
IDENTIFYING AN UNKNOWN SPACE-DEPENDENT SOURCE TERM IN A
MULTI-TERM TIME-SPACE FRACTIONAL DIFFUSION EQUATION

Y. X. YANG AND Y. S. LI∗

Abstract. This paper studies the source identification problem only dependent on space

for one-dimensional multi-term time-space fractional diffusion equation(TSFDE) using fi-

nal value data. We first establish the existence, uniqueness, and regularity of the solution

of the direct problem, then transform the inverse problem into an operator equation and

prove the important property of the operator . Utilizing the analytical Fredholm theorem,

we prove that the source term can be uniquely and dependends continuously determined

by additional final value data. Finally, we transform the inverse problem into a variation-

al problem using the Tikhonov regularization method, and provide an approximate solu-

tion to the inverse problem using the optimal perturbation algorithm. Numerical examples

demonstrate the effectiveness and stability of the algorithm.

1. Introduction

The classical integer-order partial differential equations and its inverse problems have

yielded abundant results and extensive applications. However, with the progress of human

civilization, anomalous diffusion phenomena in nature continue to emerge, such as the d-

iffusion of smog, porous mediums, and viscoelastic fluids. It has been found that using

classical differential equation models cannot accurately describe these phenomena. Since

the beginning of the 21st century, with the establishment of models based on fractional

diffusion equations in various fields such as anomalous diffusion, porous media mechanic-

s, non-Newtonian fluid mechanics, and viscoelastic material mechanics, there has been a
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strong interest in these models due to their significant application value. Moreover, frac-

tional derivatives can describe non-uniform materials with memory and hereditary proper-

ties. Therefore, compared with integer-order diffusion equations, fractional-order diffusion

equations are more effective in describing anomalous diffusion phenomena.

However, in some practical problems, some boundary data, or initial data, or diffusion

coefficients, or source terms are not given, We aim to solve for these unknown quantities by

utilizing additional data, which has led to the emergence of inverse problems for fractional

differential equations. In recent years, numerous researchers have conducted extensive

studies on inverse problems for fractional diffusion equations, such as the study on the

uniqueness of the inverse problem [1, 20, 30, 9, 13, 6], on the numerical computations of

the inverse problem [15, 32] .

In this paper, consider the multi-term TSFDE given by:

(1.1)
m∑

i=1

ai∂
βi
0+u(x, t) = −(−∆)

γ
2 u(x, t) + h(x)r(t), x ∈ Ω, t ∈ (0,T ],

where Ω = (0, 1), ai (i = 1; . . . ; m) be positive constants and ∂βi
0+ denotes the Caputo

fractional left-sided derivative of order βi(i = 1, 2, · · · ,m)(0 < βm < · · · < β1 < 1) :

∂
βi
0+u(x, t) =

1
Γ(1 − βi)

∫ t

0

∂u(x, s)
∂s

ds
(t − s)βi

, 0 < βi < 1, 0 < t ≤ T,

where Γ is the Gamma function and T > 0 is a fixed final time.

The fractional Laplacian operator (−∆)
γ
2 is defined for γ (1 < γ ≤ 2) with the spectral

decomposition for the Laplace operator −∆ (see [22, 23, 24]). We defined as the Hilbert

space:

Hγ0 (Ω) :=

u =
∞∑

n=1

bnϕn : ∥u∥2Hγ0 (Ω) =

∞∑
n=1

b2
nλ̄n
γ
< ∞

 .
and the operator (−∆)

γ
2 by

(−∆)
γ
2 u :=

∞∑
n=1

bnϕn 7→
∞∑

n=1

bnλ̄n
γ/2
ϕn,

which maps Hγ0 (Ω) onto L2(Ω), where λn and ϕn are the appropriate eigenvalues and cor-

responding eigenvectors of the Laplacian operator −∆ with
− ∆ϕn = λnϕn, in Ω,

ϕn = 0, on ∂Ω.
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Hence we set

∥u∥Hγ0 (Ω) = ∥(−∆)
γ
2 u∥L2(Ω).

Suppose the unknown function u(x,t) satisfies the following initial and boundary condi-

tions:

u(x, 0) = 0, x ∈ Ω,(1.2)

u(0, t) = u(1, t) = 0, t ∈ (0,T ].(1.3)

If all functions h(x), r(t) are given appropriately, the problem (1.1)-(1.3) is a direct

problem. The inverse problem is to identify the space source term h(x) for problem (1.1)

u(x,T ) = ν(x), x ∈ Ω.(1.4)

The source identification problem is a hot point in the current scientific research field,

which has a wide range of applications in various fields such as medicine and geological

exploration. In classical elliptic and parabolic equations, the source identification problem

has been extensively studied and has rich research results. The source identification prob-

lem of fractional diffusion equations mainly focuses on the source identification problem of

time-fractional diffusion equations, and most literature always assumes that the source ter-

m has a separable variable form, and the source term that only depends on spatial variables

or time variables is inverted through different measurement data.

In recent years, there have been significant achievements in the research on direct prob-

lems of multiterm fractional diffusion equations. However, there is still a lack of extensive

attention on the inverse problems, which are mainly concentrated on the inverse prob-

lems of multi-term time fractional diffusion equations. For example, Li and Yamamoto

proved the uniqueness of identifying the order of two types of multi-term time-fractional

diffusion equations in [12]. Li, Imanuvilov and Yamamoto considered the inverse bound-

ary value problem of multi-term time-fractional diffusion equations in [10]. Liu proved the

extremum principle of multi-term time-fractional diffusion equations, and gave the unique-

ness of identifying the source term in paper[16], but did not provide a numerical method.

Sun, Li and Jia simultaneously inverted the diffusion coefficient and source term that only

depend on space of multi-term time-fractional diffusion equations using internal observa-

tion data, and gave the algorithm and numerical examples in [21]. In paper [14], Li, Huang

and Yamamoto researched the initial-boundary value problem of multi-term time-fractional
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diffusion equations with coefficients that only depend on x, and gave the uniqueness result

of identifying the order of multi-term time-fractional diffusion equations using observation

data at one internal point. Jiang and Wu studied the identification of the zero-order term

that only depends on time in multi-term time-fractional diffusion equations, gave the exis-

tence uniqueness of the direct problem and the uniqueness of the inverse problem solution,

and used the Levenberg-Marquardt algorithm to give the numerical approximation solution

of the zero-order term in [5]. There have also been significant achievements in research

on the direct problems of fractional parabolic equations. For example, Tuan et al. in [27]

study of the continuity problem is examined in both the linear and nonlinear cases by an

order of derivative for conformable parabolic equations. Tuan et al. in [26] investigates

the solution of the Kirchhoff parabolic equation involving the Caputo-Fabrizio fractional

derivative with a non-singular kernel, the mild solution of equation operators which are

defined via Fourier series, the existence, uniqueness and continuity of the mild solution

with respect to the derivative order are established. Wang et al. in [28] considers a time-

fractional wave equation with an exponential growth source function and proves the local

existence and uniqueness of weak solutions in the Orlicz space. Further, it demonstrates

the existence of small data solutions exist globally over time in the Orlicz space and the

second global-in-time existence of solutions in Besov spaces.

For the time-space fractional diffusion equation, Tatar et al. discussed the inverse space

source term and identified simultaneously the orders of the time-space fractional deriva-

tives of the diffusion equation in [22, 24, 23]. Tuan and Long used the truncated Fourier

method to invert the space-dependent source term and provided convergence estimates and

rules for choosing the regularization parameter in [25], but without numerical example

is provided. Regarding the inverse problem of multi-term time-space fractional diffusion

equations. Malik et al. [17] studied the identification of the source term and diffusion co-

efficient that only depend on time in multi-term time-space fractional diffusion equations,

where the spatial derivative is a Caputo fractional derivative and the time derivative is a

Hilfer fractional derivative, and the additional data is non-local. The uniqueness result of

the inverse problem was given, but no algorithm or numerical example was constructed.

In this paper, we study uniqueness for the identification of a space-dependent source

term for the multi-term TSFDE on the additional final value data. As far as we know, it
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is the first issue for the investigation of a space-dependent source term of the multi-term

TSFDE.

2. Preliminary

Throughout this paper, we use the following definitions and propositions given in [11,

29].

Definition 2.1. (See [11]) The multinomial Mittag-Leffler function is

E(β1,...,βm),β(w1, . . . ,wm) =
∞∑

k=0

∑
l1+···+lm=l

(l; l1, . . . , lm)
m∏

i=1
wli

i

Γ(β +
m∑

i=1
βili)

,

where 0 < β < 2, 0 < βi < 1 and wi ∈ C(i = 1, . . . ,m). Here (l; l1, . . . , lm) denotes the

multi-term coefficient

(l; l1, . . . , lm) :=
l!

l1! · · · lm!
with l =

m∑
i=1

li,

where li(1 ≤ i ≤ m) are non-negative intrgers.

Proposition 2.2. (See [11]) Let 0 < β < 2 and 0 < βm < · · · < β1 < 1 be arbitrary. Assume

that β1π/2 < η < β1π, η ≤ | arg(w1)| ≤ π and there exists S > 0 such that −S ≤ wi < 0(i =

2, . . . ,m). Then there exists a constant C = C(βi(i = 2, . . . ,m), β, η, S ) > 0 such that

| E(β1,β1−β2,··· ,β1−βm),β(w1, . . . ,wm) |≤ C
1+ | w1 |

, η ≤ | arg(w1)| ≤ π.

For later use, we adopt the abbreviation

E(n)
β′,β(t) := E(β1,β1−β2,··· ,β1−βm),β(−λntβ1 ,−a2tβ1−β2 , . . . ,−amtβ1−βm ), t > 0

where λn = λn

γ
2 is the nth eigenvalue of (−∆)

γ
2 (1 < γ ≤ 2); 0 < β < 2, and βi, ai are those

positive constants in (1.1).

Lemma 2.3. Let 0 < β < 2 and 0 < βm < · · · < β1 < 1 be arbitrary. Assume that β1π/2 <

η < β1π, η ≤ | arg(w1)| ≤ π and there exists S > 0 such that −S ≤ wi < 0(i = 2, . . . ,m).

Then exists a constant C = C(βi(i = 1, . . . ,m), η, S ) > 0 such that

dq

daq
i

E(n)
β′,β1−βi

(t) ≤
Cq!a−q

i

1 + |w1|q+1

for any fixed ai (i = 2, . . . ,m).
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Proof. At first, we rewrite the multinomial Mittag-Leffler function by using the results in

[11]:

(2.1) Eβ′,γ(w1, . . . ,wm) =
1

2β1πi

∫
κ(R,θ)

exp
(
φ

1
β1

)
φ

1−γ
β1
−1
∞∑

h=0

w1

φ
+

m∑
l=2

wl

φ1−βl/β1

h

dφ.

We substitute γ = β1 − βi, w1 = −λntβ1 , wl = −altβ1−βl (l = 2, . . . ,m) in (2.1) to deduce

E(n)
β′,β1−βi

(t) = Eβ′,β1−βi

(
−λntβ1 ,−a2tβ1−β2 , . . . ,−amtβ1−βm

)
=

1
2β1πi

∫
κ(R,θ)

exp
(
φ

1
β1

)
φ

1−β1+βi
β1
−1
∞∑

h=0

−λntβ1

φ
+

m∑
l=2

−altβ1−βl

φ1−βl/β1

h

dφ.
(2.2)

Fix any ai ∈ {a2, . . . , am}. For the q-times derivative of ai in equation 2.2, we deduce

dq

daq
i

E(n)
β′,β1−βi

(t)

=
q!

2β1πi

∫
κ(R,θ)

exp
(
φ

1
β1

)
φ

1−β1+βi
β1
−1
∞∑

h=0

(h + q)!
h!q!

−λntβ1

φ
+

m∑
l=2

−altβ1−βl

φ1−βl/β1

h (
−tβ1−βi

φ1−βi/β1

)q

dφ

=
q!a−q

i

2β1πi

∫
κ(R,θ)

exp
(
φ

1
β1

)
φ

1−β1+βi
β1
−1

1 − −λntβ1

φ
−

m∑
l=2

−altβ1−βl

φ1−βl/β1

−q−1 (
−aitβ1−βi

φ1−βi/β1

)q

dφ

=
q!a−q

i

2β1πi

∫
κ(R,θ)

exp
(
φ

1
β1

)
φ

1−β1+βi
β1

φ + λntβ1 +

q∑
l=2

altβ1−βlφβl/β1

−q−1 (
−aitβ1−βiφβi/β1

)q
dφ

=
q!a−q

i wq
i

2β1πi

∫
κ(R,θ)

exp
(
φ

1
β1

)
φ

1−β1+βi+qβi
β1(

φ − w1 −
m∑

l=2
wlφβl/β1

)q+1 dφ.

We refer to the proof results of Lemma 2.3 in [11]. We have the estimate

∣∣∣∣∣∣ dq

daq
i

E(n)
β′,β1−βi

(t)

∣∣∣∣∣∣ = q!a−q
i |wi|q

2β1πi

∣∣∣∣∣∣∣∣∣∣∣∣∣
∫
κ(R,θ)

exp
(
φ

1
β1

)
φ

1−β1+βi+qβi
β1(

φ − w1 −
m∑

l=2
wlφβl/β1

)q+1 dφ

∣∣∣∣∣∣∣∣∣∣∣∣∣
≤

q!a−q
i

|w1|q+1

(
|wi|q
2β1πi

∫
κ(R,θ)

exp
(
φ

1
β1

)
φ

1−β1+βi+qβi
β1 dφ

)
≤

Cq!a−q
i

|w1|q+1 , |w1| > R,
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and on the other hand, by |w1| ≤ R estimate can be directly verified that

∣∣∣∣∣∣ dq

daq
i

E(n)
β′,β1−βi

(t)

∣∣∣∣∣∣ ≤ Cq!a−q
i |wi|q

∞∑
h=0

(h+q)!
h!q!

(
|w1| +

m∑
l=1
|wl|

)h

Γ (β1 − βi + (β1 − β2) (h − q))

≤ Cq!a−q
i ,

the constants C above are positive constants depending on β j ( j = 1, 2, . . . ,m), η, S .

The proof is completed. �

Proposition 2.4. (See [11]) Let 1 > β1 > · · · > βm > 0, then we have

d
dt
{tβ1 E(n)

β′,1+β1
(t)} = tβ1−1E(n)

β′,β1
(t), t > 0.

Definition 2.5. (See [29]) If z(t) ∈ L(0,T ), then for α > 0 the RiemannCLiouville frac-

tional left integral Iα0+ f and right integral IαT− f are defined by

Iα0+ f (t) =
1
Γ(α)

∫ t

0

f (s)ds
(t − s)1−α , 0 < t ≤ T,

and

IαT− f (t) =
1
Γ(α)

∫ T

t

f (s)ds
(s − t)1−α , 0 ≤ t < T.

Definition 2.6. (See [29]) Let z(t) ∈ AC[0,T ], then for 0 < α < 1 the Caputo fractional

left derivative ∂α0+y(t) and right derivative ∂αT−y(t) of order α are defined by

∂α0+y(t) =
1

Γ(1 − α)

∫ t

0

y′(s)ds
(t − s)α

=: (I1−α
0+ y′)(t), 0 < t ≤ T,

and

∂αT−y(t) = − 1
Γ(1 − α)

∫ T

t

y′(s)ds
(s − t)α

=: (I1−α
T− y′)(t), 0 ≤ t < T.

And for 0 < α < 1 the RiemannCLiouville fractional left derivative of order α is defined

by

Dα0+y(t) =
1

Γ(1 − α)
d
dt

∫ t

0

y′(s)
(t − s)α

ds =:
d
dt

(I1−α
0+ y)(t), 0 < t ≤ T.

Proposition 2.7. (See [29]) Let z(t) ∈ AC[0,T ]. Then the Caputo fractional left derivative

∂
β
0+z(t) and the Riemann-Liouville fractional left derivative Dβ0+z(t) exist almost everywhere

on (0, T ], such that

∂
β
0+z(t) = Dβ0+z(t) − z(0)

Γ(1 − β) t−β, a.e. t ∈ (0,T ].
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Lemma 2.8. Assume λn > 0, and r(t) ∈ AC[0,T ]. Then we have

∂
βi
0+

∫ t

0
r(τ)(t − τ)β1−1E(n)

β′,β1
(t − τ)dτ =

∫ t

0
r(τ)(t − τ)β1−βi−1E(n)

β′,β1−βi
(t − τ)dτ,

for any 0 < βi < 1 (i = 1, . . . ,m).

Proof. Denote g(t) =
∫ t

0 r(τ)(t − τ)β1−1E(n)
β′,β1

(t − τ)dτ. Then for 0 < t ≤ T , according to

Proposition 2.4, we get

|g(t)| ≤ ∥r∥C[0,T ]

∣∣∣∣∣∣
∫ t

0
(t − τ)β1−1E(n)

β′,β1
(t − τ)dτ

∣∣∣∣∣∣
≤ ∥r∥C[0,T ]

Ctβ1

1 + λntβ1

≤ CT β1 ∥r∥C[0,T ] .

Define g(0) = 0, then easily prove g(t) ∈ C[0,T ]. According to r(t) ∈ AC[0,T ] and

Proposition 2.4, it follows that

g(t) = r(0)tβ1 E(n)
β′,β1+1(t) +

∫ t

0
r′(τ)(t − τ)β1 E(n)

β′,β1+1(t − τ)dτ.

Hence

g′(t) = r(0)tβ1−1E(n)
β′,β1

(t) +
∫ t

0
r′(τ)(t − τ)β1−1E(n)

β′,β1
(t − τ)dτ.

12 Nov 2023 08:11:47 PST
230629-LiYS Version 2 - Submitted to Rocky Mountain J. Math.



9

Consequently g ∈ AC[0,T ]. Further, we have∫ t

0

g(τ)
(t − τ)βi

dτ

=

∫ t

0
(t − τ)−βi

∫ τ

0
r(s)(τ − s)β1−1E(n)

β′,β1
(τ − s)dsdτ

=

∫ t

0
r(s)

∫ t

s
(t − τ)−βi (τ − s)β1−1E(n)

β′,β1
(τ − s)dτds

=

∫ t

0
r(s)

∫ t

s
(t − τ)−βi (τ − s)β1−1

∞∑
l=0

∑
l1+···+lm=l

(l; l1, . . . , lm)(−1)lλl1
n (τ − s)

β1l1+
m∑

h=2
(β1−βh)lh

Γ(β1 + β1l1 +
m∑

h=2
(β1 − βh)lh)

dτds

=

∫ t

0
r(s)

∞∑
l=0

∑
l1+···+lm=l

(l; l1, . . . , lm)(−1)lλl1
n

Γ(β1 + β1l1 +
m∑

h=2
(β1 − βh)lh)

∫ t

s
(t − τ)−βi (τ − s)

β1−1+β1l1+
m∑

h=2
(β1−βh)lh

dτds

=

∫ t

0
r(s)

∞∑
l=0

∑
l1+···+lm=l

(l; l1, . . . , lm)(−1)lλl1
n Γ(1 − βi)

Γ(β1 + β1l1 +
m∑

h=2
(β1 − βh)lh − (βi − 1))

(t − s)
β1−1+β1l1+

m∑
h=2

(β1−βh)lh−(βi−1)
ds

= Γ(1 − βi)
∫ t

0
r(s)(t − s)β1−βi

∞∑
l=0

∑
l1+···+lm=l

(l; l1, . . . , lm)(−1)lλl1
n (t − s)

β1l1+
m∑

h=2
(β1−βh)kh

Γ(β1 − βi + 1 + β1l1 +
m∑

h=2
(β1 − βh)lh)

ds

= Γ(1 − βi)
∫ t

0
r(τ)(t − τ)β1−βi E(n)

β′,β1−βi+1(t − τ)dτ.

Therefore, by Proposition 2.7, we can conclude

∂
βi
0+g(t) = Dβi

t g(t) =
1

Γ(1 − βi)
d
dt

∫ t

0

g(τ)
(t − τ)βi

dτ

=
1

Γ(1 − βi)
d
dt

[
Γ(1 − βi)

∫ t

0
r(τ)(t − τ)β1−βi E(n)

β′,β1−βi+1(t − τ)dτ
]

=

∫ t

0
r(τ)(t − τ)β1−βi−1E(n)

β′,β1−βi
(t − τ)dτ.

The lemma is proved. �

Lemma 2.9. Assuming that r(t) ∈ L∞(0,T ), 1 > β1 > · · · > βm > 0, λn ≥ 0, denote

(2.3) Wn(t) =
∫ t

0
r(τ)(t − τ)β1−1E(n)

β
′
,β1

(t − τ)dτ, t ∈ (0, T ]

and define Wn(0) = 0, then Wn(t) ∈ C[0,T ]. Moreover, we can obtain the following

estimates:

|Wn(t)| ≤ C1
∥ r ∥L∞(0,T )

λn
,(2.4)

|Wn(t)| ≤ C2 ∥ r ∥L∞(0,T ) .(2.5)

12 Nov 2023 08:11:47 PST
230629-LiYS Version 2 - Submitted to Rocky Mountain J. Math.



10 Y. X. YANG AND Y. S. LI∗

where C1,C2 > 0 is a constant.

Proof. Let’s first prove the continuity of Wn(t). Suppose h > 0, for any t, t + h ∈ (0,T ], we

have

|Wn(t + h) −Wn(t)| =
∣∣∣∣∣∣
∫ t+h

0
r(τ)(t + h − τ)β1−1E(n)

β
′
,β1

(t + h − τ)dτ −
∫ t

0
r(τ)(t − τ)β1−1E(n)

β
′
,β1

(t − τ)dτ
∣∣∣∣∣∣

=
∣∣∣∣ ∫ t

0
r(τ)[(t + h − τ)β1−1E(n)

β
′
,β1

(t + h − τ) − (t − τ)β1−1E(n)
β
′
,β1

(t − τ)]dτ

+

∫ t+h

t
r(τ)(t + h − τ)β1−1E(n)

β
′
,β1

(t + h − τ)dτ
∣∣∣∣

≤ ∥r∥L∞(0,T )

∣∣∣∣(t + h)β1 E(n)
β
′
,β1+1

(t + h) − tβ1 E(n)
β
′
,β1+1

(t)
∣∣∣∣ .

This means lim
h→0+

Wn(t+h) = Wn(t). By a similar deduction, we have lim
h→0−

Wn(t+h) = Wn(t).

Therefore, we can obtain Wn(t) ∈ C[0,T ]. Next, prove two estimates.

|Wn(t)| =
∣∣∣∣ ∫ t

0
r(τ)(t − τ)β1−1E(n)

β
′
,β1

(t − τ)dτ
∣∣∣∣

≤ ∥ r ∥L∞(0,T )

∣∣∣∣∣∣
∫ t

0
(t − τ)β1−1E(n)

β
′
,β1

(t − τ)dτ
∣∣∣∣∣∣

≤ ∥ r ∥L∞(0,T ) tβ1 E(n)
β
′
,β1+1

(t)

≤ ∥ r ∥L∞(0,T )
C1tβ1

1 + λntβ1

≤ C1
∥ r ∥L∞(0,T )

λn
,

and

|Wn(t)| =
∣∣∣∣∣∣
∫ t

0
r(τ)(t − τ)β1−1E(n)

β
′
,β1

(t − τ)dτ
∣∣∣∣∣∣

≤ ∥ r ∥L∞(0,T )

∣∣∣∣∣∣
∫ t

0
(t − τ)β1−1E(n)

β
′
,β1

(t − τ)dτ
∣∣∣∣∣∣

≤ ∥ r ∥L∞(0,T )

∣∣∣∣∣∣
∫ t

0
(t − τ)β1−1 C

1 + λn(t − τ)β1
dτ

∣∣∣∣∣∣
≤ C ∥ r ∥L∞(0,T )

∣∣∣∣∣∣
∫ t

0
(t − τ)β1−1dτ

∣∣∣∣∣∣
≤ C2 ∥ r ∥L∞(0,T ) .

The lemma is proved. �
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3. Existence and uniqueness of a strong solution for the direct problem

Denote the eigenvalues of −△ with homogeneous Dirichlet boundary condition as λ̄n

and the corresponding eigenfunctions as ϕn ∈ H2(Ω)
∩

H1
0(Ω), that means we have −△ϕn =

λ̄nϕn and ϕn|∂Ω = 0. Counting according to the multiplicities, we can set: 0 < λ̄1 ≤ λ̄2 ≤
· · · ≤ λ̄n ≤ · · · and {ϕn}∞n=1 is an orthonormal basis in L2(Ω).

Let us define a strong solution to the direct problem (1.1)-(1.3), then we prove its exis-

tence and uniqueness based on the methods in [20].

Definition 3.1. We call u ∈ C([0,T ]; L2(Ω))
∩

L2(0,T ; Hγ0 (Ω)) such that

(−∆)
γ
2 u ∈ C(([0,T ]; L2(Ω))

∩
L2(0,T ; L2(Ω))) is a strong solution to (1.1)-(1.3) if (1.1)hold

in L2(Ω) for 0 ≤ t ≤ T , (1.2)holds in L2(Ω) as t → 0+ and (1.3) holds in trace sense.

Theorem 3.2. Let g ∈ Hγ0 (Ω) , q ∈ L2(Ω) , f ∈ L∞(0,T ), then exists a unique solution

u(x, t) given by

(3.1) u(x, t) =
∞∑

n=1

∫ t

0
r(τ)(t − τ)β1−1E(n)

β
′
,β1

(t − τ)dτ (q, ϕn) ϕn(x),

where λn = λn

γ
2 ; moreover, the following estimates hold:

(3.2) ∥u∥C([0,T ];L2(Ω)) ≤ C∥r∥L∞(0,T )∥h∥L2(Ω),

(3.3) ∥u∥L2(0,T ;Hγ0 (Ω)) ≤ C∥r∥L∞(0,T )∥h∥L2(Ω),

where C are positive constants depending on β j ( j = 1, 2, · · · ,m), T , Ω.

Proof. We first verify u ∈ C
(
[0,T ]; L2(Ω)

)
and lim

t→0
∥u(·, 0)∥L2(Ω) = 0. By using the result

of Proposition 2.2 and together with (2.5), we can obtain

∥u(x, t)∥2L2(Ω) =

∞∑
n=1

(∫ t

0
r(τ)(t − τ)β1−1E(n)

β
′
,β1

(t − τ)dτ
)2

(h, ϕn)2 ≤
(
C ∥r∥L∞(0,T ) ∥h∥L2(Ω)

)2
.

where C is positive constants depending on β j ( j = 1, 2, · · · ,m), T , Ω.
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12 Y. X. YANG AND Y. S. LI∗

For t, t + k ∈ [0,T ], we have

u(x, t + k) − u(x, t)

=

∞∑
n=1

∫ t+k

0
r(τ)(t + k − τ)β1−1E(n)

β
′
,β1

(t + k − τ)dτ(h, ϕn)ϕn(x) −

∞∑
n=1

∫ t

0
r(τ)(t − τ)β1−1E(n)

β
′
,β1

(t − τ)dτ(h, ϕn)ϕn(x)

=

∞∑
n=1

(∫ t+k

0
r(τ)(t + k − τ)β1−1E(n)

β
′
,β1

(t + k − τ)dτ −
∫ t

0
r(τ)(t − τ)β1−1E(n)

β
′
,β1

(t − τ)dτ
)

(h, ϕn)ϕn(x).

Combining 2.2 and Lemma 2.9, we have the following estimate:

∥u(x, t + k) − u(x, t)∥2L2(Ω) =

∞∑
n=1

(Wn(t + k) −Wn(t))2(h, ϕn)2

≤ 2
∞∑

n=1

(
W2

n (t + k) +W2
n (t)

)
(h, ϕn)2

≤ C∥r∥2L∞(0,T )∥h∥2L2(Ω),

whereWn(t) =
∫ t

0 r(τ)(t−τ)β1−1E(n)
β
′
,β1

(t−τ)dτ. Since lim
k→0

∣∣∣∣(t+k)β1 E(n)
β
′
,β1+1

(t+k)−tβ1 E(n)
β
′
,β1+1

(t)
∣∣∣∣ =

0 for each n ∈ N, by using the Lebesgue theorem, we can arrive at

(3.4) lim
k→0
∥u(x, t + k) − u(x, t)∥L2(Ω) = 0,

it follows that u ∈ C([0,T ]; L2(Ω)).

Utilizing lim
t→0
λntβ1 E(n)

β
′
,β1+1

(t) = 0 and (3.4), we deduce that

lim
t→0+
∥u(·, t)∥L2(Ω) = 0.

Next, we prove that (−∆)
γ
2 u ∈ C

((
(0, T ] ; L2(Ω)

) ∩ L2(0,T ; L2(Ω)
))

and u ∈ L2(0,T ; Hγ0 (Ω)).

Using (3.1), we have

(−∆)
γ
2 u(x, t) =

∞∑
n=1

λn

∫ t

0
r(τ)(t − τ)β1−1E(n)

β
′
,β1

(t − τ)dτ(h, ϕn)ϕn(x).

For 0 < t ≤ T , by using (2.4), derive the estimate∥∥∥∥(−∆)
γ
2 u(x, t)

∥∥∥∥2

L2(Ω)
=

∞∑
n=1

λ2
n(h, ϕn)2(

∫ t

0
r(τ)(t − τ)β1−1E(n)

β
′
,β1

(t − τ)dτ)2

≤ C
∞∑

n=1

λ2
n

∥r∥2L∞(0,T )

λ2
n

(h, ϕn)2

≤ C∥r∥2L∞(0,T ) ∥h∥2L2(Ω) .
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Since (−∆)
γ
2 u(x, t) are convergent in L2(Ω) uniformly on t ∈ [t0,T ] for any given t0 > 0,

(−△)
γ
2 u ∈ C

(
[0,T ]; L2(Ω)

)
can be arrived at similarly to the first part of the proof, and we

have an estimate of

∥u∥L2(0,T ;Hγ0 (Ω)) =
∥∥∥∥(−△)

γ
2 u

∥∥∥∥
L2(0,T ;L2(Ω))

≤ C∥r∥L∞(0,T )∥h∥L2(Ω),

where C are positive constants depending on β j ( j = 1, 2, · · · ,m), T , Ω. �

In the next section, we reformulate the inverse source problem (1.1)-(1.4). For the

inverse source problem, we demonstrate the existence and uniqueness of the solution and

provide a stability estimate.

4. Uniqueness and a stability estimate for the inverse space source problem

We next reformulate the inverse problem for (1.1)-(1.4). Hence, we define the following

operator equation

(4.1) Qh(x) + Φ(x) = h(x),

where Q(h) : L2(Ω)→ L2(Ω), Q(h) and Φ(x) are respectively defined by

(4.2) Qh(x) =

m∑
i=1

ai∂
βi
0+u(x,T )

r(T )
,

and

(4.3) Φ(x) =
(−∆)

γ
2 v(x)

r(T )
.

Throughout this paper, we will assume that |r(T )| > k > 0. The operator equation (4.1)

has a solution (a unique solution) h ∈ L2(Ω) if and only if the inverse problem (1.1)-(1.4)

has a solution (a unique solution) for any fixed ai ∈ J ⊂ (0,∞) (i = 2, . . . ,m), according to

Lemma 2.4 of [24].

Theorem 4.1. For any fixed ai ∈ J (i = 2, . . . ,m) and let r(t) ∈ AC[0,T ], the operator

Q(h) : L2(Ω)→ L2(Ω) is a compact operator.

Proof. By use (2.9), we have
m∑

i=1

ai∂
βi
0+u(x, t) =

m∑
i=1

ai∂
βi
0+

∞∑
n=1

(h, ϕn)
∫ t

0
r(τ)(t − τ)β1−1E(n)

β
′
,β1

(t − τ)dτϕn(x)

=

m∑
i=1

∞∑
n=1

ai (h, ϕn) ∂βi
0+

∫ t

0
r(τ)(t − τ)β1−1E(n)

β
′
,β1

(t − τ)dτϕn(x).
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14 Y. X. YANG AND Y. S. LI∗

According to the lemma 2.3, it follows that

(4.4)
m∑

i=1

ai∂
βi
0+u(x, t) =

∞∑
n=1

m∑
i=1

ai (h, ϕn)
∫ t

0
r(τ)(t − τ)β1−βi−1E(n)

β′,β1−βi
(t − τ)dτϕn(x).

This together with Proposition2.2 and Proposition2.4 mean that∥∥∥∥∥∥∥
m∑

i=1

ai∂
βi
0+u(x,T )

∥∥∥∥∥∥∥
2

Hγ0

=

∥∥∥∥∥∥∥
∞∑

n=1

m∑
i=1

ai (h, ϕn)
∫ T

0
r(τ)(T − τ)β1−βi−1E(n)

β′,β1−βi
(T − τ)dτϕn(x)

∥∥∥∥∥∥∥
2

Hγ0

=

∥∥∥∥∥∥∥
∞∑

n=1

m∑
i=1

ai (h, ϕn)
∫ T

0
r(τ)(T − τ)β1−βi−1E(n)

β′,β1−βi
(T − τ)dτλnϕn(x)

∥∥∥∥∥∥∥
2

L2(Ω)

=

∞∑
n=1

 m∑
i=1

ai

∫ T

0
r(τ)(T − τ)β1−βi−1E(n)

β′,β1−βi
(T − τ)dτ

2

(h, ϕn)2 λ2
n

≤ ∥r∥2C[0,T ]

∞∑
n=1

mλ2
n

m∑
i=1

a2
i

(∫ T

0
(T − τ)β1−βi−1E(n)

β′,β1−βi
(T − τ)dτ

)2

(h, ϕn)2

≤ m∥r∥2C[0,T ]

m∑
i=1

a2
i

(
λnT β1−βi E(n)

β′,β1−βi+1(T )
)2
∞∑

n=1

(h, ϕn)2

≤ C2
1 ∥h∥2L2(Ω) .

Since Hγ0 (Ω) is compactly embedded in L2(Ω), the operator r(T )Q(h) is compact. Finally,

because |r(T )| > k, we can conclude that the operator Q(h) : L2(Ω) → L2(Ω) is compact.

�

Theorem 4.2. According to the definition of Q(h), the operator Qh : J → L2(Ω) is real

analytic for any fixed h ∈ L2(Ω) and al ∈ J (l = 2, . . . ,m).

Proof. Fix any h ∈ L2(Ω). To check the operator Qh is real analytic, let we demonstrate

first

(4.5)
m∑

i=1

ai∂
βi
0+u(x,T ) ∈ C∞(0,∞; L2(Ω)).

Indeed according to the proof of Theorem 4.1 and the compact embedding, we have∥∥∥∥∥∥∥
m∑

i=1

ai∂
βi
0+u(x,T )

∥∥∥∥∥∥∥
L2(Ω)

≤ K.

This confirms (4.5).

Next, we need to claim

(4.6)

∥∥∥∥∥∥∥ dq

daq
l

 m∑
i=1

ai∂
βi
0+u(x,T )


∥∥∥∥∥∥∥

L2(Ω)

≤ Ka−q
l q!, q ∈ N, al ∈ I; K > 0, ai > 0.
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For any fixed al ∈ J (l = 2, . . . ,m), one has

dq

daq
l

 m∑
i=1

ai∂
βi
0+u(x,T )


=

dq

daq
l

 ∞∑
n=1

m∑
i=1

ai (h, ϕn)
∫ T

0
r(τ)(T − τ)β1−βi−1E(n)

β′,β1−βi
(T − τ)dτϕn(x)


≤ ∥r∥C[0,T ]

∞∑
n=1

dq

daq
l

 m∑
i=1

ai

∫ T

0
(T − τ)β1−βi−1E(n)

β′,β1−βi
(T − τ)dτ

 (h, ϕn) ϕn(x)

= ∥r∥C[0,T ]

∞∑
n=1

dq

daq
l

 m∑
i=1

aiT β1−βi E(n)
β′,β1−βi+1(T )

 (h, ϕn) ϕn(x)

= ∥r∥C[0,T ]

∞∑
n=1

 m∑
i=1

T β1−βi ai
dq

daq
l

E(n)
β′,β1−βi+1(T ) + qT β1−βl

dq−1

daq−1
l

E(n)
β′,β1−βl+1(T )

 (h, ϕn) ϕn(x).

According to Lemma 2.3, it follows that∥∥∥∥∥∥∥ dq

daq
l

 m∑
i=1

ai∂
βi
0+u(x,T )


∥∥∥∥∥∥∥

2

L2(Ω)

= ∥r∥2C[0,T ]

∞∑
n=1

 m∑
i=1

T β1−βi ai
dq

daq
l

E(n)
β′,β1−βi+1(T ) + qT β1−βl

dq−1

daq−1
l

E(n)
β′,β1−βl+1(T )

2

(h, ϕn)2

≤ ∥r∥2C[0,T ]

∞∑
n=1

 m∑
i=1

T β1−βi ai
Cq!a−q

l

1 + |w1|q+1 + alT β1−βl
Cq!a−q

l

1 + |w1|q

2

(h, ϕn)2

≤
[
C(m + 1)A∥r∥C[0,T ]∥h∥L2(Ω)

]2 (
q!a−q

l

)2
,

where A = max{a1, a2T β1−β2 , . . . , amT β1−βm }. Donated K = C(m + 1)A∥r∥C[0,T ]∥h∥L2(Ω), the

(4.6) can be confirmed.

Thus, we can easily proveQh : J → L2(Ω) is real analytic for arbitrarily fixed h ∈ L2(Ω)

and al ∈ J (see the last theorem on page 65 of [7]).

�

Theorem 4.3. Let r(t) ∈ C[0,T ]. For sufficiently small al (l = 1, . . . ,m). There exists a

constant 0 < M < 1 such that

∥Qh∥L2(Ω) ≤ M∥h∥L2(Ω).

Moreover, 1 is not an eigenvalue of the operator Q.

Proof. By (4.1) we have

∥Qh∥L2(Ω) =
1

r(T )

∥∥∥∥∥∥∥
m∑

i=1

ai∂
βi
0+u(x,T )

∥∥∥∥∥∥∥
L2(Ω)

.
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According to Proposition 2.2 and (4.4), one has

∥∥∥∥∥∥∥
m∑

i=1

ai∂
βi
0+u(x,T )

∥∥∥∥∥∥∥
2

L2(Ω)

=

∥∥∥∥∥∥∥
∞∑

n=1

m∑
i=1

ai (h, ϕn)
∫ T

0
r(τ)(T − τ)β1−βi−1E(n)

β′,β1−βi
(T − τ)dτϕn(x)

∥∥∥∥∥∥∥
2

L2(Ω)

=

∞∑
n=1

(h, ϕn)2

 m∑
i=1

ai

∫ T

0
r(τ)(T − τ)β1−βi−1E(n)

β′,β1−βi
(T − τ)dτ

2

≤ ∥r∥2C[0,T ]

∞∑
n=1

(h, ϕn)2

 m∑
i=1

aiT β1−βi E(n)
β′,β1−βi+1(T )

2

≤ ∥r∥2C[0,T ]

∞∑
n=1

(h, ϕn)2

 m∑
i=1

Cai

λnT βi

2

≤ ∥r∥2C[0,T ]

(
m

Cal

λnT βl

)2

∥h∥2L2(Ω) ,

where al
T βl = max{ a1

T β1 , . . . ,
am

T βm }. Since |r(T )| > k > 0, we have

∥Qh∥L2(Ω) ≤
Cal∥r∥C[0,T ]

λnT βl k
∥h∥L2(Ω) .

Let M = Cal∥r∥C[0,T ]

λnT βl k , and sufficiently small al > 0, we can get M < 1. Consequently, 1 is

not an eigenvalue of the operator Q.

This completes the proof. �

Theorem 4.4. Assume D is a finite set in J and that it satisfies for any ai ∈ J\D. Suppose

v ∈ Hγ0 (Ω) is the additional data. Hence, the inverse problem (1.1)-(1.4) has a unique

solution. Furthermore, there exists a constant C2 > 0 such that

∥h∥L2(Ω) + ∥u∥L2(0,T ;Hγ0 (Ω)) +

∥∥∥∥∥∥∥
m∑

i=1

ai∂
βi
0+u

∥∥∥∥∥∥∥
L2(0,T ;L2(Ω))

≤ C2∥v∥Hγ0 (Ω).

Proof. According to Theorem 4.1 and Theorem 4.3, it follows that the operator Q can not

occur in the first alternative of the Analytic Fredholm Theorem (see page 266, Theorem

8.92 in [19]). It means that (I − Q)−1 exists for every ai ∈ J\D (i = 1, . . . ,m), where

D ⊂ J is a discrete set. Apply the Analytic Fredholm Theorem, and the inverse problem

(1.1)-(1.4) is uniquely solvable.
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By (3.1) we can conclude

∥u∥Hγ0 (Ω) = ∥(−∆)
γ
2 u∥L2(Ω)

≤
∞∑

n=1

λ2
n

(∫ t

0
r(τ)(t − τ)β1−1E(n)

β
′
,β1

(t − τ)dτ
)2

(h, ϕn)2

≤ C2∥r∥2C[0,T ]

∞∑
n=1

(
λntβ1 E(n)

β
′
,β1+1

(t)
)2

(h, ϕn)2

≤ C2∥h∥2L2(Ω).

According to Theorem 4.3, it follows that

∥h∥L2(Ω) + ∥u∥L2(0,T ;Hγ0 (Ω)) +

∥∥∥∥∥∥∥
m∑

i=1

ai∂
βi
0+u

∥∥∥∥∥∥∥
L2(0,T ;L2(Ω))

≤ C3∥h∥L2(Ω).

By (4.1) and Theorem 4.3, we can obtain

∥h∥L2(Ω) ≤ ∥Qh(x) + Φ(x)∥L2(Ω)

≤ ∥Qh(x)∥L2(Ω) + ∥Φ(x)∥L2(Ω)

≤ M∥h(x)∥L2(Ω) +
1
|r(T )| ∥(−∆)

γ
2 v(x)∥L2(Ω).

Consequently

∥h∥L2(Ω) ≤
1

k(1 − M)
∥(−∆)

γ
2 v(x)∥L2(Ω)

≤ C2∥v∥Hγ0 (Ω).

The proof is completed. �

5. The inversion algorithm

In the following, we compute the space-dependent source term h(x) by the optimal

perturbation algorithm. Suppose that {ϕk(x), k = 1, 2, · · · ,∞} ∈ C2[0, 1] is a set of basis

functions, let

(5.1) h(x) ≈ hK(x) =
K∑

k=1

wkϕk(x),

where hK(x) is the K dimensional approximate solution to h(x), K ∈ N is a truncated level

of h(x), and wk, k = 1, 2, · · ·K are the coefficients of expansion. Using a space with finite

dimensions as

ΦK = span{ϕ1, ϕ2, · · · , ϕK},
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18 Y. X. YANG AND Y. S. LI∗

and a K-dimensional vector as w = (w1,w2, · · · ,wK) ∈ RK is feasible. We identify an

approximation hK(x) ∈ ΦK with a vector w ∈ RK .

To overcome ill-conditioning and ensure the numerical stability of the solution, we use

Tikhonov regularization to solve the following minimization problem.

(5.2) min J(w) =
1
2
∥u(x,T ; w) − ν(x)∥2L2(0,T ) +

µ

2
∥w∥2,

where µ > 0 is a regularization parameter, u(x,T ; w) is the solution of the direct problem

(1.1)-(1.3) for any prescribed hK(x) given by (5.1).

Next, the problem (5.2) is solved using the optimal perturbation algorithm to determine

h(x). For any given wk ∈ RK , set

(5.3) w j+1 = w j + δw j, j = 0, 1, · · · ,

where δw j is referred to as the given perturbation. Therefore, to derive w j+1 from the given

w j, we only need to obtain an ideal perturbation δw j. For ease of writing, they are denoted

by w and δw , respectively. By expanding u(x,T ; w + δw) at w in a Taylor expansion ,

neglecting high-order terms, we obtain

u(x,T ; w + δw) ≈ u(x,T ; w) + ∇T
wu(x,T ; w) · δw.

The error functional with perturbation is defined as:

(5.4) F(δw) =
1
2
∥∇T

wu(x,T ; w) · δw − [ν(x) − u(x,T ; w)]∥2L2(0,T ) +
µ

2
∥δw∥2.

The regularization parameter is provided by

µ = µ(n) =
1

1 + exp(θ(n − n0))
,

where n is the number of iteration, n0 is an a priori chosen number and θ ≥ 0 is the adjust

parameter, which is based on the characteristics of the sigmoid-type function (see[2]). We

will choose n0 = 5, θ = 0.8 in all of the following numerical examples.

The spatial domain [0, 1] is discretized into 0 = x1 < x2 < · · · < xS = 1 where S is the

number of grids, and the L2 norm in 5.4 is converted to the discrete Euclidean norm, given

by

(5.5) F(δw) =
1
2
∥Bδw − (η − β)∥22 +

µ

2
∥δw∥22,
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where

B = (bsk)S×K ,

bsk =
u(xs,T ; w1, · · · ,wk + τ, · · · ,wK) − u(xs,T ; w)

τ
,

s = 1, 2, · · · , S ,

and τ is the numerical differentiation step, where

β = (u(x1, T ; w), u(x2,T ; w), · · · , u(xS ,T ; w)),

η = (ν(x1), ν(x2), · · · , ν(xS )).

Using the method in [8]), (5.5) is transformed into the following normal equations:

(5.6) (µI + BT B)δw = BT (η − β).

Consequently, an optimal perturbation can be solved by the use of the following formula:

(5.7) δw = (µI + BT B)−1BT (η − β).

The following iteration stopping rule is selected:

(5.8) ∥ δw ∥≤ eps,

where eps is a given convergent precision.

The direct problem (1.1)-(1.3) should be resolved so as to use the inversion technique to

solve the inverse diffusion coefficient problem at each stage. Thus in the following, we give

the implicit finite difference scheme with matrix transfer technique [3, 4, 31] for solving

the direct problem (1.1)-(1.3).

The grid sizes for time and space in the finite difference algorithm are ∆t = T
N and

∆x = 1
M , respectively. Time is discretized by tn = n∆t (n = 0, 1, · · · ,N), while space

is discretized by xi = i∆x (i = 0, 1, · · · ,M). The values denoted un
i ≈ u(xi, tn) are the

approximate values of function u at the grid points.

First, Consider the following standard diffusion equation with initial boundary value

conditions

(5.9)


∂u
∂t =

∂2u
∂x2 + h(x)r(t), 0 < x < 1, t > 0,

u(x, 0) = 0,

u(0, t) = u(1, t) = 0,
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20 Y. X. YANG AND Y. S. LI∗

Introducing a finite difference approximation, we obtain


du j

∂t =
1
h (u j−1 − 2ui + u j+1) + r(t)h j, 0 < t < T,

u j = 0

u0 = uN = 0,

where u j = u(x j, t), q j = q(x j), j = 1, 2, · · ·M, τ is the space step defined as τ = 1
M .

The above equations can be expressed as the following system of ordinary differential

equations:

(5.10)
∂U
∂t
= −ηBU + r(t)H,

where η = 1
τ2 and U, b ∈ RN−1, B ∈ RN−1×N−1,

U =



u1

u2

...

uN−1


, U0 =



0

0
...

0


, H =



h1

h2

...

hN−1


, B =



2 −1

−1 2 −1
. . .

. . .
. . .

. . .
. . . −1

−1 2


.

For a real nonsingular, symmetric matrix BN−1×N−1, there exits a nonsingular matrix

PN−1×N−1 such that

B = PΛP−1,

where Λ = diag(λ1, λ2, · · · λN−1), λ j( j = 1, 2, · · ·N − 1) are the eigenvalues of B.

Then, we consider the direct problem (1.1)-(1.3) rewritten in the following matrix form:

(5.11)
m∑

i=1

ai∂
βi
0+ = −η̄B

α
2 U + r(t)H,

where η̄ = 1
hα , A

α
2 = PΛ

α
2 PT . The time-fractional derivative is approximated by

∂
βi
0+u(x, tn) ≈ τ−βi

Γ(2 − βi)

b(βi)
0 u(x, tn) −

n−1∑
k=1

(b(βi)
n−k−1 − b(βi)

n−k)u(x, tk) − b(βi)
n−1u(x, t0)

 ,
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where b(βi)
l = (l + 1)1−βi − l1−βi , l ≥ 0, this scheme was used in [18]. We have ωβi

k =

b(βi)
n−k−1 − b(βi)

n−k, and

(5.12)



∂
βi
0+u

n
1 =

τ−βi
Γ(2−βi)

(
b(βi)

0 un
1 −

n−1∑
k=1
ω
βi
k uk

1 − b(βi)
n−1u0

1

)
,

∂
βi
0+u

n
2 =

τ−βi
Γ(2−βi)

(
b(βi)

0 un
2 −

n−1∑
k=1
ω
βi
k uk

2 − b(βi)
n−1u0

2

)
,

· · · · · · · · ·

∂
βi
0+u

n
N−1 =

τ−βi
Γ(2−βi)

(
b(βi)

0 un
N−1 −

n−1∑
k=1
ω
βi
k uk

N−1 − b(βi)
n−1u0

N−1

)
.

Then, the implicit difference scheme (5.11)-(5.12) can be rewritten in matrix form given as

(5.13)

 AUn = b,

U0 = 0,

where

Un =
(
un

1, u
n
2, · · · , un

N−1

)
,

A =
m∑

i=1

(
b(βi)

0
τ−βi

Γ(2 − β j)
I(N−1)×(N−1)

)
+ η̄B

α
2 ,

and

b =
m∑

i=1


τ−βi
Γ(2−βi)



u1
1 u2

1 · · · un−1
1

u1
2 u2

2 · · · un−1
2

· · · · · · · · · · · ·
u1

N−1 u2
N−1 · · · un−1

N−1





ω
(βi)
1

ω
(βi)
2
...

ω
(βi)
n−1




+ r(tn)H.

6. Numerical experiments

In this part, we prove the effectiveness of the optimal perturbation algorithm with nu-

merical results by using five examples for the one-dimensional scenarios and two-dimensional

scenarios. The algorithms convergence and stability are examined.

The effectiveness of the optimal perturbation algorithm is demonstrated through numer-

ical results from three examples in this section, and the convergence and stability of the

algorithm are analyzed. In all experiments, we set T = 1, and the number of grid points

on both space and time axes is 51. The accurate data is perturbed to create the noisy data

randomly, i.e.,

νδ = ν + δν · (2 · rand(size(ν)) − 1),

the corresponding noise level is calculated by δ = ∥νδ − ν∥L2(0,1).
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Intending to show the accuracy of the numerical solution, the relative root mean square(RRMS)

error is estimated to be

ε(h) =


∑n

j=1

(
hK(x j) − h(x j)

)2∑n
j=1 h(x j)2


1/2

,(6.1)

where n is the total number of the uniformly distributed point on time internal [0, 1], hK(x)

is the space source term reconstructed at the final iteration and h(t) is the precise solution.

Unless otherwise specified, we let m = 3 and ai = 1(i = 1, 2, 3), select eps = 10−6 as the

convergent precision, the numerical differential step τ = 0.01, the first iteration is zeros,

i.e., w = 0.

Example 1: Consider the source function h(x) = sin(πx), r(t) = e−t and β1 = 0.8, β2 =

0.5, β3 = 0.2, and use the finite difference method to resolve the direct problem (1.1)-(1.3)

to obtain the final value data and setting K = 6 and Φk = {1, t, · · · , t2}.
Figure 1 presents the numerical comparison results of inverting the source term h(x) for

different values of γ and different levels of relative noise δ = 0, 0.1%, 0.5%, 1%. It can be

observed that the numerical approximation closely matches the exact source term h(x) very

well, except for a slight deviation near x = 0 when the relative noise level is δ = 10%. This

indicates that our proposed regularization method is highly effective and the identification

of the source term h(x) is stable.
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Figure 1. Numerical solutions for Example 1 .

In Table 1, with a fixed relative noise level δ = 1% and γ = 1.2, the relationship between

different values of β and the RRMS error ε(h) is provided for Example 1. It can be observed
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Table 1. The RRMS errors of Example 1 for various values of β with

fixed γ = 1.2, δ = 1%

β (0.3, 0.2, 0.1) (0.5, 0.4, 0.3) (0.7, 0.6, 0.5) (0.9, 0.8, 0.7)

ε(h) 0.0127 0.0143 0.0160 0.0177

Table 2. The RRMS errors of Example 1 for various values of γ with

fixed β1 = 0.8, β2 = 0.5, β3 = 0.2, δ = 1%

γ 1.1 1.3 1.5 1.7 1.9

ε(h) 0.0119 0.0200 0.0329 0.0528 0.0831

that different values of β have little impact on the numerical accuracy. In Table 2, with a

fixed relative noise level δ = 1% and β1 = 0.8, β2 = 0.5, β3 = 0.2, the relationship between

different values of γ and the RRMS error ε(h) is presented for Example 1. It can be roughly

observed that the precision of the numerical results decreases as γ increases.

In Figure 2, we show numerical results for Example 1 with various γ and various noise

levels δ = 0, 0.1%, 0.5%, 1% in which we fixed β1 = 0.9, β2 = 0.8, · · · , β9 = 0.1. It can be

observed that the numerical results match very well. Table 3 displays the RRMS error for

different values of γ in Example 1, with a fixed error level β1 = 0.9, β2 = 0.8, · · · , β9 = 0.1

and δ = 1%. It can be observed that the numerical accuracy improves as γ decreases.
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Figure 2. Numerical solutions for Example 1 with β1 = 0.9, β2 = 0.8,

· · · , β9 = 0.1.
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Table 3. The RRMS errors of Example 1 for various values of γ with

fixed β1 = 0.9, β2 = 0.8, · · · , β9 = 0.1, δ = 1%

γ 1.1 1.3 1.5 1.7 1.9

ε(h) 0.0072 0.0127 0.0224 0.0388 0.0655

Example 2: Consider the source function h(x) = 2sin(4πx) + e−x + x, r(t) = e−t and β1 =

0.8, β2 = 0.5, β3 = 0.2, and use the finite difference method to resolve the direct problem

(1.1)-(1.3) to obtain the final value data and setting K = 10 and Φk = {1, t, · · · , t10}.
In Figure 3, a comparison of the numerical results for the inverse source term h(x) is

shown for different values of γ and different levels of relative noise δ = 0, 0.1%, 0.5%, 1%.

From the figure, it can be observed that when γ = 1.2, the numerical accuracy remains

high even at a relative noise level of δ = 10%. However, for γ = 1.8, there is a decline in

the numerical results at the endpoints as delta increases.
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Figure 3. Numerical solutions for Example 2 .

Example 3: Consider the source function h(x) = 1 − |2t − 1|, r(t) = e−t and β1 = 0.8, β2 =

0.5, β3 = 0.2, and use the finite difference method to resolve the direct problem (1.1)-(1.3)

to obtain the final value data and setting K = 10 and Φk = {1, t, · · · , t10}.
Figure 4 presents a comparison of numerical results for the identification of the space

source term h(x), considering different relative noise levels δ. The numerical result is good

except at the endpoints and sharp point.
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Figure 4. Numerical solutions for Example 2 .

7. Conclusions

In this paper, we investigates the inversion of a space-dependent source term in a multi-

term TSFDE using final value data. Based on the equation, the operator equation Qh(x) +

Φ(x) = h(x) is constructed, and some important properties of the operator Q are proved.

Using these properties and the analytical Fredholm theorem, it is shown that the space

source term can be uniquely and continuously dependent on the additional final value da-

ta. Additionally, this chapter also uses the Tikhonov regularization method to convert the

inverse problem into a variational problem, and provides an approximate solution to the

inverse problem using the best perturbation algorithm. Numerical examples show the fea-

sibility and stability of the algorithm in identifying space source terms.
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