
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS
Vol. , No. , YEAR

https://doi.org/rmj.YEAR..PAGE
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VALUATION TREES
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AND BIANCA THOMPSON

ABSTRACT. For fixed D ∈ N, we demonstrate how to use 2-adic valuation trees of sequences to analyze
Diophantine equations of the form xs+D = 2ty for y odd, s ∈ {2,3}, and t ∈ N. Further, we show for what
values of D the numbers x3+D will generate infinite valuation trees, which lead to infinite solutions to the
above corresponding Diophantine equations.

1. Introduction

Special kinds of Diophantine equations called generalized Lebesgue-Ramanujan-Nagell equations have
been investigated using various methods including elementary techniques in classical number theory,
Diophantine approximation methods, the Baker method, the Bilu-Hanrot-Voutier theorem, and the
modular approach [8, 11, 3]. In this paper, we present a straightforward way of analyzing the solutions
to generalized Lebesgue-Ramanujan-Nagell equations using a visual approach. In particular, for D ∈ N
fixed, we study families of Diophantine equations of the form

(1.1) xs
+D = 2ty,

for s ∈ {2,3} with t ∈ N. Oftentimes, the techniques used to solve such families do not apply to the case
when D ≡ 7 (mod 8). Therefore, it is often omitted from consideration. By contrast, we employ the
construction of 2-adic valuation trees to visualize and easily identify relationships among the solutions
(x,y) ∈ Z2 of equation (1.1).

Theorem 1.1. Let D ∈ N in the family of Diophantine equations

(1.2) x2
+D = 2ty,

with 2 ∤ y.

(1) If D = 4 j(8k+7) for some j,k ∈ Z≥0, then equation (1.2) has non-trivial solutions x,y ∈ N, with
y odd, for all but finitely many t ∈ N. Further, for j = 0, when D = 8k+7 the set of values for t
that has non-trivial solutions does not include t = 1 or 2.

(2) If D ≠ 4 j(8k+ 7) for any j,k ∈ Z≥0, then equation (1.2) has no non-trivial integer solutions
x,y ∈ N, with y odd, for infinitely many t ∈ N.

The cubic form of equation (1.1) for s = 3 has a similar rich history. In 1951, Nagell [10, p. 246-248]
proved that the family of Diophantine equations x3+ y3

= az3, for integer a > 2 not divisible by the cube
of any prime has either no solution or infinitely many solutions in relatively prime integers x, y, and z, with
z ≠ 0. Nagell’s theorem can be used to prove that, for some specific values of t, D, and y, the related cubic
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Diophantine equation (1.1) has either no solution or infinitely many solutions. Similar to what we see
in the quadratic case, for y = 1, Beukers [4] proved that the cubic form of the equation (1.1) has at most
five solutions in x ∈ Z. In 2020, Alvarado et al [2, Theorem 8.2] analyzed the cubic Ramanujan-Nagell
equation x3+3k

= qn for prime q > 3 and integers n,k > 0. Letting q be a prime such that 3 < q ≤ 500,
they list all integer solutions to the above equation, and further claim that their method can also be used to
find the integer solutions to the equation x3+ pk

= qn where p,q are distinct odd primes. By using the
2-adic valuation tree approach we prove the following theorem.

Theorem 1.2. Let D ∈ N. in the family of Diophantine equations

(1.3) x3
+D = 2ty,

with 2 ∤ y.

(1) If D = 8 j(2k+1) for some j,k ∈ Z≥0, then equation (1.3), with y odd, has non-trivial solutions
for all but finitely many integer values of t ≥ 0.

(2) If D ≠ 8 j(2k+ 1) for any j,k ∈ Z≥0, then there are finitely many t ∈ N for which the equation
equation (1.3), with y odd, has non-trivial solutions. Specifically, the following holds.
(a) If D = 2(2k+1) for some k ∈ Z≥0, then x is even with t = 0 or x is odd with t = 1.
(b) If D = 4(2k+1) for some k ∈ Z≥0, then x is odd with t = 0 or x is even with t = 2.
(c) If D = 23k+i for some k ∈ N and i ∈ {1,2}, then 3∣t with t = 3` for some ` < k+ i and

x ≡ 2` (mod 2`+1). Further, if, in this case, t = 3` with ` = k+ i, then x ≡ 0 (mod 2k+i).

In Section 2, we demonstrate how the construction of 2-adic valuation trees can prove that a special
case of the quadratic equation (1.1) with s = 2, D = 7 with t = 0 or t ≥ 3, and y odd

(1.4) x2
+7 = 2ty

has an infinite number of positive integer solutions, and, further, we determine the form of the solutions.
In Sections 3 and 4, this method is applied to prove Theorem 1.1 and Theorem 1.2, respectively. In
Section 5, we provide a few examples of finding non-trivial integer solutions to families of equations (1.1)
for specific D ∈ N. We discuss further directions of this approach in Section 6 and highlight solutions for
a few additional examples given in the Appendix.

We fix the following notations throughout the remainder of the article:
D the constant term in the Diophantine equation (1.1)
` the level of the valuation tree, where ` ≥ 0
νp(n) = t for prime p, the p-adic valuation of integer n where n = ptb with p ∤ b
(x,y, t) an integer solution to the Diophantine equation xs+D = 2ty for s ∈ {2,3} for fixed D

2. 2-adic Valuation Tree Construction for x2+7

We explicitly construct the 2-adic valuation tree described in [7, Section 4] where we incorporate more of
the information encoded in the tree than the authors make use of.

In general for a prime p, a p-adic tree consists of vertices and edges which we will call nodes and
branches, respectively. The initial node, called the root of the tree, is labeled with n0. Proceeding to
generate the tree in a downward direction, we will label each node and branch with a positive integer ni
and bi, j, respectively for some i, j ∈ N.
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Note that leaves marked as square nodes occur when we know the exact valuation for a given classifica-
tion of x, and circles when the valuation is still not known exactly, but we do know that it’s greater than or
equal to the value in the circle. Again, the tree will always branch from the circles and terminate on the
squares.

To see this explicitly, let p = 2 and let the root n0 have the form n0 = x2+7 for some x ∈ Z+ in Figure 1.
We take the root n0 to be at level 0. Since x ≡ 0 or 1 (mod 2), we have two branches leading to two nodes

n0

0

0

3

1

FIGURE 1. Level 1 of the 2-adic valuation tree for x2+7.

at the next level, ` = 1. First, the branches are labeled 0 and 1 as they are the two least residues of the
equivalences classes modulo 2`+1

= 2 when ` = 0.
For the node at level 1 connecting to branch 0, we have x ≡ 0 (mod 2) which we write x = 2k1 for

some k1 ∈ N. Then the value of that node is ν2(x2+7) = ν2((2k1)2+7) = 0.
For the second node at level 1, connecting to branch 1, we take x odd. Then x = 2k1+1, where k1 ∈ Z≥0

gives the value of the node

ν2((2k1+1)2
+7) = ν2(4(k2

1+ k1+2))
= ν2(4)+ν2(k2

1+ k1+2)
= 2+ν2(k2

1+ k1+2).

Notice that the value of ν2(k2
1 + k1+ 2) depends on the parity of k1. Specifically, if k1 is even, then

k2
1 + k1 + 2 is also even, thus has at least one factor of 2. Now, if k1 is odd, then k1 = 2k2 + 1 from

some k2 ∈Z where k2
1+k1+2= (4k2

2+4k2+1)+(2k2+1)+2= 4k2
2+6k2+4= 2(2k2

2+3k2+2), which
contains at least one factor of 2. Therefore ν2(k2

1+k1+2)≥ 1 in either case, yielding ν2((2k1+1)2+7≥ 3.
Again, the 2-adic valuation of x2+7 depends on whether k1 is even or odd. Thus the tree grows further,

meaning that we examine x2+7 modulo 4.
Let us consider when k1 is either even or odd, meaning that k1 = 2k2 or k1 = 2k2+1 for some k2 ∈ Z≥0.

Then either x = 22k2+1 or x = 22k2+3, that is, x ≡ 1 or 3 (mod 4), respectively. We see that

(22k2+1)2
+7 = 24k2

2+23k2+1+7

and

(22k2+3)2
+7 = 24k2

2+23
⋅3k2+9+7

both depend on the parity of k2 in order to determine the 2-adic valuation. (See Figure 2.)
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n0

0

0

3

3

1

3

3

1

FIGURE 2. The first two levels of the 2-adic valuation tree for x2+7.

Subsequent nodes are labeled with ν2(x2+7) when x is taken to be 2`k`+b` where ` is the level of our
tree, b` is the weight on the branch connecting level `−1 to current node and for some k` ∈ Z≥0. Figure 3
showcases the continuation of this tree.

n0

0

0

3

3

3

1

4

⋮ ⋮

5

1

3

4

⋮ ⋮

3

3

7

3

1

FIGURE 3. The first 3 levels of the 2-adic valuation tree for x2+7.

It has been shown by Kozhushkina et al [7] that this tree is infinite, symmetrical, and has 2-adic
valuation range {0,3,4,5,6, ...}. Consider

(2.1) ν2(x2
+7) = t, for an arbitrary t ≥ 3.

We know by the 2-adic valuation tree for t ≥ 3 there is always going to be a value for x that makes the
equation true. This means that

x2
+7 = 2ty

for some y ∈ Z where 2 ∤ y. Thus, the 2-adic valuation range of t corresponds to a Diophantine equation,
and it will have non-trivial solutions. We now turn our attention to finding those solutions (x,y, t) to the
Diophantine equation x2+7 = 2ty.

If we know a solution (x,y, t) to the equation x2+ 7 = 2ty, with y odd, we can find the additional
solutions recursively.
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Proposition 2.1. There exists a sequence of solution pairs {(xt ,yt)}t≥3 of the Diophantine equation
x2+7 = 2ty which corresponds to the minimum of the branch residues, when t = `+1 (which we define
here as the values x`, x`+2`−1

, −(2`−1+ x`), and −x` mod 2`) at level ` for xt and the non-terminating
node behavior at level `−1 for yt .

Proof. We know by [7] that the tree for x2+7 for every level ` ≥ 3 has four branches, each of which has
a corresponding 2-adic valuation node, and those branches are symmetric. Through the properties of
modular arithmetic and the fact that the tree is symmetric, we know, among these four nodes, two of the
nodes are terminating with 2-adic valuation equal to ` while the other two nodes are non-terminating nodes
with 2-adic valuation at least `+1. Further, we can describe exactly what the values of these branches are.

In Figure 3, there are two infinite branches starting at level 2 of the tree. We’ll refer to these left and
right infinite branches as trunks. The two branches on the left trunk of Figure 3 represent integers of the
form

2`n+ x`, 2`n+ x`+2`−1

while the two branches on the right trunk of Figure 3 represent integers of the form

2`n+2`− x`, 2`n− (2`−1
+ x`),

where n ∈ N. These are the branches of the tree as described by Kozhushkina et al [7] on page 100 with
the notable difference that we are choosing not to take the values modulo 2`.

Observe that, for any given level `, the four branch residues are determined by x` which depends on the
2-adic valuation node at the previous level `−1.

The two branch residues on the left trunk, namely x` and x`+2`−1, emanate from a non-terminating
node in the `−1 level, that is, the 2-adic valuation node with a value greater than or equal to `. The branch
residue x` is equal to the previous branch residue x`−1.

Thus, in order to establish that x` = xt−1 is the minimum branch residue at level `, we only need to
check what the 2-adic valuation is at either the branch residue x` (mod 2`) or −(2`−1+ x`) (mod 2`).
Moreover, due to the symmetry of the tree, if the 2-adic valuation at the branch residue x` leads to
a non-terminating node, then it follows that the branch residue at −(2`−1 + x`) (mod 2`) leads to a
terminating node. As a result, the other non-terminating node will come from the branch having residue
−x` (mod 2`). Observe that x` < 2`− x` for all ` > 1, because x` < 2`−1.

Hence, without loss of generality, let us evaluate the 2-adic valuation along the branch 2`n+ x`, for
some n ∈ N, at level `, to get

ν2((2`n+ x`)2+7) = ν2 (22`n2
+2`+1nx`+ x2

` +7)

= ν2 (2`)+ν2(2`n2
+2nx`+

x2
` +7
2`

)

= `+ν2(2`n2
+2nx`+

x2
` +7
2`

)

= `+ν2 (2`n2
+2nx`+ y`) ,

where y` =
x2
` +7
2`

. There are two cases to consider, either y` = yt−1 is even or odd.

If y` = yt−1 is even, then

ν2(2`n2
+2nx`+ y`) ≥ 1
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so that ν2((2`n+x`)2+7) ≥ `+1; this means that the branch 2`n+x` leads to a non-terminating node and
hence, by symmetry, the branch 2`n+2`− x` leads to the other non-terminating node. Since x` < 2`− x`,
we have established that the minimum value of the branch residues occurs at x` = xt−1 in this case.

If y` = yt−1 is odd, then

ν2(2`n2
+2nx`+ y`) = 0

so that ν2((2`n+x`)2+7) = `; this means that the branch residue x` leads to a terminating node and hence
the branch residue 2`−1− x` leads to a non-terminating node. The other non-terminating node comes from
the branch having residue x`+2`−1. Since 2`−1− x` < x`+2`−1 for all ` > 1, it follows that the minimum
value of the branch residues occur at 2`−1− x` = 2`−2− xt−1 in this case. �

A direct consequence of Proposition 2.1 to Diophantine equations are the following results.

Corollary 2.2. For ` ∈ N with ` ≥ 3, if (x`−1,y`−1, `−1) is an integer solution of the form (x,y, t) to the
equation x2+7 = 2ty, then (x`,y`, `) is also a solution given by the recursion

x` = { x`−1, y`−1 is even
2`−2− x`−1, y`−1 is odd

and

y` =
x2
` +7
2`

.

Note that y` as defined above is always an integer.

Theorem 2.3. The Diophantine equation x2+ 7 = 2ty, where y is odd, has positive integer solutions
(x,y, t) for all t ≥ 3 and t = 0. Further, for ` ∈ N with ` ≥ 4, if (x`−1,y`−1, `− 1) is a solution to the
equation x2+7 = 2ty, then (x`,y`, `) is another solution given by the recursion

x` = 2`−2
− x`−1

and

y` =
x2
` +7
2`

.

Proof. We know by [5] that there are solutions to the equations x2 + 7 = 2ty if t = 1,2,3, and those
solutions are {(1,4,1),(1,2,2),(1,1,3)}, respectively. If we further restrict y to be odd, then we find that
the t = 1 and t = 2 cases are actually a form of the solution for t = 3; (x,y, t) = (1,1,3).

By [7], we know the valuation tree for x2+ 7 has range Z≥3∪ {0}, thus we have a solution for x to
ν2(x2+7) = t for all t ≥ 3 and t = 0. Further, by Proposition 2.2, we can recursively determine exactly
the form that the solution for x should take for each t-value.

Notice that if t = 0 then all solutions of x2+7 = y, in which y is odd, are of the form (2k,(2k)2+7,0)
for some k ∈ N. (See Table 1 for example solutions.)

�

Notice that all of these solutions are in agreement with Bennett, Filaseta, and Trifonov [3, Theorem
1.1] because if x, t and y are positive integers satisfying equation (1.1), then either x is in the set of
{1,3,5,11,181} or y >

√
x.
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3. Proof of Theorem 1.1

Medina, Moll, and Rowland [9, Theorem 2.1] have proven that a polynomial with roots in Z2, the 2-adic
integers, will form infinite valuation trees. They focus on the sequence x2+D in [1, Lemma 3.8 and
Theorem 4.5], where they are able to describe the forms D must take in order for the tree to be infinite.
This is further expanded upon in [6, Theorem 1 part 3] to general quadratic polynomials of the form
ax2+bx+ c. The authors specify that our D should be of the form 4 j(8k+7) if we wish to have infinite
trees for some j,k ∈ Z≥0. Here we use these results to describe which Diophantine equations of the form
x2+D = 2ty, y odd, will have infinitely many non-trivial solutions for t.

Proof of Theorem 1.1. If D ≠ 4 j(8k+7), then we know the tree is bounded by [1] and [6]. That means
that the range of values t can take is finite, and so there exists a j such that for t > j, x2+D = 2ty, with
y odd has no non-trivial solutions. This is because no valuation branch exists with the value t, hence
ν2(x2+D) = t does not exist for t > j.

We know from Theorem 1 part 3b in [6] that if D = 4 j(8k+7), then our tree will be infinite, that is, the
range of t will be infinite as well. Starting at t > j, for some finite valuation of the tree j, there will be a
valuation for every level of the tree. This means that our Diophantine equation x2+D = 2ty, with y odd,
will have solutions for all t in the range of valuations on the tree.

Consider D = 8k+7. We know that substituting an even number into x2+D will get us ν2(x2+D) = 0.
Now, suppose x = 2n+1, we then get

ν2 (x2
+D) = ν2 (x2

+8k+7)
= ν2 ((2n+1)2

+8k+7)
= ν2 (22n2

+22n+8k+8)

= ν2(23(n2+n
2 + k+1))

= ν2 (23)+ν2(
n2+n

2 + k+1) ≥ 3.

Further, it is shown in [1, Theorem 4.4] that if there is valuation t on a terminating node of tree, then there
will be valuation t+1 on the next level as a terminating node. The range of t-values in the solution of
x2+D= 2ty, y odd and D≡ 7 (mod 8) is at most {0,3,4,5, . . .}. Using a similar proof for D= 4 j(8k+7),
k ≥ 1 we can show that t ≠ 1. �

4. A Cubic Diophantine Equation and its 2-adic Valuation Trees

In order to understand the Diophantine results for x3+D = 2ty, y odd, we prove when the 2-adic valuation
trees are finite and infinite.

Proposition 4.1. If D = 8 j(2k+1), for j,k ≥ 0, then the valuation tree of x3+D is infinite.

Proof. When D is odd, by Hensel’s lemma we can see that the cube root of D is a root of the polynomial
x3+D in Z2 and therefore we have an infinite branch [9, Theorem 2.1]. When D is even, we have j > 0
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and we see that the cube root of D is given by 2 j(2k+1)1/3. By Hensel’s lemma, we have that the cube
root of D is a root of the polynomial x3+D in Z2 and therefore we have an infinite branch. �

Here we work out the cases of D that would result in finite branches.

Proposition 4.2. Let D be a positive integer. If D /∈ {8 j(2k+1) ∶ j,k ≥ 0} then
(1) If D = 2(2k+1) then

ν2(x3
+D) = { 1, x ≡ 0 (mod 2),

0, x ≡ 1 (mod 2).

(2) If D = 22(2k+1) then

ν2(x3
+D) = { 2, x ≡ 0 (mod 2),

0, x ≡ 1 (mod 2).

(3) If D = 23k+i for k > 0 and i = 1 or 2 then

ν2(x3
+D) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if x ≡ 1 (mod 2),
3, if x ≡ 2 (mod 22),
3`, if x ≡ 2` (mod 2`+1),
⋮

3k, if x ≡ 2k (mod 2k+1),
3k+ i, if x ≡ 0 (mod 2k+1),

where ` = 2, . . . ,k.
Hence, the valuation tree is finite.

Proof. (1). Suppose D = 2(2k+1) for some k ≥ 0. If x = 2n then

ν2((2n)3
+4k+2) = ν2(2)+ν2(4n3

+2k+1) = 1.

If x = 2n+1 then
ν2((2n+1)3

+4k+2) = 0,

since (2n+1)3+4k+2 is odd for all k.
(2). Suppose D = 22(2k+1) for some k ≥ 0. If x = 2n then

ν2((2n)3
+8k+4) = ν2(22)+ν2(2n3

+2k+1) = 2.

If x = 2n+1 then
ν2((2n+1)3

+8k+4) = 0,

since (2n+1)3+8k+4 is odd for all t.
(3) Suppose D = 23k+i for k > 0 and i ∈ {1,2} then if x = 2n+1 we have

ν2((2n+1)3
+23k+i) = 0,

while if x = 2n then
ν2((2n)3

+23k+i) = ν2(23)+ν2(n3
+2(3k+i)−3) ≥ 3.

Since this valuation is not constant, we have to look at two cases, i = 1 and i = 2.
Suppose i = 1. We will see that this case results in finite valuation trees that have different structures.
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Diagramming the valuation tree, the first level of the tree in this case has two branches yielding a
terminating valuation node value 0 (with residue 1) and a non-terminating node value 3 (with residue 0).
Moreover, the exponent (3k+1)−3 = 3k−2 may only take values from the set {1,4,7, . . .} since k is a
natural number.

To create the next level of the tree, consider x = 22n and x = 22n+2, respectively, to get

(4.1) ν2((22n)3
+23k+1) = ν2(23)+ν2(23n3

+23k−2) > 3,

(4.2) ν2((22n+2)3
+23k+1) = ν2(23)+ν2(23n3

+3 ⋅22n2
+3 ⋅2n+1+23k−2) = 3,

since 3k−2 > 0.
Observe that equation (4.2) gives a constant node value. In equation (4.1), if 3k−2 = 1 then

ν2((22n)3
+23k+1) = ν2(23)+ν2(23n3

+21) = 4,

and in this case, the valuation tree terminates as shown in Figure 4.

n0

3

4

0

3

2

0

0

1

FIGURE 4. The finite valuation tree for x3+24
.

We see that when 3k− 2 = 1 then the 2-adic valuation tree terminates at the second level (with
second-level branch residues 22n,22n+2) and having exact valuation nodes 0,3,4.

If 3k−2 = 4 then the first equation of (4.1) becomes

ν2((22n)3
+23k+1) = ν2(23)+ν2(23n3

+24) = ν2(23)+ν2(23)+ν2(n3
+2) ≥ 6,

which then requires that we move on to the next level of the tree.
Consider x = 23n and x = 23n+4, then the 2-adic valuations are given by

(4.3) ν2((23n)3
+23k+1) = ν2(26)+ν2(23n3

+23k−5) > 6,

ν2((23n+4)3
+23k+1) = ν2(26)+ν2(23n3

+3 ⋅22n2
+3 ⋅2n+1+23k−5) = 6,

since 3k−5 > 0. Observe that the second equation in (4.3) gives a constant node value. Now we look at
the first equation in (4.3).

If 3k−5 = 1 then the first equation of (4.3) becomes

ν2((23n)3
+23k+1) = ν2(26)+ν2(23n3

+21) = 7,

and in this case, the valuation tree terminates as shown in Figure 5.
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n0

3

6

7

0

6

4

0

3

2

0

0

1

FIGURE 5. The finite valuation tree for x3+27
.

We see here that when 3k− 5 = 1 then the 2-adic valuation tree terminates at the third level (with
third-level branch residues 23n,23n+22) and has exact valuation nodes 0,3,6,7.

The conclusion follows by induction on k. This ends the proof for the case i = 1. The proof for i = 2 is
analogous. An example is shown in Figure 6.

n0

3

5

0

3

2

0

0

1

FIGURE 6. The finite valuation tree for x3+25.

�

Now, we apply Propositions 4.1 and 4.2 to prove Theorem 1.2.

Proof of Theorem 1.2. Using the same techniques as our proof of Theorem 1.1 where we relate the
valuations on the tree to our Diophantine equation we can show that for D = 8 j(2k+1), x3+D = 2ty, for
y odd, has a solution for all n ≥ 0 except for finitely many values. This is because Proposition 4.1 says the
valuation trees are infinite.

If D≠ 8 j(2k+1) we can see from Proposition 4.2 that the range of values of t depends on D= 2(2k+1),
D = 22(2k+ 1) or D = 23k+i

, i ∈ {1,2} and k ∈ N. We know that there are finitely many t’s where
x3+D = 2ty, y odd, will have solutions.

Note that we can do similar calculations as we did in the proof of Theorem 1.1 to show that for
D = 8 j(2k+1), j ≥ 1 that ν2(x3+D) ≥ 3. Our potential t valuations in this case are {0,3,4, . . .}. And if
j = 0 then we could have solutions for all t ∈ Z≥0. �
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5. Examples of Using Valuation Trees to Solve x2+D = 2ty and x3+D = 2ty for Specific D

In [7], it was shown the exact forms of the valuation trees for D = 1, 2, 3 and 4. Using these trees we can
find all the non-trivial solutions to the Diophantine equation x2+D = 2ty for D = 1, 2, 3 and 4. Here we
show what solutions for the quadratic Diophantine equation would be for D = 1, 3, and 4.

Theorem 5.1. The equation x2+1 = 2ty has solutions only when t = 0,1. If t = 0, then y is odd whenever
x is even. If t = 1, then y is odd whenever x is odd.

Proof. In order to see that the solutions to x2+1= 2ty, with 2 ∤ y, are of the form (x≡ 0 (mod 2),x2+1,0)
and
(x ≡ 1 (mod 2), x2+1

2 ,1), start with the corresponding tree in Figure 7.

n0

0

0

1

1

FIGURE 7. The finite valuation tree for x2+1

From the finite tree in Figure 7, we get that the 2-adic valuations of our sequence x2+1 can only ever
be

ν2(x2
+1) = { 0, x ≡ 0 (mod 2),

1, x ≡ 1 (mod 2).

Then we translate our valuation equations to get x2+1 = 20y and x2+1 = 21y, respectively. These must
have solutions since our tree implies that there are x-values that we can substitute in to get exact valuation
0 or 1.

Now we need to solve for y, which gives us

y = x2
+1,

where x is even and

y =
x2+1

2 ,

where x is odd.
Since there are no 2-adic valuations greater than 1 in our valuation tree, there are no other non-trivial

t-values that will be solutions to this Diophantine equation.
The tree is finite and so we know that any other classifications of our x-value modulo 2t will only result

in one of the two stated valuations. �

Theorem 5.2. The Diophantine equation x2+3 = 2ty has solutions only when t = 0,2. If t = 0, then y is
odd, whenever x is even. If t = 2, then y is odd, whenever x is odd.
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n0

1

0

2

1

FIGURE 8. The finite valuation tree for x2+3.

Proof. We summarize the finite tree in Figure 8 by

ν2(x2
+3) = { 0, x ≡ 0 (mod 2),

2, x ≡ 1 (mod 2).
The 2-adic valuation translates to the equation

x2
+3 = 2ty.

The corresponding finite valuation tree shows that the only possible values of t (where y is odd) will be 0
and 2. Therefore we have equations

x2
+3 = y, and(5.1)

x2
+3 = 22y.(5.2)

Further, the valuation tree indicates that we only have solutions for t = 0, if x is even. For equation (5.1),
one solution is (x,y, t) = (2,7,0). Similarly, we can find all solutions for the Diophantine equation to be
of the form (2n,(2n)2+3,0), for n ∈ Z.

Now for equation (5.2), the tree says this valuation only occurs when x is odd. Hence our solutions are

(2n+1, (2n+1)2+3
4 ,2), for n ∈ Z. �

Theorem 5.3. The Diophantine equation x2+4 = 2ty, y odd, has solutions only when t = 0,2, 3.

n0

2

2

0

3

2

0

0

1

FIGURE 9. The finite valuation tree for x2+4.

Proof. Summarizing the valuation tree in Figure 9 gives

ν2(x2
+4) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, x ≡ 1 (mod 2),
2, x ≡ 0 (mod 4),
3, x ≡ 2 (mod 4).
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Again, the 2-adic valuation translates to an equation

x2
+4 = 2ty.

The finite valuation tree establishes that the only possible values of t (where y is odd) will be 0, 2, and 3.
Therefore we have equations

x2
+4 = y,(5.3)

x2
+4 = 22y, and(5.4)

x2
+4 = 23y.(5.5)

From the valuation tree we see that there are solutions only for t = 0, if x is odd. If we let x = 1, we
find y in equation (5.3) for the solution (1,5,0) to our Diophantine equation. Then all solutions for the
Diophantine equation can be found to have the form (2n+1,(2n+1)2+4,0), for n ∈ Z.

Similarly, for equation (5.4), the tree implies that the 2-adic valuation equal to 2 only occurs when x is

divisible by 4. Our solutions are then of the form (22n, (22n)2+4
4 ,2), for n ∈ Z.

Finally, for equation (5.5), the tree says the needed valuation only occurs when x is 2 (mod 4). Our

solutions are (22n+2, (22n+2)2+4
8 ,3), for n ∈ Z. �

Next, we will work out an example for cubic Diophantine equation x3+D= 2ty where D= 8 j(2k+1)=
1 when j = k = 0.

n0

0

0

1

1

1

2

2

3

3

3

7

⋮

15

7

3

1

FIGURE 10. The infinite valuation tree for x3+1 where the tree continues to split on the
rightmost node indefinitely.

We’ll see from the theorem below and the tree in Figure 10 that the 2-adic valuation tree for ν2(x3+1)
has range of Z≥0. Also at each level `, there are two branches yielding one terminating node with value
`−1 and one non-terminating node with minimum value `.

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

13

2 Oct 2023 11:34:35 PDT
210707-Goedhart Version 4 - Submitted to Rocky Mountain J. Math.



Theorem 5.4. The non-negative integer solutions of the cubic Diophantine equation x3+1 = 2ty, for y
odd, follow from

(5.6) ν2(x3
+1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x ≡ 0 (mod 21),
1, x ≡ 1 (mod 22),
2, x ≡ 3 (mod 23),
3, x ≡ 7 (mod 24),
4, x ≡ 15 (mod 25),
⋮

n, x ≡ 2n−1 (mod 2n+1).

We can conclude there are solutions for all n ∈ Z≥0 with corresponding x ≡ 2n−1 (mod 2n+1).

Proof. First, we show that the tree is infinite and will have the valuations as stated. Fix an integer n ≥ 0.
Suppose x ≡ 2n−1 (mod 2n+1). Then

(2n
−1)3

+1 = 23n
−3 ⋅22n

+3 ⋅2n
−1+1 = 2n(22n

−3 ⋅2n
+3).

Observe that 22n−3 ⋅2n+3 is odd for any n ≥ 0.
Because the rightmost branch in the tree is the one branch that will always continue, for each non-

negative integer t, we have a corresponding x-value that we know is of the form x≡ 2t−1 (mod 2t+1). �

6. Conclusion

What is interesting about our approach is that it gives us a handle on Diophantine equations of the form
xs+D = pty, for any fixed prime p and positive integer s. Through studying classifications of x and
creating our valuation trees we are able to determine, for which t, xs+D = pty has non-trivial integer
solutions. For example, if we were to have studied x2+7 = 2ty with a traditional tool such as the one
in Bilu, Hanrot, and Voutier in [5] we would have discovered that there are finitely many solutions for
t = 1,2 and 3, but would have been unable to determine solutions for t > 3.

One direction for further study is to compute the p-adic valuation trees of more general polynomials
like xn+D where n,D ∈ Z≥0 and determine the solutions of the related Diophantine equations.
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Appendix A. Tables of example solutions

t xt yt
3 1 1
4 3 1
5 5 1
6 11 2
7 11 1
8 53 11
9 75 11
10 181 32
11 181 16
12 181 8
13 181 4
14 181 2
15 181 1
16 16203 4006
17 16203 2003
18 49333 9284
19 49333 4642
20 49333 2321
21 474955 107566
22 474955 53783
23 1622197 313702
24 1622197 156851
25 6766411 1364479
26 10010805 1493338

TABLE 1. Some example solutions to our Diophantine equation x2+7 = 2ty, y odd, using
our recursion.

We showcase some of the solutions (x,y, t) for x2+ 7 = 2ty, x2+D = 2ty, and x3+D = 2ty which we
found using the valuation tree method in Tables 1, 2 and 3.
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D t (x,y, t)
8 0, 2, 3 (1,9,0), (2,3,2), (4,3,3)
9 0, 1 (2,13,0), (1,5,1)
10 0, 1 (1,11,0), (2,7,1)
11 0, 2 (2,15,0), (1,3,2)
12 0, 2, 4 (1,13,0), (4,7,2), (2,1,4)
13 0, 1 (2,17,0), (1,7,1)
14 0, 1 (1,15,0), (2,9,1)
16 0, 2, 4, 5 (1,17,0), (2,5,2), (8,5,4), (4,1,5)
17 0, 1 (2,21,0), (1,9,1)
18 0, 1 (1,19,0), (2,11,1)
19 0, 2 (2,23,0), (1,5,2)
20 0, 2, 3 (1,21,0), (4,9,2), (2,3,3)
21 0, 1 (2,25,0), (1,11,1)
22 0, 1 (1,23,0), (2,13,1)
24 0, 2, 3 (1,25,0), (2,7,2), (4,5,3)
25 0, 1 (2,29,0), (1,13,1)
26 0, 1 (1,27,0), (2,15,1)
27 0, 2 (2,31,0), (1,7,2)
29 0, 1 (2,33,0), (1,15,1)
30 0, 1 (1,31,0), (2,17,1)
32 0, 2, 4, 5 (1,33,0), (2,9,2), (4,3,4), (8,3,5)
33 0, 1 (2,37,0), (1,17,1)
34 0, 1 (1,35,0), (2,19,1)
35 0, 2 (2,39,0), (1,9,2)
36 0, 2, 3 (1,37,0), (4,13,2), (2,5,3)
37 0, 1 (2,41,0), (1,19,1)
38 0, 1 (1,39,0), (2,21,1)
40 0, 2, 3 (1,41,0), (2,11,2), (4,7,3)

TABLE 2. Examples of some solutions for x2+D = 2ty for specific D values.
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D t (x,y, t)
2 0, 1 (1,3,0), (2,5,1)
4 0, 2 (1,5,0), (2,3,2)
6 0, 1 (1,7,0), (2,7,1)
10 0, 1 (1,11,0), (2,9,1)
12 0, 2 (1,13,0), (2,5,2)
14 0, 1 (1,15,0), (2,11,1)
16 0, 3, 4 (1,17,0), (2,3,3), (4,5,4)
18 0, 1 (1,19,0), (2,13,1)
20 0, 2 (1,21,0), (2,7,2)
22 0, 1 (1,23,0), (2,15,1)
26 0, 1 (1,27,0), (2,17,1)
28 0, 2 (1,29,0), (2,9,2)
30 0, 1 (1,31,0), (2,19,1)
32 0, 3, 5 (1,33,0), (2,5,3), (4,3,5)
34 0, 1 (1,35,0), (2,21,1)
36 0, 2 (1,37,0), (2,11,2)
38 0, 1 (1,39,0), (2,23,1)
42 0, 1 (1,43,0), (2,25,1)
44 0, 2 (1,45,0), (2,13,2)
46 0, 1 (1,47,0), (2,27,1)

TABLE 3. Examples of some solutions for x3+D = 2ty for specific D values.
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