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1 Introduction

The purpose of this paper is to study the existence of subharmonic and homoclinic solutions for

the following equation

u
′′
(t)− V (t)u(t) + λ(u2(t))

′′
u(t) + g(t, u(t)) = h(t), (HS)

where t ∈ R, λ ≥ 0 is a parameter, u ∈ Rn, g(t, u) ∈ C(R × Rn,Rn), g(t, 0) = 0 and is

T−periodic in t, V (t) > 0 is a real continuous functions defined on R with period T .
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In this paper we will consider the existence of subharmonic and homoclinic solutions when

V (t) = α (α > 0 a constant). However we will keep the general V (t) to set up the variational

structure.

When n = 1, λ = 1 and h(t) ≡ 0, we obtain the following equation from (HS)

u
′′
(t)− V (t)u(t) + (u2(t))

′′
u(t) + g(t, u(t)) = 0, (SC)

which is a quasilinear Schrödinger equation with dimension 1.

In the literature, many authors studied soliton solutions or ground state solutions for quasi-

linear Schrödinger equations via critical point theory and the Pohožaev manifold method [9, 15,

16, 18-21, 23, 29, 31-35]. Without the nonlinearity term (u2(t))
′′
u(t), equation (HS) becomes

the Hamiltonian system, the homoclinic orbits of which has been studied by several authors via

critical point theory, see [1, 3-8, 10-12, 22, 25-28, 30].

In this paper, using critical point theory, we will establish the existence of subharmonic and

homoclinic solutions for a class of second order quasilinear Schrodinger equations. To this end,

let us first introduce some basic concepts on these equations.

As usual, a solution u of (HS) is said to be homoclinic (to 0) if u(t) → 0 as t → ∞. In

addition, if u 6≡ 0 then u is called a nontrivial homoclinic solution of (HS).

Let h(t) ≡ 0, we have from (HS)

u
′′
(t)− V (t)u(t) + λ(u2(t))

′′
u(t) + g(t, u(t)) = 0. (1.1)

A solution u of (1.1) is said to be subharmonic if u is kT−periodic for any positive integer k

(see [25]).

This study is motivated mainly by [23] and [25]. In [25], Rabinowitz obtained the existence

of nontrivial homoclinic solutions for the second order Hamiltonian system

q̈ + Vq(t, q) = 0, (1.2)

where the homoclinic orbit q is obtained as the limit as k → ∞ of 2kT -periodic solutions (i.e.

subharmonic) qk of (1.2).

In [23], Poppenberg, Schmitt and Wang proved the existence of soliton solutions for the

following quasilinear Schrödinger equations

−4u+ V (x)u− κ(4|u|2)u = ν|u|p−1u. (1.3)

The solution of (1.3) is related to the existence of standing wave solutions for the quasilinear

Schrödinger equation

i∂tz = −4z + V (x)z − f(x, |z|2)z − κ4ϕ(|z|2)ϕ
′
(|z|2)z, (1.4)
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where V = V (x), x ∈ RN is a given potential, κ is a real constant and f , ϕ are real functions. The

quasilinear equation (1.4) arises in several models of different physical phenomena corresponding

to various types of ϕ. For instance, the superfluid film equation in plasma physics

i∂tz = −4z + V (x)z − f(x, |z|2)z − κ(4|z|2)z

has this structure with ϕ(s) = s.

Seeking solutions of the type of stationary waves, namely, the solutions of the form

z(t, u) = exp(−iF t)u(x), F ∈ R,

we get an equation of elliptic type from (1.4) which has the formal structure

−4u+ Ṽ (x)u− (4|u|2)u = g(x, u) x ∈ RN (1.5)

with ϕ(s) = s and κ = 1, where Ṽ (x) = V (x) − F is the new potential function and g(x, u) =

f(x, u2)u.

In this paper, by using the idea of [25] and [13, 20], we will study subharmonic and homoclinic

solutions of equation (1.1) and the general one, i.e., equation (HS). As the main tools in our

study, three lemmas will be stated here. First, let us recall the Palais-Smale condition. Let E

be a real Banach space, I ∈ C1(E,R), i.e., I is a continuously Fréchet-differentiable functional

defined on E. Now I is said to satisfy the Palais-Smale condition (PS condition for short) if any

sequence {un} ⊂ E for which I(un) is bounded and I
′
(un)→ 0(n→∞) possesses a convergent

subsequence in E.

Let Bρ(0) denote the open ball in E with radius ρ and with center 0 and let ∂Bρ denote its

boundary.

Lemma 1.1(Mountain Pass lemma)([2,24]). Let E be a real Banach space and I ∈
C1(E,R) satisfies the PS condition. If further I(0) = 0, and

(G1) there exist constants ρ, α > 0 such that I|∂Bρ(0) ≥ α, and

(G2) there exists e ∈ E\Bρ(0) such that I(e) ≤ 0,

then I possesses a critical value c ≥ α given by

c = inf
η∈Γ

max s∈[0,1]I(η(s)),

where

Γ = {η ∈ C([0, 1], E)|η(0) = 0, η(1) = e}.

Lemma 1.2(Symmetric Mountain Pass lemma)([24]). Let E be an infinite dimensional

Banach space and let I ∈ C1(E,R) be even, satisfying the PS condition and I(0) = 0. If
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E = V ⊕X, where V is finite dimensional, and

(G3) there exist constants ρ, α > 0 such that I|∂Bρ∩X ≥ α, and

(G4) for each finite dimensional subspace Ẽ ⊂ E, there is a γ = γ(Ẽ) such that I ≤ 0 on

Ẽ\Bγ ,

then I possesses an unbounded sequence of critical values.

Lemma 1.3 ([15]). Let (X, ‖ · ‖) be a Banach space and J ∈ R+ an interval. Consider the

family of C1 functionals on X

Iµ(u) = A(u)− µB(u), µ ∈ J,

with B nonnegative and either A(u)→∞ or B(u)→∞ as ‖u‖ → ∞ and such that Iµ(0) = 0.

For any µ ∈ J we set

Γµ = {γ ∈ C([0, 1], X) : γ(0) = 0, Iµ(γ(1)) < 0}.

If for every µ ∈ J the set Γµ is nonempty and

cµ = inf
γ∈Γµ

max t∈[0,1]Iµ(γ(t)) > 0,

then for almost every µ ∈ J there is a sequence {un} ⊂ X such that

(i) {un} is bounded;

(ii) Iµ(un)→ cµ;

(iii) I
′
µ(un)→ 0 in the dual X−1 of X.

The rest of this paper is organized as follows. In Section 2, we establish a variational structure

for (HS) with periodic boundary value condition, and give some preliminary results. In Section

3 we prove a first existence result for equation (1.1) without the Ambrosetti-Rabinowitz growth

condition. A cut-off functional is utilized to obtain the bounded Palais-Smale sequences. In

Section 4, by employing the Mountain Pass lemma and the symmetric one, we show a second

and a third existence result for (HS) under suitable assumptions.

2 Variational structure

For each k ∈ N, let Ek := W 2,2
2kT (R,Rn), the Hilbert space of 2kT−periodic functions on R with

values in Rn under the norm

‖u‖Ek :=
(∫ kT
−kT [|u(t)|2 + |u′(t)|2]dt

) 1
2
.

Furthermore, let L∞[−kT,kT ](R,R
n) denote the space of 2kT -periodic essentially bounded (mea-

surable) functions from R into Rn equipped with the norm

‖u‖L∞
[−kT,kT ]

:= ess sup{|u(t)| : t ∈ [−kT, kT ]},
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and L2
[−kT,kT ](R,R

n) denotes the Hilbert space of 2kT−periodic functions on R with values in

Rn under the norm

‖u‖L2
[−kT,kT ]

= (
∫ kT
−kT |u(t)|2dt)

1
2 .

As in [13], where the homoclinic solution of (HS) is obtained as a limit of a certain sequence

of functions {uk} ⊂ Ek, we consider a sequence of systems of functional differential equations

u
′′
(t)− V (t)u(t) + λ(u2(t))

′′
u(t) + g(t, u(t)) = hk(t), (HSk)

where for each k ∈ N, hk : R → Rn is a 2kT−periodic extension of the restriction of h to the

interval [−kT, kT ]. Denote by uk the 2kT−periodic solution of (HSk) obtained via Mountain

Pass Lemma.

Throughout the whole paper we impose the following assumption:

(G0) there exists a continuously differentiable functionG(t, u) ∈ C(R×Rn,R) being T−periodic

with respect to t, such that ∇uG = g.

Let

Φk(u) =
(∫ kT
−kT [|u′(t)|2 + V (t)u2(t)]dt

) 1
2
. (2.1)

It is easy to see that there exist M1,M2 > 0 such that

M1‖u‖2Ek ≤ Φ2
k(u) ≤M2‖u‖2Ek . (2.2)

Indeed, let V̂ = max t∈[0,T ]V (t), V = mint∈[0,T ] V (t), M1 := min{1, V } and M2 := max {1, V̂ }.
Then we have

Φ2
k(u) ≤M2

∫ kT

−kT
[|u(t)|2 + |u′(t)|2]dt = M2‖u‖2Ek

and

Φ2
k(u) =

∫ kT

−kT
[|u′(t)|2 + V (t)|u(t)|2]dt ≥ min{1, V }

∫ kT

−kT
[|u′(t)|2 + |u(t)|2]dt = M1‖u‖2Ek .

Define Ik : Ek → R as follows

Ik(u) = 1
2Φ2

k(u) + λ
∫ kT
−kT |u

′
(t)|2u2(t)dt−

∫ kT
−kT G(t, u(t)) + (hk(t), u(t)) dt. (2.3)

Then Ik ∈ C1(Ek,R). From (G0), it is easy to check that

(I
′
k(u), v) =

∫ kT
−kT

(
−u′′(t) + V (t)u(t)− λ(u2(t))

′′
u(t)− g(t, u(t))− hk(t), v(t)

)
dt (2.4)

and the corresponding Euler equation of functional Ik is Eq.(HSk). Moreover, it is clear that

the critical points of Ik are classical 2kT−periodic solutions of (HSk).
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In the end of this section, we shall state an important result which will be used in the proof

of our main results.

Proposition 2.1 ([25, pg 36]). There is a positive constant γ such that for each k ∈ N and

u ∈ Ek, the following inequality holds:

‖u‖L∞
[−kT,kT ]

≤ γ‖u‖Ek . (2.5)

3 Existence result (I)

In this section we prove that equation (1.1) has a nonconstant homoclinic solution without

the Ambrosetti-Rabinowitz growth condition, and a cut-off functional is utilized to obtain the

bounded Palais-Smale sequences.

We assume the following conditions:

(V1) V (t) = α > 0, where α is a constant;

(V2) g(t, u) = g(u) and |g(u)| ≤ C(|u| + |u|p−1) for some p ∈ (2,∞), where C is a positive

constant;

(V3) lim
u→0
|g(u)
u | = 0;

(V4) lim
u→∞

|g(u)
u | =∞.

Clearly, under assumption (V2), (G0) becomes:

(G̃0) there exists a continuously differentiable function G ∈ C(R,R) such that G′(u) = g.

Theorem 3.1. Suppose that conditions (V1) − (V4) and (G̃0) are satisfied. Then equation

(1.1) with λ sufficiently small possesses a nontrivial homoclinic solution which is the limit as

k →∞ of a sequence of solutions of (HSk) under the periodic boundary condition

u(i)(kT ) = u(i)(−kT ) = 0, for all ı = 0, 1.

To overcome the difficulty of finding bounded Palais-Smale sequences for the associated

functional Ik, following [16-18], we use a cut-off function ψ ∈ C∞(R+,R) satisfying

ψ(t) = 1, t ∈ [0, 1],

0 ≤ ψ(t) ≤ 1, t ∈ (1, 2),

ψ(t) = 0, t ∈ [2,∞),

‖ψ′‖∞ ≤ 2,
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and study the following modified functional I$,µk : Ek → R defined by

I$,µk (u) = 1
2

∫ kT
−kT [|u′(t)|2 + V (t)u2(t)]dt+ λψ

(
‖u‖2Ek
$2

)∫ kT
−kT |u

′
(t)|2u2(t)dt

−
∫ kT
−kT (hk(t), u(t)) dt− µ

∫ kT
−kT G(u(t))dt

:= Ak(u)− µBk(u),

(3.1)

where $ > 0 is a constant,

Ak(u) = 1
2

∫ kT
−kT [|u′(t)|2 + V (t)u2(t)]dt+ λψ

(
‖u‖2Ek
$2

)∫ kT
−kT |u

′
(t)|2u2(t)dt−

∫ kT
−kT (hk(t), u(t)) dt

and

Bk(u) =
∫ kT
−kT G(u(t))dt.

It follows that

((I$,µk (u))
′
, v) =

∫ kT
−kT

(
−u′′(t) + V (t)u(t)− λψ

(
‖u‖2Ek
$2

)
(u2(t))

′′
u(t)− hk(t)− µg(u(t)), v(t)

)
dt

+ 2λ
$2ψ

′
(
‖u‖2Ek
$2

)
(
∫ kT
−kT |u

′
(t)|2u2(t)dt)

∫ kT
−kT [u

′
(t)v

′
(t) + u(t)v(t)]dt,

(3.2)

For any µ ∈ J , we set

Γ
(k)
µ = {γ ∈ C([0, 1], Ek) : γ(0) = 0, I$,µk (γ(1)) < 0}

and

c
(k)
µ = inf

γ∈Γ
(k)
µ

max t∈[0,1]I
$,µ
k (γ(t)).

With this penalization ψ, for $ > 0 sufficiently large and for λ sufficiently small, we are able to

find a critical point u of I$,µk such that ‖u‖Ek ≤ $ and thus u is also a critical point of Ik.

Lemma 3.2. Γ
(k)
µ 6= ∅ for all µ ∈ J = [ξ, 1], where ξ ∈ (0, 1) is a positive constant.

Proof. We choose φ ∈ Ek with φ(u) ≥ 0, ‖φ‖Ek = 1 and supp(φ) ⊂ B(0, R) for some

0 < R < kT . By (V4), we have that for any C1 > 0 with C1ξ
∫ R
−R φ

2(t)dt > M2
2 , there exists

C2 > 0 such that

G(θ) ≥ C1|θ|2 − C2, θ ∈ R. (3.3)

Then for θ2 > 2$2 we have from (2.5) and (3.3) that

I$,µk (θφ) = θ2

2

∫ kT
−kT [|φ′(t)|2 + V (t)φ2(t)]dt− µ

∫ kT
−kT G(θφ(t))dt

+λψ

(
θ2‖φ‖2Ek
$2

)∫ kT
−kT θ

4|φ′(t)|2φ2(t)dt

≤ M2θ2

2 − ξ
∫ kT
−kT G(θφ(t))dt

≤ M2θ2

2 − θ2C1ξ
∫ kT
−kT φ

2(t)dt+ C3.

(3.4)
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Then we can choose θ large such that I$,µk (θφ) < 0. The proof is completed. �

Lemma 3.3. For any given ξ ∈ (0, 1), there exists a constant c > 0 such that c
(k)
µ ≥ c > 0 for

all µ ∈ J .

Proof. For any u ∈ Ek and µ ∈ J , using (V2) and (V3), for any ε ∈ (0, M1
2 ), we have

I$,µk (u) ≥
M1‖u‖2Ek

2 + λψ

(
‖u‖2Ek
$2

)∫ kT
−kT |u

′
(t)|2u2(t)dt−

∫ kT
−kT ( ε2u

2(t) + Cε|u(t)|p)dt

≥
M1‖u‖2Ek

4 −
∫ kT
−kT Cε|u(t)|pdt

≥
M1‖u‖2Ek

4 − Cε‖u‖p−2
L∞
[−kT,kT ]

∫ kT
−kT |u(t)|2dt

≥
M1‖u‖2Ek

4 − Cε%p−2‖u‖pEk ,

(3.5)

where Cε is a positive number. Since p > 2, we conclude that there exists ρ > 0 such that

I$,µk (u) > 0 for any µ ∈ J and u ∈ Ek with 0 < ‖u‖Ek ≤ ρ. In particular, for ‖u‖Ek = ρ we

have I$,µk (u) ≥ c > 0. Fix µ ∈ J and η ∈ Γ
(k)
µ . By the definition of Γ

(k)
µ , ‖η(1)‖ > ρ. By the

continuity, we deduce that there exists tη ∈ (0, 1) such that ‖η(tη)‖ = ρ. Therefore, for any

µ ∈ J ,

c
(k)
µ ≥ inf

η∈Γ
(k)
µ

I$,µk (η(tη)) ≥ c > 0.

The proof is completed. �

Lemma 3.4. For any µ ∈ J and 16λγ2$2 < M1, each bounded Palais-Smale sequence of the

functional I$,µk admits a convergent subsequence.

Proof. Let µ ∈ J and {un} be a bounded PS sequence of I$,µk , namely {un} and {I$,µk (un)}
are bounded, (I$,µk )

′
(un) → 0 in H

′
, where H

′
is the dual space of H = Ek. Subject to a

subsequence, we can assume that there exists u ∈ Ek such that

un ↪→ u in Ek

un → u in Lp(R),

un → u a.e. in R.

From (V2) and (V3), for ε∗ ∈ (0, M1
2 ), there exists Cε∗ > 0 such that

|g(u(t))| ≤ ε∗|u(t)|+ Cε∗ |u(t)|p−1, u ∈ Ek, (3.6)

hence,

|
∫ kT
−kT g(un(t))(un(t)− u(t))dt|

≤
∫ kT
−kT |g(un(t))||un(t)− u(t)|dt

≤ ε∗‖un‖
L2
[−kT,kT ]

‖un − u‖
L2
[−kT,kT ]

+ Cε∗‖un‖p−1
L
p
[−kT,kT ]

‖un − u‖
L
p
[−kT,kT ]

.

(3.7)
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It follows that ∫ kT
−kT g(un(t))(un(t)− u(t))dt→ 0. (3.8)

Similarly, we have ∫ kT
−kT V (t)un(t)(un(t)− u(t))dt→ 0 as n→∞, (3.9)∫ kT

−kT [(u
′
n)2(t)u(t)(un(t)− u(t)) + (un(t))2u

′
(t)(u

′
n(t)− u′(t))]dt→ 0 as n→∞ (3.10)

and∫ kT
−kT [(u

′
)2(t)un(t)(un(t)− u(t)) + (u(t))2u

′
n(t)(u

′
n(t)− u′(t))]dt→ 0 as n→∞. (3.11)

We have from (2.2) and (3.8)-(3.11) that

0←
(

(I$,µk )
′
(un), un(t)− u(t)

)
=
∫ kT
−kT

(
−u′′n(t) + V (t)un(t)− λψ(

‖un‖2Ek
$2 )(u2(t))

′′
u(t)− µg((un(t)), un(t)− u(t)

)
dt

+ 2λ
$2ψ

′
(
‖un‖2Ek
$2

)
(
∫ kT
−kT |u

′
n(t)|2u2

n(t)dt)[u
′
n(t)(un(t)− u(t))

′
+ un(t)(un(t)− u(t))]dt

= Φ2
k((un(t)− u(t)) + 2λψ

(
‖un‖2Ek
$2

)∫ kT
−kT [(u

′
n)2(t)(un(t)− u(t))2 + (un(t))2(u

′
n(t)− u′(t))2]dt

+ 2λ
$2ψ

′
(
‖un‖2Ek
$2

)∫ kT
−kT |u

′
n(t)|2u2

n(t)dt))[
∫ kT
−kT [|u′n(t)− u′(t)|2 + |un(t)− u(t)|2]dt+ o(1)

≥ 2λψ

(
‖un‖2Ek
$2

)∫ kT
−kT [(u

′
n)2(t)(un(t)− u(t))2 + (un(t))2(u

′
n(t)− u′(t))2]dt

+(M1 − 2λγ2

$2 |ψ
′
(
‖un‖2Ek
$2

)
|‖un‖4Ek)‖un − u‖2Ek + o(1),

(3.12)

and then (
M1 − 2λγ2

$2 |ψ
′
(
‖un‖2Ek
$2

)
|‖un‖4Ek

)
‖un − u‖2Ek → 0. (3.13)

Since

∣∣∣∣ψ′ (‖u‖2Ek$2

)
‖un‖4Ek

∣∣∣∣ ≤ 8$4 and 16λ$2γ2 < M1, we obtain that ‖un − u‖2Ek → 0 as

n→∞.

The proof is completed. �

Lemma 3.5. Let 16λγ2$2 < M1. For almost every µ ∈ J , there exists uµ ∈ Ek\{0} such

that (I$,µk )
′
(uµ) = 0 and I$,µk (uµ) = c

(k)
µ .

Proof. By Lemma 1.3, for almost every µ ∈ J , there exists a bounded sequence {uµn} ⊂ Ek

such that

I$,µk (uµ
n
)→ cµ, (I$,µk )

′
(uµ

n
)→ 0.

From Lemma 3.4, we can suppose that there exists uµ ∈ Ek such that uµn → uµ in Ek. Then the

assertion follows from Lemma 3.3. �
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According to Lemma 3.5, there exists sequences {µn} ⊂ J with µn → 1− and {un} ⊂ Ek as

n→∞ such that

I$,µnk (un) = c
(k)
µn , (I$,µnk )

′
(un)→ 0.

The Pohozaev identity is important for many problems and in this section we also use this

identity to obtain ‖un‖Ek ≤ $.

Lemma 3.6. Let 16λγ2$2 < M1. If u ∈ Ek is a weak solution of (HSk), then the following

Pohozaev type identity holds

1
2

∫ kT
−kT [|u′(t)|2 + 2λψ

(
‖u‖2Ek
$2

)
(u
′
(t))2|u(t)|2 + 2µG(u(t))− (V (t) + tV

′
(t))|u(t)|2

+ 2λ
$2ψ

′
(
‖u‖2Ek
$2

)
(
∫ kT
−kT |u

′
(t)|2|u(t)|2dt)(|u′(t)|2 − |u(t)|2)]dt = 0.

(3.14)

Proof. The proof is standard, thus we only sketch the proof here briefly. From the fact that

(u2(t))
′′
u(t) = 2((u

′
(t))2u(t) + u

′′
(t)u2(t)), the problem (HSk) can be rewritten as

−u′′(t) + V (t)u(t)− 2λψ(‖u‖
2

$2 )((u
′
(t))2u(t) + u

′′
(t)u2(t))− µg(u(t))− hk(t)

+ 2λ
$2ψ

′
(
‖u‖2
$2

)
[
∫ kT
−kT |u

′
(t)|2u2(t)dt][−u′′(t) + u(t)] = 0.

(3.15)

Integrating by parts in [−kT, kT ], we obtain that∫ kT
−kT u

′′
(t)(tu

′
(t))dt = t(u

′
(t))2

2 |kT−kT −
1
2

∫ kT
−kT |u

′
(t)|2dt

= −1
2

∫ kT
−kT |u

′
(t)|2dt,

(3.16)

here we used the periodic boundary condition which yields that∫ kT
−kT V (t)u(t)(tu

′
(t))dt = 1

2 tV (t)u2(t)|kT−kT −
1
2

∫ kT
−kT V (t)|u(t)|2dt− 1

2

∫ kT
−kT (tV

′
(t))|u(t)|2dt

= −1
2

∫ kT
−kT V (t)|u(t)|2dt− 1

2

∫ kT
−kT (tV

′
(t))|u(t)|2dt

(3.17)

and ∫ kT
−kT g(u(t))(tu

′
(t))dt = tG(u(t))|kT−kT −

∫ kT
−kT G(u(t))dt = −

∫ kT
−kT G(u(t))dt. (3.18)

We have from (3.16) that∫ kT
−kT

[
−u′′(t) + u(t)

]
(tu
′
(t))dt = 1

2

∫ kT
−kT

[
[|u′(t)|2 − |u(t)|2

]
dt, (3.19)

and ∫ kT
−kT (u2(t))

′′
u(t)(tu

′
(t))dt = 2

∫ kT
−kT ((u

′
(t))2u(t) + u

′′
(t)u2(t))(tu

′
(t))dt

= t(u
′
(t))2u2(t)|kT−kT −

∫ kT
−kT (u

′
(t))2|u(t)|2dt

= −
∫ kT
−kT (u

′
(t))2|u(t)|2dt.

(3.20)
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Multiplying (3.15) by tu
′
(t) and integrating in [−kT, kT ], by (3.16)-(3.20) we get (3.14). �

As we will now assume (V1) then (3.14) reduces to

1
2

∫ kT
−kT [|u′(t)|2 + 2λψ

(
‖u‖2Ek
$2

)
(u
′
(t))2|u(t)|2 + 2µG(u(t))− α|u(t)|2

+ 2λ
$2ψ

′
(
‖u‖2Ek
$2

)
(
∫ kT
−kT |u

′
(t)|2|u(t)|2dt)(|u′(t)|2 − |u(t)|2)]dt = 0.

Lemma 3.7. Let un be a critical point of I$,µnk at level c
(k)
µn . Then for $ > 0 sufficiently

large, there exists λ0 = λ0($) with 16λ0γ
2$2 < M1 such that for any λ ∈ [0, λ0), there is a

subsequence {un} subject to ‖un‖Ek ≤ $ for all n ∈ N.

Proof. We can obtain from (2.5), (V1), (3.1) and (3.14) that

1
2

∫ kT
−kT |u

′
n(t)|2dt

≤ 1
2

∫ kT
−kT

[
|u′n(t)|2 + 4λψ

(
‖un‖2Ek
$2

)
(u
′
n(t))2|un(t)|2

]
dt

≤ cµn + ( λ
$2 |ψ

′
(
‖un‖2Ek
$2

)
|
∫ kT
−kT |u

′
n(t)|2u2

n(t)dt)
∫ kT
−kT (|u′(t)|2 − |u(t)|2)

]
dt

≤ c(k)
µn +

(2m−1)λγ22
$2 |ψ′

(
‖un‖2Ek
$2

)
|‖un‖6Ek .

(3.21)

We estimate the right hand side of (3.21). By the min−max definition of the mountain pass

level, Lemma 3.2 and (3.3), we have

c
(k)
µn ≤ max θI

$,µn
k (θφ)

≤ max θ

{
M2θ2

2 − µn
∫ kT
−kT G(θφ(t))dt

}
+ max θλψ( θ

2

$2 )θ4

≤ max θ

{
M2θ2

2 − δC1θ
2
∫ R
−R φ

2(t)dt+ C3

}
+ max θλψ( θ

2

$2 )θ4

= C3 + <($).

(3.22)

If θ2 ≥ 2$2, then ψ( θ
2

$2 ) = 0. Thus, we have that

<($) ≤ 4λγ2
2$

4.

By the definition of ψ, we have also that

ψ

(
‖un‖2Ek
$2

)∫ kT
−kT (u

′
n(t))2|un(t)|2dt ≤ 4γ2

2$
4

and

1
$2 |ψ

′
(
‖un‖2Ek
$2

)
|‖un‖6Ek ≤ 16$4.

Then we have

1
2

∫ kT
−kT |u

′
n(t)|2dt ≤ C3 + 20λγ2$4. (3.23)
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On the other hand, by (3.2) and (3.6), we have that

M1‖un‖2Ek ≤
∫ kT
−kT [|u′n(t)|2 + αu2

n(t) + 4λψ

(
‖un‖2Ek
$2

)
|u′n(t)|2|un(t)|2]dt

=
∫ kT
−kT [g(un(t))un(t)− 2λ

$2ψ
′
(
‖un‖2Ek
$2

)
(
∫ kT
−kT |u

′
n(t)|2|un(t)|2dt)(|un(t)|2 + |u′n(t)|2)]dt

≤ ε∗‖un‖2
L2
[−kT,kT ]

+ Cε∗‖un‖p
L
p
[−kT,kT ]

+ 2λ
$2 |ψ

′
(
‖un‖2Ek
$2

)
|‖un‖6Ek

≤ ε∗‖un‖2Ek + C4‖u
′
n‖p

L2
[−kT,kT ]

+ 32λγ2
2$

4.

(3.24)

We have from (3.23) and (3.24) that

(M1 − ε∗)‖un‖2Ek ≤ C4‖u
′
n‖p

L2
[0,2kT ]

+ 32λγ2$4

≤ C5(C3 + 20λγ2$4)
p
2 + 32λγ2$4.

(3.25)

Choose $ > 0 with $2 > C6(C3 + 5
4M1)

p
2 + C7M1 and 16λγ2$4 < M1, where C6 = C5

M1−ε∗ and

C7 = 2
M1−ε∗ .

From (3.25) since 16λγ2$4 < M1 we have

‖un‖2Ek ≤ C6(C3 + 20λγ2$4)
p
2

+16C7λγ2$4
< C6(C3 + 5

4M1)
p
2 + C7M1.

Thus, by setting λ0 < M1/16γ2$2, we obtain the conclusion. �

Consequently, let $ be defined as in Lemma 3.7, and ukn be a critical point for I$,µnk at

level c
(k)
µn . Then from Lemma 3.7 we may assume that

‖ukn‖Ek ≤ $.

Hence

I$,µnk (ukn) = 1
2Φ2

k(ukn) +
∫ kT
−kT [λ|u′kn(t)|2|ukn(t)|2 − µnG(ukn(t)) + (hk(t), ukn(t))]dt. (3.26)

Since µn → 1, we can show that {un} is a PS sequence of Ik. Indeed, the boundedness of {ukn}
implies that {Ik(ukn)} is bounded. Also

(I
′
k(ukn), v) = ((I$,µnk )

′
(ukn), v) + (µn − 1)

∫ kT
−kT

∫ kT
−kT g(ukn(t))vdt, v ∈ Ek. (3.27)

Thus I
′
k(ukn) → 0, and then ukn is a bounded PS sequence of Ik. By Lemma 3.4 {ukn} has a

convergent subsequence. We may assume that ukn → uk. Consequently I
′
k(uk) = 0. According

to Lemma 3.3, it follows that Ik(uk) = lim
n→∞

Ik(ukn) = lim
n→∞

I$,µnk (ukn) ≥ c > 0 and uk is a

solution of (HSk).

Lemma 3.8. Let {uk}k∈N be the sequence given by Lemma 3.7. Then there exists a solution

u of (HS) such that uk → u in C1
loc(R,R

n) as k → +∞.
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Proof. Let us start with showing boundedness of the sequences {ck}k∈N. Obviously there

exists a ũ1 ∈ E1 with ũ1(±T ) = 0 such that

c1 ≤ I1(ũ1) = inf
g̃∈Γ1

max t∈[0,1]I1(g̃(t)). (3.28)

For every k ∈ N, let

ũk(t) =

{
ũ1(t) for |t| ≤ T

0 for T < |t| ≤ kT
(3.29)

and g̃k : [0, 1]→ Ek be a curve given by

g̃k(s) = sũk.

Therefore, from (3.28) and (3.29),

ck ≤ max t∈[0,1]Ik(g̃k(t)) = max t∈[0,1]I1(g̃1(t)) ≡M0 (3.30)

independently of k ∈ N.

By (2.6) and Lemma 3.7, we have the existence of a constant D0 (independent of k) with

‖uk‖L∞
[−T,T ]

≤ γ2$ := D0 for every k ∈ N. (3.31)

Now we will obtain some estimates for u
′
k(t).

By (HSk), we have that for t ∈ [−kT, kT ],

(u
′′
k(t)− V (t)uk(t) + λ(u2

k(t))
′′
uk(t)− g(uk(t)), u

′′
k(t))

= ((1 + 2λu2
k(t))u

′′
k(t)− V (t)uk(t) + 2λ(u

′
k(t))

2uk(t)− g(uk(t)), u
′′
k(t)) = 0.

(3.32)

This implies that there is a constant C0 > 0 being independent of k such that

(1 + 2λD2
0)
∫ kT
−kT |u

′′
k(t)|2dt

≤ V̂ (
∫ kT
−kT |uk(t)|

2dt)
1
2 (
∫ kT
−kT (u

′′
k(t))2dt)

1
2 + 2λ

3

∫ kT
−kT (u

′
k(t))

3uk(t)dt

+[
∫ kT
−kT |g(uk(t))|2dt)

1
2 |2dt)

1
2 ](
∫ kT
−kT |u

′′
k(t)|2dt)

1
2

≤ [V̂ $ + (
∫ kT
−kT |g(uk(t))|2dt)

1
2 ](
∫ kT
−kT (u

′′
k(t))2dt)

1
2

+C0(
∫ kT
−kT |u

′
k(t)|6dt)

1
2 (
∫ kT
−kT |uk(t)|

2dt)
1
2

≤ [V̂ $ + (
∫ kT
−kT |g(uk(t))|2dt)

1
2 ](
∫ kT
−kT (u

′′
k(t))2dt)

1
2 + C0($)4.

(3.33)

Therefore, (3.31), (3.33) and assumption (V3) imply that there are d1 > 0 and D1 > 0 being

independent of k such that

‖u′′k‖L2
[0,2kτ ]

≤ d1 (3.34)

and

‖u′k‖L∞[0,2kτ ] ≤ γ(
∫ kT
−kT |u

′′
k(t)|2dt+

∫ kT
−kT |u

′
k(t)|2dt) ≤ γ(d1 +$)2 = D1. (3.35)
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Indeed, from the definition of ‖uk‖Ek , (2.5) and (V3), we have
∫ kT
−kT |g(uk(t))|2dt < +∞.

By (3.31) and the Arzelà-Ascoli theorem, we obtain that a subsequence of {uk}k∈N (again

we call it {uk}k∈N) which converges in C1
loc(R,R

n) to a solution u of (HS) satisfying∫∞
−∞[|u′(t)|2 + V (t)|u(t)|2]dt <∞. (3.36)

Indeed, ∫∞
−∞[|u′(t)|2 + V (t)|u(t)|2]dt

= limk→∞
∫ kT
−kT [|u′k(t)|2 + V (t)|uk(t)|2]dt

≤M2 limk→∞ ‖u‖2Ek <∞.

The proof is finished. �

Lemma 3.9. The function u determined by Lemma 3.8 is the desired homoclinic solution of

(HS).

Proof. The proof will be divided into three steps.

Step 1: We prove that u(t)→ 0, as t→ ±∞.

From ‖uk‖2Ek ≤ D1, we have∫∞
−∞[|u(t)|2 + |u′(t)|2]dt ≤ limk→∞ ‖uk‖2Ek <∞.

This implies

limj→∞
∫
|t|≥j [|u(t)|2 + |u′(t)|2]dt = 0. (3.37)

Now (3.37) show that

lim
j→∞

max |t|≥j |u(t)| ≤ 2 lim
j→∞

(
∫
|t|≥j [|u(t)|2 + |u′(t)|2]dt)

1
2 = 0.

Hence our claim holds.

Step 2: We next show that u
′
(t)→ 0, as t→ ±∞.

If ∫ j+1
j |u′′(t)|2dt→ 0, as j → +∞, (3.38)

then u
′
(t)→ 0, as t→ ±∞.

We obtain from (HS) that∫ j+1
j |u′′(t)|2dt =

∫ j+1
j | − V (t)u(t) + λ(u2(t))

′′
u(t) + g(u(t))|2dt.

Since g(0) = 0 and u(t) → 0, as t → ±∞, (3.38) follows. Here use the fact that (u2(t))
′′
u(t) =

2((u
′
(t))2u(t) + u

′′
(t)u2(t)).
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Step 3: We show that u 6≡ 0 when h(t) ≡ 0. Let Y : [0,+∞)→ [0,+∞) be defined as follows :

Y (0) = 0 and

Y (s) = max t∈[0,T ],0<|u|≤s
(g(u),u)
|u|2 for s > 0.

Then Y is continuous and nondecreasing, Y (s) > 0 for s > 0 and Y (s) → +∞ as s → +∞. It

is easy to verify this fact applying (V4). By the definition of Y we obtain

2Y (‖uk‖L∞
[0,2kT ]

)‖uk‖2Ek ≥
∫ kT
−kT (g(uk(t)), uk(t))dt (3.39)

for every k ∈ N. Since I
′
k(uk)uk = 0, (2.4) gives

∫ kT
−kT (g(uk(t)), uk(t))dt =

∫ kT
−kT [|u′k(t)|2 + V (t)|uk(t)|2 + 4|u′k(t)|2|uk(t)|2]dt. (3.40)

By (2.3), (3.39) and (3.40), we have

Y (‖uk‖L∞
[0,2kT ]

)‖uk‖2Ek ≥M1‖uk‖2Ek ,

and hence

Y (‖uk‖L∞
[0,2kT ]

) ≥M1. (3.41)

Consequently the properties of Y imply there is a κ > 0(being independent of k), such that

‖uk‖L∞
[0,2kT ]

≥ κ. (3.42)

To complete the proof, observe that by the T−periodicity of G, whenever u(t) is a 2kT−periodic

solution of (HS), so is u(t + jT ) for all j ∈ Z. Hence by replacing uk(t) earlier if necessary by

uk(t+ jT ) for some j ∈ [−k, k]∩Z we can assume that the maximum of uk(t) occurs in [−T, T ].

If u = 0 then using the subsequence from Lemma 3.7 we have

‖uk‖L∞
[−kT,kT ]

= max t∈[−T,T ]|uk(t)| → 0,

which contradicts (3.51). �

Proof of Theorem 3.1: The result follows from Lemma 3.9. �

4 Existence result (II)

In the present section we assume that g and h in (HS) satisfy the following conditions:

(H1) g is odd with respect to u, i.e., for any u ∈ Rn, g(t,−u) = −g(t, u);

(H2) there is a constant θ > 4 such that for every t ∈ R and u ∈ Rn\{0}

0 < θG(t, u) ≤ (g(t, u), u),
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(H3) h : R → Rn is a continuous and bounded function and (
∫
R |h(t)|2dt)

1
2 ≤ σ

2γ2 , where

0 < σ < M1−2G∗ with G∗ := sup{G(t, u) : t ∈ [0, T ], |u| = 1} and M1 being the number defined

in (2.5).

Theorem 4.1. If conditions (G0) and (H2) − (H3) are true, then system (HS) possesses a

nontrivial homoclinic solution u ∈W 1,2(R,Rn) such that u(i)(t)→ 0(i = 0, 1) as t→ ±∞.

If h(t) ≡ 0 and g(t, ·) is an odd function for any t ∈ R, we will show that the system (HS)

has infinitely many subharmonic solutions.

Theorem 4.2. If h(t) ≡ 0 and the conditions (G0) and (H1) − (H3) are satisfied then the

system (HS) possesses infinitely many subharmonic solutions.

To make the paper self contained we include the proofs. In order to prove Theorem 4.1 and

Theorem 4.2, we have to introduce some necessary preliminaries which were partly motivated

by the ideas in [14].

Proposition 4.3. For every t ∈ [0, T ] the following inequalities hold:

G(t, u) ≤ G(t, u|u|)|u|
θ, if 0 < |u| ≤ 1 (4.1)

and

G(t, u) ≥ G(t, u|u|)|u|
θ, if |u| ≥ 1. (4.2)

Proof. Let Θ : (0,∞)→ (0,∞) be defined as follows:

Θ(λ) = G(t, λ−1u, )λθ.

By (H2), we have

Θ
′
(λ) = λθ−1(θ G(t, λ−1u)− (g(t, λ−1u), λ−1u)) ≤ 0.

This shows that the function G(t, λ−1u)λθ is nonincreasing. Hence (4.1) and (4.2) follow. �

Proposition 4.4. Let ι := inf{G(t, u) : t ∈ [0, T ], |u|2 = 1}, τ ∈ R\{0} and u ∈ Ek\{0}.
Then ∫ kT

−kT G(t, τu)dt ≥ ι|τ |θ
∫ kT
−kT |u(t)|θdt− 2ιkT. (4.3)

Proof. Fix τ ∈ R\{0} and u ∈ Ek\{0}. Set

Ωk = {t ∈ [−kT, kT ] : |τu| ≤ 1}

and

Ωk = {t ∈ [−kT, kT ] : |τu| ≥ 1}.
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By (4.2), we get ∫ kT
−kT G(t, τu)dt ≥

∫
Ωk
G(t, τu)dt ≥

∫
Ωk
G(t, τu|τu|)|τu|

θdt

≥ ι
∫

Ωk
|τu|θdt

≥ ι
∫ kT
−kT |τu|

θdt− ι
∫

Ωk
|τu|θdt

≥ ι|τ |θ
∫ kT
−kT |u|

θdt− 2ιkT.

This complete the proof. �

Let hk : R→ Rn be a 2kT−periodic extension of h|[−kT,kT ] on R. From (H3) it follows that

‖hk‖L2
[−kT,kT ]

≤ σ
2γ . (4.4)

Lemma 4.5. If g, G and h satisfy (G0) and (H2) − (H3), then for every k ∈ N the system

(HSk) possesses a 2kT−periodic solution.

Proof. It is clear that Ik(0) = 0. We show that Ik satisfies the PS condition. Assume that

{ukn}n∈N in Ek is a sequence such that {Ik(ukn)}n∈N is bounded and I
′
k(ukn)→ 0 as n→ +∞.

Then there exists a constant d2 > 0 such that

|Ik(ukn)| ≤ d2, I
′
k(ukn)ukn → 0 as n→ +∞. (4.5)

We first prove that {ukn}n∈N is bounded.

From (G0) and (4.5), we have

d2 + o(1) ≥ 1
2Φ2

k(ukn(t)) + λ
∫ kT
−kT |u

′
kn(t)|2u2

kn(t)dt−
∫ kT
−kT (hk(t), ukn(t))dt−

∫ kT
−kT G(t, ukn(t))dt

(4.6)

and
o(‖ukn‖Ek) = I

′
k(ukn)ukn = Φ2

k(ukn(t)) + 4λ
∫ kT
−kT |u

′
kn(t)|2u2

kn(t)dt

−
∫ kT
−kT (hk(t), ukn(t))dt−

∫ kT
−kT (g(t, ukn(t)), ukn(t))dt.

(4.7)

From (H2), (2.6), (4.6) and (4.7), we get

d2θ + o(1) + o(‖ukn‖Ek) ≥ θ−2
2 Φ2

k(ukn(t)) + λ(θ − 4)
∫ kT
−kT |u

′
kn(t)|2u2

kn(t)dt

+
∫ kT
−kT [(g(t, ukn(t)), ukn(t))− θG(t, ukn(t))]dt

+(1− θ)
∫ kT
−kT (hk(t), ukn(t))dt

≥ M1(θ−2)
2 ‖ukn‖2Ek − (θ − 1)‖hk‖L2

[0,2kT ]
‖ukn‖Ek .

(4.8)

Now (4.8) shows that {ukn}n∈N is bounded in Ek. Hence we can extract a subsequence (again

we call it {ukn}n∈N) such that {ukn}n∈N converges to uk in Ek(weakly). This implies ukn → uk

uniformly on [−kT, kT ]. Hence

(I
′
k(ukn)− I ′k(uk))(ukn − uk)→ 0 and ‖ukn − uk‖L2

[0,2kT ]
→ 0.
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A similar argument as in (3.7)-(3.11) guarantees that ‖ukn − uk‖Ek → 0.

We now show that there exist constants ρ, α > 0 independent of k such that every Ik satisfies

the assumption (G1) of Lemma 1.1 with these constants. Assume that ‖u‖L∞
[0,2kT ]

≤ 1.

From (3.1) we have∫ kT
−kT G(t, u(t))dt ≤

∫ kT
−kT G(t, u(t)

|u(t)|)|u(t)|θdt ≤ G∗
∫ kT
−kT |u(t)|θdt ≤ G∗

∫ kT
−kT |u(t)|2dt ≤ G∗‖u‖2Ek .

(4.9)

By (2.1), (2.4), (4.4) and (4.9), we obtain

Ik(u) ≥ 1
2M1‖u‖2Ek −G

∗‖u‖2Ek − ‖hk‖L2
[0,2kT ]

‖u‖L2
[0,2kT ]

≥ 1
2M1‖u‖2Ek −G

∗‖u‖2Ek −
σ

2γ2
‖u‖Ek

≥ 1
2(M1 − σ − 2G∗)‖u‖2Ek + σ

2 ‖u‖
2
Ek
− σ

2γ2
‖u‖Ek .

(4.10)

Note that (H3) implies (M1 − σ − 2G∗) > 0. Set

ρ = 1
γ , α = M1−σ−2G∗

2γ

2
.

From (2.4), if ‖u‖Ek = ρ (note (2.6) and the definition of ρ yields ||u||L∞ ≤ 1), then (4.10) gives

Ik(x) ≥ α.

It remains to prove that for every k ∈ N there exists ek ∈ Ek such that ‖ek‖Ek > ρ and

Ik(ek) ≤ 0. By (2.1), (2.3), (4.3) and (4.4), we have that for every ς ∈ R\{0} and u ∈ Ek\{0},

Ik(ςu) ≤ 1
2M2|ς|2‖u‖2Ek + σ|ς|

2γ2
‖u‖L2

[0,2kτ ]
+ λ|ς|4‖u‖4Ek

+2kιT − ι|ς|θ
∫ kτ
−kτ |u(t)|θdt ≤ 0

(4.11)

provided ς > 0 is large enough since θ > 4. Take ũ ∈ E1 such that ũ(±T ) = 0. Now (4.11)

implies that there exists ζ ∈ R\{0} such that ‖ζũ‖E1 > ρ and I1(ζũ) < 0.

Set

e1(t) = ζũ(t) (4.12)

and

ek(t) =

{
e1(t), for |t| ≤ T,

0, for T < |t| ≤ kT,
(4.13)

for k > 0. Then ek ∈ Ek, ‖ek‖Ek = ‖e1‖E1 > ρ and Ik(ek) = I1(e1) < 0 for every k ∈ N. Thus

the conditions (G1) and (G2) of Lemma 1.1 are satisfied. It follows that Ik possesses a critical

value ck given by

ck = inf
η∈Γk

max s∈[0,1]Ik(η(s)), (4.14)

where

Γk = {η ∈ C([0, 1], Ek)|η(0) = 0 and η(1) = ek}.
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Hence, for every k ∈ N, there is a uk ∈ Ek such that

Ik(uk) = ck, I
′
k(uk) = 0. (4.15)

The function uk is a desired classical 2kT−periodic solution of (HSk). Since ck > 0, uk is a

nontrivial solution even if hk(t) = 0. �

Using an argument as in Lemma 3.8 and Lemma 3.9, we have the next Lemmas.

Lemma 4.6. Let {uk}k∈N be the sequence given by (4.15). Then there exists a solution u of

(HS) and a subsequence of {uk}k∈N (again we call it {uk}k∈N) such that uk → u in C1
loc(R,R

n)

as k → +∞.

Lemma 4.7. The function u determined by Lemma 4.6 is the desired homoclinic solution of

(HS).

Proof of theorem 4.1. The result follows from Lemma 4.7.

Proof of theorem 4.2. The condition (H1) implies that Ik is even. We know Ik ∈ C1(E,R),

I(0) = 0 and I satisfies the PS condition. In order to prove Theorem 4.2 by using the Symmetric

Mountain Pass Lemma, we shall show that both (G3) and (G4) are true. From the proof of

Theorem 4.1, (G1) is true, so is (G3).

Consider the condition (G4). Let Ẽk ⊂ Ek be a finite dimensional subspace. By (H2), there

exist some constants α1 > 0, α2 > 0 such that

G(t, u(t)) ≥ α1|u(t)|θ − α2, u ∈ Ẽk. (4.17)

Then choosing u0 ∈ Ẽk with u0 6= 0 arbitrarily, we have by (2.2) and (3.51) that

Ik(ςu0) = ς2

2 Φk(u0) + ς4
∫ kT
−kT |u

′
0(t)|2|u0(t)|2dt−

∫ kT
−kT G(t, µu0(t))dt

≤ M2ς2

2 ‖u0‖Ek + ς4
∫ kT
−kT |u

′
0(t)|2|u0(t)|2dt− α1ς

θ
∫ kT
−kT |u0(t)|θdt+ 2kα2T ≤ 0,

(4.18)

provided ς > 0 is large enough and θ > 4. By Lemma 1.2, Ik possesses an unbounded sequence

of critical values. This means that, for any positive integer k, system (HSk) possesses infinitely

many solutions. Note that when h(t) ≡ 0, system (HSk) becomes (HS). Consequently, system

(HS) possesses infinitely many 2kT−periodic (i.e. subharmonics) solutions. The proof is com-

plete.
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