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DEPTH OF POWERS OF EDGE IDEALS OF CYCLES AND STARLIKE TREES

NGUYEN CONG MINH, TRAN NAM TRUNG, AND THANH VU

ABSTRACT. Let I be the edge ideal of a cycle of length n ≥ 5 over a polynomial ring S = k[x1, . . . ,xn].
We prove that for 2 ≤ t < ⌈(n+1)/2⌉,

depth(S/It) =

⌈
n− t +1

3

⌉
.

Also, we compute the depth of powers of the edge ideal of a starlike tree, i.e., the join of several path
graphs at a common root.

1. Introduction

Let I be a homogeneous ideal in a standard graded polynomial ring S = k[x1, . . . ,xn] over a field k.
Brodmann [Br] proved that the depth function of powers t → depth(S/It) is convergent. Ha, Nguyen,
Trung, and Trung [HNTT] proved that the depth function of powers of monomial ideals could be any
nonnegative integer-valued convergent function. On the other hand, when restricting to edge ideals of
graphs, one expects that the depth function of their powers is nonincreasing. This phenomenon has
been verified for several classes of graphs (see [HH, KTY, Mo]).

Let us now recall the notion of the edge ideals of graphs. Let G be a simple graph on the vertex
set V (G) = [n] = {1, . . . ,n} and edge set E(G) ⊆ V (G)×V (G). The edge ideal of G, denoted by
I(G), is the squarefree monomial ideal of S generated by xix j where {i, j} is an edge of G. For a
homogeneous ideal I, we denote by dstab(I) the index of depth stability of I, i.e., the smallest positive
integer number k such that depth(S/Iℓ) = depth(S/Ik) for all ℓ≥ k. In [T], the second author found
a combinatorial formula for dstab(I(G)) for large classes of graphs, including unicyclic graphs. In
particular, when G is a tree, dstab(I(G)) = n− ε0(G) where ε0(G) is the number of leaves of G;
when G is a cycle of length n ≥ 5, dstab(I(G)) =

⌈n+1
2

⌉
. Although we know the limit depth and its

index of depth stability, intermediate values for depth of powers of edge ideals were unknown even
for cycles. The depth of powers of edge ideals of paths was only given recently by Bălănescu and
Cimpoeaş [BC1]. For general graphs, Seyed Fakhari [SF] gave a sharp lower bound for the depth of
the second power of their edge ideals. In this paper, we compute the depth of powers of edge ideals
of cycles. For each n ≥ 3, Cn denotes a cycle of length n, i.e., a graph on V (G) = [n] and edge set
E(G) = {{1,2},{2,3}, . . . ,{n−1,n},{1,n}}.
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Theorem 1.1. Let I(Cn) be the edge ideal of a cycle of length n ≥ 5. Then

depth
(
S/I(Cn)

t)=


⌈n−1
3

⌉
, if t = 1,⌈n−t+1

3

⌉
, if 2 ≤ t <

⌈n+1
2

⌉
,

1, if n is even and t ≥ n
2 +1,

0, if n is odd and t ≥ n+1
2 .

In particular, the depth function of powers of edge ideals of cycles makes a big drop just before it
stabilizes. The initial value and limiting values were well-known (see [Mo, C, T]), so our contribution
is the computation of depth(S/I(Cn)

t) for 2 ≤ t < ⌈(n+ 1)/2⌉. We now outline the ideas to carry
out this computation. For simplicity of notation, we set I = I(Cn) and ei = xixi+1 for i = 1, . . . ,n−1,
en = x1xn. Denote

ϕ(n, t) =
⌈

n− t +1
3

⌉
.

(1) First, we show that depth(S/It)≤ depth(S/(It : (e2 · · ·et)))≤ ϕ(n, t).
(2) To establish the lower bound, by Lemma 2.3, we need to show that depth(S/(It : f ))≥ ϕ(n, t)

and depth(S/(It , f )) ≥ ϕ(n, t), where f = x1 · · ·x2t−2. For the first term, we use induction
on t as (It : f ) is well-understood. For the second term, we note that (It , f ) = (It ,x1x2)∩
(It ,x3 · · ·x2t−2). By repeated use of the Depth Lemma, we reduce to proving that depth(S/(It +
I(H))) ≥ ϕ(n, t) for all non-zero subgraphs H of Cn. We accomplish that by induction on t
and downward induction on the number of edges of H.

In order to compute depth(S/I(G)t) for an arbitrary graph G, according to [NV2, Theorem 1.1], we
can reduce to the case when G is connected. We also note that the regularity of powers of edge ideals
of graphs is known for many classes of graphs (see [MV] for a recent survey on the topic). This is
partly due to the fact that the regularity of powers of these edge ideals behaves nicely. On the other
hand, our next result shows that, in general, one cannot expect a simple formula for the depth of powers
of the edge ideal of a tree in terms of its combinatorial invariants.

We now describe a formula for the depth of powers of edge ideals of starlike trees. We first introduce
some notations. A path of length n−1, denoted by Pn, is a graph on V (Pn) = [n] whose edge set is
{{1,2},{2,3}, . . . ,{n−1,n}}. Assume that k ≥ 2 is a natural number. Let a = (a1, . . . ,ak) ∈ Nk be a
vector of positive integers such that |a|= a1 + · · ·+ak = n−1. The starlike tree Ta, which is the join
of k paths of lengths a1, . . . ,ak at a common root 1, is the graph on [n] with edge set

E(Ta) ={{1,2}, . . . ,{a1,a1 +1},{1,a1 +2}, . . . ,{a1 +a2,a1 +a2 +1}, . . . ,
{1,a1 + · · ·+ak−1 +2}, . . . ,{a1 + · · ·+ak,a1 + · · ·+ak +1}}.

Starlike trees are natural generalizations of paths, as the join of two paths of length a1 and a2 is a path
of length a1 +a2 +1.

For i = 0,1,2, let αi(a) be the number of a j such that a j ≡ i (mod 3). We define g : Nk → N by

g(a) =


k
∑

i=1

⌈
ai−1

3

⌉
, if α1(a) = 0 and α2(a) ̸= 0,

1+
k
∑

i=1

⌈
ai−1

3

⌉
, otherwise.
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We may further assume that a j ≡ 2 (mod 3) for j = 1, . . . ,α2(a), a j ≡ 0 (mod 3) for j = α2(a)+
1, . . . ,α2(a)+α0(a) and a j ≡ 1 (mod 3) for j = α0(a)+α2(a)+1, . . . ,k. Let

β1 = min{α2(a), t −1},

β2 = min
{

α0(a),
⌊

max{t −1−α2(a),0}
2

⌋}
,

β3 =

⌊
max{t −1−β1 −2β2,0}

3

⌋
.

We then define b ∈ Nk as follows.

bi =


ai −1, for i = 1, . . . ,β1,

ai −2, for i = α2(a)+1, . . . ,α2(a)+β2

ai, otherwise.

With the above notations, we have:

Theorem 1.2. Assume that k ≥ 2 is a natural number. Let a = (a1, . . . ,ak) ∈ Nk be a vector of positive
integers. Denote by Ta the starlike trees obtained by joining k paths of length a1, . . . ,ak at the common
root 1. Then for all t such that 1 ≤ t ≤ |a|− k = s, we have that

depth
(
S/I(Ta)

t)= g(b)−β3.

Example 1.3. Let a = (3,3,5). Then α0 = 2, α1 = 0 and α2 = 1. By Theorem 1.2, we see that the
sequence {depth(S/I(Ta)

t) | 1 ≤ t ≤ 9} is {4,4,4,3,3,2,2,2,1}.

We structure the paper as follows. In Section 2, we set up the notation and provide some background.
In Section 3, we prove Theorem 1.1. In Section 4, we prove Theorem 1.2.

2. Preliminaries

In this section, we recall some definitions and properties concerning the depth of monomial ideals
and edge ideals of graphs. The interested readers are referred to [BH, D] for more details.

Throughout the paper, we let S = k[x1, . . . ,xn] be a standard graded polynomial ring over a field k.
Let m= (x1, . . . ,xn) be the maximal homogeneous ideal of S.

2.1. Depth. For a finitely generated graded S-module L, the depth of L is defined to be

depth(L) = min{i | H i
m(L) ̸= 0},

where H i
m(L) denotes the i-th local cohomology module of L with respect to m. We have the following

well-known Depth Lemma (see [BH, Proposition 1.2.9]).

Lemma 2.1. Let 0 → L → M → N → 0 be a short exact sequence of finitely generated graded
S-modules. Then

(1) depth(M)≥ min{depth(L),depth(N)},
(2) depth(L)≥ min{depth(M),depth(N)+1},
(3) depth(N)≥ min{depth(L)−1,depth(M)}.
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We make repeated use of the following results in the sequel. The first one is [R, Corollary 1.3]. The
second one is a consequence of the Depth Lemma.

Lemma 2.2. Let I be a monomial ideal and f a monomial such that f /∈ I. Then

depth(S/I)≤ depth(S/(I : f )).

Lemma 2.3. Let I be a homogeneous ideal and f be a homogeneous form of S. Then

depth(S/I)≥ min{depth(S/(I : f )),depth(S/(I, f ))}.

Proof. Applying the Depth Lemma to the short exact sequence

0 → S/(I : f )→ S/I → S/(I, f )→ 0,

we obtain the conclusion. □

Remark 2.4. When I is a monomial ideal and f is a monomial of S, Caviglia, Ha, Herzog, Kummini,
Terai, and Trung [CHHKTT] proved a stronger result, namely

depth(S/I) ∈ {depth(S/(I, f )),depth(S/(I : f ))}.

But Lemma 2.3 is sufficient for us in this paper. We thank an anonymous referee for pointing this out.

As a consequence, we have

Corollary 2.5. Let I be a monomial ideal and f be a monomial of S. Assume that depth(S/(I, f ))≥
depth(S/(I : f )). Then depth(S/I) = depth(S/(I : f )).

Proof. By Lemma 2.2 and Lemma 2.3, we have that

depth(S/(I : f ))≥ depth(S/I)≥ min{depth(S/(I : f )),depth(S/(I, f ))}= depth(S/(I : f )).

The conclusion follows. □

Finally, we also use the following simple result.

Lemma 2.6. Let S = k[x1, . . . ,xn], R1 = k[x1, . . . ,xa], and R2 = k[xa+1, . . . ,xn] for some natural number
a such that 1 ≤ a < n. Let I and J be homogeneous ideals of R1 and R2, respectively. Then

(1) depth(S/(I + J)) = depth(R1/I)+depth(R2/J).
(2) Let P = I +(xa+1, . . . ,xb). Then depth(S/P) = depth(R1/I)+(n−b).

Proof. Part (1) is standard; for example, see [NV2, Lemma 2.3].
Part (2) follows from Part (1) and the fact that depth(R2/(xa+1, . . . ,xb)) = (n−b). □

2.2. Graphs and their edge ideals. Let G be a finite simple graph over the vertex set V (G) = [n] =
{1,2, . . . ,n} and the edge set E(G). For a vertex i ∈V (G), let the neighbourhood of x be the subset
NG(i) = { j ∈V (G) | {i, j} ∈ E(G)}, and set NG[i] = NG(i)∪{i}. The degree of a vertex i ∈V (G) is
the number of its neighbours. A leaf of G is a vertex of degree 1.

A simple graph H is a subgraph of G if V (H)⊆V (G) and E(H)⊆ E(G). H is an induced subgraph
of G if it is a subgraph of G and E(H) = E(G)∩V (H)×V (H).
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The edge ideal of G is defined to be

I(G) = (xix j | {i, j} ∈ E(G))⊆ S.

We now recall several classes of graphs that we study in this work. A path Pn of length n−1 is the
graph on [n] whose edges are {i, i+1} for i = 1, . . . ,n−1.

A walk in G is a sequence of (possibly repeated) vertices i1, . . . , iℓ such that {i j, i j+1} ∈ E(G) for all
j = 1, . . . , ℓ−1. A walk is called an even (odd) walk if ℓ is even (odd). It is called closed if i1 = iℓ.

A cycle Cn of length n ≥ 3 is the graph on [n] whose edges are {i, i+ 1} for i = 1, . . . ,n− 1 and
{1,n}.

A tree is a connected graph without any cycle. A starlike tree is a tree with at most one vertex of
degree ≥ 3.

A subset U ⊂ [n] is called an independent set of G if the induced subgraph of G on U has no edges.
A graph H is bipartite if there exists a bipartition of the vertex set of H, V (H) =U ∪V such that

U ∩V = /0 and E(H)⊆U ×V . It is a complete bipartite graph if, furthermore, E(H) =U ×V .

2.3. Colon ideals of monomial ideals. We have the following simple result about colon ideals of
monomial ideals.

Lemma 2.7. Let I be an ideal of S generated by the monomials f1, . . . , fs and f be a monomial of S.
Then (I : f ) is generated by f1/gcd( f1, f ), . . . , fs/gcd( fs, f ).

Proof. Since fi ∈ I, we have that fi/gcd( fi, f ) ∈ (I : f ). Now assume that g is any monomial in
(I : f ). Then f g ∈ I. Since I is a monomial ideal, there exists j ∈ {1, . . . ,s} such that f j | f g. In
particular, ( f j/gcd( f j, f )) | ( f/gcd( f j, f )) ·g. Since gcd( f j/gcd( f j, f ), f/gcd( f j,g)) = 1, we deduce
that f j/gcd( f j, f ) divides g. The conclusion follows. □

As a consequence, we have

Corollary 2.8. Let I and J be monomial ideals and f be a monomial of S. We have that

((I + J) : f ) = (I : f )+(J : f ).

Proof. Assume that I and J are generated by monomials f1, . . . , fs and g1, . . . ,gt respectively. Then
I + J is generated by f1, . . . , fs,g1, . . . ,gt . The conclusion follows from Lemma 2.7. □

For each subset U ⊂ [n], we set xU = ∏u∈U xu, NG(U) = ∪u∈U NG(u), and NG[U ] = ∪u∈U NG[u].

Lemma 2.9. Let G be a simple graph. Assume that U is an independent set of G. We have that

(I(G) : xU) = I(G)+(xv | v ∈ NG(U)) = I(G′)+(xv | v ∈ NG(U)),

where G′ is the induced subgraph of G on V (G)\NG[U ].

Proof. Let {i, j} be an edge of G. Since U is an independent set, we deduce that xix j ̸ |xU . If
{i, j}∩U = /0, we have that xix j/gcd(xix j,xU) = xix j. If i ∈U , we have that xix j/gcd(xix j,xU) = x j.
Since i ∈U , we have that j ∈ NG(U). By Lemma 2.7, we deduce that

(I(G) : xU) = I(G)+(xv | v ∈ NG(U)).

Now, for any edge {i, j} of G such that {i, j}∩NG[U ] ̸= /0, we must have {i, j}∩NG(U) ̸= /0. Thus,
xix j ∈ (xv | v ∈ NG(U)). The conclusion follows. □

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

8 Feb 2024 16:03:39 PST
231215-VuThanh Version 3 - Submitted to Rocky Mountain J. Math.



DEPTH OF POWERS OF EDGE IDEALS OF CYCLES AND STARLIKE TREES 6

Finally, we have the following result [Mo, Lemma 2.10].

Lemma 2.10. Suppose that G is a graph, i is a leaf of G and j is the unique neighbour of i. Then for
any t ≥ 2, we have that

(I(G)t : (xix j)) = I(G)t−1.

2.4. Even-connection and a colon of powers of edge ideals. Let I = I(G) be the edge ideal of a
simple graph G. In this subsection, we first recall the notion of even-connection via a collection of
edges of G introduced by Banerjee [B]. We then describe the colon ideals of powers of I by a monomial
corresponding to a collection of edges of G. We use the following notation. For an edge e = {i, j} of
G, xe denotes the monomial xix j. Assume that t is a positive integer. For a collection e = (e1, . . . ,et) of
t edges of G, xe denotes the monomial xe1 · · ·xet .

Definition 2.11. Let e = (e1, . . . ,et) be a collection of t (possibly repeated) edges of G. We say that
two vertices u and v of G are e-even connected if there exist (possibly repeated) vertices i1, . . . , i2k of G
such that

(1) {u, i1},{i1, i2}, . . . ,{i2k−1, i2k},{i2k,v} ∈ E(G),
(2) {i2 j+1, i2 j+2}= eℓ for some ℓ ∈ {1, . . . , t} and all j = 0, . . . ,k−1,
(3) for all j = 1, . . . , t,

∣∣{p | {i2p+1, i2p+2}= e j}
∣∣≤ ∣∣{q | eq = e j}

∣∣.
Note that if {u,v} ∈ E(G) then u and v are e-even connected for arbitrary collections e. We call the

walk u, i1, i2, . . . , i2k,v in the Definition 2.11 an e-even walk connecting u and v. The following is [B,
Theorem 6.7].

Theorem 2.12. Let I = I(G) be the edge ideal of a simple graph G and e = (e1, . . . ,et) be a collection
of t (possibly repeated) edges of G. Then (It+1 : xe) is generated by quadratic monomials xuxv such
that u and v are e-even connected.

Example 2.13. Let G be the graph on V (G) = {1, . . . ,6} and edge set

E(G) = {{1,3},{2,3},{3,4},{4,5},{5,6},{4,6}}.

Let e = ({3,4},{3,4},{5,6}). Then 1 and 2 are e-even connected via the sequence of vertices
3,4,5,6,4,3. Indeed, we have(

I(G)4 : (x2
3x2

4x5x6)
)
= I(G)+(x2

1,x1x2,x1x5,x1x6,x2
2,x2x5,x2x6).

We now prove

Lemma 2.14. Let e = (e1, . . . ,et) be a collection of t distinct edges of G. Assume that e j = {i2 j−1, i2 j}
for j = 1, . . . , t. Note that the vertices i1, . . . , i2t are not necessarily distinct. Furthermore, assume
that the induced subgraph of G on NG[e] = ∪2t

j=1NG[i j] does not contain an odd cycle. For each
s = 1, . . . , t +1, we define the graph Gs on the vertex set [n] recursively as follows

G1 = G,E(Gs+1) = E(Gs)∪{{u,v} | u ∈ NGs(i2s−1),v ∈ NGs(i2s)}.

Then, for all s = 1, . . . , t, we have that(
I(G)s+1 : (xe1 · · ·xes)

)
= I(Gs+1) =

(
I(Gs) : xi2s−1

)
∩ (I(Gs) : xi2s) .
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Proof. For each s = 1, . . . , t, we denote by es the collection of edges es = (e1, . . . ,es). Let J1 = I(G)
and Js+1 =

(
I(G)s+1 : (xe1 · · ·xes)

)
. We prove by induction on s that

(2.1) Js+1 = I(Gs+1) =
(
I(Gs) : xi2s−1

)
∩ (I(Gs) : xi2s) .

The base case s = 1 follows immediately from Theorem 2.12.
Now, assume that the statement holds for s−1≥ 1. First, we prove that Js+1 ⊆ I(Gs+1). By Theorem

2.12, a minimal generator of Js+1 is of the form xuxv such that u and v are es-even connected. By
definition, there exist vertices j1, . . . , j2k such that

(1) {u, j1},{ j1, j2}, . . . ,{ j2k−1, j2k},{ j2k,v} are edges of G,
(2) { j1, j2}, . . . ,{ j2k−1, j2k} are among e1, . . . ,es,
(3) { j1, j2}, . . . ,{ j2k−1, j2k} are distinct edges of G.

If es does not appear among the edges { j1, j2}, . . . ,{ j2k−1, j2k} then u and v are es−1-even connected.
Hence, xuxv ∈ I(Gs) ⊆ I(Gs+1). Thus, we may assume that j2ℓ−1 = i2s−1 and j2ℓ = i2s for some
ℓ ∈ {1, . . . ,s}. In particular, u and i2s−1 and i2s and v are es−1-even connected. Hence, by induction,
u ∈ NGs(i2s−1) and v ∈ NGs(i2s). Thus, {u,v} ∈ E(Gs+1).

Now, we prove that

(2.2) NGs(i2s−1)∩NGs(i2s) = /0.

Indeed, assume that u ∈ NGs(i2s−1)∩NGs(i2s). By Theorem 2.12 and induction hypothesis, u is even-
connected to i2s−1 and i2s. Hence, the concatenation of even-walks from u to i2s−1 and u to i2s forms a
closed odd walk in NG[es], a contradiction to the assumption.

Now, we prove that if u ∈ NGs(i2s−1) and v ∈ NGs(i2s) then xuxv ∈ Js+1. By induction, there exist
es−1-even walks u, j1, . . . , j2k, i2s−1 and i2s, p1, . . . , p2l,v. If { j1, . . . , j2k}∩{p1, . . . , p2l}= /0 then the
concatenation of the two even-walks form an es-even walk connecting u and v. The conclusion follows
from Theorem 2.12. If j2ℓ = p2m+1 for some ℓ and m then the walk j2ℓ, . . . , j2k, i2s−1, i2s, p1, . . . , p2m+1
is a closed odd walk in NG[es], a contradiction. Finally, assume that j2ℓ = p2m for some ℓ and m. Now
along the even walk u, j1, . . . , j2k, i2s−1, i2s, p1, . . . , p2l,v we can omit the middle part from j2ℓ to p2m
and obtain a shorter even walk. We can repeat this until there is no further repetition of the vertices on
the walk to obtain an es-even walk connecting u and v.

Finally, the equality
I(Gs+1) =

(
I(Gs) : xi2s−1

)
∩ (I(Gs) : xi2s)

follows from Lemma 2.9 and Eq. (2.2). □

2.5. Strongly disjoint families of complete bipartite subgraphs. In this subsection, we recall the
result of Kimura [K] bounding the projective dimension of edge ideals of graphs in terms of the notion
of strongly disjoint families of complete bipartite subgraphs. A strongly disjoint family of complete
bipartite subgraphs of a graph G is a family of (non-induced) subgraphs B1, . . . ,Bg of G such that

(1) each Bi is a complete bipartite graph for 1 ≤ i ≤ g,
(2) the graphs B1, . . . ,Bg have pairwise disjoint vertex sets,
(3) there exists an induced matching e1, . . . ,eg of G for each ei ∈ E(Bi) for 1 ≤ i ≤ g.

We have the following result [K, Theorem 1.1].
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DEPTH OF POWERS OF EDGE IDEALS OF CYCLES AND STARLIKE TREES 8

Theorem 2.15. Let B = {B1, . . . ,Bg} be a strongly disjoint family of complete bipartite subgraphs of
a graph G. Then

pd(S/I(G))≥

(
g

∑
i=1

|V (Bi)|

)
−g.

We now deduce the following bound.

Lemma 2.16. Let G be a simple graph on V (G) = [n]. Let B1 be a complete bipartite subgraph of
G with e1 ∈ B1. Let H be a subgraph of G on V (H) = [n] \V (Bi). Assume that H is a forest and
NG[e1]∩V (H) = /0. Then

depth(S/I(G))≤ 1+depth(R/I(H)),

where R is the polynomial ring on V (H).

Proof. Since H is a forest, by [NV1, Theorem 7.7], there exists a strongly disjoint family of complete
bipartite graphs B2, . . . ,Bg of H such that

pd(R/I(H)) =

(
g

∑
i=2

|V (Bi)|

)
− (g−1).

By the assumption of the lemma, we see that B1, . . . ,Bg form a strongly disjoint family of complete
bipartite graphs of G. By Theorem 2.15, we have that

pd(S/I(G))≥

(
g

∑
i=1

|V (Bi)|

)
−g.

The conclusion follows from the Auslander-Buchsbaum formula. □

Remark 2.17. Lemma 2.16 is a special case of [HHV, Lemma 1.2]. We keep this simple version to
avoid introducing too many terminologies.

3. Depth of powers of edge ideals of cycles

In this section, we compute the depth of powers of edge ideals of paths and cycles. We fix the
following notation throughout the rest of the paper. For each n, Pn and Cn denote the path of length
n−1 and the cycle of length n, respectively, on the vertex set [n]. S = k[x1, . . . ,xn] is a standard graded
polynomial ring over a field k. For a real number a, denote by ⌈a⌉ the least integer at least a, ⌊a⌋ the
largest integer at most a. First, we have two simple lemmas.

Lemma 3.1. Let a,b be integers. Then⌈a
3

⌉
+

⌈
b
3

⌉
≥
⌈

a+b
3

⌉
.

Proof. There exist unique integers k, a1, l,b1 such that a = 3k+a1 and b = 3l+b1 with 1 ≤ a1,b1 ≤ 3.
By definition,

⌈a
3

⌉
= k+1 and

⌈b
3

⌉
= l + 1. Since a1,b1 ≤ 3, a1 + b1 ≤ 6, hence

⌈
a1+b1

3

⌉
≤ 2. The

conclusion follows. □
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DEPTH OF POWERS OF EDGE IDEALS OF CYCLES AND STARLIKE TREES 9

Lemma 3.2. Let I,J,K be homogeneous ideals of S such that I ⊆ K. Then, for any positive integer t,
we have

(I + J)t +K = Jt +K.

Proof. We have (I + J)t = Jt + I(I + J)t−1. Since I(I + J)t−1 ⊆ I ⊆ K, the conclusion follows. □

Furthermore, the depth of I(Pn) and I(Cn) is well known [Mo, C]. By convention, P1 is the graph on
[1] with no edge and I(P1) is the zero ideal in S = k[x1].

Lemma 3.3. We have
(1) depth(S/I(Pn)) =

⌈n
3

⌉
for n ≥ 1,

(2) depth(S/I(Cn)) =
⌈n−1

3

⌉
for n ≥ 3.

We now come to a crucial step in computing the depth of powers of edge ideals of paths and
cycles. For the rest of this section, we denote ei = xixi+1 for i = 1, . . . ,n− 1 and en = x1xn. To
avoid complicated notation, we assume that ei also denotes the corresponding edge {i, i+1} of Pn for
i = 1, . . . ,n− 1, and en also denotes the edge {1,n} of Cn. It is clear from the context when ei is a
monomial in S or when ei is an edge of a graph. We define

ϕ(n, t) =
⌈

n− t +1
3

⌉
.

Lemma 3.4. Let H be any subgraph of Pn. Then, for any positive integer t with t < n, we have that

depth
(
S/(I(Pn)

t + I(H))
)
≥ ϕ(n, t).

Proof. We use downward induction on the number of edges of H, denoted by |E(H)|, induction on n,
and induction on t. If |E(H)|= n−1 or t = 1, then I(Pn)

t + I(H) = I(Pn). By Lemma 3.3, we have
that

depth(S/I(Pn)) =
⌈n

3

⌉
≥ ϕ(n, t).

Assume that |E(H)|< n−1 and t ≥ 2. Since,
√

I(Pn)t + I(H) = I(Pn), m is not an associated prime
of I(Pn)

t + I(H). Hence, if n ≤ 4 and t ≥ 2 then

depth
(
S/(I(Pn)

t + I(H))
)
≥ 1 ≥ ϕ(n, t).

Thus, we may assume that n ≥ 5 and t ≥ 2.
Let i be the smallest index such that ei /∈H, i.e., e1, . . . ,ei−1 ∈H. Let J = I(Pn)

t +I(H). We have that
(J,ei) = I(Pn)

t + I(H ′) with H ′ is a subgraph of Pn with E(H ′) = E(H)∪{ei}. Since |E(H ′)|> |E(H)|,
by induction on |E(H)|, depth(S/(J,ei))≥ ϕ(n, t).

By Lemma 2.3, it suffices to prove that

(3.1) depth(S/(J : ei))≥ ϕ(n, t).

There are four cases to consider.

Case 1. i = 1 and e2 ∈ H. We claim that

(3.2) (J : e1) = Lt−1 +(x3)+ I(H ′),

where L = (x1x2,x4x5, . . . ,xn−1xn) and H ′ is the induced subgraph of H on V (H)\{1,2,3}.
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DEPTH OF POWERS OF EDGE IDEALS OF CYCLES AND STARLIKE TREES 10

Proof of Eq. (3.2). By assumption, e1 /∈ H and e2 ∈ H. Let Q = L+(x3x4). Then I(Pn) = Q+(e2) =
Q+ I(H). By Lemma 3.2, J = I(Pn)

t + I(H) = Qt + I(H). By Corollary 2.8 and Lemma 2.10, we have
that

(J : e1) = Qt−1 +(I(H) : e1) = Qt−1 +(x3)+ I(H ′).

Since Q = L+(x3x4) and (x3x4)⊂ (x3), Eq. (3.2) follows from Lemma 3.2. □

For each ℓ≥ 1, we set Kℓ= Lℓ+(x3)+I(H ′). In particular, (J : e1)=Kt−1. We prove by induction on
ℓ that depth(S/Kℓ)≥ ϕ(n, t) for all 1 ≤ ℓ≤ t−1. For ℓ= 1, note that K1 = L+(x3)+ I(H ′) = L+(x3).
Let G be the induced subgraph of Pn on {4, . . . ,n}. By Lemma 2.6, we have that

(3.3) depth(S/K1) = depth(R/I(G))+1 = 1+ϕ(n−3,1)≥ ϕ(n, t),

where R = k[x4, . . . ,xn].
Now assume that depth(S/Kℓ) ≥ ϕ(n, t). First, we prove that depth(S/(Kℓ+1 +(e1))) ≥ ϕ(n, t).

Since L = I(G)+(e1), by Lemma 3.2, we have that

(3.4) Kℓ+1 +(e1) = I(G)ℓ+1 + I(H ′)+(e1)+(x3).

By Lemma 2.6, we have that

(3.5) depth
(

S/(I(G)ℓ+1 + I(H ′)+(e1)+(x3))
)
= depth

(
R/(I(G)ℓ+1 + I(H ′))

)
+1.

Since G ∼= Pn−3 and H ′ is a subgraph of G, by induction on n, we deduce that

(3.6) depth
(

R/(I(G)ℓ+1 + I(H ′))
)
≥ ϕ(n−3, ℓ+1).

From Eq. (3.4), Eq. (3.5), Eq. (3.6), we deduce that

depth(S/(Kℓ+1 +(e1)))≥ ϕ(n−3, ℓ+1)+1 = ϕ(n, ℓ+1)≥ ϕ(n, t),

for ℓ≤ t −1. By Lemma 3.2 and Lemma 2.10, we have that

(3.7) (Kℓ+1 : e1) = Kℓ.

By the Depth Lemma and induction on ℓ, we deduce that depth(S/Kℓ+1)≥ ϕ(n, t). That concludes the
proof of inequality (3.1) for Case 1.

Case 2. i = 1 and e2 /∈ H. Since e1,e2 /∈ H, we have that I(H) : e1 = I(H). By Lemma 3.2 and Lemma
2.10, we have that

(J : e1) = I(Pn)
t−1 + I(H).

The inequality (3.1) follows from induction on t.

Case 3. i > 1 and ei+1 ∈ H. We claim that

(3.8) (J : ei) = Lt−1 +(xi−1,xi+2)+ I(H ′)+ I(Pi−2),

where L = (xixi+1,xi+3xi+4, . . . ,xn−1xn), Pi−2 is the path on 1, . . . , i−2 and H ′ is the induced subgraph
of H on suppH \{1, . . . , i+2}.

Proof of Eq. (3.8). By assumption, I(Pn) = L+ I(H). By Lemma 3.2, J = Lt + I(H). By Lemma 2.10,
Corollary 2.8, and Lemma 2.9, the conclusion follows. □
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DEPTH OF POWERS OF EDGE IDEALS OF CYCLES AND STARLIKE TREES 11

For each ℓ= 1, . . . , t −1, we set Kℓ = Lℓ+(xi,xi+2)+ I(H ′)+ I(Pi−2). With an argument similar to
Case 1, we reduce to prove that

depth(S/(Kℓ+(ei)))≥ ϕ(n, t),

for all ℓ= 1, . . . , t −1. Let G′ be the induced subgraph of Pn on {i+3, . . . ,n}. Then G′ ∼= Pn−i−2 and
H ′ is a subgraph of G′. Note that G′, ei, and Pi−2 have support on different sets of variables. By Lemma
2.6 and Lemma 3.3, we have that

(3.9) depth(S/(Kℓ+(ei))) = depth
(

R/(I(G′)ℓ+ I(H ′))
)
+1+

⌈
i−2

3

⌉
,

where R= k[xi+3, . . . ,xn]. By induction on n, we have that depth
(
R/(I(G′)ℓ+ I(H ′))

)
≥ϕ(n− i−2, ℓ).

Hence,

depth(S/(Kℓ+(ei)))≥ ϕ(n− i−2, ℓ)+1+
⌈

i−2
3

⌉
≥ ϕ(n, t).

Case 4. i > 1 and ei+1 /∈ H. By Lemma 3.2, Lemma 2.10, Corollary 2.8, and Lemma 2.9, we have that

(3.10) (J : ei) = I(G′)t−1 +(xi−1)+ I(Pi−2)+ I(H ′),

where G′ is the induced subgraph of Pn on {i, . . . ,n}, Pi−2 is the path 1, . . . , i−2 and H ′ is the induced
subgraph of H on suppH \{1, . . . , i−1}. By Lemma 2.6, we have that

depth(S/(J : ei)) = depth
(
R/(I(G′)t−1 + I(H ′))

)
+

⌈
i−2

3

⌉
.

Since G′ ∼= Pn−i+1 and H ′ is a subgraph of G′, by induction on n, we have that depth(R/(I(G′)t−1 +
I(H ′)))≥ ϕ(n− i+1, t −1). Hence,

depth(S/(J : ei))≥ ϕ(n− i+1, t −1)+
⌈

i−2
3

⌉
≥ ϕ(n, t).

The conclusion follows. □

To obtain an upper bound for depth(S/I(Pn)
t), we prove

Lemma 3.5. Let ei = xixi+1 for all i = 1, . . . ,n−1 and I = I(Pn) = (x1x2, . . . ,xn−1xn). Then, for any
t ∈ {1, . . . ,n−2}, we have that

depth(S/(It : (e2 . . .et))) = ϕ(n, t).

Proof. By Lemma 2.14, we have that (It : (e2 . . .et)) = I(Gn,t), where Gn,t is the graph on V (Gn,t) = [n]
and edge set

E(Gn,t) = E(Pn)∪{{i, j} | i < j ≤ t +2 is of different parity}.
We prove by induction on n and downward induction on t ≤ n−2 that

depth(S/I(Gn,t)) = ϕ(n, t) =
⌈

n− t +1
3

⌉
.

If t = n−2, then Gn,t is a complete bipartite graph, hence depth(S/I(Gn,t)) = 1. Thus, we may assume
that t ≤ n−3. Hence, I(Gn,t) = I(Gn−1,t)+(en−1). Furthermore, this decomposition is a Betti splitting
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DEPTH OF POWERS OF EDGE IDEALS OF CYCLES AND STARLIKE TREES 12

by [NV1, Corollary 4.12]. Since I(Gn−1,t)∩ (en−1) = en−1((xn−2)+ I(Gn−3,t)), by [NV1, Corollary
4.8] and induction on n, we have that

pd(S/I(Gn,t)) = max{pd(S/I(Gn−1,t)),1,pd(S/I(Gn−3,t))+1}
= max{n−1−ϕ(n−1, t),1,n−ϕ(n−3, t)−1}= n−ϕ(n, t).

The conclusion follows from the Auslander-Buchsbaum formula. □

Theorem 3.6. Let I(Pn) be the edge ideal of a path of length n−1. Then

depth(S/It) = max
{⌈

n− t +1
3

⌉
,1
}
,

for all t ≥ 1.

Proof. By Lemma 3.3 and [T], we may assume that 2 ≤ t ≤ n− 3. By Lemma 3.4, take H be the
empty graph, we deduce that depth(S/It)≥ ϕ(n, t). The conclusion then follows from Lemma 3.5 and
Lemma 2.2. □

Remark 3.7. Note that for any integer n, ⌈n
3⌉= n+1−⌊n+1

3 ⌋−⌈n+1
3 ⌉. In particular, Theorem 3.6 is

a special case of [BC1, Theorem 1]. We include a simple argument here because Lemma 3.4 will be
critical to deduce the formula for depth of powers of edge ideals of cycles. Also, Ştefan [St] proved a
similar formula for Stanley depth of I(Pn)

t .

We now turn to the edge ideals of cycles Cn. The depth of powers of I(Cn) in the case n ≤ 4
is clear. Thus, we may assume that n ≥ 5. By [T], we know that dstab(I(Cn)) = ⌈n+1

2 ⌉. Thus, we
may assume that 2 ≤ t < ⌈n+1

2 ⌉. First, we note that f = x1 · · ·x2t−2 is a product of distinct variables.
By the Depth Lemma, to establish the lower bound for depth(S/I(Cn)

t), it suffices to prove that
depth(S/(It : f )) ≥ ϕ(n, t) and depth(S/(It , f )) ≥ ϕ(n, t). We establish the first inequality in the
following lemma.

Lemma 3.8. Assume that n ≥ 5 and 2 ≤ t < ⌈n+1
2 ⌉. Then

depth(S/(I(Cn)
t : (x1 · · ·x2t−2)))≥ ϕ(n, t).

Proof. For each t = 1, . . . ,
⌈n+1

2

⌉
−1, let Jt = (It : (x1 · · ·x2t−2)). By Lemma 2.14,

(3.11) Jt+1 = (Jt : x2t−1)∩ (Jt : x2t).

Note that depth(S/J1) = depth(S/I(Cn)) =
⌈n−1

3

⌉
= ϕ(n,2). First, consider the base case t = 2. By

Lemma 2.9, (I : x1)+ (I : x2) = (x1,x2,x3,xn)+ I(G), where G is the induced subgraph of Cn on
{4, . . . ,n−1}. In particular, G ∼= Pn−4. By Lemma 2.6 and Lemma 3.3, we have that

(3.12) depth(S/((I : x1)+(I : x2))) =

⌈
n−4

3

⌉
= ϕ(n,2)−1.

By Lemma 2.3,

(3.13) depth(S/J2)≥ min{depth(S/J1),depth(S/((I : x1)+(I : x2))+1)}= ϕ(n,2).

Now, consider the induction step. By Lemma 2.14 and Lemma 2.9, we have that

(3.14) (Jt : x2t−1)+(Jt : x2t) = (xn,x2,x4, . . . ,x2t−4,x2t−2,x2t−1,x2t ,x2t+1)+ I(H)
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DEPTH OF POWERS OF EDGE IDEALS OF CYCLES AND STARLIKE TREES 13

where H is the path from 2t +2 to n−1. Note that x1,x3, . . . ,x2t−3 are variables that do not appear in
(Jt : x2t−1)+(Jt : x2t). By Lemma 2.6 and Lemma 3.3, we have that

(3.15) depth(S/((Jt : x2t−1)+(Jt : x2t))) = t −1+
⌈

n−2t −2
3

⌉
≥ ϕ(n, t +1)−1.

By Lemma 2.2 and induction, we have that

min{depth(S/(Jt : x2t−1)),depth(S/(Jt : x2t))} ≥ depth(S/Jt)≥ ϕ(n, t).

Together with equation (3.11) and Lemma 2.3, we have that

depth(S/Jt+1)≥ min{ϕ(n, t),depth(S/((Jt : x2t−1)+(Jt : x2t)))+1}
≥ ϕ(n, t +1).

The conclusion follows. □

The second inequality is established in the following lemma.

Lemma 3.9. Assume that t ≥ 2 and f = x1 · · ·x2t−2. Then depth(S/(It , f ))≥ ϕ(n, t).

Proof. For each j = 1, . . . , t − 2, let f j = x2 j−1 · · ·x2t−2. Then f = f1 and f j = (x2 j−1x2 j) · f j+1. In
other words, for any subgraph H of G consisting of edges which are subsets of {e1,e3, . . . ,e2 j−3}, we
have

(3.16) It + I(H)+( f j) = (It + I(H)+(x2 j−1x2 j))∩ (It + I(H)+( f j+1)).

The conclusion follows from Lemma 2.1 and the following lemma. □

Lemma 3.10. Let H be a non-empty subgraph of Cn. Then for t ≥ 2, we have that

depth(S/(I(Cn)
t + I(H)))≥ ϕ(n, t).

Proof. Since H is non-empty, we may assume that en = x1xn ∈ H. We prove by downward induction
on the number of edges of H. If |E(H)|= n, then I(Cn)

t + I(H) = I(Cn). By Lemma 3.3, we have that

depth
(
S/(I(Cn)

t + I(H))
)
= ϕ(n,2)≥ ϕ(n, t).

Let i be the smallest index such that ei /∈ H, i.e., e0 = en,e1, . . . ,ei−1 ∈ H. Let J = I(Cn)
t + I(H).

Since J+(ei) = I(Cn)
t + I(H ′) with |E(H ′)|> |E(H)|, thus, by induction on |E(H)|, we deduce that

depth(S/(J+(ei)))≥ ϕ(n, t). By Lemma 2.3, it suffices to prove that

(3.17) depth(S/(J : ei))≥ ϕ(n, t).

Note that ei−1 ∈ H. Hence xi−1 ∈ I(H) : ei. There are two cases to consider.

Case 1. ei+1 /∈ H. By Corollary 2.8 and Lemma 2.10, we have that

(3.18) (J : ei) = (xi−1)+ I(G)t−1 + I(H ′),

where G is the induced subgraph of Cn on [n] \ {i− 1} and H ′ is the induced subgraph of H on
V (H)\{i−1}. In particular, G ∼= Pn−1 and H ′ is a subgraph of G. By Lemma 2.6 and Lemma 3.4, we
deduce that

depth(S/(J : ei)) = depth
(
R/(I(G)t−1 + I(H ′))

)
≥ ϕ(n−1, t −1) = ϕ(n, t),
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DEPTH OF POWERS OF EDGE IDEALS OF CYCLES AND STARLIKE TREES 14

where R = k[x1, . . . ,xi−2,xi, . . . ,xn].

Case 2. ei+1 ∈ H. By Corollary 2.8, Lemma 2.10 and Lemma 2.9, we have that

(3.19) (J : ei) = (xi−1,xi+2)+((ei)+ I(G))t−1 + I(H ′),

where G is the induced subgraph of Cn on [n]\{i−1, i, i+1, i+2} and H ′ is the induced subgraph of
H on V (H)\{i−1, i, i+1, i+2}. For each ℓ= 1, . . . , t −1, let

(3.20) Kℓ = (xi−1,xi+2)+((ei)+ I(G))ℓ+ I(H ′).

We prove by induction on ℓ that depth(S/Kℓ)≥ ϕ(n, t) for all 1 ≤ ℓ≤ t −1. When ℓ= 1, we have that
Kℓ = (xi−1,xi+2)+ (ei)+ I(G). Let R = k[x1, . . . ,xi−2,xi+3, . . . ,xn]. Since G ∼= Pn−4, by Lemma 2.6
and Lemma 3.3, we have that

depth(S/Kℓ) = depth(R/I(G))+1 =

⌈
n−4

3

⌉
+1 ≥ ϕ(n, t).

Now, assume that depth(S/Kℓ) ≥ ϕ(n, t). By Corollary 2.8 and Lemma 2.10, we have that (Kℓ+1 :
ei) = Kℓ. By Lemma 2.3 and induction, it suffices to prove that

(3.21) depth(S/(Kℓ+1 +(ei)))≥ ϕ(n, t),

for ℓ≤ t −2. By Lemma 3.2, we have that Kℓ+1 +(ei) = (xi−1,xi+2)+ I(G)ℓ+1 + I(H ′)+(ei). Note
that H ′ is a subgraph of G. By Lemma 2.6 and Lemma 3.4, we have that

(3.22) depth(S/(Kℓ+1 +(ei))) = 1+depth
(

R/(I(G)ℓ+1 + I(H ′))
)
≥ 1+ϕ(n−4, ℓ+1)≥ ϕ(n, t),

for all ℓ≤ t −2.
The conclusion follows. □

We now give an upper bound for the depth of powers of edge ideals of cycles.

Lemma 3.11. Assume that I = I(Cn) and t ≤ n−2. Then

depth(S/(It : (e2 · · ·et)))≤ ϕ(n, t).

Proof. Let J = (It : (e2 · · ·et)). By Lemma 2.14, we have that J = I(Gn,t), where Gn,t is the graph on
V (Gn,t) = [n] and edge set

E(Gn,t) = E(Cn)∪{{i, j} | 1 ≤ i < j ≤ t +2 is of different parity}.

First, assume that t = n−2. If n is even, then Gn,t is a complete bipartite graph, hence depth(S/J) = 1.
If n is odd, let H be the restriction of Gn,t to [n] \ {1}. Then, H is a complete bipartite graph.
Furthermore, we have J = x1(x2,x4, . . . ,xn−1,xn)+ I(H). By [NV1, Corollary 4.12], this is a Betti
splitting. Furthermore, x1(x2,x4 . . . ,xn−1,xn)∩ I(H) = x1I(H). Hence, by [NV1, Corollary 4.8], we
have that

pd(S/J) = pd(S/(x1I(H)))+1 = n−1.

Now, assume that t = n−3. By Lemma 2.9, we have that

(J : xn) = (x1,xn−1)+ I(KU,V ),
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DEPTH OF POWERS OF EDGE IDEALS OF CYCLES AND STARLIKE TREES 15

where KU,V is the complete bipartite graph on U and V are the partition of {2, . . . ,n−2} into odd and
even numbers. By Lemma 2.2, we deduce that

depth(S/J)≤ depth(S/(J : xn))≤ 2.

Finally, assume that t ≤ n−4. By Lemma 2.9, we have that

(3.23) (J : xn−1) = (xn,xn−2)+(I(Pn−3)
t : (e2 · · ·et)).

By Lemma 2.2 and Lemma 3.5, we deduce that

depth(S/J)≤ depth(S/(J : xn−1)) = 1+ϕ(n−3, t) = ϕ(n, t).

The conclusion follows. □

We are now ready for the proof of Theorem 1.1.

Proof of Theorem 1.1. By Lemma 2.3, Lemma 3.8 and Lemma 3.9, we get that depth(S/It)≥ ϕ(n, t).
By Lemma 2.2 and Lemma 3.11, we get that depth(S/It)≤ ϕ(n, t). The conclusion follows. □

Remark 3.12. In [BC2, BC3], Bălănescu and Cimpoeaş considered the path ideals of cycles; they
obtained a sharp upper bound for the depth of powers of these path ideals and exact values for some
special classes of these path ideals. The overlap of their results with our results presented in the current
paper is minimal.

Remark 3.13. Our arguments extend to compute the depth of symbolic powers of edge ideals of cycles.
We cover that in subsequent work [MTV].

4. Depth of powers of edge ideals of starlike trees

In this section, we compute the depth of powers of edge ideals of starlike trees. We first introduce
some notations. Assume that k ≥ 2 is a natural number. We use bold letters for vectors in Rk. The
vectors e1, . . . ,ek are the canonical unit vectors of Rk; 1 denotes the vector whose all components are
1. Let a = (a1, . . . ,ak) ∈ Nk be a vector of positive integers such that |a|= a1 + · · ·+ak = n−1. The
starlike tree Ta, which is the join of k paths of lengths a1, . . . ,ak at a common root 1, is the graph on [n]
with edge set

E(Ta) ={{1,2}, . . . ,{a1,a1 +1},{1,a1 +2}, . . . ,{a1 +a2,a1 +a2 +1}, . . . ,
{1,a1 + · · ·+ak−1 +2}, . . . ,{a1 + · · ·+ak,a1 + · · ·+ak +1}}.

For i = 0,1,2, let αi(a) be the number of a j such that a j ≡ i (mod 3). Let g : Nk →N be defined by

g(a) =


k
∑

i=1

⌈
ai−1

3

⌉
, if α1(a) = 0 and α2(a) ̸= 0,

1+
k
∑

i=1

⌈
ai−1

3

⌉
, otherwise.

The following properties of g follow immediately from the definition.

Lemma 4.1. Let a ∈ Nk be a vector of positive integers.
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DEPTH OF POWERS OF EDGE IDEALS OF CYCLES AND STARLIKE TREES 16

(1) Assume that a′ ∈ Nk is another vector obtained by permuting the coordinates of a then
g(a) = g(a′).

(2) Assume that ai ≥ 3 then g(a) = g(a−3ei)+1.
(3) Assume that ai > b > 0 then g(a)≤

⌈b
3

⌉
+g(a−bei).

First, we compute the depth of the edge ideal of a starlike tree.

Lemma 4.2. Let a = (a1, . . . ,ak) ∈ Nk be a vector of positive integers. Let Ta be the starlike trees
obtained by joining paths of length a1, . . . ,ak at the root 1. Then

depth(S/I(Ta)) = g(a).

Proof. We prove by induction on s = |a−1|. For simplicity of notation, we denote I = I(Ta). When
s = 0, Ta is a star graph, which is a complete bipartite graph. Thus, depth(S/I) = 1. Assume that s > 0
and a1 is largest, so a1 > 1. First, consider the case a1 ≥ 3. By induction, Lemma 2.6, Lemma 2.9, and
Lemma 4.1, we have that

depth(S/(I,xa1)) = 1+g(a−2e1)≥ g(a)
depth(S/(I : xa1)) = 1+g(a−3e1) = g(a).

By Corollary 2.5, we have that depth(S/I) = depth(S/(I : xa1)) = g(a).
Now, assume that a1 = 2. Since a1 is largest, 1 ≤ a j ≤ 2 for all j = 1, . . . ,k. We may assume that

a1 ≥ a2 ≥ ·· · ≥ ak. There are two cases to consider.

Case 1. ak = 2. By Lemma 2.9, we have that

(I : x2) = (x1,x3)+(x4x5,x6x7, . . . ,x2kx2k+1).

By Lemma 2.6, depth(S/(I : x2)) = k. Furthermore, (I,x2) is isomorphic to the starlike tree Ta′ with
a′ = (2, . . . ,2) ∈ Nk−1 and x3 is a free variable of (I,x2). By Lemma 2.6 and induction, we have that
depth(S/(I,x2)) = k. By Corollary 2.5, we deduce that depth(S/I) = k = g(a).

Case 2. ak = 1. Let ℓ be the largest index such that aℓ = 2. Then ℓ < k. By Lemma 2.6 and Lemma
2.9, we have that

depth(S/(I,x1)) = k

depth(S/(I : x1)) = 1+ ℓ.

By Corollary 2.5, we deduce that depth(S/I) = 1+ ℓ= g(a). □

Before studying the depth of powers of starlike trees, we introduce some more notation. Without
loss of generality, we assume for now that a1 ≥ a2 ≥ ·· · ≥ ak ≥ 1. Let p0 = 0 and pi = a1 + · · ·+ai
for i = 1, . . . ,k. We order the edges of Ta by going from the leaf of the first branch to the root, then
from the leaf of the second branch to the root, and so on. In the formula, the order is

{a1,a1 +1}> {a1 −1,a1}> · · ·> {1,2}>
{p2, p2 +1}> {p2 −1, p2}> · · ·> {1,a1 +2}> · · ·>
{pk, pk +1}> · · ·> {1, pk−1 +2}.

(4.1)
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DEPTH OF POWERS OF EDGE IDEALS OF CYCLES AND STARLIKE TREES 17

We label the edges in this order by e1, . . . ,en−1. For each i = 1, . . . ,n−1, let Hi and Ti be the graphs
whose edge sets are {e1, . . . ,ei} and {ei, . . . ,en−1}, respectively. We also have that

NTa(1) = {p0 +2, p1 +2, . . . , pk−1 +2},
NTa(pi +1) = {pi}, for i = 1, . . . ,k,

NTa(pi +2) = {1, pi +3}, for i = 0, . . . ,k−1,

NTa(u) = {u−1,u+1}, if pi +2 < u ≤ pi+1 for some i ∈ {0, . . . ,k−1}.

(4.2)

First, we prove

Lemma 4.3. With the above notations, for all t ≥ 2, we have that

depth(S/I(Ta)
t)≥ min

i=0,...,n−2
{depth(S/(I(Ti+1)

t−1 +(I(Hi) : xei+1)))}.

Proof. For each i = 0, . . . ,n−1, let Li = I(Ta)
t + I(Hi), where H0 is the empty graph. By Lemma 2.3,

we have that

(4.3) depth(S/Li)≥ min{depth(S/Li+1),depth(S/(Li : xei+1))}.
Since L0 = I(Ta)

t , Ln−1 = I(Ta) and (L0 : xe1) = I(Ta)
t−1, we have that

depth(S/I(Ta)
t)≥ min

i=0,...,n−2
{depth(S/(Li : xei+1))}.

Since I(Ta) = I(Ti+1)+ I(Hi), by Lemma 3.2, we have that Li = I(Ti+1)
t + I(Hi). By Lemma 2.10,

Corollary 2.8, and the fact that ei+1 is a leaf of Ti+1, we have that

(4.4) (Li : xei+1) = I(Ti+1)
t−1 +(I(Hi) : xei+1).

The conclusion follows. □

Let t,b ∈ Nk be vectors of natural numbers. We write t ≪ b if ti ≤ bi for all i. We define

Γ(a, t) = {t ∈ Nk | t ≪ a−1 and |t|= t −1}.
We now prove a lower bound for the depth of powers of the edge ideals of starlike trees.

Lemma 4.4. Assume that k ≥ 2. Let a = (a1, . . . ,ak) ∈ Nk be a vector of positive integers. Assume
that 2 ≤ t < |a−1|, then

depth(S/I(Ta)
t)≥ min{g(a− t) | t ∈ Γ(a, t)}.

Proof. We keep the notation as in the proof of Lemma 4.3, i.e., Li = I(Ta)
t + I(Hi). Furthermore, for

i = 0, . . . ,n−2, we set Ji = (Li : xei+1) = I(Ti+1)
t +(I(Hi) : xei+1). We prove by induction on t and |a|

that for each i = 0, . . . ,n−2, we have that

(4.5) depth(S/Ji)≥ min{g(a− t) | t ∈ Γ(a, t)}.
By Eq. (4.3), once we have Eq. (4.5), we also have

(4.6) depth(S/Li)≥ min{g(a− t) | t ∈ Γ(a, t)}.
The base case t = 1 is clear, as then Li = I(Ta) and Ji = (1). By Eq. (4.1), there are four cases to

consider.
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(1) ei+1 is a leaf of the ℓth branch for some ℓ≤ k and this leaf also contains the root, i.e., aℓ = 1.
(2) ei+1 is a leaf of the ℓth branch for some ℓ≤ k and this leaf does not contain the root, i.e., aℓ > 1.
(3) ei+1 is on the ℓth branch for some ℓ ≤ k and ei+1 is neither a leaf nor contains the root, i.e.,

aℓ > 2.
(4) ei+1 is on the ℓth branch for some ℓ≤ k and ei+1 is not a leaf but ei+1 contains the root, i.e.,

aℓ ≥ 2.

Case 1. ei+1 = {1, pℓ+2} for some ℓ≤ k and aℓ = 1. By Lemma 2.9, we have that

Ji = I(Tℓ+1)
t−1 +(x1,x2,xa1+2, . . . ,xa1+···+aℓ+2)+K,

where K is the edge ideal of the induced graph of Ta on {1, . . . , pℓ+2}\{1, p0 +2, p1 +2, . . . , pℓ+2}.
In particular, K is the edge ideal of the disjoint union of paths of lengths a j −2 for j = 1, . . . , ℓ−1.
With our assumption, a j = 1 for all j ≥ ℓ. Hence, by Lemma 2.6 and Lemma 3.3, we have that

(4.7) depth(S/Ji) = 1+
ℓ−1

∑
j=1

⌈
a j −1

3

⌉
= g(a)≥ min{g(a− t) | t ∈ Γ(a, t)}.

Case 2. ei+1 = {pℓ, pℓ+1} for some ℓ≤ k and aℓ > 1. By Lemma 2.9, we have that

Ji = I(Ta)
t−1 + I(Hℓ).

By induction on t, Eq. (4.6), and the fact that g(a)≤ g(a′) if a ≪ a′, the conclusion follows.

Case 3. ei+1 = {u,u+1} for some u such that pℓ−1 +2 ≤ u < pℓ. In particular, aℓ > 2. By Eq. (4.4)
and Lemma 2.9, we have that

Ji = I(Tℓ+1)
t−1 +(xu+2)+ I(Tc)+ I(K2)

where c = (a1, . . . ,aℓ−1) and K2 is the path from u+3 to pℓ+1. By Lemma 2.6 and Lemma 3.3, we
have that

(4.8) depth(S/Ji) =

⌈
pℓ−u−1

3

⌉
+depth

(
S′/(I(Tℓ+1)

t−1 + I(Tc))
)
,

where S′ is the polynomial ring on V (Tℓ+1)∪V (Tc). Note that I(Tℓ+1)
t−1 + I(Tc) = I(G)t−1 + I(Tc)

where G is the induced subgraph of Ta on V (Ta) \ {u− 1,u, . . . , pℓ+ 1} which is isomorphic to the
starlike tree Tb with b = (a1, . . . ,aℓ−1,aℓ− (pℓ−u),aℓ+1, . . . ,ak). Since I(G)t−1 + I(Tc) has the form
Li = I(Ta)

t−1 + I(Hi) with smaller exponent and smaller starlike tree, by induction on t there exists
t0 ∈Nk such that t0 ≪ b−1 and |t0|= t −2 and depth(S′/(I(Tℓ+1)

t−1)+ I(Tc))≥ g(b− t0). Together
with Lemma 4.1, we deduce that

depth(S/Ji)≥
⌈

pℓ−u−1
3

⌉
+g(b− t0)≥ g(a− t1)≥ min{g(a− t) | t ∈ Γ(a, t)},

where t1 = t0 + eℓ.

Case 4. ei+1 = {1, pℓ+2} for some ℓ≤ k and aℓ ≥ 2. By Lemma 2.9, we have that

Ji = T t−1
ℓ+1 +(xp0+2,xp1+2, . . . ,xpℓ−1+2,xpℓ+3)+ I(K),
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where K is the union of paths of length a j −2 for j = 1, . . . , ℓ−1 and a path of length max(aℓ−3,0).
By Lemma 2.6 and Lemma 3.3, we have that

(4.9) depth(S/Ji) =
ℓ−1

∑
j=1

⌈
a j −1

3

⌉
+

⌈
aℓ−2

3

⌉
+depth

(
S′/I(Tℓ+1)

t−1) .
where S′ is the polynomial ring on the variables corresponding to V (Tℓ+1). Note that Tℓ+1 is isomorphic
to the starlike tree Ta′ with a′ = (aℓ+1, . . . ,ak) ∈ Nk−ℓ. By induction on t applied to Ta′ , there exists
t′ ≪ a′−1 with |t′|= t −2 such that depth(S′/T t−1

ℓ+1 )≥ g(a′− t′). Let t0 = t′+ eℓ. By Eq. (4.9) and
Lemma 3.1, we deduce that

depth(S/Ji)≥ g(a− t0)≥ min{g(a− t) | t ∈ Γ(a, t)}.
The conclusion follows. □

We now compute min{g(a− t) | t ∈ Γ(a, t)} in terms of a and t. We may assume that a j ≡ 2
(mod 3) for j = 1, . . . ,α2, a j ≡ 0 (mod 3) for j = α2 + 1, . . . ,α2 +α0 and a j ≡ 1 (mod 3) for j =
α0 +α2 +1, . . . ,k. First, we note some further properties of g.

Lemma 4.5. Let b = (a3, . . . ,ak). We have
(1) g(3k+1,3l +3,b)≤ g(3k+2,3l +2,b).
(2) g(3k+1,3l +1,b)≤ g(3k,3l +2,b).
(3) g(3k−2,3l +2,b)≤ g(3k,3l,b).

Proof. These properties follow easily from the definition of g. We prove one of them for completeness.
For (1), we have that

g(3k+1,3l +3,b) = 1+ k+ l +1+
k

∑
i=3

⌈
ai −1

3

⌉
,

g(3k+2,3l +2,b) = ε + k+1+ l +1+
k

∑
i=3

⌈
ai −1

3

⌉
,

where ε = 1 if a j = 1 (mod 3) for some j ≥ 3 and 0 otherwise. The conclusion follows. □

Lemma 4.6. Assume that α2(a) = 0. Then

g(a− t) = g(a),

for all t ∈ Γ(a,2).

Proof. By the assumption, a j ≡ 0 (mod 3) for j = 1, . . . ,α0 and a j ≡ 1 (mod 3) for j = α0+1, . . . ,k.
In particular, ⌈

a j −1
3

⌉
=

⌈
a j −2

3

⌉
=

⌈
a j − t j −1

3

⌉
,

for all j = 1, . . . ,k. Since |t|= 1, we have that t = e j for some j = 1, . . . ,k. Now α2(a− t) ̸= 0 and
α1(a− t) = 0 if and only if j = k = 1, which is a contradiction. Thus, we have

g(a− t) = 1+
k

∑
i=1

⌈
ai − ti −1

3

⌉
= g(a).
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The conclusion follows. □

Lemma 4.7. Assume that α2(a) = α0(a) = 0. Then

min{g(a− t) | t ∈ Γ(a, t)}= g(a)−
⌊

t −1
3

⌋
.

Proof. By assumption, we have a j ≡ 1 (mod 3) for all j = 1, . . . ,k. By Lemma 4.5, if there exists i, j
such that ti, t j ̸=≡ 0 (mod 3) then we can choose an u ∈ Γ(a, t) such that g(a−u)≤ g(a− t). Hence,
there can be at most one j such that t j ̸=≡ 0 (mod 3). By Lemma 4.1 and the fact that if a j ≥ 4 and
a j ≡ 1 (mod 3) then ⌈

a j −1
3

⌉
=

⌈
a j −2

3

⌉
=

⌈
a j −3

3

⌉
,

the conclusion follows. □

We use the following notations in the next lemma. Let

β1 = min{α2(a), t −1},

β2 = min
{

α0(a),
⌊

max{t −1−α2(a),0}
2

⌋}
,

β3 =

⌊
max{t −1−β1 −2β2,0}

3

⌋
.

(4.10)

We then define b ∈ Nk as follows.

bi =


ai −1, for i = 1, . . . ,β1,

ai −2, for i = α2(a)+1, . . . ,α2(a)+β2,

ai, otherwise.

Lemma 4.8. With the above notations, we have that

min{g(a− t) | t ∈ Γ(a, t)}= g(b)−β3.

Proof. Let u ∈ Γ(a, t) be such that

g(a−u) = min{g(a− t) | t ∈ Γ(a, t)}.
We claim that we can choose such an u with α1(a−u) = β1 +β2.

Indeed, by Lemma 4.1, without loss of generality, assume that u1+u2 ≥ 2 and a1−u1 and a2−u2 are
not congruent to 1 modulo 3. By Lemma 4.5, we can choose a u′ ∈ Γ(a, t) with α1(a−u′)> α1(a−u)
and g(a−u′)≤ g(a−u). By the choice of u we must have g(a−u′) = g(a−u). Replacing u by u′,
we assume that γ(u) is as largest as possible. By the definition of β s and Lemma 4.5, we deduce that
α1(a−u) = β1 +β2.

It remains to prove that

(4.11) g(a−u) = g(b)−β3.

There are three cases to consider as follows.

Case 1. t −1 ≤ α2(a). Then β2 = β3 = 0 and a−u = b. The equation (4.11) follows immediately.
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Case 2. t − 1 > α2(a) and
⌊

t−1−α2(a)
2

⌋
≤ α0(a). Then β3 = 0. If t − 1−α2(a) ≡ 0 (mod 2) then

a−u = b and the equation (4.11) holds immediately. Thus, we assume that t−1−α2(a)≡ 1 (mod 2).
Replacing a by b if necessary, we may assume that α2(a) = 0 and t = 2. Eq. (4.11) follows from
Lemma 4.6.

Case 3. t −1 > α2(a) and
⌊

t−1−α2(a)
2

⌋
≥ α0(a). Then we have β3 =

⌊
t−1−β1−2β2

3

⌋
. Replacing a by b

if necessary, we may assume that α2(a) = 0 and α0(a) = 0. Eq. (4.11) follows from Lemma 4.7. □

We are now ready to give an upper bound for the depth of powers of edge ideals of starlike trees.

Lemma 4.9. Assume that k ≥ 2. Let a = (a1, . . . ,ak) ∈ Nk be a vector of positive integers. Assume
that 2 ≤ t < |a−1|. Then

depth(S/I(Ta)
t)≤ min{g(a− t) | t ∈ Γ(a, t)}.

Proof. By the proof of Lemma 4.8, we may choose an u ∈ Γ(a, t) such that

g(a−u) = min{g(a− t) | t ∈ Γ(a, t)},

and α1(a−u) = β1 +β2. In particular, if either t ≥ 3 or α1(a)> 0 then we can always choose an u
such that α1(a−u)> 0. In these cases, we have

g(a−u) = 1+
k

∑
i=1

⌈
ai −ui −1

3

⌉
.

We no longer assume that a1 ≥ ·· · ≥ ak. Instead, we assume that ui > 0 for i = 1, . . . , ℓ and ui = 0 for
i = ℓ+1, . . . ,k. For each i = 1, . . . , ℓ, we set

mi =

{
(x1xpi−1+2) if ui = 1,
(x1xpi−1+2)(xpi−1+2xpi−1+3) · · ·(xpi−1+uixpi−1+ui+1) if ui > 1.

Let mu = m1 · · ·mℓ. Furthermore, we set

Ui = {pi−1 +2, pi−1 +4, . . . , pi−1 +2 j | 2 j ≤ ui +2}
Vi = {pi−1 +3, . . . , pi−1 +2 j+1 | 2 j+1 ≤ ui +2}

(4.12)

By Lemma 2.14, we have that
(I(Ta)

t : mu) = I(G)

where G is the graph on V (G) = [n] with edge set

(4.13) E(G) = E(B1)∪E(H),

where B1 = KU,V is a complete bipartite graph on

U =U1 ∪U2 ∪·· ·∪Uℓ∪{pℓ+1 +2, . . . , pk−1 +2},
V =V1 ∪V2 ∪·· ·∪Vℓ∪{1},

(4.14)

and H is the induced subgraph of Ta on

([n]\V (B1))∪{p0 + t1 +2, p1 + t2 +2, . . . , pℓ−1 + tℓ+2, pℓ+2, . . . , pk−1 +2}.
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By Lemma 2.16, we have that

depth(S/I(G))≤ 1+
k

∑
i=1

⌈
ai −ui −1

3

⌉
= g(a−u).

It remains to consider the case t = 2 and α1(a) = 0. If α0(a) = 0 then for any t with |t| = 1, we
have α1(a− t)> 0 and we can proceed as in the previous case. If α2(a)> 0, then by the definition of
g, we see that for any t with |t|= 1, we have g(a− t) = g(a) and the conclusion is clear. Thus, we may
assume that ai ≡ 0 (mod 3) for all i = 1, . . . ,k. By Lemma 2.14, we have that

(I(Ta)
2 : (x2x3)) = I(G),

where E(G) = E(Ta)∪{1,4}. Let B0 be the induced subgraph of G on {1,2,3,4}, B1 be the induced
subgraph of G on {5, . . . ,a1 +1} and B j be the induced subgraph of G on {p j−1 +2, . . . , p j +1} for
j = 2, . . . ,k. Then B1 is isomorphic to Pa1−3 and B j ∼= Pa j for j = 2, . . . ,k. By Lemma 2.16, we have
that

depth(S/I(G))≤ 1+
⌈

a1 −3
3

⌉
+

k

∑
j=2

⌈a j

3

⌉
=

k

∑
j=1

⌈
a j −1

3

⌉
= g(a)−1.

The conclusion follows. □

We are now ready for the proof of Theorem 1.2.

Proof of Theorem 1.2. By Lemma 4.4 and Lemma 4.9, we have that

depth(S/I(Ta)
t) = min{g(a− t) | t ∈ Γ(a, t)}.

The conclusion then follows from Lemma 4.8. □

Example 4.10. Let a = (3,4,5). Then α0 = 1, α1 = 1 and α2 = 1. By Theorem 1.2, we see that the
sequence {depth(S/I(Ta)

t) | 1 ≤ t ≤ 10} is {5,4,4,3,3,3,2,2,2,1}.
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