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Abstract

In this work, we combine the penalty method and simplified two-level technique to solve the stationary
Smagorinsky model, based on two different finite element space pairs: the P2 − P0 element and the P1 − P0

element. The simplified two-level penalty algorithm involves solving one small penalty Smagorinsky model
on a coarse mesh, and one penalty Stokes equations on a fine mesh. Moreover, convergence results of the
presented algorithm are proved. Then, some numerical experiments are provided to illustrate the theoretical
results of the simplified two-level penalty algorithm.
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1. Introduction

Numerical simulation of turbulence is a great computational challenge in fluid dynamics. Large eddy
simulation is one of effective methods for turbulence simulation. Moreover, the Smagorinsky model [28] is
one of the most popular large eddy simulation [3, 4], which is widely used in many aspects, such as gas
dynamics and geophysical flow. In this paper, we consider the following steady-state Smagorinsky model [4]:

−ν∆u−∇ · ((CSδ)
2|∇u|∇u) + (u · ∇)u+∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω,

(1)

where Ω ⊂ R2 is a bounded and regular domain with a Lipschitz continuous boundary ∂Ω. Here u, p and
f represent the velocity vector of a viscous incompressible fluid, the pressure and the prescribe spatially
filtered forcing term, respectively. Besides, CS is the Smagorinsky constant, δ is the radius of the spatial

filter used in large eddy simulation, and ν is the viscosity. For a tensor σ, |σ| =
√∑2

i,j=1 |σij |2 denotes the

Frobenius norm.
The Smagorinsky model adds an artificial viscosity term to the Navier-Stokes equations, and this addi-

tional term dissipates energy in a large scale structures at the same rate as the discarded small scale. Some
researches have been made to solve numerically the Smagorinsky problem. Borggaard et al. [4] applied
the two-level finite element method to the Smagorinsky model, which solved the Smagorinsky problem on
a coarse grid and Newton’s linearized Smagorinsky problem on a fine grid. Huang et al. [19] combined the
two-level method with the lowest order finite element method to solve the Smagorinsky problem. Then,
Shi et al. [27] proposed the nonconforming finite element method for the considered model. Furthermore,
several efficient schemes [2, 29, 33] have been well further developed for solving the Smagorinsky model.
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As is known, two-level technique is an efficient numerical scheme for solving nonlinear problems, which
was proposed by Xu [30, 31]. This technique can greatly reduce the calculation cost. Many researchers have
explored this idea for different nonlinear equations (see Layton [20], Layton and Lenferink [23, 22], He et
al. [12, 11, 13], and Huang et al. [16, 17, 18]). We notice that the Smagorinsky model is also nonlinear.
Besides, the velocity and pressure are coupled by incompressible condition. In fact, the popular method to
overcome this coupling is the penalty method [15, 26, 32].

From the above literatures, we know that the two-level method and the penalty method are effective for
solving nonlinear problems with incompressible conditions. Therefore, the penalty method is applied to (1)
which approximates the solution (u, p) by (uϵ, pϵ) satisfying the following equations:

−ν∆uϵ −∇ · ((CSδ)
2|∇uϵ|∇uϵ) + (uϵ · ∇)uϵ +∇pϵ = f in Ω,

∇ · uϵ +
ϵ

ν
pϵ = 0 in Ω,

uϵ = 0 on ∂Ω,

(2)

where 0 < ϵ < 1 is a penalty parameter. We note that pϵ can be eliminated to obtain a penalty system of
uϵ, which is much easier to solve than the original equations (1).

In this paper, we combine simplified two-level method and penalty method to solve the stationary S-
magorinsky model based on two finite element space pairs: one is P2 − P0 element satisfying the discrete
inf-sup condition, and other one is P1 − P0 element dissatisfying this condition. We first solve the penalty
Smagorinsky problem on a coarse mesh with mesh size H, and then solved the penalty Stokes problem on
a fine mesh with mesh size h (h ≪ H). Secondly, we prove stability and convergence of the penalty finite
element method for the Smagorinsky model, and error estimate of the simplified two-level penalty algorithm
by selecting appropriate δ, ϵ and h. Moreover, if we choose P1 − P0 element and H = O(ϵ

1
4h

1
2 ), then the

approximate solution produced by the simplified two-level penalty algorithm is asymptotically as accurate as
the approximation produced by solving the nonlinear system on the fine mesh; if we choose P2 −P0 element
and H = O(h

1
2 ), then we provide an approximate solution with the convergence rate of same order as the

penalty finite element solution obtained on the fine mesh.
The paper is organized as follows. In Section 2, we introduced some preliminary knowledge of the

stationary Smagorinsky model. In Section 3, we give the penalty finite element discretization based on two
finite element space pairs. Section 4 shows the simplified two-level penalty algorithm and its error estimate.
In Section 5, numerical experiments are given to illustrate the accuracy and efficiency of the presented
algorithm. We conclude the paper in Section 6.

2. Preliminaries

In this section, we introduce some the notations and results used in this paper. We introduce the necessary
function spaces. For Ω ⊂ R2 and W k,r(Ω), Hk(Ω), 0 < r ≤ ∞, k = 0, 1, 2, ..., denote the usual Sobolev
spaces. The space L2(Ω) is equipped with the L2-scalar product (·, ·) and L2-norm ∥ · ∥0. Let ∥ · ∥Lr the
norm on Lr(Ω), and ∥ · ∥k,r the norm on W k,r(Ω). Set ∥ · ∥k = ∥ · ∥k,2. Besides, C is a positive constant
representing different values in different situations, and it depends on Ω but not on the mesh scales h, H,
the parameter δ and ϵ in this paper.

We then introduce the following function spaces:

X = {v ∈ W 1,3(Ω)2 : v = 0 on ∂Ω} ⊂ H1
0 (Ω)

2, M = {q ∈ L2(Ω) : (q, 1) = 0}.

Besides, we define bilinear forms a(·, ·) and d(·, ·) as follow:

a(u,v) = ν(∇u,∇v), d(v, q) = (∇ · v, q) ∀ u,v ∈ X, q ∈ M.

Obviously, the bilinear form d(·, ·) satisfies the inf-sup condition [10, 5]:

β∥q∥0 ≤ sup
v ̸=0∈H1

0 (Ω)2

|d(v, q)|
∥∇v∥0

, ∀q ∈ M, (3)
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where β is a positive constant dependent on Ω.
We also introduce a trilinear form b(·, ·, ·) on X×X×X by

b(u,v,w) = ((u · ∇)v,w) + 0.5((∇ · u)v,w)

= 0.5((u · ∇)v,w)− 0.5((u · ∇)w,v) ∀ u,v,w ∈ X.

The above trilinear term has the following important properties [14, 8]:

b(u,v,w) = −b(u,w,v),

|b(u,v,w)| ≤ N∥∇u∥0∥∇v∥0∥∇w∥0, ∀ u,v,w ∈ X,
(4)

where N := sup
u,v,w∈X

|b(u,v,w)|
∥∇u∥0∥∇v∥0∥∇w∥0

is a positive constant.

Next, we recall some of the following inequalities throughout the paper. The Gagliardo-Nirenberg in-
equality [24, 25]:

∥v∥2L4 ≤ C∥v∥0∥∇v∥0, ∀ v ∈ X, ∥∇v∥2L4 ≤ C∥v∥2∥∇v∥0, ∀ v ∈ X ∩H2(Ω)2, (5)

the Agmon’s inequality [1, 24]:

∥v∥2L∞ ≤ C∥v∥0∥v∥2, ∀ v ∈ X ∩H2(Ω)2, (6)

the Poincáre inequality [10]:

∥v∥0 ≤ C∥∇v∥0, ∀ v ∈ X, (7)

and Young’s inequality:

(u,v) ≤ ξ

p
∥u∥pLp +

ξ−
q
p

q
∥v∥qLq , ξ ∈ (0,∞),

1

p
+

1

q
= 1, p, q ∈ [1,∞]. (8)

Furthermore, we recall the inverse inequality [21]:

∥∇vµ∥L3 ≤ Cinvµ
− 1

3 ∥∇vµ∥0, ∀vµ ∈ Xµ. (9)

Here µ is mesh size and Cinv is a positive constant independent on µ. In Section 3, we will give a detailed
definition on µ.

Furthermore, we will also apply the following lemma concerning strong monotonicity and Lipschitz con-
tinuity of the r-Laplacian.

Lemma 2.1. [4] For all u1,u2,v ∈ W 1,r(Ω)2, there exists a generic constant C depending on r and Ω such
that the following inequalities hold

(|∇u1|r−2∇u1,∇(u1 − u2))− (|∇u2|r−2∇u2,∇(u1 − u2)) ≥ C∥∇(u1 − u2)∥rLr ,

(|∇u1|r−2∇u1,∇v)− (|∇u2|r−2∇u2,∇v) ≤ CM∥∇(u1 − u2)∥Lr∥∇v∥Lr ,

where M = max{∥∇u1∥r−2
Lr , ∥∇u2∥r−2

Lr }.

With the above notations, the variational formulation of (1): find (u, p) ∈ (X,M) satisfying for all
(v, q) ∈ (X,M),

a(u,v) + (CSδ)
2(|∇u|∇u,∇v) + b(u,u,v)− d(v, p) + d(u, q) = (f ,v), (10)

and the variational formulation of (2): find (uϵ, pϵ) ∈ (X,M) satisfying for all (v, q) ∈ (X,M),

a(uϵ,v) + (CSδ)
2(|∇uϵ|∇uϵ,∇v) + b(uϵ,uϵ,v)− d(v, pϵ) + d(uϵ, q) +

ϵ

ν
(pϵ, q) = (f ,v). (11)

Then, we recall the well-posedness of the solution to the problem (10) in the following lemma [4, 8, 9].
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Lemma 2.2. There exists a weak solution u ∈ X to the problem (10) satisfying

∥∇u∥L3 ≤ (CSδ)
−1∥f∥1/2−1,3, ∥f∥−1,3 = sup

v∈X

|(f ,v)|
∥∇v∥L3

,

∥∇u∥0 ≤ Ψ(∥f∥−1), ∥f∥−1 = sup
v∈H1

0 (Ω)2

|(f ,v)|
∥∇v∥0

,

where Ψ is defined as the inverse function of Φ : R+ → R

Φ(x) = νx+ (CSδ)
2

(
inf
v∈X

∥∇v∥L3

∥∇v∥0

)3

x2. (12)

Furthermore, if the following inequality holds,

0 < ν−1NΨ(∥f∥−1) ≤ 1, (13)

then the problem (10) has a unique solution.

Moreover, a similar argument to that used in [12], we have following results on the penalty problem (11).

Theorem 2.1. If ν satisfy the condition of (13), the problem (11) exists unique solution (uϵ, pϵ) ∈ (X,M),
which satisfies

∥∇uϵ∥L3 ≤ (CSδ)
−1∥f∥1/2−1,3, ∥∇uϵ∥0 ≤ Ψ(∥f∥−1).

Furthermore, we will give error bounds of u− uϵ and p− pϵ in the following theorem.

Theorem 2.2. Assume that u,uϵ ∈ X∩W 1,∞
0 (Ω)2. If ν and f satisfy (13), then we have the following error

result

∥∇(u− uϵ)∥0 + ∥p− pϵ∥0 ≤ C(ϵ+ ϵδ2 + ϵδ4).

Proof. Subtracting (11) from (10), one gets

a(u− uϵ,v) + (CSδ)
2(|∇u|∇u,∇v)− (CSδ)

2(|∇uϵ|∇uϵ,∇v) + b(u− uϵ,u,v) + b(uϵ,u− uϵ,v)

− d(v, p− pϵ) + d(u− uϵ, q) +
ϵ

ν
(p− pϵ, q) =

ϵ

ν
(p, q).

(14)

Use Lemma 2.1 to have

(CSδ)
2(|∇u|∇u,∇v)− (CSδ)

2(|∇uϵ|∇uϵ,∇v)

≤ |(CSδ)
2(|∇u|∇(u− uϵ),∇v)|+ |(CSδ)

2((|∇u| − |∇uϵ|)∇uϵ,∇v)|
≤ C(CSδ)

2(∥∇u∥L∞ + ∥∇uϵ∥L∞)∥∇(u− uϵ)∥0∥∇v∥0 ≤ Cδ2∥∇(u− uϵ)∥0∥∇v∥0.
(15)

In addition, taking q = 0 in (14), we apply Lemma 2.2, Theorem 2.1, (3), (4) and (15) to arrive at

∥p− pϵ∥0 ≤ β−1(ν∥∇(u− uϵ)∥0 +N(∥∇u∥0 + ∥∇uϵ∥0)∥∇(u− uϵ)∥0 + Cδ2∥∇(u− uϵ)∥0)
≤ C(∥∇(u− uϵ)∥0 + δ2∥∇(u− uϵ)∥0).

(16)

Now, by choosing (v, q) = (u− uϵ, p− pϵ) in (14), using (4) and Lemma 2.1, 2.2, we obtain

ν∥∇(u− uϵ)∥20 + C(CSδ)
2∥∇(u− uϵ)∥3L3 +

ϵ

ν
∥p− pϵ∥20 ≤ N∥∇u∥0∥∇(u− uϵ)∥20 +

ϵ

ν
∥p∥0∥p− pϵ∥0

≤ NΨ(∥f∥−1)∥∇(u− uϵ)∥20 +
ϵ

ν
∥p∥0∥p− pϵ∥0,

(17)

which is rearranged as

ν(1− ν−1NΨ(∥f∥−1))∥∇(u− uϵ)∥20 + C(CSδ)
2∥∇(u− uϵ)∥3L3 +

ϵ

ν
∥p− pϵ∥20 ≤ ϵ

ν
∥p∥0∥p− pϵ∥0. (18)

Finally, combining (18) with (16), and using(13), we arrive at

∥∇(u− uϵ)∥20 ≤ C
ϵ

ν
∥p∥0(∥∇(u− uϵ)∥0 + δ2∥∇(u− uϵ)∥0), (19)

which and (16) complete the proof of the theorem.
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3. Penalty finite element discretization based on two finite element space pairs

Let τµ denote conforming, quasi-uniform families of meshes for Ω, consisting of some affine-equivalent
triangles [7] with maximum element diameter µ. We introduce two different finite element subspace pairs
Xµ and Mµ of X and M as follows:

Xµ = {u ∈ C(Ω)2 ∩X : u|K ∈ Pi(K)2, ∀K ∈ τµ}, i = 1, 2,

Mµ = {q ∈ M : q|K ∈ P0(K), ∀K ∈ τµ},

where Pi(K) is set of polynomials on triangles K of degree less than i. Besides, let ρµ : M → Mµ denote
the L2-orthogonal projection defined by

(ρµq, qµ) = (q, qµ), ∀q ∈ M, qµ ∈ Mµ.

Note that the finite element space pair (Xµ,Mµ) satisfies the following properties [12, 15].
(P1). For i = 1, (Xµ,Mµ) does not satisfy the discrete inf-sup condition. However, it satisfies the

following important relation

divXµ = Mµ. (20)

Furthermore, there exists a mapping rµ : H2(Ω)2 ∩X → Xµ which and ρµ : M → Mµ satisfy

∥∇(u− rµu)∥0 + µ
1
3 ∥∇(u− rµu)∥L3 ≤ Cµ∥u∥2, ∥p− ρµp∥0 ≤ Cµ∥p∥1, (21)

(P2). For i = 2, the finite element pair (Xµ,Mµ) does not satisfy (20). However, it satisfies the discrete
inf-sup condition

sup
vµ∈Xµ

(∇ · vµ, qµ)

∥∇vµ∥0
≥ β0∥qµ∥0, ∀ qµ ∈ Mµ, (22)

where β is a positive constant dependent on Ω. Furthermore, there exists a mapping rµ : H2(Ω)2 ∩X → Xµ

which and ρµ : M → Mµ satisfy (21) and

(∇ · (u− rµu), qµ) = 0, ∀ qµ ∈ Mµ. (23)

In fact, the corresponding discrete variational formulation of (11) can be defined as: solve (uϵµ, pϵµ) ∈
(Xµ,Mµ) for all (vµ, qµ) ∈ (Xµ,Mµ) such that

a(uϵµ,vµ) + (CSδ)
2(|∇uϵµ|∇uϵµ,∇vµ) + b(uϵµ,uϵµ,vµ)− d(vµ, pϵµ) + d(uϵµ, qµ) +

ϵ

ν
(pϵµ, qµ) = (f ,vµ). (24)

Then, when i = 1, due to the property (20), the penalty finite element scheme can be defined in the following
form

a(uϵµ,vµ) + (CSδ)
2(|∇uϵµ|∇uϵµ,∇vµ) + b(uϵµ,uϵµ,vµ) +

ν

ϵ
(divuϵµ, divvµ) = (f ,vµ),

pϵµ = −ν

ϵ
divuϵµ.

(25)

When i = 2, the finite element space pair (Xµ,Mµ) does not satisfy the property (20). Therefore, we need
to use the mapping ρµ to rewrite the penalty finite element scheme

a(uϵµ,vµ) + (CSδ)
2(|∇uϵµ|∇uϵµ,∇vµ) + b(uϵµ,uϵµ,vµ) +

ν

ϵ
(ρµdivuϵµ, ρµdivvµ) = (f ,vµ),

pϵµ = −ν

ϵ
ρµdivuϵµ.

(26)

Hence, compared with the original stiffness matrix, one only needs to solve the stiffness matrix with
relatively small dimension.

Next, we provide the following stability of the penalty method.
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Theorem 3.1. Under assumption of Theorem 2.1, when (Xµ,Mµ) satisfies the property Pi, i = 1, 2, the
solution (uϵµ, pϵµ) ∈ (Xµ,Mµ) to the problem (24) satisfies

∥∇uϵµ∥0 ≤ Ψ(∥f∥−1), ∥∇uϵµ∥L3 ≤ (CSδ)
−1∥f∥1/2−1,3,

∥pϵµ∥0 ≤ (
ϵ

ν
CSδ)

− 1
2 ∥f∥3/4−1,3, for P1, ∥pϵµ∥0 ≤ β−1

0 (Ψ(∥f∥−1) + νΨ(∥f∥−1) + ∥f∥−1), for P2.

Proof. It follows from (24) with (vµ, qµ) = (uϵµ, pϵµ) and (4) that

ν∥∇uϵµ∥20 + (CSδ)
2∥∇uϵµ∥3L3 +

ϵ

ν
∥pϵµ∥20 ≤ ∥f∥−1∥∇uϵµ∥0 (or ∥f∥−1,3∥∇uϵµ∥L3). (27)

Hence, it is easy to obtain

∥∇uϵµ∥L3 ≤ (CSδ)
−1∥f∥1/2−1,3, (28)

and
∥pϵµ∥0 ≤ (

ν

ϵ
∥f∥−1,3∥∇uϵµ∥L3)1/2 ≤ (

ν

ϵ
)

1
2 (CSδ)

− 1
2 ∥f∥3/4−1,3. (29)

Besides, according to (27), we know that

ν∥∇uϵµ∥20 + (CSδ)
2∥∇uϵµ∥3L3 ≤ ∥f∥−1∥∇uϵµ∥0. (30)

From the definition of Ψ, we can immediately get

∥∇uϵµ∥0 ≤ Ψ(∥f∥−1). (31)

Finally, utilizing the discrete inf-sup condition (22) and (24) with qµ = 0, we can deduce the bound for
the pressure with i = 2 easily with help of (13) and the definition of Ψ.

Now, we consider the finite element errors of the penalty system (24).

Theorem 3.2. Assume that uϵ ∈ X ∩W 1,∞
0 (Ω)2 and the properties P1,P2 of Xµ ×Mµ hold. If ν satisfies

the condition (13), then we get

∥∇(uϵ − uϵµ)∥0 + µ
1
3 ∥uϵ − uϵµ∥1,3 + ϵ

1
2 ∥pϵ − pϵµ∥0 ≤ C(ϵ−

1
2µ+ δ2µ), i = 1,

∥∇(uϵ − uϵµ)∥0 + µ
1
3 ∥uϵ − uϵµ∥1,3 ≤ C(µ+ δ2µ), i = 2,

∥pϵ − pϵµ∥0 ≤ C(µ+ δ2µ+ δµ
1
3 + δ3µ

1
3 ), i = 2.

Proof. Subtracting (24) from (11) with (v, q) = (vµ, qµ), we get

a(uϵ − uϵµ,vµ) + (CSδ)
2(|∇uϵ|∇uϵ,∇vµ)− (CSδ)

2(|∇uϵµ|∇uϵµ,∇vµ) + b(uϵ − uϵµ,uϵ,vµ)

+b(uϵµ,uϵ − uϵµ,vµ)− d(vµ, pϵ − pϵµ) + d(uϵ − uϵµ, qµ) +
ϵ

ν
(pϵ − pϵµ, qµ) = 0.

(32)

Setting (e, η) = (rµuϵ − uϵµ, ρµpϵ − pϵµ) and choosing (vµ, qµ) = (e, η) in (32), we have

a(e, e) + (CSδ)
2(|∇rµuϵ|∇rµuϵ,∇e)− (CSδ)

2(|∇uϵµ|∇uϵµ,∇e) + b(e,uϵ, e) + b(uϵµ, e, e)

−d(e, pϵ − ρµpϵ) + d(uϵ − rµuϵµ, η) +
ϵ

ν
(η, η) = a(rµuϵ − uϵ, e) + b(rµuϵ − uϵ,uϵ, e)

+b(uϵµ, rµuϵ − uϵ, e) + (CSδ)
2(|∇rµuϵ|∇rµuϵ,∇e)− (CSδ)

2(|∇uϵ|∇uϵ,∇e),

(33)

where we have applied the definition of the projection ρµ.
Besides, use Lemma 2.1 to have

(CSδ)
2(|∇rµuϵ|∇rµuϵ,∇e)− (CSδ)

2(|∇uϵµ|∇uϵµ,∇e) ≥C(CSδ)
2∥rµuϵ − uϵµ∥31,3, (34)
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as well as

(CSδ)
2(|∇rµuϵ|∇rµuϵ,∇e)− (CSδ)

2(|∇uϵ|∇uϵ,∇e)

≤ |(CSδ)
2(|∇rµuϵ|∇(rµuϵ − uϵ),∇e)|+ |(CSδ)

2((|∇rµuϵ| − |∇uϵ|)∇uϵ,∇e)|
≤ Cδ2∥∇(uϵ − rµuϵ)∥0∥∇e∥0.

(35)

Then, bring (34) and (35) into (33). According to (4), we obtain

ν∥∇e∥20 + C(CSδ)
2∥rµuϵ − uϵµ∥31,3 + b(e,uϵ, e) +

ϵ

ν
∥η∥20 − d(e, pϵ − ρµpϵ) + d(uϵ − rµuϵµ, η)

≤ a(rµuϵ − uϵ, e) + b(rµuϵ − uϵ,uϵ, e) + b(uϵµ, rµuϵ − uϵ, e) + Cδ2∥∇(uϵ − rµuϵ)∥0∥∇e∥0.
(36)

Due to (4), (8) and Theorem 2.1, we deduce that

|b(e,uϵ, e)| ≤ N∥∇uϵ∥0∥∇e∥20 ≤ NΨ(∥f∥−1)∥∇e∥20,

|a(rµuϵ − uϵ, e)| ≤
1

8
(ν −NΨ(∥f∥−1))∥∇e∥20 + C(ν −NΨ(∥f∥−1))

−1∥∇(uϵ − rµuϵ)∥20,

|b(rµuϵ − uϵ,uϵ, e) + b(uϵµ, rµuϵ − uϵ, e)| ≤ N(∥∇uϵ∥0 + ∥∇uϵµ∥0)∥∇(uϵ − rµuϵ)∥0∥∇e∥0

≤ 1

8
(ν −NΨ(∥f∥−1))∥∇e∥20 + C(ν −NΨ(∥f∥−1))

−1∥∇(uϵ − rµuϵ)∥20,

Cδ2∥∇(uϵ − rµuϵ)∥0∥∇e∥0 ≤ 1

8
(ν −NΨ(∥f∥−1))∥∇e∥20 + Cδ4(ν −NΨ(∥f∥−1))

−1∥∇(uϵ − rµuϵ)∥20.

Combining the above estimates with (36) and applying (13), we derive that

(ν −NΨ(∥f∥−1))∥∇e∥20 +
2ϵ

ν
∥η∥20 − 2d(e, pϵ − pϵµ) + 2d(uϵ − rµuϵµ, η)

≤ C(∥∇(uϵ − rµuϵ)∥20 + δ4∥∇(uϵ − rµuϵ)∥20).
(37)

When i = 1, considering (20), we obtain

2|d(e, pϵ − ρµpϵ)|+ 2|d(uϵ − rµuϵµ, η)| ≤
ϵ

ν
∥η∥20 +

2ν

ϵ
∥∇(uϵ − rµuϵ)∥20,

which combines with (37) and (13) to get

∥∇e∥20 +
ϵ

ν
∥η∥20 ≤ C(ϵ−1∥∇(uϵ − rµuϵ)∥20 + δ4∥∇(uϵ − rµuϵ)∥20).

Hence, based on (21) and the triangle inequality, we gain

∥∇(uϵ − uϵµ)∥0 + ϵ
1
2 ∥pϵ − pϵµ∥0 ≤ C(ϵ−

1
2 + δ2)µ,

and

∥uϵ − uϵµ∥1,3 ≤ ∥uϵ − rµuϵ∥1,3 + Cinvµ
− 1

3 ∥∇(uϵµ − rµuϵ)∥0 ≤ Cµ− 1
3 (ϵ−

1
2µ+ δ2µ),

where we have used (9).
Moreover, for i = 2, we use (23) to obtain

2|d(e, pϵ − ρµpϵ)|+ 2|d(uϵ − rµuϵµ, η)| ≤
1

8
(ν −NΨ(∥f∥−1))∥∇e∥20 + C(ν −NΨ(∥f∥−1))

−1∥pϵ − ρµpϵ∥20.

From the above inequality, (13) and (36), we have

∥∇e∥20 ≤ C(∥∇(uϵ − rµuϵ)∥20 + ∥pϵ − ρµpϵ∥20 + δ4∥∇(uϵ − rµuϵ)∥20) ≤ C(µ2 + δ4µ2), (38)
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which and the triangle inequality to further have

∥∇(uϵ − uϵµ)∥0 ≤ C(µ+ δ2µ). (39)

Next, through (9) and (39), we get

∥uϵ − uϵµ∥1,3 ≤ ∥uϵ − rµuϵ∥1,3 + ∥rµuϵ − uϵµ∥1,3 ≤ Cµ− 1
3 (µ+ δ2µ). (40)

Moreover, taking qµ = 0 in (32), we have

d(vµ, pϵ − pϵµ) =a(uϵ − uϵµ,vµ) + (CSδ)
2(|∇uϵ|∇uϵ,∇vµ)− (CSδ)

2(|∇uϵµ|∇uϵµ,∇vµ)

+ b(uϵ − uϵµ,uϵ,vµ) + b(uϵµ,uϵ − uϵµ,vµ).

Then, by using (40) and (9), we have

(CSδ)
2(|∇uϵ|∇uϵ,∇vµ)− (CSδ)

2(|∇uϵµ|∇uϵµ,∇vµ)

≤ C(CSδ)
2 max{∥uϵ∥1,3, ∥uϵµ∥1,3}∥uϵ − uϵµ∥1,3∥vµ∥1,3 ≤ C(δµ

1
3 + δ3µ

1
3 )∥∇vµ∥0.

Finally, combining the above inequality with (39) and (22) yields

∥pϵ − pϵµ∥0 ≤ β−1
0 (ν∥∇(uϵ − uϵµ)∥0 +N(∥∇uϵ∥0 + ∥∇uϵµ∥0)∥∇(uϵ − uϵµ)∥0 + C(δµ

1
3 + δ3µ

1
3 ))

≤ C(µ+ δ2µ+ δµ
1
3 + δ3µ

1
3 ).

Further, we list the error bounds between the solution to (10) and the finite element solution to the
penalty system (24).

Theorem 3.3. Under the assumption of Theorem 3.2, the penalized finite element solution (uϵµ, pϵµ) has
the following error estimates

∥∇(u− uϵµ)∥0 ≤ C(ϵ+ ϵδ2 + ϵδ4 + ϵ−
1
2µ+ δ2µ),

∥p− pϵµ∥0 ≤ C(ϵ+ ϵδ2 + ϵδ4 + ϵ−1µ+ ϵ−
1
2 δ2µ), i = 1,

∥∇(u− uϵµ)∥0 ≤ C(ϵ+ ϵδ2 + ϵδ4 + µ+ δ2µ),

∥p− pϵµ∥0 ≤ C(ϵ+ ϵδ2 + ϵδ4 + µ+ δ2µ+ δµ
1
3 + δ3µ

1
3 ), i = 2.

Proof. Combining Theorem 2.2 and Theorem 3.2, we can easily obtain these results.

Remark 3.1. For the one-level penalty finite element method with the P2 − P0 element, if we assume
δ = O(µ

2
3 ), then from Theorem 3.3, we have

∥∇(u− uϵµ)∥0 + ∥p− pϵµ∥0 ≤ C(ϵ+ µ).

Further, if we take ϵ = O(µ), then the convergence rate is O(µ).
For the one-level penalty finite element method with the P1 − P0 element, if we assume 0 < δ < 1, from

Theorem 3.3, the error estimate is

∥∇(u− uϵµ)∥0 ≤ C(ϵ+ ϵ−
1
2µ), ∥p− pϵµ∥0 ≤ C(ϵ+ ϵ−1µ),

Further, if we take ϵ = O(µ
1
2 ), then the convergence rate is O(µ

1
2 ).

At the last of this section, in order to show error estimate of simplified two-level penalty finite element
algorithm, we next present error estimate of ∥uϵ − uϵµ∥0.
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Theorem 3.4. Under the assumptions of Theorem 3.2, we have the following error bounds:

∥uϵ − uϵµ∥0 ≤ C(ϵ−1µ2 + ϵ−
1
2 δµ

2
3 + ϵ−

1
2 δ2µ2 + δ3µ

2
3 + δ4µ2), i = 1,

∥uϵ − uϵµ∥0 ≤ C(µ2 + δµ
2
3 + δ2µ2 + δ3µ

2
3 + δ4µ2), i = 2.

(41)

Proof. We will derive (41) by the standard Aubin-Nitsche duality argument.
For all (v, q) ∈ (X,M), assume that (Φ,Ψ) ∈ (X,M) is a solution of the following dual problem [12]

a(v,Φ) + b(v,uϵ,Φ) + b(uϵ,v,Φ) + d(v,Ψ)− d(Φ, q) +
ϵ

ν
(q,Ψ) = (v,uϵ − uϵµ), (42)

and satisfies the following regularity

∥Φ∥2 + ∥Ψ∥1 ≤ C∥uϵ − uϵµ∥0. (43)

According to the above regularity and the definition of projections rµ and ρµ, we have

∥∇(Φ− rµΦ)∥0 + ∥Ψ− ρµΨ∥0 ≤ Cµ∥uϵ − uϵµ∥0. (44)

Set (e, η) = (uϵ − uϵµ, pϵ − pϵµ) and take (v, q) = (e, η) in (42).

∥e∥20 = a(e,Φ) + b(e,uϵ,Φ) + b(uϵ, e,Φ) + d(e,Ψ)− d(Φ, η) +
ϵ

ν
(η,Ψ). (45)

Subtracting (24) from (11) with (v, q) = (vµ, qµ) = (rµΦ, ρµΨ), we find that

a(e, rµΦ) + (CSδ)
2(|∇uϵ|∇uϵ,∇rµΦ)− (CSδ)

2(|∇uϵµ|∇uϵµ,∇rµΦ) + b(e,uϵ, rµΦ) + b(uϵ, e, rµΦ)

−b(e, e, rµΦ) + d(e, ρµΨ)− d(rµΦ, η) +
ϵ

ν
(η, ρµΨ) = 0.

(46)

Next, subtracting (46) from (45), we have

∥e∥20 = a(e,Φ− rµΦ) + ((CSδ)
2(|∇uϵµ|∇uϵµ,∇rµΦ)− (CSδ)

2(|∇uϵ|∇uϵ,∇rµΦ)) + (b(e,uϵ,Φ− rµΦ)

+ b(uϵ, e,Φ− rµΦ)) + (b(e, e,Φ)− b(e, e,Φ− rµΦ)) + (d(e,Ψ− ρµΨ)− d(Φ− rµΦ, η))

+
ϵ

ν
(η,Ψ− ρµΨ) =:

6∑
i=1

Ii.
(47)

Now, we estimate each term of the right-hand side of the previous inequality. By the Cauchy-Schwarz
inequality and (44), we gain

|I1| ≤ ν∥∇e∥0∥∇(Φ− rµΦ)∥0 ≤ Cµ∥∇e∥0∥e∥0. (48)

Then, according to (43), Lemma 2.1, Theorem 2.1 and 3.1, we deduce that

|I2| ≤
∣∣(CSδ)

2(|∇uϵµ|∇(uϵµ − uϵ),∇rµΦ)
∣∣+ ∣∣(CSδ)

2((|∇uϵµ| − |∇uϵ|)∇uϵ,∇rµΦ)
∣∣

≤ Cδ∥uϵ − uϵµ∥1,3∥e∥0.
(49)

In addition, by (4), (43), (44) and Theorem 2.1, we get

|I3| ≤ 2N∥∇uϵ∥0∥∇(Φ− rµΦ)∥0∥∇e∥0 ≤ Cµ∥∇e∥0∥e∥0, (50)

|I4| ≤ N∥∇e∥20(∥∇(Φ− rµΦ)∥0 + ∥∇Φ∥0) ≤ C∥∇e∥20∥Φ∥2 ≤ C∥∇e∥20∥e∥0, (51)

|I5| ≤ C(∥∇e∥0 + ∥η∥0)(∥∇(Φ− rµΦ)∥0 + ∥Ψ− ρµΨ∥0) ≤ Cµ(∥∇e∥0 + ∥η∥0)∥e∥0, (52)

|I6| ≤ Cµ∥η∥0∥e∥0. (53)

Finally, inserting (48)-(53) into (47), we arrive at

∥e∥0 ≤ Cµ(∥∇e∥0 + ∥η∥0) + C∥∇e∥20 + Cδ∥e∥1,3. (54)

Combining (54) and Theorem 3.2, we finish the proof of this theorem.
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4. Simplified two-level penalty algorithm

In this section, we will consider simplified two-level penalty algorithm and its error estimates.
Let h ≪ H, and H and h are grid scales. We will prove the error bound of (uϵh − uh

ϵ , pϵh − phϵ ) before
showing the error bound of (u− uh

ϵ , p− phϵ ).
Next, we consider the simplified two-level penalty finite element algorithm.

Algorithm 4.1. Simplified two-level penalty algorithm.
Setp I: Solve the penalty Smagorinsky problem on a coarse mesh. Find (uϵH , pϵH) ∈ (XH ,MH) such that
for all (vH , qH) ∈ (XH ,MH)

a(uϵH ,vH) + (CSδ)
2(|∇uϵH |∇uϵH ,∇vH) + b(uϵH ,uϵH ,vH)− d(vH , pϵH) + d(uϵH , qH)

+
ϵ

ν
(pϵH , qH) = (f,vH).

(55)

Setp II: Solve the penalty Stokes problem on a fine mesh. Find (uh
ϵ , p

h
ϵ ) ∈ (Xh,Mh) such that for all

(vh, qh) ∈ (Xh,Mh)

a(uh
ϵ ,vh) + (CSδ)

2(|∇uϵH |∇uϵH ,∇vh) + b(uϵH ,uϵH ,vh)− d(vh, p
h
ϵ ) + d(uh

ϵ , qh) +
ϵ

ν
(phϵ , qh) = (f,vh). (56)

For error estimate of (u − uh
ϵ , p − phϵ ), we first study the convergence of (uh

ϵ , p
h
ϵ ) to (uϵh, pϵh) in some

norms. To do this, let us set eh = uϵh − uh
ϵ and ηh = pϵh − phϵ .

Theorem 4.1. Under the assumptions of Theorem 3.2, the solution (uh
ϵ , p

h
ϵ ) of the problem (55)-(56) satisfies

the following error estimates

∥∇eh∥0 + ϵ
1
2 ∥ηh∥0 ≤ C(ϵ−1H2 + ϵ−

1
2 δH

2
3h− 1

3 + ϵ−
1
2 δ2H2 + δ3H

2
3h− 1

3 + δ4H2), i = 1,

∥∇eh∥0 + ∥ηh∥0 ≤ C(H2 + δh− 1
3H

2
3 + δ2H2 + δ3h− 1

3H
2
3 + δ4H2), i = 2.

Proof. Subtract (56) from (24) with µ = h to obtain

a(uϵh − uh
ϵ ,vh) + (CSδ)

2(|∇uϵh|∇uϵh,∇vh)− (CSδ)
2(|∇uϵH |∇uϵH ,∇vh) + b(uϵh − uϵH ,uϵ,vh)

+b(uϵ,uϵh − uϵH ,vh) + b(uϵh − uϵH ,uϵh − uϵ,vh) + b(uϵh − uϵ,uϵh − uϵH ,vh)

−b(uϵh − uϵH ,uϵh − uϵH ,vh)− d(vh, pϵh − phϵ ) + d(uϵh − uh
ϵ , qh) +

ϵ

ν
(pϵh − phϵ , qh) = 0.

(57)

Next, choose (vh, qh) = (eh, ηh) in (57).

ν∥∇eh∥20 +
ϵ

ν
∥ηh∥20 = (−b(uϵh − uϵH ,uϵh − uϵ, eh)− b(uϵh − uϵ,uϵh − uϵH , eh))

+b(uϵh − uϵH ,uϵh − uϵH , eh) + (−b(uϵh − uϵH ,uϵ, eh)− b(uϵ,uϵh − uϵH , eh))

+((CSδ)
2(|∇uϵH |∇uϵH ,∇eh)− (CSδ)

2(|∇uϵh|∇uϵh,∇eh)) =:

4∑
i=1

Si.

(58)

Due to (4)-(9), we get

|S1| ≤ 2N∥∇(uϵh − uϵH)∥0∥∇(uϵh − uϵ)∥0∥∇eh∥0 ≤ ν

9
∥∇eh∥20 + Cν−1∥∇(uϵh − uϵH)∥20∥∇(uϵh − uϵ)∥20,

|S2| ≤ N∥∇(uϵh − uϵH)∥20∥∇eh∥0 ≤ ν

9
∥∇eh∥20 + Cν−1∥∇(uϵh − uϵH)∥40,

|S3| ≤ C(∥∇uϵ∥L4∥eh∥L4 + ∥uϵ∥L∞∥∇eh∥0)∥uϵh − uϵH∥0 ≤ ν

9
∥∇eh∥20 + Cν−1∥uϵ∥22∥uϵh − uϵH∥20.
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Besides, owing to (9) and Lemma 2.1, we have

|S4| ≤ C(CSδ)
2(∥uϵh∥1,3 + ∥uϵH∥1,3)∥uϵh − uϵH∥1,3∥eh∥1,3

≤ Cδ∥uϵh − uϵ∥1,3∥eh∥1,3 + Cδ∥uϵ − uϵH∥1,3∥eh∥1,3
≤ Cδ∥uϵ − uϵH∥1,3∥eh∥1,3 ≤ Cδh− 1

3 ∥uϵ − uϵH∥1,3∥∇eh∥0

≤ ν

9
∥∇eh∥20 + Cν−1δ2h− 2

3 ∥uϵ − uϵH∥21,3.

Then, inserting above estimates on Si into (58) yields

ν∥∇eh∥20 +
ϵ

ν
∥ηh∥20 ≤ C(∥∇(uϵh − uϵH)∥40 + ∥∇(uϵh − uϵ)∥40) + Cν−1∥uϵh − uϵH∥20

+ Cν−1δ2h− 2
3 ∥uϵ − uϵH∥21,3.

(59)

Moreover, applying Theorem 3.2 and 3.4 to (59) yields

∥∇eh∥0 + ϵ
1
2 ∥ηh∥0 ≤ C(ϵ−1H2 + ϵ−

1
2 δH

2
3h− 1

3 + ϵ−
1
2 δ2H2 + δ3H

2
3h− 1

3 + δ4H2), i = 1,

∥∇eh∥0 ≤ C(H2 + δh− 1
3H

2
3 + δ2H2 + δ3h− 1

3H
2
3 + δ4H2), i = 2.

(60)

Besides, for i = 2, by using the discrete inf-sup condition and (57) with qh = 0, we have

∥ηh∥0 ≤ Cν∥∇eh∥0 + ∥uϵ∥2∥uϵh − uϵH∥0 + ∥∇(uϵh − uϵH)∥20 + ∥∇(uϵh − uϵ)∥0∥∇(uϵh − uϵH)∥0
+ Cδh− 1

3 ∥uϵ − uϵH∥1,3.
(61)

Using Theorem 3.2, 3.4 and (60) for (61), we get

∥ηh∥0 ≤ C(H2 + δh− 1
3H

2
3 + δ2H2 + δ3h− 1

3H
2
3 + δ4H2). (62)

The proof ends.

Now, we list the error bounds between the solution to (10) and Algorithm 4.1.

Theorem 4.2. Under the assumptions of Theorem 3.2, the penalized finite element solution (uh
ϵ , p

h
ϵ ) satisfies

the error estimates

∥∇(u− uh
ϵ )∥0 ≤ Cϵ(1 + δ2 + δ4) + Cϵ−

1
2 (h+ ϵ

1
2hδ2 + ϵ−

1
2H2 + δh− 1

3H
2
3 + δ2H2

+ ϵ
1
2 δ3H

2
3h− 1

3 + ϵ
1
2 δ4H2),

∥p− phϵ ∥0 ≤ Cϵ(1 + δ2 + δ4) + Cϵ−1(h+ ϵ
1
2hδ2 + ϵ−

1
2H2 + δh− 1

3H
2
3 + δ2H2

+ ϵ
1
2 δ3H

2
3h− 1

3 + ϵ
1
2 δ4H2), i = 1,

∥∇(u− uh
ϵ )∥0 + ∥p− phϵ ∥0 ≤ C(ϵ+ ϵδ2 + ϵδ4 + h+ δ2h+ δh

1
3 + δ3h

1
3 +H2 + δh− 1

3H
2
3 + δ2H2

+ δ3h− 1
3H

2
3 + δ4H2), i = 2.

Proof. Combining Theorem 2.2, 3.2 and 4.1, we can easily obtain the desired results.

Remark 4.1. For Algorithm 4.1 with the P2 −P0 element, if we assume δ = O(h), from Theorem 4.2, then
we have

∥∇(u− uh
ϵ )∥0 + ∥p− phϵ ∥0 ≤ C(ϵ+ h+H2 + h

2
3H

2
3 + h2H2 + h

8
3H

2
3 + h4H2).

Further, if we take ϵ = O(h) and h = O(H2) then the convergence rate is O(h).

For Algorithm 4.1 with the P1 − P0 element, if we assume δ = O(h
11
12 ), from Theorem 4.2, then we have

∥∇(u− uh
ϵ )∥0 ≤ Cϵ+ Cϵ−

1
2 (h+ ϵ−

1
2H2 + h

7
12H

2
3 + h

11
6 H2 + ϵ

1
2h

29
12H

2
3 + ϵ

1
2h

11
3 H2),

∥p− phϵ ∥0 ≤ Cϵ+ Cϵ−1(h+ ϵ−
1
2H2 + h

7
12H

2
3 + h

11
6 H2 + ϵ

1
2h

29
12H

2
3 + ϵ

1
2h

11
3 H2).

Further, if we take ϵ = O(h
1
2 ) and H2 = O(ϵ

1
2h) then the convergence rate is O(h

1
2 ).
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5. Numerical experiments

In this section, we give some numerical results to show the effectiveness of Algorithm 4.1. On one hand,
the goal of the first experiment is to illustrate the performance of Algorithm 4.1 compared with the one-level
penalty finite element method (24). On other hand, the second numerical example shows the advantages of
using the penalty finite element method based on two finite element pairs.

From Remark 4.1 and 3.1, when using the P1−P0 finite element pair, the penalty parameter ϵ is selected
as ϵ = O(h

1
2 ), and when using the P2−P0 finite element pair, the penalty parameter ϵ is selected as ϵ = O(h).

In addition, we choose the Smagorinsky constant CS = 0.17 and iterative tolerance 1.0E-6 are used in all
numerical implementations.

5.1. Experiment one

In the first experiment, the computational domain Ω = [0, 1]2. The exact solution for the velocity
u = (u1, u2) and the pressure p is given as follows:

u1(x, y) = 10x2(x− 1)2y(y − 1)(2y − 1), u2(x, y) = −10x(x− 1)(2x− 1)y2(y − 1)2,

p(x, y) = 10(2x− 1)(2y − 1),

and the forcing term f = (f1(x, y), f2(x, y)) is determined by the original problem (1). Here we consider
ν = 1.

In this test, we compared the simulation time of the one-level penalty finite element method (24) and
Algorithm 4.1 based on two finite element pairs, P2 − P0 and P1 − P0, respectively.

When we use the P1−P0 element, we choose δ = h
2
3 for the one-level penalty finite element method, and

δ = h
11
12 and h = H

8
5 for Algorithm 4.1. Table 1 and 2 give the numerical results of the relative errors of

the velocity and pressure, CPU time and convergence order of both methods at different mesh sizes. From
these tables, we can see that all methods work well and keep the convergence rates just like the theoretical
analysis. The comparison shows that the relative errors of the velocity and pressure of the one-level penalty
method and Algorithm 4.1 are almost the same, but Algorithm 4.1 spends less time than the one-level
penalty method.

Table 1 Numerical results of the one-level penalty finite element method with the P1 − P0 element.

1/h ∥u−uϵh∥1

∥u∥1
Rate ∥p−pϵh∥0

∥p∥0
Rate CPU time

1/9 7.93283E−1 — 4.37640E−1 — 0.172

1/28 4.31730E−1 0.54 2.58672E−1 0.46 1.078

1/53 3.06542E−1 0.54 1.92452E−1 0.46 4.721

1/84 2.42055E−1 0.51 1.53663E−1 0.49 11.081

1/121 2.01596E−1 0.50 1.27918E−1 0.50 23.069

1/162 1.74426E−1 0.50 1.10276E−1 0.51 46.202

When we use the P2−P0 element, we choose δ = h
2
3 for the one-level penalty finite element method, and

δ = h and h = H2 for Algorithm 4.1. Table 3 and 4 give the relative errors, CPU time and convergence order
of both methods at different grid scales. From these tables, we can find that the one-level penalty method
and Algorithm 4.1 work well and keep the convergence rates just like the theoretical analysis. As expected,
Algorithm 4.1 costs less time than the one-level penalty method to achieve almost the same accuracy.

5.2. Experiment two

To show the benefits of the penalty finite element method, we calculated the stationary version of the
vortex decay problem of Chorin (see [6]). The computational domain Ω = [0, 1]2. The exact solution for the
velocity u = (u1, u2) and the pressure p is given as follows:

u1(x, y) = − cos(3πx) sin(3πy), u2(x, y) = sin(3πx) cos(3πy),

p(x, y) = −1/4(cos(6πx) + cos(6πy)),
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Table 2 Numerical results of Algorithm 4.1 with the P1 − P0 element.

1/H 1/h
∥u−uh

ϵ ∥1

∥u∥1
Rate

∥p−ph
ϵ ∥0

∥p∥0
Rate CPU time

1/4 1/9 7.93456E−1 — 4.37571E−1 — 0.094

1/8 1/28 4.31716E−1 0.54 2.58644E−1 0.46 0.593

1/12 1/53 3.06561E−1 0.54 1.92435E−1 0.46 1.984

1/16 1/84 2.42067E−1 0.51 1.53651E−1 0.49 4.719

1/20 1/121 2.01604E−1 0.50 1.27907E−1 0.50 9.546

1/24 1/162 1.74432E−1 0.50 1.10267E−1 0.51 17.672

Table 3 Numerical results of the one-level penalty finite element method with the P2 − P0 element.

1/h ∥u−uϵh∥1

∥u∥1
Rate ∥p−pϵh∥0

∥p∥0
Rate CPU time

1/16 7.86844E−1 — 8.11220E−2 — 0.657

1/36 3.66781E−1 0.94 3.50431E−2 1.04 3.016

1/64 2.09537E−1 0.97 1.94441E−2 1.02 9.674

1/100 1.35032E−1 0.98 1.23560E−2 1.02 26.347

1/144 9.41160E−2 0.99 8.54601E−3 1.01 51.111

1/196 6.92971E−2 0.99 6.26311E−3 1.01 110.992

Table 4 Numerical results of Algorithm 4.1 with the P2 − P0 element.

1/H 1/h
∥u−uh

ϵ ∥1

∥u∥1
Rate

∥p−ph
ϵ ∥0

∥p∥0
Rate CPU time

1/4 1/16 7.87204E−1 — 8.11011E−2 — 0.313

1/6 1/36 3.66828E−1 0.94 3.50401E−2 1.03 1.361

1/8 1/64 2.09549E−1 0.97 1.94441E−2 1.02 4.016

1/10 1/100 1.36346E−1 0.96 1.24690E−2 1.00 9.875

1/12 1/144 9.41181E−2 1.02 8.54601E−3 1.04 20.501

1/14 1/196 6.92980E−2 0.99 6.26301E−3 1.01 42.712

and the right-hand side of (1), f = (f1(x, y), f2(x, y)), is determined by the original problem (1).
In Table 5, we present the relative errors of the velocity and pressure at different values of viscosity

ν = 0.1, 0.07 and 0.04 by eight methods. Methods 1-8 are the one-level penalty finite element method based
on P1−P0 element, the two-level penalty finite element method based on P1−P0 element, the one-level finite
element method based on P1 − P0 element, the two-level finite element method based on P1 − P0 element,
the one-level penalty finite element method based on P2 − P0 element, the two-level penalty finite element
method based on P2 − P0 element, the one-level finite element method based on P2 − P0 element and the
two-level finite element method based on P2−P0 element, respectively. Here, if the P1−P0 element is used,
then we take h = 1/64, δ = h

2
3 as the one-level penalty finite element method, and δ = h

11
12 , h = H

8
5 as

the two-level penalty finite element method. If the P2 − P0 element is used, we take h = 1/64, δ = h
2
3

as the one-level penalty finite element method, and δ = h, h = H2 as the two-level penalty finite element
method. As Experiment one, for the smaller value of viscosity, the two-level methods also spend less time
than one-level method under nearly the same relative error. Besides, the method 2 (Algorithm 4.1 with the
P1−P0 element) and method 6 (Algorithm 4.1 with the P2−P0 element) are more efficient than the another
methods.

For the P1 −P0 element, we choose δ = h
2
3 for the one-level penalty finite element method. Then, based

on the P1 − P0 element, Table 6 and 7 show the relative error of the velocity and pressure with ν = 0.1
and the convergence order of the one-level penalty finite element method and the one-level finite element
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Table 5 Numerical results of the proposed method under different viscosities.

Methods
ν = 0.1 ν = 0.07 ν = 0.04 CPU time

∥u−uϵh∥1

∥u∥1

∥p−pϵh∥0

∥p∥0

∥u−uϵh∥1

∥u∥1

∥p−pϵh∥0

∥p∥0

∥u−uϵh∥1

∥u∥1

∥p−pϵh∥0

∥p∥0
(ν = 0.04)

Method 1 1.034E−1 6.240E−1 1.072E−1 6.106E−1 1.537E−1 4.447E−1 132.496

Method 2 9.082E−2 7.813E−1 9.526E−2 8.042E−1 1.330E−1 6.900E−1 4.201

Method 3 1.182E+0 5.885E+7 1.182E+0 5.885E+7 1.182E+0 5.885E+7 12.394

Method 4 1.182E+0 5.885E+7 1.182E+0 5.885E+7 1.182E+0 5.885E+7 6.642

Method 5 2.252E−2 7.975E−2 3.198E−2 8.461E−2 5.535E−2 1.010E−1 40.153

Method 6 2.197E−2 1.005E−1 3.526E−2 1.232E−1 8.011E−2 2.122E−1 8.146

Method 7 2.256E−2 8.026E−2 3.206E−2 8.545E−2 5.561E−2 1.030E−1 92.842

Method 8 2.194E−2 9.953E−2 3.520E−2 1.222E−1 7.994E−2 2.109E−1 11.629

method, respectively. From Table 6, as the theory predicts, the optimal convergence rates for the one-level
penalty finite element method the new method are obtained. However, we notice that the relative errors of
the velocity and pressure are not good from Table 7, which is not surprising since the lowest order pair does
not satisfying the inf-sup condition.

Table 6 One-level penalty finite element method based on the P1 − P0 element.

1/h ∥u−uϵh∥1

∥u∥1
Rate ∥p−pϵh∥0

∥p∥0
Rate

1/20 2.54347E−1 — 9.65289E−1 —

1/30 1.83957E−1 0.80 8.11466E−1 0.43

1/40 1.48703E−1 0.74 7.16264E−1 0.43

1/50 1.27523E−1 0.69 6.50283E−1 0.43

1/60 1.13328E−1 0.65 6.01077E−1 0.43

1/70 1.03093E−1 0.61 5.62505E−1 0.43

1/80 9.53181E−2 0.59 5.31169E−1 0.43

Table 7 One-level finite element method based on the P1 − P0 element.

1/h ∥u−uh∥1

∥u∥1
Rate ∥p−ph∥0

∥p∥0
Rate

1/20 1.17854 — 1.87E+8 —

1/30 1.18090 — 1.25E+8 —

1/40 1.18174 — 9.40E+7 —

1/50 1.18212 — 7.53E+7 —

1/60 1.18234 — 6.28E+7 —

1/70 1.18246 — 5.38E+7 —

1/80 1.18254 — 4.71E+7 —

For the P2 − P0 element, we choose δ = h and h = H2 with ν = 0.1 for the two-level penalty finite
element method and the two-level finite element method. Table 8 shows the numerical results for the two-
level penalty finite element method, and Table 9 lists the numerical results for the two-level finite element
method. By comparing Table 8 and 9, we find that the two-level penalty finite element method costs less
computational time than two-level finite element method to get almost the same error. In fact, compared
with the original stiffness matrix, for the penalty finite element method, one only needs to solve the stiffness
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matrix with relatively small dimension. Hence, as expected, the penalty finite element method spends less
time than the finite element method under nearly the same relative error.

Table 8 Two-level penalty finite element method based on the P2 − P0 element.

1/H 1/h
∥u−uh

ϵ ∥1

∥u∥1
Rate

∥p−ph
ϵ ∥0

∥p∥0
Rate CPU time

1/3 1/9 1.34325E−1 — 8.50859E−1 — 0.125

1/5 1/25 4.75191E−2 1.02 2.80241E−1 1.09 0.587

1/7 1/49 2.75660E−2 0.81 1.30059E−1 1.14 2.047

1/9 1/81 1.86040E−2 0.78 8.52701E−2 0.83 5.220

1/11 1/121 1.24131E−2 1.01 5.47641E−2 1.12 11.253

Table 9 Two-level finite element method based on the P2 − P0 element.

1/H 1/h ∥u−uh∥1

∥u∥1
Rate ∥p−ph∥0

∥p∥0
Rate CPU time

1/3 1/9 1.34391E−1 — 8.51085E−1 — 0.125

1/5 1/25 4.75220E−2 1.02 2.78004E−1 1.10 0.672

1/7 1/49 2.75441E−2 0.81 1.28687E−1 1.14 3.095

1/9 1/81 1.85771E−2 0.78 8.51205E−2 0.82 13.161

1/11 1/121 1.23910E−2 1.01 5.42953E−2 1.12 61.581

6. Conclusion

In this paper, we establish simplified two-level penalty finite element algorithm for the Smagorinsky
model, based on the inf-sup stable finite element pair P2 − P0 element and inf-sup unstable one P1 − P0

element. We prove theoretically that the relationship between coarse grid H and fine grid h is H2 = O(ϵ
1
2h)

by selecting appropriate δ and ϵ when the P1−P0 element are used; h = O(H2) when the P2−P0 element is
selected. Besides, the numerical experiments are showed to clarify the theoretical convergence order, and the
effectiveness of the penalty finite element method and simplified two-level penalty finite element algorithm.
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