IDENTIFYING AN UNKNOWN SPACE-DEPENDENT SOURCE TERM IN A
MULTI-TERM TIME-SPACE FRACTIONAL DIFFUSION EQUATION
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AsstracT. This paper studies the source identification problem only dependent on space
for one-dimensional multi-term time-space fractional diffusion equation(TSFDE) using fi-
nal value data. We first establish the existence, uniqueness, and regularity of the solution
of the direct problem, then transform the inverse problem into an operator equation and
prove the important property of the operator . Utilizing the analytical Fredholm theorem,
we prove that the source term can be uniquely and dependends continuously determined
by additional final value data. Finally, we transform the inverse problem into a variation-
al problem using the Tikhonov regularization method, and provide an approximate solu-
tion to the inverse problem using the optimal perturbation algorithm. Numerical examples

demonstrate the effectiveness and stability of the algorithm.

1. INTRODUCTION

The classical integer-order partial differential equations and its inverse problems have
yielded abundant results and extensive applications. However, with the progress of human
civilization, anomalous diffusion phenomena in nature continue to emerge, such as the d-
iffusion of smog, porous mediums, and viscoelastic fluids. It has been found that using
classical differential equation models cannot accurately describe these phenomena. Since
the beginning of the 21st century, with the establishment of models based on fractional
diffusion equations in various fields such as anomalous diffusion, porous media mechanic-

s, non-Newtonian fluid mechanics, and viscoelastic material mechanics, there has been a
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2 Y. X. YANG AND Y. S. LI

strong interest in these models due to their significant application value. Moreover, frac-
tional derivatives can describe non-uniform materials with memory and hereditary proper-
ties. Therefore, compared with integer-order diffusion equations, fractional-order diffusion
equations are more effective in describing anomalous diffusion phenomena.

However, in some practical problems, some boundary data, or initial data, or diffusion
coefficients, or source terms are not given, We aim to solve for these unknown quantities by
utilizing additional data, which has led to the emergence of inverse problems for fractional
differential equations. In recent years, numerous researchers have conducted extensive
studies on inverse problems for fractional diffusion equations, such as the study on the
uniqueness of the inverse problem [1, 20, 30, 9, 13, 6], on the numerical computations of
the inverse problem [15, 32] .

In this paper, consider the multi-term TSFDE given by:

m

(1.1) Z adl u(x,1) = —(=N) u(x, 1) + h(or(),  xe Q1€ (0,T],
i=1

where Q = (0,1), a; (i = 1;...;m) be positive constants and 6§+ denotes the Caputo

fractional left-sided derivative of order 8;(i = 1,2,--- ,m)(0 < B, <---<B1 < 1):

. 1 " Ou(x,s) ds
: _ <1 T
A u(x, 1) F(l—ﬁi)fo GG V<A<l 0<i<T.

where I' is the Gamma function and 7 > 0 is a fixed final time.
The fractional Laplacian operator (=A)? is defined for v (1 <y < 2) with the spectral
decomposition for the Laplace operator —A (see [22, 23, 24]). We defined as the Hilbert

space:

H(Q) := {u = D bubn : lullfp o, = D 00 < oo}.
n=1 n=1

and the operator (-A)? by

(_A)%u = Z bupn & Z bn/l_nwz(ﬁn,
n=1 n=1
which maps Hg (Q) onto L2(Q), where 1, and ¢, are the appropriate eigenvalues and cor-
responding eigenvectors of the Laplacian operator —A with

- A¢,, = zn¢m in Q’

¢, =0, on 0Q.
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Hence we set

Y
el ) = I(=2)> ull 20

Suppose the unknown function u(x,t) satisfies the following initial and boundary condi-

tions:
(1.2) u(x,0) = 0, xeQ,
(1.3) w0,0)=u(l,f)=0, te(0,T).

If all functions A(x), r(f) are given appropriately, the problem (1.1)-(1.3) is a direct

problem. The inverse problem is to identify the space source term A(x) for problem (1.1)
(1.4) u(x,T) = v(x), xeQ.

The source identification problem is a hot point in the current scientific research field,
which has a wide range of applications in various fields such as medicine and geological
exploration. In classical elliptic and parabolic equations, the source identification problem
has been extensively studied and has rich research results. The source identification prob-
lem of fractional diffusion equations mainly focuses on the source identification problem of
time-fractional diffusion equations, and most literature always assumes that the source ter-
m has a separable variable form, and the source term that only depends on spatial variables
or time variables is inverted through different measurement data.

In recent years, there have been significant achievements in the research on direct prob-
lems of multiterm fractional diffusion equations. However, there is still a lack of extensive
attention on the inverse problems, which are mainly concentrated on the inverse prob-
lems of multi-term time fractional diffusion equations. For example, Li and Yamamoto
proved the uniqueness of identifying the order of two types of multi-term time-fractional
diffusion equations in [12]. Li, Imanuvilov and Yamamoto considered the inverse bound-
ary value problem of multi-term time-fractional diffusion equations in [10]. Liu proved the
extremum principle of multi-term time-fractional diffusion equations, and gave the unique-
ness of identifying the source term in paper[16], but did not provide a numerical method.
Sun, Li and Jia simultaneously inverted the diffusion coefficient and source term that only
depend on space of multi-term time-fractional diffusion equations using internal observa-
tion data, and gave the algorithm and numerical examples in [21]. In paper [14], Li, Huang

and Yamamoto researched the initial-boundary value problem of multi-term time-fractional
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diffusion equations with coefficients that only depend on x, and gave the uniqueness result
of identifying the order of multi-term time-fractional diffusion equations using observation
data at one internal point. Jiang and Wu studied the identification of the zero-order term
that only depends on time in multi-term time-fractional diffusion equations, gave the exis-
tence uniqueness of the direct problem and the uniqueness of the inverse problem solution,
and used the Levenberg-Marquardt algorithm to give the numerical approximation solution
of the zero-order term in [5]. There have also been significant achievements in research
on the direct problems of fractional parabolic equations. For example, Tuan et al. in [27]
study of the continuity problem is examined in both the linear and nonlinear cases by an
order of derivative for conformable parabolic equations. Tuan et al. in [26] investigates
the solution of the Kirchhoff parabolic equation involving the Caputo-Fabrizio fractional
derivative with a non-singular kernel, the mild solution of equation operators which are
defined via Fourier series, the existence, uniqueness and continuity of the mild solution
with respect to the derivative order are established. Wang et al. in [28] considers a time-
fractional wave equation with an exponential growth source function and proves the local
existence and uniqueness of weak solutions in the Orlicz space. Further, it demonstrates
the existence of small data solutions exist globally over time in the Orlicz space and the
second global-in-time existence of solutions in Besov spaces.

For the time-space fractional diffusion equation, Tatar et al. discussed the inverse space
source term and identified simultaneously the orders of the time-space fractional deriva-
tives of the diffusion equation in [22, 24, 23]. Tuan and Long used the truncated Fourier
method to invert the space-dependent source term and provided convergence estimates and
rules for choosing the regularization parameter in [25], but without numerical example
is provided. Regarding the inverse problem of multi-term time-space fractional diffusion
equations. Malik et al. [17] studied the identification of the source term and diffusion co-
efficient that only depend on time in multi-term time-space fractional diffusion equations,
where the spatial derivative is a Caputo fractional derivative and the time derivative is a
Hilfer fractional derivative, and the additional data is non-local. The uniqueness result of
the inverse problem was given, but no algorithm or numerical example was constructed.

In this paper, we study uniqueness for the identification of a space-dependent source

term for the multi-term TSFDE on the additional final value data. As far as we know, it
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is the first issue for the investigation of a space-dependent source term of the multi-term
TSFDE.
2. PRELIMINARY
Throughout this paper, we use the following definitions and propositions given in [11,

29].

Definition 2.1. (See [11]) The multinomial Mittag-Leffler function is

. Uiy ) TT W

=1
E(ﬁl ~~~~~ zzz),ﬂ(wl7"-,wl11) = Z " d
k=0 Iy +-+l,=1 F(ﬁ + Z ﬁili)
i=1

5

where 0 < < 2,0 <B; < landw; € C(i = 1,...,m). Here (I;11,...,1,) denotes the

multi-term coefficient

m

! .
(l; ll,. ..,lm) = W with [ = Zl,’,

i=1

where /;(1 < i < m) are non-negative intrgers.

Proposition 2.2. (See [11]) Let0 <8 <2and0 < B, < --- < B < 1 be arbitrary. Assume
that im/2 < n < Bim, n < |arg(wy)| < & and there exists S > 0 such that =S < w; < 0@ =

2,...,m). Then there exists a constant C = C(B;(i = 2,...,m),3,n,S) > 0 such that
E ( s —o < Jarg(w)l <
B Br— Wiseo s W) | ———, < |arg(wy)| < 7.
B1B1=B2 P1=Bm) BV m 1+ | w | n 2wy
For later use, we adopt the abbreviation
E/(;,l’)ﬁ(l‘) = E(ﬁl,ﬁ1—ﬁz,~",,31—,3m),ﬁ(_/lntﬁl y —azt'gliﬁz, Ceey —amt’gliﬁ’"), t>0

where A, = A,

R

is the nth eigenvalue of(—A)% (1 <y<2);,0<B<2 andp, a; are those

positive constants in (1.1).

Lemma 2.3. Let0 < B <2and0 < B, <--- < B1 < 1 be arbitrary. Assume that Bi7/2 <
n < i, n < |arg(wy)| < m and there exists S > 0 such that =S < w; < 0(i = 2,...,m).
Then exists a constant C = C(B;(i = 1,...,m),n,S) > 0 such that

-q

ar o Cqla,

—F , N ———
daf B sﬁl_ﬂi( ) 1+ |W1|q+1

for any fixed a; (i = 2,...,m).
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Proof. At first, we rewrite the multinomial Mittag-Leffler function by using the results in

[11]:

(o] m h
1 e | wi i
21 Eg e W) = ( ) A d
2.1) 5y (Wi Win) i LM)” hZ( Z 131/13]] ¢

We substitute y = 81 — B8;, wi = —A,2', wy = —q® P (1=2,...,m)in (2.1) to deduce

E(n) _ﬁi(t) = Eﬁ'ﬁl*ﬁ,’ (_Anlﬁl > _aztﬁl_ﬁz, e, —amtﬁl—ﬁm)

B B
h
1 f ( i) SR L7 G —ah P
= - ex A A —_— 1+ — | do.
it Jure TP ) Z p ; oi-aip | ¢

h=0

(2.2)

Fix any q; € {ay, ..., a,}. For the g-times derivative of a; in equation 2.2, we deduce

d1

&
da qEﬁ £i-p)
h
_ 4 f exp( ﬁi) Tahy IZ (h+q)! [ =2,/ +Z'": —aq ;PP (—tﬁ'l‘ﬁf )quﬂ
Zﬂ]ﬂ'i k(R.0) =0 h‘q' = (’pl_ﬁl/ﬁl Sol_ﬂi/ﬁl
q!ai_q f ( /zi) l’g”ﬁ"—l 1 — A, 1P i —aqPr P 4l (_aitﬁl—ﬁf )qd
= . exp\eht e A - - - — ]
Zﬁ]ﬂ'l K(R.0) @ = gol B1/B1 le Bi/ B
a'a;” f 8 Pl PR Z B il ql( Prighin ) g
= ; exp(go ')90 Lot + a —a; " (7
2817t Juwo) " '
1\ 1By BB
q!a Wq exp ((p[fl )‘P P
= de.
Zﬁ]ﬂ'l LR,Q) m

g+1
(=1 & g
=2

We refer to the proof results of Lemma 2.3 in [11]. We have the estimate

1 1By +hi+api
gla;"wil? f g Gl
1
2B mi «(R.0)

m g+1
o )
=2

de

iy ()]
‘d qEﬁ’ l_ﬂi(t)

-q
qla; (|w[|‘1f ( i 181 +Bi+B;
< . exp soﬁl)so i de
w19\ 28170 J v )

Cqla;’?
1
PER Iwi| > R,
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and on the other hand, by |w| < R estimate can be directly verified that

h
o (IW1| +3 |w,|)

—EY. (0] < Cqla;wy?
‘d 97 fi 1 Zr(ﬂl — B+ (B —B2) (h = q)
< Cq!ai ,
the constants C above are positive constants dependingon 8; (j = 1,2,...,m),n, S
The proof is completed. O

Proposition 2.4. (See [11]) Let 1 > By > --- > B, > O, then we have

d
d—t{tﬁ'Eg?}HB](t) =PED (1), 1>0.

BB

Definition 2.5. (See [29]) If z(r) € L(0,T), then for @ > 0 the RiemannCLiouville frac-
tional left integral I, f and right integral I7_f are defined by

o 1 T f(s)ds
10+f(t)_1“(a)fo(t—s)l—a’ 0<t<T,

and

o f(s)ds
1 f0) = F()f SO osi<r

Definition 2.6. (See [29]) Let z(f) € AC[0, T'], then for 0 < @ < 1 the Caputo fractional

left derivative dg, y(¢) and right derivative 85_y(¢) of order @ are defined by

"y (s)ds
r-a)Jo -9

A%, y(1) = = ("Y1, 0<t<T,

and

1 T Y (s)ds
A% _y(1) = — = (I;7%Y)t), 0<t<T.
0 =~ | S = 0. 0si<
And for 0 < @ < 1 the RiemannCLiouville fractional left derivative of order « is defined

by
1L d (" Y
I'd-a)de Jo (t—s)°

d —a
Dy, y(1) = Zt(1(§+ W), 0<t<T.

Proposition 2.7. (See [29]) Let z(t) € AC[0, T]. Then the Caputo fractional left derivative
aﬁ 2(?) and the Riemann-Liouville fractional left derivative Dg ,2(?) exist almost everywhere

on (0, T, such that

6€+z(t) = Dg+z(t) - F(i((i)ﬁ) P, ae. te(0,T).
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Lemma 2.8. Assume A,, > 0, and r(t) € AC[0, T]. Then we have
! t
. fo r( -1 EY), (1 - 1)dr = fo rO - P EY (-1,

foranyO<B;<1(i=1,...,m).

Proof. Denote g(1) = fot r(o)(t — T)B‘_IE;;’)ﬁ] (t = T)dr. Then for 0 < t < T, according to

Proposition 2.4, we get

!
8Ol =< rlero,r j; (t— T)ﬂ'_lEl(;'f’)ﬁ] (t-71)dr
1
< Arllero.n Tr P
< CTF Illcro,ry -

Define g(0) = 0, then easily prove g(t) € C[0,T]. According to r(#) € AC[0,T] and

Proposition 2.4, it follows that

i3
g(t) = r(O)zﬂlE;,’,'fﬁlH(t) + fo r (@)t - TP ngfﬁlﬂ(t - 7)dr.
Hence

gty =rOPEY, (1) + fo FE -t EY ), (1 - 1)
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Consequently g € AC[0, T']. Further, we have

3

8(1)
o (t=1) dr

f(f —-7)Fi fT r(s)(t — sy~ lng)ﬁ (t — s)dsdr

f r(s) f (t—1)Pi(r—sP IE;’,'; — s)drds

Bili+ Z Br=Bu)ln

. _1hr_
fr(s)f(t— ORICE ‘Z > Gh o ) CE DA =) drds
120 Iy ++tly=1 B +pil + h%(ﬂl = Bly)

Ll L) (=1D)'A ! it & B
f r(S)Z Z G,y )( )4 (Z_T)_ﬁi(T_ S)ﬁl +hi l+h§2(ﬁl Bl)thdS
1=0 bl =t DBy + Bily + Z(ﬂl = Bul)

Ll,... Ly=DATA - B 1B L+ 3 (BBl —(Bi1
fr(s) &4 )(=1) (1-2) (t—s)ﬁ i+ 2 Gr-ph—(6 ) 1
O B0 ne,= DBy + Bily + zwl =By — B = 1))

ﬁ1/1+§(ﬁ1—ﬁh)kh
sl L) (=D - -
ra ﬁt)f H(s)(t — s ﬁ‘z Z @Gl L)ED A, (e fn) W= s
1=0 hwtly=l T(By — B + 1+ B1h + X (B1 — Buly)
h=2

I -p8) fo r(O =T PEY, (=TT,

Therefore, by Proposition 2.7, we can conclude

1 d (" g
_— dr
T -gpdt Jy -1

1 d t )
i r(l—_ﬁl) d_t [r(l _ﬁl) £ r(T)(t - T)BI ﬁIEl(g )ﬁl ﬂ;+1(t - T)dT

ey = Dlgn=

!
— —Bi-1 (n) —
f(; r@)(t — 1) Ey gt —1)dT.

The lemma is proved. O

Lemma 2.9. Assuming that r(t) € L*(0,T), 1 >y > ---> B, >0, 4, > 0, denote

(2.3) W,(1) = fo l r@ - EY (- 1dr, 1€(0,T]

and define W,(0) = 0, then W,(t) € C[0,T]. Moreover, we can obtain the following
estimates:

4) Wl < ¢ 0D,

(2.5) W.(Ol < Coll7llz=o.1) -
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where C1,C, > 0 is a constant.

Proof. Let’s first prove the continuity of W, (7). Suppose & > 0, forany ¢, 1 + h € (0, T], we

have

IWa(t + h) = W, (D)l

t+h !
f r@)(t+h =P ED (t+h-1)dr - f r@)(t - EY (1 -1ydr
0 B B 0 BB

!
_ =1 () N =1 () _
|f0r(7)[(t+h D EY (+h-1)— =TS, (- Dldr

t+h
+ f r@)(t+h -t ED (14 h - ‘r)dT|
p B B

IA

() _ (n)
Wl [+ WPESD 4 =P, ).

This means hlirg W, (t+h) = W,(¢). By a similar deduction, we have hlirg W, (t+h) = W,(¢).

Therefore, we can obtain W, () € C[0, T]. Next, prove two estimates.

[
W) = | f (o)t — TP ED (t—T)dT'
0 B B
s
< N r s, f(l—T)Bl_lE(’f) (t-71)dt
D, B 8
< 7 llzso,n) Z’B‘ng?ﬁlﬂ(t)
< ol Slla
7l R —
= 0D TP
Il 7 llz=co.r
< C1+,
and
!
Wa() = I f ro)t - 'E® (1 - 1)dr
0 B B
!
< M rleon f (=P TED (1= Ddr
D, s 8
! C
< . PRV e D
Il 7 lz=co,7) f(;( 194 SN T'
!
< Cllrlson f (t- 0P dr
0
< Gl 7l -
The lemma is proved. O
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3. EXISTENCE AND UNIQUENESS OF A STRONG SOLUTION FOR THE DIRECT PROBLEM

Denote the eigenvalues of —A with homogeneous Dirichlet boundary condition as A,
and the corresponding eigenfunctions as ¢, € H*(Q) N H(')(Q), that means we have —A¢, =
1,0, and ¢,lso = 0. Counting according to the multiplicities, we can set: 0 < A; < A; <
<A, <+ and {#u}, is an orthonormal basis in LX(Q).

Let us define a strong solution to the direct problem (1.1)-(1.3), then we prove its exis-

tence and uniqueness based on the methods in [20].
Definition 3.1. We call u € C([0,T]; L>(Q)) N L*(©, T; Hg(Q)) such that
(—A)% u € C(([0,T]; L*(Q)) N L*(0, T; L*(Q))) is a strong solution to (1.1)-(1.3) if (1.1)hold

in L2(Q) for 0 <t < T, (1.2)holds in L*(Q) as t — 0" and (1.3) holds in trace sense.

Theorem 3.2. Let g € Hg(Q), q € *(Q), f € L*(0,T), then exists a unique solution

u(x,t) given by

(3.1) u(x, 1) = Zl fo r@(t =T ES, (1= 1T (g, 1) 0.

1

where A,, = in ; moreover, the following estimates hold:

(3.2) leellcqo,riz@)y < CliFllz=o.nllllz2 @)
(3.3) lullp20.7:1 ) < Clirllz=©.0)llAll2),
where C are positive constants depending on 8; (j = 1,2,--- ,m), T, Q.

Proof. We first verify u € C ([O, TI; LZ(Q)) and 1in3 (-, Ol 2¢q) = 0. By using the result
1=
of Proposition 2.2 and together with (2.5), we can obtain
0 ¢ 2 )
2 _ 1=1 (n) 2
[TEDTANEDY ( fo @ - EY (- r)dr) (.60 < (Clirllo.1) Ml -

n=1

where C is positive constants dependingon 8; (j = 1,2,--- ,m), T, Q.
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Fort, t+ k € [0,T], we have

u(x,t+ k) — u(x,t)

* t+k
D f r@)+ k=T TEY (14 k= 1)dr(h, $,)¢0(x) -
n=1+0 o

> f r@) =P TED (6= )dr(h, $,)¢0(x)
~Jo B

[eS]

t+k t
> ( f r@)(t+ k-t ED (t+ k- 1)dr - f r@)(t - EY (- T)dT) (h, $)bu (0.
0 B B 0 BB

n=1

Combining 2.2 and Lemma 2.9, we have the following estimate:

(£ + ) = ux, Dllngy = Y (Walt + k) = Wa0)*(h, 6,)°
n=1

2 i (W2t + k) + WD) (1. 6,

n=1

IA

IA

2 2
ClIAR 0. A1 .

_ _ —1pm) : : (n) _ (n) _
whereW, (1) = fo r(t)(t—7)P Eﬁ,,ﬁl(t T)dT. Slncellcl_r,%|(t+k)B]E,8’,ﬁ|+1(t+k) tﬁlEﬁ’,ﬁln(t) =

0 for each n € N, by using the Lebesgue theorem, we can arrive at
(3.4) lim flu(x, £ + k) = u(x, Dllz) = 0,
it follows that u € C([0, T1; L*(Q)).
Utilizing lim 2, E™ (1) = 0 and (3.4), we deduce that
t—0 B pr+1

lim [luC-, D)l = 0.

Next, we prove that (-A)iueC (( (0,T]: LX(Q)) N L*(0, T; LZ(Q))) andu € L*(0, T; Hg(Q)).

Using (3.1), we have
(B urn) = Zlﬂ fo rEE = TP TED, (¢ = 1dr(h, ¢ ().

For 0 < ¢t < T, by using (2.4), derive the estimate

2

H(—A)%u(x, 0

L2(Q)

D720, g f r@) (-t EY (- 1)dr)?
— 0 BB

© e
CQ ()

n=1 n

IA

2 2
C”’"”Lw(o,r) ||h||L2(Q) .
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Since (—A)%u(x, t) are convergent in LX(Q) uniformly on ¢ € [ty, T'] for any given #, > O,
(-a)iueC ([0, Tl; Lz(Q)) can be arrived at similarly to the first part of the proof, and we

have an estimate of

Y
el oy = [|(-2) < Clllso Al e,

L2(0,T;L2(Q))
where C are positive constants dependingon 8; (j = 1,2,--- ,m), T, Q. O
In the next section, we reformulate the inverse source problem (1.1)-(1.4). For the

inverse source problem, we demonstrate the existence and uniqueness of the solution and

provide a stability estimate.

4. UNIQUENESS AND A STABILITY ESTIMATE FOR THE INVERSE SPACE SOURCE PROBLEM

We next reformulate the inverse problem for (1.1)-(1.4). Hence, we define the following

operator equation
4.1) Qh(x) + O(x) = h(x),
where Q(h) : L*(Q) — L*(Q), Q(h) and ®(x) are respectively defined by

m

Z a; Ongu(x T)

and
(A Iv(x)
4.3) O(x) = —D

Throughout this paper, we will assume that |#(T")| > k > 0. The operator equation (4.1)
has a solution (a unique solution) # € L*(Q) if and only if the inverse problem (1.1)-(1.4)
has a solution (a unique solution) for any fixed a; € J € (0, 0) (i = 2,...,m), according to

Lemma 2.4 of [24].

Theorem 4.1. For any fixed a; € J (i = 2,...,m) and let r(t) € AC[0,T], the operator
Q) LA(Q) » LX(Q)isa compact operator.

Proof. By use (2.9), we have

m m

Dlaidhuten = adp, (h $n) f @ =P TED, (1 - D)dT(x)

i=1 i

X D athan . [ -, (- ndro
0+ 0 B B

i=1 n=1

1 n
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According to the lemma 2.3, it follows that

m o0 m

@4 > adfuten =" a;i(h ¢, fo @ - P PTES, (6= Tdrg,().

i=1 n=1 i=1
This together with Proposition2.2 and Proposition2.4 mean that

m 2

Z a,ﬁﬁir u(x,T)

i=1

o m T
DTN ai ) f Ha)T = TP PES, (T = 1)t (x)
0 Pl i

n=1 i=1

Y 4
HO HO

2

o) m

T
D f Ha)T = TP PTES, (T = D)dT A, ()
0 L1 i

n=1 i=1

L2(Q)

oo m T 5
i T - l‘ﬁi—lE(r/t) T —od hé, 2
Z[;a fo r(@)(T -7 5T —7) T] (h, ) A2

n=1

) m T 2
0.y ) mAs D a? ( fo (T - B, (T - r)dr) (h.¢,)
n=1 i=1

m (o8]
B 2
mlrio g Y @ (TP PED, o (D) > (¢
i=1 n=1

2 2
S Cl “h”LZ(Q) .

IA

IA

Since Hg (Q) is compactly embedded in L*(Q), the operator #(T)Q(h) is compact. Finally,
because |(T)| > k, we can conclude that the operator Q(h) : L*(Q) — L*(Q) is compact.

O

Theorem 4.2. According to the definition of Q(h), the operator Qh : J — L*(Q) is real
analytic for any fixed h € Q) andajeJ(=2,...,m).

Proof. Fix any h € L*(Q). To check the operator Qh is real analytic, let we demonstrate

first

4.5) D" adf,u(x, T) € C(0, 003 LA(Q)).

i=1

Indeed according to the proof of Theorem 4.1 and the compact embedding, we have

m
Z aiﬁg;u(x, T) <K.
i=1 IR

This confirms (4.5).

Next, we need to claim
d1 (< . _
(4.6) — Z aidl u(x, T) <Kalq!, geN,qi e I,K > 0,q; > 0.
I \i=1 [2(Q)
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For any fixed a; € J (I =2,...,m), one has
d? [~ .
ﬁ (Zl a,ﬁﬁ;u(x, T)J
= [Z > ai(h¢) f ra(T - P e, (T _T>d7¢n(x>]

n=1 i=

dq n
lrllero.ry Z o [Z a; f (T - 0P B, (T - T)dr] (h, @) $n(x)
n=1 44 i3 0

= Irlicor Z —
[0,7] 4 dd
-1

— n - dq n
= ||r||cm]§ (§ Tﬁl ﬁ'a,—E;;, o D)+ g1~ TEgs ﬁ,H(T)](h,asnm(x).
Cl
l

IA

(h, $n) ¢u(x)

m
TB1=Bi ()
2:“J1' Eg gD

According to Lemma 2.3, it follows that
a4 ( L
— a,-&B " u(x, T))
0
dal ; +
-1

2
d?
—Bi (n) - (n) 2
10,71 Z[Z G ﬁalﬁEﬁ’} gt () +qTP P T E W(T)] (h, b)
n= 1

2

LA(Q)

2 (& Cqla,’ Cqla,
2 Br=Bi, 1L ﬁl*ﬁl— 2
< ||r||c[o,T]nZ=;(;T @ o A 10
2 ~ N2
< |Cm+ DA Al (g )

where A = max{ay, a;T# 2, ..., a,, TP }. Donated K = C(m + D)Alllcio.rllAll 2, the
(4.6) can be confirmed.

Thus, we can easily prove Qi : J — L*(Q) is real analytic for arbitrarily fixed 2 € L*(Q)
and a; € J (see the last theorem on page 65 of [7]).

(]

Theorem 4.3. Let r(t) € C[0,T]. For sufficiently small a; (I = 1,...,m). There exists a

constant 0 < M < 1 such that
QA2 ) < MRl 2 (0)-
Moreover, 1 is not an eigenvalue of the operator Q.

Proof. By (4.1) we have

1

QA2 D

Z a,ﬁ‘g’;u(x, T)
i=1

LA(Q)
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16 Y. X. YANG AND Y. S. LI

According to Proposition 2.2 and (4.4), one has

m 2

Z u(x T)

i=1

S s ) f HENT = P TES (T = Do)
L2(Q) =1 i=1

m

2
Z(h ) [Z a; f )T =P IE},'ffgl_ﬁ,.(T—r)dr]

2
M7y Z (h, $a)’ [Z a TP PES, ,M(T))

<
i=1
2 2 di
< o Z(h, én) [Z - Tﬁ,]
< ||r||é[0,ﬂ( A ) [
where 2 T/fr = max{%, Tﬁm} Since |r(T)| > k > 0, we have
Cayllrlcro,r
QAN 20 < W 12l 220 -

Let M = % and sufficiently small a; > 0, we can get M < 1. Consequently, 1 is
not an eigenvalue of the operator Q.

This completes the proof. O

Theorem 4.4. Assume D is a finite set in J and that it satisfies for any a; € J\D. Suppose
v € Hg(Q) is the additional data. Hence, the inverse problem (1.1)-(1.4) has a unique

solution. Furthermore, there exists a constant C, > 0 such that

m

Z ai(?g;u

i=1

< ColWllmy @)-
L2(0,T;L%(Q)

I2ll 2 + Nl 20,70y +

Proof. According to Theorem 4.1 and Theorem 4.3, it follows that the operator Q can not
occur in the first alternative of the Analytic Fredholm Theorem (see page 266, Theorem
8.92 in [19]). It means that (/ — Q)~' exists for every a; € J\D (i = 1,...,m), where
D c J is a discrete set. Apply the Analytic Fredholm Theorem, and the inverse problem

(1.1)-(1.4) is uniquely solvable.
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By (3.1) we can conclude

y
el ) I(=A)Zullz2 )

00

t 2
Zﬁi ( f r(o)(t — P EY (t—T)dT) (h, ¢,)*
0 B i

n=1

IA

i 2
< CllRior Y (W ES, ) 0.g0?
n=1

2 2
S C ”h”LZ(Q)

According to Theorem 4.3, it follows that

m
Z a,-ég’;ru
i=1

< Gillllz2 (-
L2(0,T;L*()

All2 @) + llullz20,7:m ) +

By (4.1) and Theorem 4.3, we can obtain

||h||L2(Q) < |1Qh(x) + ‘D(X)||L2(Q)
< QA2 @) + 1Pz )
1 y

< Mijh + ——||(=A)2

< 12COl 22 |r(T)|”( )2V 2.
Consequently

1 y
||h||L2(Q) < m”(—A)zV(X)HLZ(Q)
< GVl -

The proof is completed. O

5. THE INVERSION ALGORITHM

In the following, we compute the space-dependent source term /h(x) by the optimal
perturbation algorithm. Suppose that {¢y(x),k = 1,2,--- ,00} € C?[0, 1] is a set of basis

functions, let
K

(5.1) h() = K5 = 3 wide(x),
k=1

where /X (x) is the K dimensional approximate solution to A(x), K € N is a truncated level
of h(x), and wy,k = 1,2,--- K are the coeflicients of expansion. Using a space with finite

dimensions as

(DK = Span{¢1’¢2v' o v¢K}’
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18 Y. X. YANG AND Y. S. LI

and a K-dimensional vector as w = (w,wa,--- ,wg) € RX is feasible. We identify an
approximation X (x) € ®X with a vector w € RX.
To overcome ill-conditioning and ensure the numerical stability of the solution, we use

Tikhonov regularization to solve the following minimization problem.

. 1
(52) min Jo#) = 3 [, Tsw) = OO, + S0P,

where ¢ > 0 is a regularization parameter, u(x, T'; w) is the solution of the direct problem
(1.1)-(1.3) for any prescribed /X (x) given by (5.1).
Next, the problem (5.2) is solved using the optimal perturbation algorithm to determine

h(x). For any given w; € RX, set
(53) Wj+1=Wj+6Wj, jZO,l,"',

where 6w ; is referred to as the given perturbation. Therefore, to derive w ;| from the given
w;, we only need to obtain an ideal perturbation 6w ;. For ease of writing, they are denoted
by w and 6w , respectively. By expanding u(x, T;w + éw) at w in a Taylor expansion ,

neglecting high-order terms, we obtain
ulx,T;w+ow) = u(x,T;w)+ Vgu(x, T;w) - ow.
The error functional with perturbation is defined as:
5.4 F(ow) = IV u(x, Tiw) - 5 ;w12 Elow)?
( . ) ( W) - z” wu(-x9 ,W) COW — [V(X) - M(X, ’w)]”LZ(O,T) + 5” W” .

The regularization parameter is provided by

1
1 + exp(6(n — ng))’

H=pn) =

where 7 is the number of iteration, ng is an a priori chosen number and 6 > 0 is the adjust
parameter, which is based on the characteristics of the sigmoid-type function (see[2]). We
will choose ng = 5, 8 = 0.8 in all of the following numerical examples.

The spatial domain [0, 1] is discretized into 0 = x; < xp < -+ < xg = 1 where § is the
number of grids, and the L2 norm in 5.4 is converted to the discrete Euclidean norm, given

by

1
(5.5) F(ow) = 1Bow = (= Bl + 5 lowl.
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where

B :(bsk)SxK,
u(xe, Tywi, - Wi + 7,0+ ,wg) — uxs, Ty w)
bsk = 9
T
s=1,2,---,8,

and 7 is the numerical differentiation step, where
B =, Tsw),ulxy, Tyw), - -+ ulxs, Ty w)),
n =), v(x), -, v(xs)).
Using the method in [8]), (5.5) is transformed into the following normal equations:
(5.6) (ul + B'B)éw = B  (n - ).
Consequently, an optimal perturbation can be solved by the use of the following formula:
(5.7) ow = (ul + BTB)'BT (5 - B).
The following iteration stopping rule is selected:
(5.8) | ow lI< eps,

where eps is a given convergent precision.

The direct problem (1.1)-(1.3) should be resolved so as to use the inversion technique to
solve the inverse diffusion coefficient problem at each stage. Thus in the following, we give
the implicit finite difference scheme with matrix transfer technique [3, 4, 31] for solving
the direct problem (1.1)-(1.3).

The grid sizes for time and space in the finite difference algorithm are Ar = 1% and
Ax = ﬁ respectively. Time is discretized by #, = nAr (n = 0,1,---,N), while space
is discretized by x; = iAx (i = 0,1,---,M). The values denoted u! ~ u(x;,1,) are the
approximate values of function « at the grid points.

First, Consider the following standard diffusion equation with initial boundary value

conditions
W= Su g pr(r), O<x<1, >0,
(5.9 u(x,0) =0,

u(0,1) = u(l,1) =0,
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20 Y. X. YANG AND Y. S. LI

Introducing a finite difference approximation, we obtain

duj _ 1

a - E(uj—l = 2u; + "‘j+l) + r(l‘)hj, O0<t<T,
Mj = 0
up = uy =0,

where u; = u(x;,1), q; = q(x;), j = 1,2,---M, 7 is the space step defined as T = 1.

The above equations can be expressed as the following system of ordinary differential
equations:
ou

(5.10) =5 = ~1BU + rOH.

where 7= & and U, b € RV"!, B e RV

2 -1
up 0 /’l|
-1 2 -1
us 0 /’lz
U= , U= |, H= , B=
-1
uy_1 0 hn-1
-1 2

For a real nonsingular, symmetric matrix By_ijxy-1, there exits a nonsingular matrix

Px_1xny-1 such that

B = PAP!,

where A = diag(A;, A2, -+ Ay-1), ;(j = 1,2,--- N — 1) are the eigenvalues of B.
Then, we consider the direct problem (1.1)-(1.3) rewritten in the following matrix form:

(5.11) > adh, = -iB3U + r()H,

"
P
where 7j = 7=, A* = PA> PT. The time-fractional derivative is approximated by

n—1
b?hu$a_§}wﬁq—bfbMLQ)—%EMLM)’
k=1

Bt ~ 55—
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where b(ﬁ") = (I + DB —['“F | > 0, this scheme was used in [18]. We have wﬁ" =

Bi) Bi)
bn k— l_bn k’and
z Bi i nl i i
%W_&Bﬁwu_g%% #”w
-1
i [,8) g : )0
(5.12) ‘9g+“2 r(T2—/3,-) (bo uy = ; “’f” b ”2)’

-1
i _ 1P B " ik Bi) u0
ol | = (b R WFk_ —b )

T2-8) n—14N-1

Then, the implicit difference scheme (5.11)-(5.12) can be rewritten in matrix form given as

AU" = b,
(5.13)
U’ =0,
where
U" = (u’l’,uz, LUy 1),
A= (s ", B}
= i _ _n|+nB?2
;( 0 T2- ) (N=D)x(N 1)) nb=,
and

1 2 n-1 (8i)

i uy uy Wy

_ Bi)

N I T ST T |
b= 3| > |+ ranH.

1 2 -l B

U1 Un-1 Uy 1) \w, 5

6. NUMERICAL EXPERIMENTS

In this part, we prove the effectiveness of the optimal perturbation algorithm with nu-
merical results by using five examples for the one-dimensional scenarios and two-dimensional
scenarios. The algorithms convergence and stability are examined.

The effectiveness of the optimal perturbation algorithm is demonstrated through numer-
ical results from three examples in this section, and the convergence and stability of the
algorithm are analyzed. In all experiments, we set 7 = 1, and the number of grid points
on both space and time axes is 51. The accurate data is perturbed to create the noisy data
randomly, i.e.,

Vo =y +6v- (2 rand(size(v)) — 1),

the corresponding noise level is calculated by & = |v* — | L200.1)-

12 Nov 2023 08:11:47 PST
230629-LiYS Version 2 - Submitted to Rocky Mountain J. Math.



22 Y. X. YANG AND Y. S. LI

Intending to show the accuracy of the numerical solution, the relative root mean square(RRMS)

error is estimated to be

12

s (W) = hxp)

6.1 h) = s
(6.1) &(h) S P

where  is the total number of the uniformly distributed point on time internal [0, 1], 2 (x)
is the space source term reconstructed at the final iteration and A(¢) is the precise solution.

Unless otherwise specified, weletm = 3and a; = 1(i = 1,2, 3), selecteps = 1079 as the
convergent precision, the numerical differential step 7 = 0.01, the first iteration is zeros,

ie,w=0.

Example 1: Consider the source function A(x) = sin(nx), r(tf) = ¢ and B = 0.8,8; =
0.5,83 = 0.2, and use the finite difference method to resolve the direct problem (1.1)-(1.3)
to obtain the final value data and setting K = 6 and oF ={1,t,---, 7).

Figure 1 presents the numerical comparison results of inverting the source term £(x) for
different values of y and different levels of relative noise 6 = 0,0.1%,0.5%, 1%. It can be
observed that the numerical approximation closely matches the exact source term h(x) very
well, except for a slight deviation near x = 0 when the relative noise level is 6 = 10%. This
indicates that our proposed regularization method is highly effective and the identification

of the source term h(x) is stable.

12 T T T T T T T T T 1.2

exact

f(x) and fk(x)
f(x) and fk(x)

#
oz?f
oé’

0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1 0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
X X

(@ a=12 (b) =138

Ficure 1. Numerical solutions for Example 1 .

In Table 1, with a fixed relative noise level 6 = 1% and y = 1.2, the relationship between

different values of 8 and the RRMS error &(h) is provided for Example 1. It can be observed
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TaBLE 1. The RRMS errors of Example 1 for various values of S with

fixedy=12,0=1%

B |0.3,02,0.1) | (0.5,04,0.3) | (0.7,0.6,0.5) | (0.9,0.8,0.7)
&(h) 0.0127 0.0143 0.0160 0.0177

TaBLE 2. The RRMS errors of Example 1 for various values of y with

fixed 81 = 0.8,8> = 0.5,85 = 02,6 = 1%

y | 11 1.3 1.5 1.7 1.9
&(h) | 0.0119 | 0.0200 | 0.0329 | 0.0528 | 0.0831

that different values of § have little impact on the numerical accuracy. In Table 2, with a
fixed relative noise level 6 = 1% and 8, = 0.8,8, = 0.5, 83 = 0.2, the relationship between
different values of y and the RRMS error &(h) is presented for Example 1. It can be roughly
observed that the precision of the numerical results decreases as y increases.

In Figure 2, we show numerical results for Example 1 with various y and various noise
levels 6 = 0,0.1%,0.5%, 1% in which we fixed 8; = 0.9, 8, = 0.8, ---, B9 = 0.1. It can be
observed that the numerical results match very well. Table 3 displays the RRMS error for
different values of y in Example 1, with a fixed error level 8; = 0.9,8, = 0.8, -+, 89 = 0.1

and 0 = 1%. It can be observed that the numerical accuracy improves as y decreases.

12

s

08

0.6

f(x) and fk(x)
f(x) and fk(x)

04r

0.2

0§

-0.2

0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1 0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1
X X

(@ a=12 (b) =18

FiGure 2. Numerical solutions for Example 1 with 8; = 0.9, 5, = 0.8,

e+, Bo =0.1.
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24 Y. X. YANG AND Y. S. LI

TaBLE 3. The RRMS errors of Example 1 for various values of y with

ﬁxedﬁl = O.g,ﬂz = 08, ,ﬁg = 0.1,6 =1%

v 1.1 1.3 1.5 1.7 1.9
&(h) | 0.0072 | 0.0127 | 0.0224 | 0.0388 | 0.0655

Example 2: Consider the source function h(x) = 2sin(4nx) + e + x, r(t) = e and B =
0.8,8> = 0.5,83 = 0.2, and use the finite difference method to resolve the direct problem
(1.1)-(1.3) to obtain the final value data and setting K = 10 and OF ={1,1,---,1'0).

In Figure 3, a comparison of the numerical results for the inverse source term A(x) is
shown for different values of y and different levels of relative noise 6 = 0,0.1%, 0.5%, 1%.
From the figure, it can be observed that when y = 1.2, the numerical accuracy remains
high even at a relative noise level of 6 = 10%. However, for y = 1.8, there is a decline in

the numerical results at the endpoints as delta increases.

35 T T T T T T T T T 35

exact exact

3t ﬂ ——=0 |1 3r SR |0 ]
——=0.001 4 # § ——4=0.001

25k £— 520,005 | 25t 4 \ £— 520,005 | |
§=0.01 X 4=0.01

2 4 2 3 4

15 f 2 K

! / b |
05 f L} 1 05

of \ f ‘ f ] of
05 \&\%‘z{ d‘ 1 05+

0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1 0 01 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1
X X

f(x) and fk(x)

f(x) and fk(x)

(@ a=12 (b) =18

Ficure 3. Numerical solutions for Example 2 .

Example 3: Consider the source function h(x) = 1 — 2t — 1|, r(f) = e and 81 = 0.8,8; =
0.5,83 = 0.2, and use the finite difference method to resolve the direct problem (1.1)-(1.3)
to obtain the final value data and setting K = 10 and ®* = {1,1,---,1'0}.

Figure 4 presents a comparison of numerical results for the identification of the space
source term A(x), considering different relative noise levels 6. The numerical result is good

except at the endpoints and sharp point.
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f(x) and fk(x)
o
o

f(x) and ik(x)
o
o

@a=12 (b) a=1.8

Ficure 4. Numerical solutions for Example 2 .

7. CONCLUSIONS

In this paper, we investigates the inversion of a space-dependent source term in a multi-
term TSFDE using final value data. Based on the equation, the operator equation Qh(x) +
®(x) = h(x) is constructed, and some important properties of the operator Q are proved.
Using these properties and the analytical Fredholm theorem, it is shown that the space
source term can be uniquely and continuously dependent on the additional final value da-
ta. Additionally, this chapter also uses the Tikhonov regularization method to convert the
inverse problem into a variational problem, and provides an approximate solution to the
inverse problem using the best perturbation algorithm. Numerical examples show the fea-

sibility and stability of the algorithm in identifying space source terms.
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