there is a scalar λ 6= 0 and a linear functional f on T (N ) such that

φ(T ) = λT + f(T )I for every T ∈ T (N ).

To prove Theorem 1.1, we prove the following more general result.

Theorem 1.2. Let N be an arbitrary non-trivial nest on a real or complex
Hilbert space H, and T (N ) be the associated nest algebra. Suppose that
φ : T (N )→ T (N ) is a linear map. The following conditions are equivalent:

(i) alg(φ(T )) ⊆ alg(T ) for every T ∈ T (N );
(ii) {T}′ ⊆ {φ(T )}′ for every T ∈ T (N );

(iii) {φ(T )}′′ ⊆ {T}′′ for every T ∈ T (N );
(iv) ST = TS = 0 =⇒ Sφ(T ) = φ(T )S for S, T ∈ T (N );
(v) there is a scalar λ and a linear functional f on T (N ) such that

φ(T ) = λT + f(T )I for every T ∈ T (N ).

In general, by routine verifications, it can be seen that each of the con-
ditions (i), (ii) and (iii) of Theorem 1.2 implies condition (iv). But the
following example shows that in general, condition (iv) does not give the
conditions (i), (ii) and (iii).

Example 1.3. Let C be the complex field. By the following make C × C
into a C-bimodule:

a(b, c) := (ab, 0) and (b, c)a := (0, ca) (a, b, c ∈ C).

Then

A :=

{(
a (b, c)
0 a

)
| a, b, c ∈ C

}
is an algebra over C, under the usual matrix operations. Define φ : A → A
by

φ(

(
a (b, c)
0 a

)
) :=

(
0 (a, a)
0 0

)
.

The mapping φ is linear. Suppose that S =

(
a (b, c)
0 a

)
and T =

(
a′ (b′, c′)
0 a′

)
are elements in A with ST = TS = 0. Therefore, aa′ = a′a = 0 and by a
simple calculation we have

Sφ(T ) = φ(T )S.
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Let T :=

(
1 (0, 0)
0 1

)
and we see that

φ(T )T =

(
0 (0, 1)
0 0

)
6=

(
0 (1, 0)
0 0

)
= Tφ(T ).

Let A be an algebra. A linear mapping φ : A → A is said to be a Lie
centralizer if φ([a, b]) = [φ(a), b] for any a, b ∈ A, where [a, b] = ab − ba is
the Lie product of a and b in A. The linear map φ : A → A is called a
local Lie centralizer if for each a ∈ A there is a Lie centralizer φa : A → A,
depending on a, such that φ(a) = φa(a). The study of local maps (a function
that agrees at each point with some map that has the desired property)
represents one of the most active research areas in operator theory. The
interest in these types of maps has been aroused by two lines of research.
One is the study of Hochschild cohomology for various operator algebras.
In this regard, Kadison has proved in [10] that any local derivation on a
von Neumann algebra is actually a derivation. Another is the study of the
reflexivity of the space of linear maps from an algebra to itself. Also in this
regard Larson in [12] has asked which algebras have a reflexive derivation
space and Larson and Sourour [13] have studied local derivations and local
automorphisms on B(X), where X is a Banach space. Then other local maps
such as local Jordan derivations, local Lie derivations and local centralizers
have also been considered and extensive studies have been done on local
maps. The reader is referred to [4, 6, 7, 11, 14] and references therein for
an account of the topic. Motivated by these developments, in the present
article, we study the local Lie centralizers on nest algebras and we have the
following result which will be proved by using the previous results.

Theorem 1.4. Let N be an arbitrary non-trivial nest on a real or complex
Hilbert space H, and T (N ) be the associated nest algebra. Suppose that
φ : T (N )→ T (N ) is a linear map. The following conditions are equivalent:

(i) φ is a Lie centralizer;
(ii) φ is a local Lie centralizer;

(iii) there is a scalar λ and a linear functional f on T (N ) vanishing on
each commutator such that φ(T ) = λT +f(T )I for every T ∈ T (N ).

In the next section we give the proof of the above theorems.

2. Proofs

Through this section F is the real or complex field, H is a Hilbert space
over F, N is a non-trivial nest on H, and T (N ) is the associated nest algebra.
If N is a closed subspace of H, then PN denotes the orthonormal projection
onto N . Also, I is the identity operator on H. In order to prove our results
we need the following results which are given in [5, Chapter 2].

Lemma 2.1. Z(T (N )) = FI, where Z(T (N )) is the center of T (N ).
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Lemma 2.2. If N is a non-trivial nest on H, and N ∈ N \ {{0}, H}, then
PNNPN and (I −PN )N (I −PN ) are nests and T (PNNPN ) = PNT (N )PN

and T ((I − PN )N (I − PN )) = (I − PN )T (N )(I − PN ).

Lemma 2.3. Let H be a Hilbert space over F, N be a non-trivial nest
on H, and N ∈ N \ {{0}, H}. Suppose that A ∈ PNT (N )PN and B ∈
(I − PN )T (N )(I − PN ). If AT = TB for any T ∈ PNT (N )(I − PN ), then
there exists λ ∈ F such that A = λPN and B = λ(I − PN ).

Firstly, we prove the Theorem 1.2.

Proof of Theorem 1.2: (ii)⇔(iii), (ii)⇒(iv), and (v)⇒(i) are clear. We only
prove the following cases.

(i)⇒(ii): Let T ∈ T (N ). It follows from alg(φ(T )) ⊆ alg(T ) that φ(T ) =
limn→∞ pn(T ) (in norm), where each pn(T ) is a polynomial in T . Assume
that S ∈ T (N ) and ST = TS. So

Sφ(T ) = lim
n→∞

Spn(T ) = lim
n→∞

pn(T )S = φ(T )S.

(iv)⇒(v): We choose a non-trivial element N ∈ N and set P1 = PN and
P2 = PN⊥ = I − PN . Let Tij = PiT (N )Pj , 1 ≤ i, j ≤ 2. Then T21 = 0 and
we can write T (N ) = T11 ⊕ T12 ⊕ T22, which is the Pierce decompositions
of T (N ). For an element Tij ∈ T (N ), we always mean that Tij ∈ Tij . We
complete the proof by checking some steps.

Step 1. P1φ(T11)P2 = 0 and P1φ(T22)P2 = 0 for all T11 ∈ T11 and T22 ∈ T22.

Let T11 ∈ T11. We have P2T11 = T11P2 = 0 and hence P2φ(T11) =
φ(T11)P2. So P1φ(T11)P2 = 0. Similarly, it follows from P1T22 = T22P1 = 0
that P1φ(T22)P2 = 0 for all T22 ∈ T22.

Step 2. For each T11 ∈ T11 and T22 ∈ T22 there are unique scalars α, β ∈ F,
respectively, such that P2φ(T11)P2 = αP2 and P1φ(T22)P1 = βP1.

Let T11 ∈ T11 be fixed. For any T22 ∈ T22 we have T22T11 = T11T22 = 0,
which implies T22φ(T11) = φ(T11)T22. Hence T22φ(T11)P2 = P2φ(T11)T22,
and so P2φ(T11)P2 ∈ Z(T22). By Lemma 2.2, T22 = T (P2NP2) and from
Lemma 2.1 it follows that P2φ(T11)P2 = αP2 for some α ∈ F (P2 is the unity
of T22). Similarly, we can show that for each T22 ∈ T22 there is a scalar β ∈ F
such that P1φ(T22)P1 = βP1. The uniqueness of α and β are clear.

Step 3. For each T12 ∈ T12 there is a unique scalar γ ∈ F such that
φ(T12)− P1φ(T12)P2 = γI.

For any T12, S12 ∈ T12 we have S12T12 = T12S12 = 0. This implies that
S12φ(T12) = φ(T12)S12. Multiplying this identity by P1 from the left and by
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P2 from the right, we get

S12φ(T12)P2 = P1φ(T12)S12

for all T12, S12 ∈ T12. It follows from Lemma 2.3 that P1φ(T12)P1 = γP1

and P2φ(T12)P2 = γP2 for some γ ∈ F. Hence

φ(T12)− P1φ(T12)P2 = P1φ(T12)P1 + P2φ(T12)P2 = γI

for T12 ∈ T12. The uniqueness of γ is clear.

It follows from Step 2 and linearity of φ that there exist linear maps
f1 : T11 → F and f2 : T22 → F such that

P2φ(T11)P2 = f1(T11)P2 and P1φ(T22)P1 = f2(T22)P1

for all T11 ∈ T11 and T22 ∈ T22. Now, defne two linear maps ϕ : T11 → T11
and ψ : T22 → T22 by

ϕ(T11) = P1φ(T11)P1 − f1(T11)P1 and ψ(T22) = P2φ(T22)P2 − f2(T22)P2.

Step 4. For each Tij ∈ Tij , 1 ≤ i, j ≤ 2, we have

P1φ(T11T12)P2 = T11φ(T12)P2 = ϕ(T11)T12

and

P1φ(T12T22)P2 = P1φ(T12)T22 = T12ψ(T22).

For any T11 ∈ T11 and T12 ∈ T12, let S = T12 − P2 and T = T11 + T11T12.
Since ST = TS = 0, it follows that (T12 − P2)φ(T11 + T11T12) = φ(T11 +
T11T12)(T12 − P2). Multiplying this identity by P1 from the left and by P2

from the right and using Steps 1 and 3, we get

P1φ(T11T12)P2 = P1φ(T11)T12 − T12φ(T11)P2.

Then by definitions of f1 and ϕ,

P1φ(T11T12)P2 = P1φ(T11)T12 − f1(T11)T12 = ϕ(T11)T12.

Taking T11 = P1 in above identity, we arrive at

P1φ(T12)P2 = ϕ(P1)T12.

So for any T22 ∈ T22 and T12 ∈ T12 we have

P1φ(T12T22)P2 = ϕ(P1)T12T22 = P1φ(T12)T22.

For any T22 ∈ T22 and T12 ∈ T12, let C = P1 +T12 and D = T12T22−T22. So
CD = DC = 0 and hence (P1 +T12)φ(T12T22−T22) = φ(T12T22−T22)(P1 +
T12). Multiplying this identity by P1 from the left and by P2 from the right
and using Steps 1 and 3, we get

P1φ(T12T22)P2 = T12φ(T22)P2 − P1φ(T22)T12.
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Now, by definitions of f2 and ψ we have

P1φ(T12T22)P2 = T12φ(T22)P2 − T12f2(T22)P2 = T12ψ(T22).

It follows from the above identity that for any T11 ∈ T11 and T12 ∈ T12,

P1φ(T11T12)P2 = T11T12ψ(P2) = T11φ(T12)P2.

Step 5. For each T11 ∈ T11 and T22 ∈ T22 we have

ϕ(T11) = ϕ(P1)T11 = T11ϕ(P1) and ψ(T22) = ψ(P2)T22 = T22ψ(P2).

From Step 4 we have P1φ(T12)P2 = ϕ(P1)T12 for all T12 ∈ T12. Hence
P1φ(T11T12)P2 = ϕ(P1)T11T12 and T11φ(T12)P2 = T11ϕ(P1)T12 for all T11 ∈
T11 and T12 ∈ T12. Therefore

(ϕ(T11)− ϕ(P1)T11)T12 = (ϕ(T11)− T11ϕ(P1))T12 = 0

for all T11 ∈ T11 and T12 ∈ T12. Since N ∈ N is non-trivial, it follows from
Lemma 2.3 that ϕ(T11) = ϕ(P1)T11 = T11ϕ(P1) for all T11 ∈ T11. Similarly,
we can prove that ψ(T22) = ψ(P2)T22 = T22ψ(P2) for all T22 ∈ T22.

Step 6. There exists a scalar λ ∈ F such that

ϕ(T11) + P1φ(T12)P2 + ψ(T22) = λT

for all T = T11 + T12 + T22 ∈ T (N ).

Define the linear map σ : T (N )→ T (N ) by σ(T ) = ϕ(T11)+P1φ(T12)P2+
ψ(T22) where T = T11 + T12 + T22 ∈ T (N ). It follows from Steps 4 and 5
that

Tσ(I) = (T11 + T12 + T22)(σ(P1) + σ(P2))

= (T11 + T12 + T22)(ϕ(P1) + ψ(P2))

= T11ϕ(P1) + T12ψ(P2) + T22ψ(P2)

= ϕ(T11) + P1φ(T12)P2 + ψ(T22)

= σ(T )

for all T = T11 +T12 +T22 ∈ T (N ). By using a similar methods as above we
can show that σ(T ) = σ(I)T for all T ∈ T (N ). So σ(I) ∈ Z(T (N )) = FI.
Therefore σ(I) = λI for some λ ∈ F and

ϕ(T11) + P1φ(T12)P2 + ψ(T22) = σ(T ) = λT

for all T = T11 + T12 + T22 ∈ T (N ).

Step 7. This is the final step in the proof that (iv) implies (v).
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By Step 3 and linearity of φ there exist a linear map f3 : T12 → F such
that

P1φ(T12)P1 + P2φ(T12)P2 = f3(T12)I

for all T12 ∈ T12. Define the linear functional f : T (N )→ F by

f(T ) = f1(T11) + f2(T22) + f3(T12)

where T = T11+T12+T22 ∈ T (N ). By using the definitions of fj (1 ≤ j ≤ 3),
f , ϕ, ψ and Steps 1-6 we have

φ(T ) = P1φ(T11)P1 + P2φ(T11)P2

+ P1φ(T22)P1 + P2φ(T22)P2

+ P1φ(T12)P1 + P1φ(T12)P2 + P2φ(T12)P2

= P1φ(T11)P1 + f1(T11)P2

+ f2(T22)P1 + P2φ(T22)P2

+ P1φ(T12)P2 + f3(T12)I

= P1φ(T11)P1 − f1(T11)P1 + f1(T11)I

+ P2φ(T22)P2 − f2(T22)P2 + f2(T22)I

+ P1φ(T12)P2 + f3(T12)I

= ϕ(T11) + ψ(T22) + P1φ(T12)P2 + f(T )I

= λT + f(T )I

where T = T11 + T12 + T22 ∈ T (N ). The proof of theorem is completed. �

Proof of Theorem 1.1: (ii)⇔(iii) and (iv)⇒(i) are clear. (i)⇒(ii) is proved
in a similar way to (i)⇒(ii) of Theorem 1.2. We only show (ii)⇒(iv).

(ii)⇒(iv): It follows from Theorem 1.2 that there is a scalar λ and a linear
functional f on T (N ) such that φ(T ) = λT + f(T )I for every T ∈ T (N ).
Suppose that λ = 0. From hypothesis for any T ∈ T (N ) we have

{T}′ = {φ(T )}′ = {f(T )I}′ = T (N ).

Hence T (N ) = Z(T (N )) = FI. This contradicts the non-triviality of N .
Therefore it should λ 6= 0. The proof of theorem is completed. �

Proof of Theorem 1.4: (i)⇒(ii) and (iii)⇒(i) are clear. We prove the follow-
ing cases.

(i)⇒(iii): Let T ∈ T (N ). For any S ∈ {T}′ we have [T, S] = 0 and
hence [φ(T ), S] = 0. So S ∈ {φ(T )}′. Therefore {T}′ ⊆ {φ(T )}′ and by
Theorem 1.2 there exists a scalar λ and a linear functional f on T (N ) such
that φ(T ) = λT + f(T )I for every T ∈ T (N ). By the fact that φ is a
centralizer, for any T, S ∈ T (N ) we have

f([T, S])I = φ([T, S])− λ[T, S]

= [φ(T ), S]− λ[T, S]

= [λT + f(T )I, S]− λ[T, S] = 0.
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So f vanishes on each commutator.
(ii)⇒(iii): Let T ∈ T (N ). There is a Lie centralizer φT : T (N )→ T (N )

such that φ(T ) = φT (T ). So for any S ∈ {T}′ we have

[φ(T ), S] = [φT (T ), S] = φT ([T, S]) = 0.

Hence {T}′ ⊆ {φ(T )}′ and by Theorem 1.2 there is a scalar λ and a linear
functional f on T (N ) such that φ(T ) = λT + f(T )I for every T ∈ T (N ).
Suppose that T, S ∈ T (N ) are arbitrary. There is a Lie centralizer φ[T,S] on
T (N ) such that φ([T, S]) = φ[T,S]([T, S]). It follows from (i)⇒(iii) that there
exists a scalar γ and a linear functional g on T (N ) such that φ[T,S](R) =
γR+ g(R)I for every R ∈ T (N ). So

λ[T, S] + f([T, S])I = φ([T, S]) = φ[T,S]([T, S])

= [φ[T,S](T ), S] = [γT + g(T )I, S] = γ[T, S].

So (γ − λ)[T, S] = f([T, S])I. It follows from the Kleinecke–Shirokov Theo-
rem (cf. [8, Problem 230]) that f([T, S]) = 0. Thus f vanishes on each com-
mutator. The proof of theorem is completed. �
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